1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/readpage.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2015, Google, Inc.
7 *
8 * This was originally taken from fs/mpage.c
9 *
10 * The ext4_mpage_readpages() function here is intended to
11 * replace mpage_readahead() in the general case, not just for
12 * encrypted files. It has some limitations (see below), where it
13 * will fall back to read_block_full_page(), but these limitations
14 * should only be hit when page_size != block_size.
15 *
16 * This will allow us to attach a callback function to support ext4
17 * encryption.
18 *
19 * If anything unusual happens, such as:
20 *
21 * - encountering a page which has buffers
22 * - encountering a page which has a non-hole after a hole
23 * - encountering a page with non-contiguous blocks
24 *
25 * then this code just gives up and calls the buffer_head-based read function.
26 * It does handle a page which has holes at the end - that is a common case:
27 * the end-of-file on blocksize < PAGE_SIZE setups.
28 *
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/export.h>
33 #include <linux/mm.h>
34 #include <linux/kdev_t.h>
35 #include <linux/gfp.h>
36 #include <linux/bio.h>
37 #include <linux/fs.h>
38 #include <linux/buffer_head.h>
39 #include <linux/blkdev.h>
40 #include <linux/highmem.h>
41 #include <linux/prefetch.h>
42 #include <linux/mpage.h>
43 #include <linux/writeback.h>
44 #include <linux/backing-dev.h>
45 #include <linux/pagevec.h>
46
47 #include "ext4.h"
48
49 #define NUM_PREALLOC_POST_READ_CTXS 128
50
51 static struct kmem_cache *bio_post_read_ctx_cache;
52 static mempool_t *bio_post_read_ctx_pool;
53
54 /* postprocessing steps for read bios */
55 enum bio_post_read_step {
56 STEP_INITIAL = 0,
57 STEP_DECRYPT,
58 STEP_VERITY,
59 STEP_MAX,
60 };
61
62 struct bio_post_read_ctx {
63 struct bio *bio;
64 struct work_struct work;
65 unsigned int cur_step;
66 unsigned int enabled_steps;
67 };
68
__read_end_io(struct bio * bio)69 static void __read_end_io(struct bio *bio)
70 {
71 struct page *page;
72 struct bio_vec *bv;
73 struct bvec_iter_all iter_all;
74
75 bio_for_each_segment_all(bv, bio, iter_all) {
76 page = bv->bv_page;
77
78 /* PG_error was set if any post_read step failed */
79 if (bio->bi_status || PageError(page)) {
80 ClearPageUptodate(page);
81 /* will re-read again later */
82 ClearPageError(page);
83 } else {
84 SetPageUptodate(page);
85 }
86 unlock_page(page);
87 }
88 if (bio->bi_private)
89 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
90 bio_put(bio);
91 }
92
93 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
94
decrypt_work(struct work_struct * work)95 static void decrypt_work(struct work_struct *work)
96 {
97 struct bio_post_read_ctx *ctx =
98 container_of(work, struct bio_post_read_ctx, work);
99
100 fscrypt_decrypt_bio(ctx->bio);
101
102 bio_post_read_processing(ctx);
103 }
104
verity_work(struct work_struct * work)105 static void verity_work(struct work_struct *work)
106 {
107 struct bio_post_read_ctx *ctx =
108 container_of(work, struct bio_post_read_ctx, work);
109 struct bio *bio = ctx->bio;
110
111 /*
112 * fsverity_verify_bio() may call readahead() again, and although verity
113 * will be disabled for that, decryption may still be needed, causing
114 * another bio_post_read_ctx to be allocated. So to guarantee that
115 * mempool_alloc() never deadlocks we must free the current ctx first.
116 * This is safe because verity is the last post-read step.
117 */
118 BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
119 mempool_free(ctx, bio_post_read_ctx_pool);
120 bio->bi_private = NULL;
121
122 fsverity_verify_bio(bio);
123
124 __read_end_io(bio);
125 }
126
bio_post_read_processing(struct bio_post_read_ctx * ctx)127 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
128 {
129 /*
130 * We use different work queues for decryption and for verity because
131 * verity may require reading metadata pages that need decryption, and
132 * we shouldn't recurse to the same workqueue.
133 */
134 switch (++ctx->cur_step) {
135 case STEP_DECRYPT:
136 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
137 INIT_WORK(&ctx->work, decrypt_work);
138 fscrypt_enqueue_decrypt_work(&ctx->work);
139 return;
140 }
141 ctx->cur_step++;
142 fallthrough;
143 case STEP_VERITY:
144 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
145 INIT_WORK(&ctx->work, verity_work);
146 fsverity_enqueue_verify_work(&ctx->work);
147 return;
148 }
149 ctx->cur_step++;
150 fallthrough;
151 default:
152 __read_end_io(ctx->bio);
153 }
154 }
155
bio_post_read_required(struct bio * bio)156 static bool bio_post_read_required(struct bio *bio)
157 {
158 return bio->bi_private && !bio->bi_status;
159 }
160
161 /*
162 * I/O completion handler for multipage BIOs.
163 *
164 * The mpage code never puts partial pages into a BIO (except for end-of-file).
165 * If a page does not map to a contiguous run of blocks then it simply falls
166 * back to block_read_full_folio().
167 *
168 * Why is this? If a page's completion depends on a number of different BIOs
169 * which can complete in any order (or at the same time) then determining the
170 * status of that page is hard. See end_buffer_async_read() for the details.
171 * There is no point in duplicating all that complexity.
172 */
mpage_end_io(struct bio * bio)173 static void mpage_end_io(struct bio *bio)
174 {
175 if (bio_post_read_required(bio)) {
176 struct bio_post_read_ctx *ctx = bio->bi_private;
177
178 ctx->cur_step = STEP_INITIAL;
179 bio_post_read_processing(ctx);
180 return;
181 }
182 __read_end_io(bio);
183 }
184
ext4_need_verity(const struct inode * inode,pgoff_t idx)185 static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
186 {
187 return fsverity_active(inode) &&
188 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
189 }
190
ext4_set_bio_post_read_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx)191 static void ext4_set_bio_post_read_ctx(struct bio *bio,
192 const struct inode *inode,
193 pgoff_t first_idx)
194 {
195 unsigned int post_read_steps = 0;
196
197 if (fscrypt_inode_uses_fs_layer_crypto(inode))
198 post_read_steps |= 1 << STEP_DECRYPT;
199
200 if (ext4_need_verity(inode, first_idx))
201 post_read_steps |= 1 << STEP_VERITY;
202
203 if (post_read_steps) {
204 /* Due to the mempool, this never fails. */
205 struct bio_post_read_ctx *ctx =
206 mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
207
208 ctx->bio = bio;
209 ctx->enabled_steps = post_read_steps;
210 bio->bi_private = ctx;
211 }
212 }
213
ext4_readpage_limit(struct inode * inode)214 static inline loff_t ext4_readpage_limit(struct inode *inode)
215 {
216 if (IS_ENABLED(CONFIG_FS_VERITY) &&
217 (IS_VERITY(inode) || ext4_verity_in_progress(inode)))
218 return inode->i_sb->s_maxbytes;
219
220 return i_size_read(inode);
221 }
222
ext4_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct page * page)223 int ext4_mpage_readpages(struct inode *inode,
224 struct readahead_control *rac, struct page *page)
225 {
226 struct bio *bio = NULL;
227 sector_t last_block_in_bio = 0;
228
229 const unsigned blkbits = inode->i_blkbits;
230 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
231 const unsigned blocksize = 1 << blkbits;
232 sector_t next_block;
233 sector_t block_in_file;
234 sector_t last_block;
235 sector_t last_block_in_file;
236 sector_t blocks[MAX_BUF_PER_PAGE];
237 unsigned page_block;
238 struct block_device *bdev = inode->i_sb->s_bdev;
239 int length;
240 unsigned relative_block = 0;
241 struct ext4_map_blocks map;
242 unsigned int nr_pages = rac ? readahead_count(rac) : 1;
243
244 map.m_pblk = 0;
245 map.m_lblk = 0;
246 map.m_len = 0;
247 map.m_flags = 0;
248
249 for (; nr_pages; nr_pages--) {
250 int fully_mapped = 1;
251 unsigned first_hole = blocks_per_page;
252
253 if (rac) {
254 page = readahead_page(rac);
255 prefetchw(&page->flags);
256 }
257
258 if (page_has_buffers(page))
259 goto confused;
260
261 block_in_file = next_block =
262 (sector_t)page->index << (PAGE_SHIFT - blkbits);
263 last_block = block_in_file + nr_pages * blocks_per_page;
264 last_block_in_file = (ext4_readpage_limit(inode) +
265 blocksize - 1) >> blkbits;
266 if (last_block > last_block_in_file)
267 last_block = last_block_in_file;
268 page_block = 0;
269
270 /*
271 * Map blocks using the previous result first.
272 */
273 if ((map.m_flags & EXT4_MAP_MAPPED) &&
274 block_in_file > map.m_lblk &&
275 block_in_file < (map.m_lblk + map.m_len)) {
276 unsigned map_offset = block_in_file - map.m_lblk;
277 unsigned last = map.m_len - map_offset;
278
279 for (relative_block = 0; ; relative_block++) {
280 if (relative_block == last) {
281 /* needed? */
282 map.m_flags &= ~EXT4_MAP_MAPPED;
283 break;
284 }
285 if (page_block == blocks_per_page)
286 break;
287 blocks[page_block] = map.m_pblk + map_offset +
288 relative_block;
289 page_block++;
290 block_in_file++;
291 }
292 }
293
294 /*
295 * Then do more ext4_map_blocks() calls until we are
296 * done with this page.
297 */
298 while (page_block < blocks_per_page) {
299 if (block_in_file < last_block) {
300 map.m_lblk = block_in_file;
301 map.m_len = last_block - block_in_file;
302
303 if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
304 set_error_page:
305 SetPageError(page);
306 zero_user_segment(page, 0,
307 PAGE_SIZE);
308 unlock_page(page);
309 goto next_page;
310 }
311 }
312 if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
313 fully_mapped = 0;
314 if (first_hole == blocks_per_page)
315 first_hole = page_block;
316 page_block++;
317 block_in_file++;
318 continue;
319 }
320 if (first_hole != blocks_per_page)
321 goto confused; /* hole -> non-hole */
322
323 /* Contiguous blocks? */
324 if (page_block && blocks[page_block-1] != map.m_pblk-1)
325 goto confused;
326 for (relative_block = 0; ; relative_block++) {
327 if (relative_block == map.m_len) {
328 /* needed? */
329 map.m_flags &= ~EXT4_MAP_MAPPED;
330 break;
331 } else if (page_block == blocks_per_page)
332 break;
333 blocks[page_block] = map.m_pblk+relative_block;
334 page_block++;
335 block_in_file++;
336 }
337 }
338 if (first_hole != blocks_per_page) {
339 zero_user_segment(page, first_hole << blkbits,
340 PAGE_SIZE);
341 if (first_hole == 0) {
342 if (ext4_need_verity(inode, page->index) &&
343 !fsverity_verify_page(page))
344 goto set_error_page;
345 SetPageUptodate(page);
346 unlock_page(page);
347 goto next_page;
348 }
349 } else if (fully_mapped) {
350 SetPageMappedToDisk(page);
351 }
352
353 /*
354 * This page will go to BIO. Do we need to send this
355 * BIO off first?
356 */
357 if (bio && (last_block_in_bio != blocks[0] - 1 ||
358 !fscrypt_mergeable_bio(bio, inode, next_block))) {
359 submit_and_realloc:
360 submit_bio(bio);
361 bio = NULL;
362 }
363 if (bio == NULL) {
364 /*
365 * bio_alloc will _always_ be able to allocate a bio if
366 * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
367 */
368 bio = bio_alloc(bdev, bio_max_segs(nr_pages),
369 REQ_OP_READ, GFP_KERNEL);
370 fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
371 GFP_KERNEL);
372 ext4_set_bio_post_read_ctx(bio, inode, page->index);
373 bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
374 bio->bi_end_io = mpage_end_io;
375 if (rac)
376 bio->bi_opf |= REQ_RAHEAD;
377 }
378
379 length = first_hole << blkbits;
380 if (bio_add_page(bio, page, length, 0) < length)
381 goto submit_and_realloc;
382
383 if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
384 (relative_block == map.m_len)) ||
385 (first_hole != blocks_per_page)) {
386 submit_bio(bio);
387 bio = NULL;
388 } else
389 last_block_in_bio = blocks[blocks_per_page - 1];
390 goto next_page;
391 confused:
392 if (bio) {
393 submit_bio(bio);
394 bio = NULL;
395 }
396 if (!PageUptodate(page))
397 block_read_full_folio(page_folio(page), ext4_get_block);
398 else
399 unlock_page(page);
400 next_page:
401 if (rac)
402 put_page(page);
403 }
404 if (bio)
405 submit_bio(bio);
406 return 0;
407 }
408
ext4_init_post_read_processing(void)409 int __init ext4_init_post_read_processing(void)
410 {
411 bio_post_read_ctx_cache =
412 kmem_cache_create("ext4_bio_post_read_ctx",
413 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
414 if (!bio_post_read_ctx_cache)
415 goto fail;
416 bio_post_read_ctx_pool =
417 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
418 bio_post_read_ctx_cache);
419 if (!bio_post_read_ctx_pool)
420 goto fail_free_cache;
421 return 0;
422
423 fail_free_cache:
424 kmem_cache_destroy(bio_post_read_ctx_cache);
425 fail:
426 return -ENOMEM;
427 }
428
ext4_exit_post_read_processing(void)429 void ext4_exit_post_read_processing(void)
430 {
431 mempool_destroy(bio_post_read_ctx_pool);
432 kmem_cache_destroy(bio_post_read_ctx_cache);
433 }
434