1 /*
2  *  linux/fs/ext4/ialloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  BSD ufs-inspired inode and directory allocation by
10  *  Stephen Tweedie (sct@redhat.com), 1993
11  *  Big-endian to little-endian byte-swapping/bitmaps by
12  *        David S. Miller (davem@caip.rutgers.edu), 1995
13  */
14 
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <asm/byteorder.h>
26 
27 #include "ext4.h"
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
31 
32 #include <trace/events/ext4.h>
33 
34 /*
35  * ialloc.c contains the inodes allocation and deallocation routines
36  */
37 
38 /*
39  * The free inodes are managed by bitmaps.  A file system contains several
40  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
41  * block for inodes, N blocks for the inode table and data blocks.
42  *
43  * The file system contains group descriptors which are located after the
44  * super block.  Each descriptor contains the number of the bitmap block and
45  * the free blocks count in the block.
46  */
47 
48 /*
49  * To avoid calling the atomic setbit hundreds or thousands of times, we only
50  * need to use it within a single byte (to ensure we get endianness right).
51  * We can use memset for the rest of the bitmap as there are no other users.
52  */
ext4_mark_bitmap_end(int start_bit,int end_bit,char * bitmap)53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
54 {
55 	int i;
56 
57 	if (start_bit >= end_bit)
58 		return;
59 
60 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
61 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
62 		ext4_set_bit(i, bitmap);
63 	if (i < end_bit)
64 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
65 }
66 
67 /* Initializes an uninitialized inode bitmap */
ext4_init_inode_bitmap(struct super_block * sb,struct buffer_head * bh,ext4_group_t block_group,struct ext4_group_desc * gdp)68 static unsigned ext4_init_inode_bitmap(struct super_block *sb,
69 				       struct buffer_head *bh,
70 				       ext4_group_t block_group,
71 				       struct ext4_group_desc *gdp)
72 {
73 	struct ext4_sb_info *sbi = EXT4_SB(sb);
74 
75 	J_ASSERT_BH(bh, buffer_locked(bh));
76 
77 	/* If checksum is bad mark all blocks and inodes use to prevent
78 	 * allocation, essentially implementing a per-group read-only flag. */
79 	if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
80 		ext4_error(sb, "Checksum bad for group %u", block_group);
81 		ext4_free_blks_set(sb, gdp, 0);
82 		ext4_free_inodes_set(sb, gdp, 0);
83 		ext4_itable_unused_set(sb, gdp, 0);
84 		memset(bh->b_data, 0xff, sb->s_blocksize);
85 		return 0;
86 	}
87 
88 	memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
89 	ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
90 			bh->b_data);
91 
92 	return EXT4_INODES_PER_GROUP(sb);
93 }
94 
95 /*
96  * Read the inode allocation bitmap for a given block_group, reading
97  * into the specified slot in the superblock's bitmap cache.
98  *
99  * Return buffer_head of bitmap on success or NULL.
100  */
101 static struct buffer_head *
ext4_read_inode_bitmap(struct super_block * sb,ext4_group_t block_group)102 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
103 {
104 	struct ext4_group_desc *desc;
105 	struct buffer_head *bh = NULL;
106 	ext4_fsblk_t bitmap_blk;
107 
108 	desc = ext4_get_group_desc(sb, block_group, NULL);
109 	if (!desc)
110 		return NULL;
111 
112 	bitmap_blk = ext4_inode_bitmap(sb, desc);
113 	bh = sb_getblk(sb, bitmap_blk);
114 	if (unlikely(!bh)) {
115 		ext4_error(sb, "Cannot read inode bitmap - "
116 			    "block_group = %u, inode_bitmap = %llu",
117 			    block_group, bitmap_blk);
118 		return NULL;
119 	}
120 	if (bitmap_uptodate(bh))
121 		return bh;
122 
123 	lock_buffer(bh);
124 	if (bitmap_uptodate(bh)) {
125 		unlock_buffer(bh);
126 		return bh;
127 	}
128 
129 	ext4_lock_group(sb, block_group);
130 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
131 		ext4_init_inode_bitmap(sb, bh, block_group, desc);
132 		set_bitmap_uptodate(bh);
133 		set_buffer_uptodate(bh);
134 		ext4_unlock_group(sb, block_group);
135 		unlock_buffer(bh);
136 		return bh;
137 	}
138 	ext4_unlock_group(sb, block_group);
139 
140 	if (buffer_uptodate(bh)) {
141 		/*
142 		 * if not uninit if bh is uptodate,
143 		 * bitmap is also uptodate
144 		 */
145 		set_bitmap_uptodate(bh);
146 		unlock_buffer(bh);
147 		return bh;
148 	}
149 	/*
150 	 * submit the buffer_head for read. We can
151 	 * safely mark the bitmap as uptodate now.
152 	 * We do it here so the bitmap uptodate bit
153 	 * get set with buffer lock held.
154 	 */
155 	trace_ext4_load_inode_bitmap(sb, block_group);
156 	set_bitmap_uptodate(bh);
157 	if (bh_submit_read(bh) < 0) {
158 		put_bh(bh);
159 		ext4_error(sb, "Cannot read inode bitmap - "
160 			    "block_group = %u, inode_bitmap = %llu",
161 			    block_group, bitmap_blk);
162 		return NULL;
163 	}
164 	return bh;
165 }
166 
167 /*
168  * NOTE! When we get the inode, we're the only people
169  * that have access to it, and as such there are no
170  * race conditions we have to worry about. The inode
171  * is not on the hash-lists, and it cannot be reached
172  * through the filesystem because the directory entry
173  * has been deleted earlier.
174  *
175  * HOWEVER: we must make sure that we get no aliases,
176  * which means that we have to call "clear_inode()"
177  * _before_ we mark the inode not in use in the inode
178  * bitmaps. Otherwise a newly created file might use
179  * the same inode number (not actually the same pointer
180  * though), and then we'd have two inodes sharing the
181  * same inode number and space on the harddisk.
182  */
ext4_free_inode(handle_t * handle,struct inode * inode)183 void ext4_free_inode(handle_t *handle, struct inode *inode)
184 {
185 	struct super_block *sb = inode->i_sb;
186 	int is_directory;
187 	unsigned long ino;
188 	struct buffer_head *bitmap_bh = NULL;
189 	struct buffer_head *bh2;
190 	ext4_group_t block_group;
191 	unsigned long bit;
192 	struct ext4_group_desc *gdp;
193 	struct ext4_super_block *es;
194 	struct ext4_sb_info *sbi;
195 	int fatal = 0, err, count, cleared;
196 
197 	if (atomic_read(&inode->i_count) > 1) {
198 		printk(KERN_ERR "ext4_free_inode: inode has count=%d\n",
199 		       atomic_read(&inode->i_count));
200 		return;
201 	}
202 	if (inode->i_nlink) {
203 		printk(KERN_ERR "ext4_free_inode: inode has nlink=%d\n",
204 		       inode->i_nlink);
205 		return;
206 	}
207 	if (!sb) {
208 		printk(KERN_ERR "ext4_free_inode: inode on "
209 		       "nonexistent device\n");
210 		return;
211 	}
212 	sbi = EXT4_SB(sb);
213 
214 	ino = inode->i_ino;
215 	ext4_debug("freeing inode %lu\n", ino);
216 	trace_ext4_free_inode(inode);
217 
218 	/*
219 	 * Note: we must free any quota before locking the superblock,
220 	 * as writing the quota to disk may need the lock as well.
221 	 */
222 	dquot_initialize(inode);
223 	ext4_xattr_delete_inode(handle, inode);
224 	dquot_free_inode(inode);
225 	dquot_drop(inode);
226 
227 	is_directory = S_ISDIR(inode->i_mode);
228 
229 	/* Do this BEFORE marking the inode not in use or returning an error */
230 	ext4_clear_inode(inode);
231 
232 	es = EXT4_SB(sb)->s_es;
233 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
234 		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
235 		goto error_return;
236 	}
237 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
238 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
239 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
240 	if (!bitmap_bh)
241 		goto error_return;
242 
243 	BUFFER_TRACE(bitmap_bh, "get_write_access");
244 	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
245 	if (fatal)
246 		goto error_return;
247 
248 	fatal = -ESRCH;
249 	gdp = ext4_get_group_desc(sb, block_group, &bh2);
250 	if (gdp) {
251 		BUFFER_TRACE(bh2, "get_write_access");
252 		fatal = ext4_journal_get_write_access(handle, bh2);
253 	}
254 	ext4_lock_group(sb, block_group);
255 	cleared = ext4_clear_bit(bit, bitmap_bh->b_data);
256 	if (fatal || !cleared) {
257 		ext4_unlock_group(sb, block_group);
258 		goto out;
259 	}
260 
261 	count = ext4_free_inodes_count(sb, gdp) + 1;
262 	ext4_free_inodes_set(sb, gdp, count);
263 	if (is_directory) {
264 		count = ext4_used_dirs_count(sb, gdp) - 1;
265 		ext4_used_dirs_set(sb, gdp, count);
266 		percpu_counter_dec(&sbi->s_dirs_counter);
267 	}
268 	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
269 	ext4_unlock_group(sb, block_group);
270 
271 	percpu_counter_inc(&sbi->s_freeinodes_counter);
272 	if (sbi->s_log_groups_per_flex) {
273 		ext4_group_t f = ext4_flex_group(sbi, block_group);
274 
275 		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
276 		if (is_directory)
277 			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
278 	}
279 	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
280 	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
281 out:
282 	if (cleared) {
283 		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
284 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
285 		if (!fatal)
286 			fatal = err;
287 		ext4_mark_super_dirty(sb);
288 	} else
289 		ext4_error(sb, "bit already cleared for inode %lu", ino);
290 
291 error_return:
292 	brelse(bitmap_bh);
293 	ext4_std_error(sb, fatal);
294 }
295 
296 /*
297  * There are two policies for allocating an inode.  If the new inode is
298  * a directory, then a forward search is made for a block group with both
299  * free space and a low directory-to-inode ratio; if that fails, then of
300  * the groups with above-average free space, that group with the fewest
301  * directories already is chosen.
302  *
303  * For other inodes, search forward from the parent directory\'s block
304  * group to find a free inode.
305  */
find_group_dir(struct super_block * sb,struct inode * parent,ext4_group_t * best_group)306 static int find_group_dir(struct super_block *sb, struct inode *parent,
307 				ext4_group_t *best_group)
308 {
309 	ext4_group_t ngroups = ext4_get_groups_count(sb);
310 	unsigned int freei, avefreei;
311 	struct ext4_group_desc *desc, *best_desc = NULL;
312 	ext4_group_t group;
313 	int ret = -1;
314 
315 	freei = percpu_counter_read_positive(&EXT4_SB(sb)->s_freeinodes_counter);
316 	avefreei = freei / ngroups;
317 
318 	for (group = 0; group < ngroups; group++) {
319 		desc = ext4_get_group_desc(sb, group, NULL);
320 		if (!desc || !ext4_free_inodes_count(sb, desc))
321 			continue;
322 		if (ext4_free_inodes_count(sb, desc) < avefreei)
323 			continue;
324 		if (!best_desc ||
325 		    (ext4_free_blks_count(sb, desc) >
326 		     ext4_free_blks_count(sb, best_desc))) {
327 			*best_group = group;
328 			best_desc = desc;
329 			ret = 0;
330 		}
331 	}
332 	return ret;
333 }
334 
335 #define free_block_ratio 10
336 
find_group_flex(struct super_block * sb,struct inode * parent,ext4_group_t * best_group)337 static int find_group_flex(struct super_block *sb, struct inode *parent,
338 			   ext4_group_t *best_group)
339 {
340 	struct ext4_sb_info *sbi = EXT4_SB(sb);
341 	struct ext4_group_desc *desc;
342 	struct flex_groups *flex_group = sbi->s_flex_groups;
343 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
344 	ext4_group_t parent_fbg_group = ext4_flex_group(sbi, parent_group);
345 	ext4_group_t ngroups = ext4_get_groups_count(sb);
346 	int flex_size = ext4_flex_bg_size(sbi);
347 	ext4_group_t best_flex = parent_fbg_group;
348 	int blocks_per_flex = sbi->s_blocks_per_group * flex_size;
349 	int flexbg_free_blocks;
350 	int flex_freeb_ratio;
351 	ext4_group_t n_fbg_groups;
352 	ext4_group_t i;
353 
354 	n_fbg_groups = (ngroups + flex_size - 1) >>
355 		sbi->s_log_groups_per_flex;
356 
357 find_close_to_parent:
358 	flexbg_free_blocks = atomic_read(&flex_group[best_flex].free_blocks);
359 	flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
360 	if (atomic_read(&flex_group[best_flex].free_inodes) &&
361 	    flex_freeb_ratio > free_block_ratio)
362 		goto found_flexbg;
363 
364 	if (best_flex && best_flex == parent_fbg_group) {
365 		best_flex--;
366 		goto find_close_to_parent;
367 	}
368 
369 	for (i = 0; i < n_fbg_groups; i++) {
370 		if (i == parent_fbg_group || i == parent_fbg_group - 1)
371 			continue;
372 
373 		flexbg_free_blocks = atomic_read(&flex_group[i].free_blocks);
374 		flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
375 
376 		if (flex_freeb_ratio > free_block_ratio &&
377 		    (atomic_read(&flex_group[i].free_inodes))) {
378 			best_flex = i;
379 			goto found_flexbg;
380 		}
381 
382 		if ((atomic_read(&flex_group[best_flex].free_inodes) == 0) ||
383 		    ((atomic_read(&flex_group[i].free_blocks) >
384 		      atomic_read(&flex_group[best_flex].free_blocks)) &&
385 		     atomic_read(&flex_group[i].free_inodes)))
386 			best_flex = i;
387 	}
388 
389 	if (!atomic_read(&flex_group[best_flex].free_inodes) ||
390 	    !atomic_read(&flex_group[best_flex].free_blocks))
391 		return -1;
392 
393 found_flexbg:
394 	for (i = best_flex * flex_size; i < ngroups &&
395 		     i < (best_flex + 1) * flex_size; i++) {
396 		desc = ext4_get_group_desc(sb, i, NULL);
397 		if (ext4_free_inodes_count(sb, desc)) {
398 			*best_group = i;
399 			goto out;
400 		}
401 	}
402 
403 	return -1;
404 out:
405 	return 0;
406 }
407 
408 struct orlov_stats {
409 	__u32 free_inodes;
410 	__u32 free_blocks;
411 	__u32 used_dirs;
412 };
413 
414 /*
415  * Helper function for Orlov's allocator; returns critical information
416  * for a particular block group or flex_bg.  If flex_size is 1, then g
417  * is a block group number; otherwise it is flex_bg number.
418  */
get_orlov_stats(struct super_block * sb,ext4_group_t g,int flex_size,struct orlov_stats * stats)419 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
420 			    int flex_size, struct orlov_stats *stats)
421 {
422 	struct ext4_group_desc *desc;
423 	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
424 
425 	if (flex_size > 1) {
426 		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
427 		stats->free_blocks = atomic_read(&flex_group[g].free_blocks);
428 		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
429 		return;
430 	}
431 
432 	desc = ext4_get_group_desc(sb, g, NULL);
433 	if (desc) {
434 		stats->free_inodes = ext4_free_inodes_count(sb, desc);
435 		stats->free_blocks = ext4_free_blks_count(sb, desc);
436 		stats->used_dirs = ext4_used_dirs_count(sb, desc);
437 	} else {
438 		stats->free_inodes = 0;
439 		stats->free_blocks = 0;
440 		stats->used_dirs = 0;
441 	}
442 }
443 
444 /*
445  * Orlov's allocator for directories.
446  *
447  * We always try to spread first-level directories.
448  *
449  * If there are blockgroups with both free inodes and free blocks counts
450  * not worse than average we return one with smallest directory count.
451  * Otherwise we simply return a random group.
452  *
453  * For the rest rules look so:
454  *
455  * It's OK to put directory into a group unless
456  * it has too many directories already (max_dirs) or
457  * it has too few free inodes left (min_inodes) or
458  * it has too few free blocks left (min_blocks) or
459  * Parent's group is preferred, if it doesn't satisfy these
460  * conditions we search cyclically through the rest. If none
461  * of the groups look good we just look for a group with more
462  * free inodes than average (starting at parent's group).
463  */
464 
find_group_orlov(struct super_block * sb,struct inode * parent,ext4_group_t * group,int mode,const struct qstr * qstr)465 static int find_group_orlov(struct super_block *sb, struct inode *parent,
466 			    ext4_group_t *group, int mode,
467 			    const struct qstr *qstr)
468 {
469 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
470 	struct ext4_sb_info *sbi = EXT4_SB(sb);
471 	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
472 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
473 	unsigned int freei, avefreei;
474 	ext4_fsblk_t freeb, avefreeb;
475 	unsigned int ndirs;
476 	int max_dirs, min_inodes;
477 	ext4_grpblk_t min_blocks;
478 	ext4_group_t i, grp, g, ngroups;
479 	struct ext4_group_desc *desc;
480 	struct orlov_stats stats;
481 	int flex_size = ext4_flex_bg_size(sbi);
482 	struct dx_hash_info hinfo;
483 
484 	ngroups = real_ngroups;
485 	if (flex_size > 1) {
486 		ngroups = (real_ngroups + flex_size - 1) >>
487 			sbi->s_log_groups_per_flex;
488 		parent_group >>= sbi->s_log_groups_per_flex;
489 	}
490 
491 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
492 	avefreei = freei / ngroups;
493 	freeb = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
494 	avefreeb = freeb;
495 	do_div(avefreeb, ngroups);
496 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
497 
498 	if (S_ISDIR(mode) &&
499 	    ((parent == sb->s_root->d_inode) ||
500 	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
501 		int best_ndir = inodes_per_group;
502 		int ret = -1;
503 
504 		if (qstr) {
505 			hinfo.hash_version = DX_HASH_HALF_MD4;
506 			hinfo.seed = sbi->s_hash_seed;
507 			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
508 			grp = hinfo.hash;
509 		} else
510 			get_random_bytes(&grp, sizeof(grp));
511 		parent_group = (unsigned)grp % ngroups;
512 		for (i = 0; i < ngroups; i++) {
513 			g = (parent_group + i) % ngroups;
514 			get_orlov_stats(sb, g, flex_size, &stats);
515 			if (!stats.free_inodes)
516 				continue;
517 			if (stats.used_dirs >= best_ndir)
518 				continue;
519 			if (stats.free_inodes < avefreei)
520 				continue;
521 			if (stats.free_blocks < avefreeb)
522 				continue;
523 			grp = g;
524 			ret = 0;
525 			best_ndir = stats.used_dirs;
526 		}
527 		if (ret)
528 			goto fallback;
529 	found_flex_bg:
530 		if (flex_size == 1) {
531 			*group = grp;
532 			return 0;
533 		}
534 
535 		/*
536 		 * We pack inodes at the beginning of the flexgroup's
537 		 * inode tables.  Block allocation decisions will do
538 		 * something similar, although regular files will
539 		 * start at 2nd block group of the flexgroup.  See
540 		 * ext4_ext_find_goal() and ext4_find_near().
541 		 */
542 		grp *= flex_size;
543 		for (i = 0; i < flex_size; i++) {
544 			if (grp+i >= real_ngroups)
545 				break;
546 			desc = ext4_get_group_desc(sb, grp+i, NULL);
547 			if (desc && ext4_free_inodes_count(sb, desc)) {
548 				*group = grp+i;
549 				return 0;
550 			}
551 		}
552 		goto fallback;
553 	}
554 
555 	max_dirs = ndirs / ngroups + inodes_per_group / 16;
556 	min_inodes = avefreei - inodes_per_group*flex_size / 4;
557 	if (min_inodes < 1)
558 		min_inodes = 1;
559 	min_blocks = avefreeb - EXT4_BLOCKS_PER_GROUP(sb)*flex_size / 4;
560 
561 	/*
562 	 * Start looking in the flex group where we last allocated an
563 	 * inode for this parent directory
564 	 */
565 	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
566 		parent_group = EXT4_I(parent)->i_last_alloc_group;
567 		if (flex_size > 1)
568 			parent_group >>= sbi->s_log_groups_per_flex;
569 	}
570 
571 	for (i = 0; i < ngroups; i++) {
572 		grp = (parent_group + i) % ngroups;
573 		get_orlov_stats(sb, grp, flex_size, &stats);
574 		if (stats.used_dirs >= max_dirs)
575 			continue;
576 		if (stats.free_inodes < min_inodes)
577 			continue;
578 		if (stats.free_blocks < min_blocks)
579 			continue;
580 		goto found_flex_bg;
581 	}
582 
583 fallback:
584 	ngroups = real_ngroups;
585 	avefreei = freei / ngroups;
586 fallback_retry:
587 	parent_group = EXT4_I(parent)->i_block_group;
588 	for (i = 0; i < ngroups; i++) {
589 		grp = (parent_group + i) % ngroups;
590 		desc = ext4_get_group_desc(sb, grp, NULL);
591 		if (desc && ext4_free_inodes_count(sb, desc) &&
592 		    ext4_free_inodes_count(sb, desc) >= avefreei) {
593 			*group = grp;
594 			return 0;
595 		}
596 	}
597 
598 	if (avefreei) {
599 		/*
600 		 * The free-inodes counter is approximate, and for really small
601 		 * filesystems the above test can fail to find any blockgroups
602 		 */
603 		avefreei = 0;
604 		goto fallback_retry;
605 	}
606 
607 	return -1;
608 }
609 
find_group_other(struct super_block * sb,struct inode * parent,ext4_group_t * group,int mode)610 static int find_group_other(struct super_block *sb, struct inode *parent,
611 			    ext4_group_t *group, int mode)
612 {
613 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
614 	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
615 	struct ext4_group_desc *desc;
616 	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
617 
618 	/*
619 	 * Try to place the inode is the same flex group as its
620 	 * parent.  If we can't find space, use the Orlov algorithm to
621 	 * find another flex group, and store that information in the
622 	 * parent directory's inode information so that use that flex
623 	 * group for future allocations.
624 	 */
625 	if (flex_size > 1) {
626 		int retry = 0;
627 
628 	try_again:
629 		parent_group &= ~(flex_size-1);
630 		last = parent_group + flex_size;
631 		if (last > ngroups)
632 			last = ngroups;
633 		for  (i = parent_group; i < last; i++) {
634 			desc = ext4_get_group_desc(sb, i, NULL);
635 			if (desc && ext4_free_inodes_count(sb, desc)) {
636 				*group = i;
637 				return 0;
638 			}
639 		}
640 		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
641 			retry = 1;
642 			parent_group = EXT4_I(parent)->i_last_alloc_group;
643 			goto try_again;
644 		}
645 		/*
646 		 * If this didn't work, use the Orlov search algorithm
647 		 * to find a new flex group; we pass in the mode to
648 		 * avoid the topdir algorithms.
649 		 */
650 		*group = parent_group + flex_size;
651 		if (*group > ngroups)
652 			*group = 0;
653 		return find_group_orlov(sb, parent, group, mode, NULL);
654 	}
655 
656 	/*
657 	 * Try to place the inode in its parent directory
658 	 */
659 	*group = parent_group;
660 	desc = ext4_get_group_desc(sb, *group, NULL);
661 	if (desc && ext4_free_inodes_count(sb, desc) &&
662 			ext4_free_blks_count(sb, desc))
663 		return 0;
664 
665 	/*
666 	 * We're going to place this inode in a different blockgroup from its
667 	 * parent.  We want to cause files in a common directory to all land in
668 	 * the same blockgroup.  But we want files which are in a different
669 	 * directory which shares a blockgroup with our parent to land in a
670 	 * different blockgroup.
671 	 *
672 	 * So add our directory's i_ino into the starting point for the hash.
673 	 */
674 	*group = (*group + parent->i_ino) % ngroups;
675 
676 	/*
677 	 * Use a quadratic hash to find a group with a free inode and some free
678 	 * blocks.
679 	 */
680 	for (i = 1; i < ngroups; i <<= 1) {
681 		*group += i;
682 		if (*group >= ngroups)
683 			*group -= ngroups;
684 		desc = ext4_get_group_desc(sb, *group, NULL);
685 		if (desc && ext4_free_inodes_count(sb, desc) &&
686 				ext4_free_blks_count(sb, desc))
687 			return 0;
688 	}
689 
690 	/*
691 	 * That failed: try linear search for a free inode, even if that group
692 	 * has no free blocks.
693 	 */
694 	*group = parent_group;
695 	for (i = 0; i < ngroups; i++) {
696 		if (++*group >= ngroups)
697 			*group = 0;
698 		desc = ext4_get_group_desc(sb, *group, NULL);
699 		if (desc && ext4_free_inodes_count(sb, desc))
700 			return 0;
701 	}
702 
703 	return -1;
704 }
705 
706 /*
707  * claim the inode from the inode bitmap. If the group
708  * is uninit we need to take the groups's ext4_group_lock
709  * and clear the uninit flag. The inode bitmap update
710  * and group desc uninit flag clear should be done
711  * after holding ext4_group_lock so that ext4_read_inode_bitmap
712  * doesn't race with the ext4_claim_inode
713  */
ext4_claim_inode(struct super_block * sb,struct buffer_head * inode_bitmap_bh,unsigned long ino,ext4_group_t group,int mode)714 static int ext4_claim_inode(struct super_block *sb,
715 			struct buffer_head *inode_bitmap_bh,
716 			unsigned long ino, ext4_group_t group, int mode)
717 {
718 	int free = 0, retval = 0, count;
719 	struct ext4_sb_info *sbi = EXT4_SB(sb);
720 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
721 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
722 
723 	/*
724 	 * We have to be sure that new inode allocation does not race with
725 	 * inode table initialization, because otherwise we may end up
726 	 * allocating and writing new inode right before sb_issue_zeroout
727 	 * takes place and overwriting our new inode with zeroes. So we
728 	 * take alloc_sem to prevent it.
729 	 */
730 	down_read(&grp->alloc_sem);
731 	ext4_lock_group(sb, group);
732 	if (ext4_set_bit(ino, inode_bitmap_bh->b_data)) {
733 		/* not a free inode */
734 		retval = 1;
735 		goto err_ret;
736 	}
737 	ino++;
738 	if ((group == 0 && ino < EXT4_FIRST_INO(sb)) ||
739 			ino > EXT4_INODES_PER_GROUP(sb)) {
740 		ext4_unlock_group(sb, group);
741 		up_read(&grp->alloc_sem);
742 		ext4_error(sb, "reserved inode or inode > inodes count - "
743 			   "block_group = %u, inode=%lu", group,
744 			   ino + group * EXT4_INODES_PER_GROUP(sb));
745 		return 1;
746 	}
747 	/* If we didn't allocate from within the initialized part of the inode
748 	 * table then we need to initialize up to this inode. */
749 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
750 
751 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
752 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
753 			/* When marking the block group with
754 			 * ~EXT4_BG_INODE_UNINIT we don't want to depend
755 			 * on the value of bg_itable_unused even though
756 			 * mke2fs could have initialized the same for us.
757 			 * Instead we calculated the value below
758 			 */
759 
760 			free = 0;
761 		} else {
762 			free = EXT4_INODES_PER_GROUP(sb) -
763 				ext4_itable_unused_count(sb, gdp);
764 		}
765 
766 		/*
767 		 * Check the relative inode number against the last used
768 		 * relative inode number in this group. if it is greater
769 		 * we need to  update the bg_itable_unused count
770 		 *
771 		 */
772 		if (ino > free)
773 			ext4_itable_unused_set(sb, gdp,
774 					(EXT4_INODES_PER_GROUP(sb) - ino));
775 	}
776 	count = ext4_free_inodes_count(sb, gdp) - 1;
777 	ext4_free_inodes_set(sb, gdp, count);
778 	if (S_ISDIR(mode)) {
779 		count = ext4_used_dirs_count(sb, gdp) + 1;
780 		ext4_used_dirs_set(sb, gdp, count);
781 		if (sbi->s_log_groups_per_flex) {
782 			ext4_group_t f = ext4_flex_group(sbi, group);
783 
784 			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
785 		}
786 	}
787 	gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
788 err_ret:
789 	ext4_unlock_group(sb, group);
790 	up_read(&grp->alloc_sem);
791 	return retval;
792 }
793 
794 /*
795  * There are two policies for allocating an inode.  If the new inode is
796  * a directory, then a forward search is made for a block group with both
797  * free space and a low directory-to-inode ratio; if that fails, then of
798  * the groups with above-average free space, that group with the fewest
799  * directories already is chosen.
800  *
801  * For other inodes, search forward from the parent directory's block
802  * group to find a free inode.
803  */
ext4_new_inode(handle_t * handle,struct inode * dir,int mode,const struct qstr * qstr,__u32 goal)804 struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, int mode,
805 			     const struct qstr *qstr, __u32 goal)
806 {
807 	struct super_block *sb;
808 	struct buffer_head *inode_bitmap_bh = NULL;
809 	struct buffer_head *group_desc_bh;
810 	ext4_group_t ngroups, group = 0;
811 	unsigned long ino = 0;
812 	struct inode *inode;
813 	struct ext4_group_desc *gdp = NULL;
814 	struct ext4_inode_info *ei;
815 	struct ext4_sb_info *sbi;
816 	int ret2, err = 0;
817 	struct inode *ret;
818 	ext4_group_t i;
819 	int free = 0;
820 	static int once = 1;
821 	ext4_group_t flex_group;
822 
823 	/* Cannot create files in a deleted directory */
824 	if (!dir || !dir->i_nlink)
825 		return ERR_PTR(-EPERM);
826 
827 	sb = dir->i_sb;
828 	ngroups = ext4_get_groups_count(sb);
829 	trace_ext4_request_inode(dir, mode);
830 	inode = new_inode(sb);
831 	if (!inode)
832 		return ERR_PTR(-ENOMEM);
833 	ei = EXT4_I(inode);
834 	sbi = EXT4_SB(sb);
835 
836 	if (!goal)
837 		goal = sbi->s_inode_goal;
838 
839 	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
840 		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
841 		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
842 		ret2 = 0;
843 		goto got_group;
844 	}
845 
846 	if (sbi->s_log_groups_per_flex && test_opt(sb, OLDALLOC)) {
847 		ret2 = find_group_flex(sb, dir, &group);
848 		if (ret2 == -1) {
849 			ret2 = find_group_other(sb, dir, &group, mode);
850 			if (ret2 == 0 && once) {
851 				once = 0;
852 				printk(KERN_NOTICE "ext4: find_group_flex "
853 				       "failed, fallback succeeded dir %lu\n",
854 				       dir->i_ino);
855 			}
856 		}
857 		goto got_group;
858 	}
859 
860 	if (S_ISDIR(mode)) {
861 		if (test_opt(sb, OLDALLOC))
862 			ret2 = find_group_dir(sb, dir, &group);
863 		else
864 			ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
865 	} else
866 		ret2 = find_group_other(sb, dir, &group, mode);
867 
868 got_group:
869 	EXT4_I(dir)->i_last_alloc_group = group;
870 	err = -ENOSPC;
871 	if (ret2 == -1)
872 		goto out;
873 
874 	for (i = 0; i < ngroups; i++, ino = 0) {
875 		err = -EIO;
876 
877 		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
878 		if (!gdp)
879 			goto fail;
880 
881 		brelse(inode_bitmap_bh);
882 		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
883 		if (!inode_bitmap_bh)
884 			goto fail;
885 
886 repeat_in_this_group:
887 		ino = ext4_find_next_zero_bit((unsigned long *)
888 					      inode_bitmap_bh->b_data,
889 					      EXT4_INODES_PER_GROUP(sb), ino);
890 
891 		if (ino < EXT4_INODES_PER_GROUP(sb)) {
892 
893 			BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
894 			err = ext4_journal_get_write_access(handle,
895 							    inode_bitmap_bh);
896 			if (err)
897 				goto fail;
898 
899 			BUFFER_TRACE(group_desc_bh, "get_write_access");
900 			err = ext4_journal_get_write_access(handle,
901 								group_desc_bh);
902 			if (err)
903 				goto fail;
904 			if (!ext4_claim_inode(sb, inode_bitmap_bh,
905 						ino, group, mode)) {
906 				/* we won it */
907 				BUFFER_TRACE(inode_bitmap_bh,
908 					"call ext4_handle_dirty_metadata");
909 				err = ext4_handle_dirty_metadata(handle,
910 								 NULL,
911 							inode_bitmap_bh);
912 				if (err)
913 					goto fail;
914 				/* zero bit is inode number 1*/
915 				ino++;
916 				goto got;
917 			}
918 			/* we lost it */
919 			ext4_handle_release_buffer(handle, inode_bitmap_bh);
920 			ext4_handle_release_buffer(handle, group_desc_bh);
921 
922 			if (++ino < EXT4_INODES_PER_GROUP(sb))
923 				goto repeat_in_this_group;
924 		}
925 
926 		/*
927 		 * This case is possible in concurrent environment.  It is very
928 		 * rare.  We cannot repeat the find_group_xxx() call because
929 		 * that will simply return the same blockgroup, because the
930 		 * group descriptor metadata has not yet been updated.
931 		 * So we just go onto the next blockgroup.
932 		 */
933 		if (++group == ngroups)
934 			group = 0;
935 	}
936 	err = -ENOSPC;
937 	goto out;
938 
939 got:
940 	/* We may have to initialize the block bitmap if it isn't already */
941 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) &&
942 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
943 		struct buffer_head *block_bitmap_bh;
944 
945 		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
946 		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
947 		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
948 		if (err) {
949 			brelse(block_bitmap_bh);
950 			goto fail;
951 		}
952 
953 		free = 0;
954 		ext4_lock_group(sb, group);
955 		/* recheck and clear flag under lock if we still need to */
956 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
957 			free = ext4_free_blocks_after_init(sb, group, gdp);
958 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
959 			ext4_free_blks_set(sb, gdp, free);
960 			gdp->bg_checksum = ext4_group_desc_csum(sbi, group,
961 								gdp);
962 		}
963 		ext4_unlock_group(sb, group);
964 
965 		/* Don't need to dirty bitmap block if we didn't change it */
966 		if (free) {
967 			BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
968 			err = ext4_handle_dirty_metadata(handle,
969 							NULL, block_bitmap_bh);
970 		}
971 
972 		brelse(block_bitmap_bh);
973 		if (err)
974 			goto fail;
975 	}
976 	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
977 	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
978 	if (err)
979 		goto fail;
980 
981 	percpu_counter_dec(&sbi->s_freeinodes_counter);
982 	if (S_ISDIR(mode))
983 		percpu_counter_inc(&sbi->s_dirs_counter);
984 	ext4_mark_super_dirty(sb);
985 
986 	if (sbi->s_log_groups_per_flex) {
987 		flex_group = ext4_flex_group(sbi, group);
988 		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
989 	}
990 
991 	if (test_opt(sb, GRPID)) {
992 		inode->i_mode = mode;
993 		inode->i_uid = current_fsuid();
994 		inode->i_gid = dir->i_gid;
995 	} else
996 		inode_init_owner(inode, dir, mode);
997 
998 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
999 	/* This is the optimal IO size (for stat), not the fs block size */
1000 	inode->i_blocks = 0;
1001 	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1002 						       ext4_current_time(inode);
1003 
1004 	memset(ei->i_data, 0, sizeof(ei->i_data));
1005 	ei->i_dir_start_lookup = 0;
1006 	ei->i_disksize = 0;
1007 
1008 	/*
1009 	 * Don't inherit extent flag from directory, amongst others. We set
1010 	 * extent flag on newly created directory and file only if -o extent
1011 	 * mount option is specified
1012 	 */
1013 	ei->i_flags =
1014 		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1015 	ei->i_file_acl = 0;
1016 	ei->i_dtime = 0;
1017 	ei->i_block_group = group;
1018 	ei->i_last_alloc_group = ~0;
1019 
1020 	ext4_set_inode_flags(inode);
1021 	if (IS_DIRSYNC(inode))
1022 		ext4_handle_sync(handle);
1023 	if (insert_inode_locked(inode) < 0) {
1024 		err = -EINVAL;
1025 		goto fail_drop;
1026 	}
1027 	spin_lock(&sbi->s_next_gen_lock);
1028 	inode->i_generation = sbi->s_next_generation++;
1029 	spin_unlock(&sbi->s_next_gen_lock);
1030 
1031 	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1032 	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1033 
1034 	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1035 
1036 	ret = inode;
1037 	dquot_initialize(inode);
1038 	err = dquot_alloc_inode(inode);
1039 	if (err)
1040 		goto fail_drop;
1041 
1042 	err = ext4_init_acl(handle, inode, dir);
1043 	if (err)
1044 		goto fail_free_drop;
1045 
1046 	err = ext4_init_security(handle, inode, dir, qstr);
1047 	if (err)
1048 		goto fail_free_drop;
1049 
1050 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
1051 		/* set extent flag only for directory, file and normal symlink*/
1052 		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1053 			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1054 			ext4_ext_tree_init(handle, inode);
1055 		}
1056 	}
1057 
1058 	if (ext4_handle_valid(handle)) {
1059 		ei->i_sync_tid = handle->h_transaction->t_tid;
1060 		ei->i_datasync_tid = handle->h_transaction->t_tid;
1061 	}
1062 
1063 	err = ext4_mark_inode_dirty(handle, inode);
1064 	if (err) {
1065 		ext4_std_error(sb, err);
1066 		goto fail_free_drop;
1067 	}
1068 
1069 	ext4_debug("allocating inode %lu\n", inode->i_ino);
1070 	trace_ext4_allocate_inode(inode, dir, mode);
1071 	goto really_out;
1072 fail:
1073 	ext4_std_error(sb, err);
1074 out:
1075 	iput(inode);
1076 	ret = ERR_PTR(err);
1077 really_out:
1078 	brelse(inode_bitmap_bh);
1079 	return ret;
1080 
1081 fail_free_drop:
1082 	dquot_free_inode(inode);
1083 
1084 fail_drop:
1085 	dquot_drop(inode);
1086 	inode->i_flags |= S_NOQUOTA;
1087 	inode->i_nlink = 0;
1088 	unlock_new_inode(inode);
1089 	iput(inode);
1090 	brelse(inode_bitmap_bh);
1091 	return ERR_PTR(err);
1092 }
1093 
1094 /* Verify that we are loading a valid orphan from disk */
ext4_orphan_get(struct super_block * sb,unsigned long ino)1095 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1096 {
1097 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1098 	ext4_group_t block_group;
1099 	int bit;
1100 	struct buffer_head *bitmap_bh;
1101 	struct inode *inode = NULL;
1102 	long err = -EIO;
1103 
1104 	/* Error cases - e2fsck has already cleaned up for us */
1105 	if (ino > max_ino) {
1106 		ext4_warning(sb, "bad orphan ino %lu!  e2fsck was run?", ino);
1107 		goto error;
1108 	}
1109 
1110 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1111 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1112 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1113 	if (!bitmap_bh) {
1114 		ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
1115 		goto error;
1116 	}
1117 
1118 	/* Having the inode bit set should be a 100% indicator that this
1119 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1120 	 * inodes that were being truncated, so we can't check i_nlink==0.
1121 	 */
1122 	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1123 		goto bad_orphan;
1124 
1125 	inode = ext4_iget(sb, ino);
1126 	if (IS_ERR(inode))
1127 		goto iget_failed;
1128 
1129 	/*
1130 	 * If the orphans has i_nlinks > 0 then it should be able to be
1131 	 * truncated, otherwise it won't be removed from the orphan list
1132 	 * during processing and an infinite loop will result.
1133 	 */
1134 	if (inode->i_nlink && !ext4_can_truncate(inode))
1135 		goto bad_orphan;
1136 
1137 	if (NEXT_ORPHAN(inode) > max_ino)
1138 		goto bad_orphan;
1139 	brelse(bitmap_bh);
1140 	return inode;
1141 
1142 iget_failed:
1143 	err = PTR_ERR(inode);
1144 	inode = NULL;
1145 bad_orphan:
1146 	ext4_warning(sb, "bad orphan inode %lu!  e2fsck was run?", ino);
1147 	printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1148 	       bit, (unsigned long long)bitmap_bh->b_blocknr,
1149 	       ext4_test_bit(bit, bitmap_bh->b_data));
1150 	printk(KERN_NOTICE "inode=%p\n", inode);
1151 	if (inode) {
1152 		printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
1153 		       is_bad_inode(inode));
1154 		printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
1155 		       NEXT_ORPHAN(inode));
1156 		printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
1157 		printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink);
1158 		/* Avoid freeing blocks if we got a bad deleted inode */
1159 		if (inode->i_nlink == 0)
1160 			inode->i_blocks = 0;
1161 		iput(inode);
1162 	}
1163 	brelse(bitmap_bh);
1164 error:
1165 	return ERR_PTR(err);
1166 }
1167 
ext4_count_free_inodes(struct super_block * sb)1168 unsigned long ext4_count_free_inodes(struct super_block *sb)
1169 {
1170 	unsigned long desc_count;
1171 	struct ext4_group_desc *gdp;
1172 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1173 #ifdef EXT4FS_DEBUG
1174 	struct ext4_super_block *es;
1175 	unsigned long bitmap_count, x;
1176 	struct buffer_head *bitmap_bh = NULL;
1177 
1178 	es = EXT4_SB(sb)->s_es;
1179 	desc_count = 0;
1180 	bitmap_count = 0;
1181 	gdp = NULL;
1182 	for (i = 0; i < ngroups; i++) {
1183 		gdp = ext4_get_group_desc(sb, i, NULL);
1184 		if (!gdp)
1185 			continue;
1186 		desc_count += ext4_free_inodes_count(sb, gdp);
1187 		brelse(bitmap_bh);
1188 		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1189 		if (!bitmap_bh)
1190 			continue;
1191 
1192 		x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8);
1193 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1194 			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1195 		bitmap_count += x;
1196 	}
1197 	brelse(bitmap_bh);
1198 	printk(KERN_DEBUG "ext4_count_free_inodes: "
1199 	       "stored = %u, computed = %lu, %lu\n",
1200 	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1201 	return desc_count;
1202 #else
1203 	desc_count = 0;
1204 	for (i = 0; i < ngroups; i++) {
1205 		gdp = ext4_get_group_desc(sb, i, NULL);
1206 		if (!gdp)
1207 			continue;
1208 		desc_count += ext4_free_inodes_count(sb, gdp);
1209 		cond_resched();
1210 	}
1211 	return desc_count;
1212 #endif
1213 }
1214 
1215 /* Called at mount-time, super-block is locked */
ext4_count_dirs(struct super_block * sb)1216 unsigned long ext4_count_dirs(struct super_block * sb)
1217 {
1218 	unsigned long count = 0;
1219 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1220 
1221 	for (i = 0; i < ngroups; i++) {
1222 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1223 		if (!gdp)
1224 			continue;
1225 		count += ext4_used_dirs_count(sb, gdp);
1226 	}
1227 	return count;
1228 }
1229 
1230 /*
1231  * Zeroes not yet zeroed inode table - just write zeroes through the whole
1232  * inode table. Must be called without any spinlock held. The only place
1233  * where it is called from on active part of filesystem is ext4lazyinit
1234  * thread, so we do not need any special locks, however we have to prevent
1235  * inode allocation from the current group, so we take alloc_sem lock, to
1236  * block ext4_claim_inode until we are finished.
1237  */
ext4_init_inode_table(struct super_block * sb,ext4_group_t group,int barrier)1238 extern int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1239 				 int barrier)
1240 {
1241 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1242 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1243 	struct ext4_group_desc *gdp = NULL;
1244 	struct buffer_head *group_desc_bh;
1245 	handle_t *handle;
1246 	ext4_fsblk_t blk;
1247 	int num, ret = 0, used_blks = 0;
1248 
1249 	/* This should not happen, but just to be sure check this */
1250 	if (sb->s_flags & MS_RDONLY) {
1251 		ret = 1;
1252 		goto out;
1253 	}
1254 
1255 	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1256 	if (!gdp)
1257 		goto out;
1258 
1259 	/*
1260 	 * We do not need to lock this, because we are the only one
1261 	 * handling this flag.
1262 	 */
1263 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1264 		goto out;
1265 
1266 	handle = ext4_journal_start_sb(sb, 1);
1267 	if (IS_ERR(handle)) {
1268 		ret = PTR_ERR(handle);
1269 		goto out;
1270 	}
1271 
1272 	down_write(&grp->alloc_sem);
1273 	/*
1274 	 * If inode bitmap was already initialized there may be some
1275 	 * used inodes so we need to skip blocks with used inodes in
1276 	 * inode table.
1277 	 */
1278 	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1279 		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1280 			    ext4_itable_unused_count(sb, gdp)),
1281 			    sbi->s_inodes_per_block);
1282 
1283 	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1284 		ext4_error(sb, "Something is wrong with group %u\n"
1285 			   "Used itable blocks: %d"
1286 			   "itable unused count: %u\n",
1287 			   group, used_blks,
1288 			   ext4_itable_unused_count(sb, gdp));
1289 		ret = 1;
1290 		goto out;
1291 	}
1292 
1293 	blk = ext4_inode_table(sb, gdp) + used_blks;
1294 	num = sbi->s_itb_per_group - used_blks;
1295 
1296 	BUFFER_TRACE(group_desc_bh, "get_write_access");
1297 	ret = ext4_journal_get_write_access(handle,
1298 					    group_desc_bh);
1299 	if (ret)
1300 		goto err_out;
1301 
1302 	/*
1303 	 * Skip zeroout if the inode table is full. But we set the ZEROED
1304 	 * flag anyway, because obviously, when it is full it does not need
1305 	 * further zeroing.
1306 	 */
1307 	if (unlikely(num == 0))
1308 		goto skip_zeroout;
1309 
1310 	ext4_debug("going to zero out inode table in group %d\n",
1311 		   group);
1312 	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1313 	if (ret < 0)
1314 		goto err_out;
1315 	if (barrier)
1316 		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1317 
1318 skip_zeroout:
1319 	ext4_lock_group(sb, group);
1320 	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1321 	gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
1322 	ext4_unlock_group(sb, group);
1323 
1324 	BUFFER_TRACE(group_desc_bh,
1325 		     "call ext4_handle_dirty_metadata");
1326 	ret = ext4_handle_dirty_metadata(handle, NULL,
1327 					 group_desc_bh);
1328 
1329 err_out:
1330 	up_write(&grp->alloc_sem);
1331 	ext4_journal_stop(handle);
1332 out:
1333 	return ret;
1334 }
1335