1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/highuid.h>
26 #include <linux/quotaops.h>
27 #include <linux/writeback.h>
28 #include <linux/mpage.h>
29 #include <linux/namei.h>
30 #include "ext3.h"
31 #include "xattr.h"
32 #include "acl.h"
33 
34 static int ext3_writepage_trans_blocks(struct inode *inode);
35 static int ext3_block_truncate_page(struct inode *inode, loff_t from);
36 
37 /*
38  * Test whether an inode is a fast symlink.
39  */
ext3_inode_is_fast_symlink(struct inode * inode)40 static int ext3_inode_is_fast_symlink(struct inode *inode)
41 {
42 	int ea_blocks = EXT3_I(inode)->i_file_acl ?
43 		(inode->i_sb->s_blocksize >> 9) : 0;
44 
45 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
46 }
47 
48 /*
49  * The ext3 forget function must perform a revoke if we are freeing data
50  * which has been journaled.  Metadata (eg. indirect blocks) must be
51  * revoked in all cases.
52  *
53  * "bh" may be NULL: a metadata block may have been freed from memory
54  * but there may still be a record of it in the journal, and that record
55  * still needs to be revoked.
56  */
ext3_forget(handle_t * handle,int is_metadata,struct inode * inode,struct buffer_head * bh,ext3_fsblk_t blocknr)57 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
58 			struct buffer_head *bh, ext3_fsblk_t blocknr)
59 {
60 	int err;
61 
62 	might_sleep();
63 
64 	trace_ext3_forget(inode, is_metadata, blocknr);
65 	BUFFER_TRACE(bh, "enter");
66 
67 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
68 		  "data mode %lx\n",
69 		  bh, is_metadata, inode->i_mode,
70 		  test_opt(inode->i_sb, DATA_FLAGS));
71 
72 	/* Never use the revoke function if we are doing full data
73 	 * journaling: there is no need to, and a V1 superblock won't
74 	 * support it.  Otherwise, only skip the revoke on un-journaled
75 	 * data blocks. */
76 
77 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
78 	    (!is_metadata && !ext3_should_journal_data(inode))) {
79 		if (bh) {
80 			BUFFER_TRACE(bh, "call journal_forget");
81 			return ext3_journal_forget(handle, bh);
82 		}
83 		return 0;
84 	}
85 
86 	/*
87 	 * data!=journal && (is_metadata || should_journal_data(inode))
88 	 */
89 	BUFFER_TRACE(bh, "call ext3_journal_revoke");
90 	err = ext3_journal_revoke(handle, blocknr, bh);
91 	if (err)
92 		ext3_abort(inode->i_sb, __func__,
93 			   "error %d when attempting revoke", err);
94 	BUFFER_TRACE(bh, "exit");
95 	return err;
96 }
97 
98 /*
99  * Work out how many blocks we need to proceed with the next chunk of a
100  * truncate transaction.
101  */
blocks_for_truncate(struct inode * inode)102 static unsigned long blocks_for_truncate(struct inode *inode)
103 {
104 	unsigned long needed;
105 
106 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
107 
108 	/* Give ourselves just enough room to cope with inodes in which
109 	 * i_blocks is corrupt: we've seen disk corruptions in the past
110 	 * which resulted in random data in an inode which looked enough
111 	 * like a regular file for ext3 to try to delete it.  Things
112 	 * will go a bit crazy if that happens, but at least we should
113 	 * try not to panic the whole kernel. */
114 	if (needed < 2)
115 		needed = 2;
116 
117 	/* But we need to bound the transaction so we don't overflow the
118 	 * journal. */
119 	if (needed > EXT3_MAX_TRANS_DATA)
120 		needed = EXT3_MAX_TRANS_DATA;
121 
122 	return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
123 }
124 
125 /*
126  * Truncate transactions can be complex and absolutely huge.  So we need to
127  * be able to restart the transaction at a conventient checkpoint to make
128  * sure we don't overflow the journal.
129  *
130  * start_transaction gets us a new handle for a truncate transaction,
131  * and extend_transaction tries to extend the existing one a bit.  If
132  * extend fails, we need to propagate the failure up and restart the
133  * transaction in the top-level truncate loop. --sct
134  */
start_transaction(struct inode * inode)135 static handle_t *start_transaction(struct inode *inode)
136 {
137 	handle_t *result;
138 
139 	result = ext3_journal_start(inode, blocks_for_truncate(inode));
140 	if (!IS_ERR(result))
141 		return result;
142 
143 	ext3_std_error(inode->i_sb, PTR_ERR(result));
144 	return result;
145 }
146 
147 /*
148  * Try to extend this transaction for the purposes of truncation.
149  *
150  * Returns 0 if we managed to create more room.  If we can't create more
151  * room, and the transaction must be restarted we return 1.
152  */
try_to_extend_transaction(handle_t * handle,struct inode * inode)153 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
154 {
155 	if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
156 		return 0;
157 	if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
158 		return 0;
159 	return 1;
160 }
161 
162 /*
163  * Restart the transaction associated with *handle.  This does a commit,
164  * so before we call here everything must be consistently dirtied against
165  * this transaction.
166  */
truncate_restart_transaction(handle_t * handle,struct inode * inode)167 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
168 {
169 	int ret;
170 
171 	jbd_debug(2, "restarting handle %p\n", handle);
172 	/*
173 	 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
174 	 * At this moment, get_block can be called only for blocks inside
175 	 * i_size since page cache has been already dropped and writes are
176 	 * blocked by i_mutex. So we can safely drop the truncate_mutex.
177 	 */
178 	mutex_unlock(&EXT3_I(inode)->truncate_mutex);
179 	ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
180 	mutex_lock(&EXT3_I(inode)->truncate_mutex);
181 	return ret;
182 }
183 
184 /*
185  * Called at inode eviction from icache
186  */
ext3_evict_inode(struct inode * inode)187 void ext3_evict_inode (struct inode *inode)
188 {
189 	struct ext3_inode_info *ei = EXT3_I(inode);
190 	struct ext3_block_alloc_info *rsv;
191 	handle_t *handle;
192 	int want_delete = 0;
193 
194 	trace_ext3_evict_inode(inode);
195 	if (!inode->i_nlink && !is_bad_inode(inode)) {
196 		dquot_initialize(inode);
197 		want_delete = 1;
198 	}
199 
200 	/*
201 	 * When journalling data dirty buffers are tracked only in the journal.
202 	 * So although mm thinks everything is clean and ready for reaping the
203 	 * inode might still have some pages to write in the running
204 	 * transaction or waiting to be checkpointed. Thus calling
205 	 * journal_invalidatepage() (via truncate_inode_pages()) to discard
206 	 * these buffers can cause data loss. Also even if we did not discard
207 	 * these buffers, we would have no way to find them after the inode
208 	 * is reaped and thus user could see stale data if he tries to read
209 	 * them before the transaction is checkpointed. So be careful and
210 	 * force everything to disk here... We use ei->i_datasync_tid to
211 	 * store the newest transaction containing inode's data.
212 	 *
213 	 * Note that directories do not have this problem because they don't
214 	 * use page cache.
215 	 *
216 	 * The s_journal check handles the case when ext3_get_journal() fails
217 	 * and puts the journal inode.
218 	 */
219 	if (inode->i_nlink && ext3_should_journal_data(inode) &&
220 	    EXT3_SB(inode->i_sb)->s_journal &&
221 	    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
222 	    inode->i_ino != EXT3_JOURNAL_INO) {
223 		tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
224 		journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
225 
226 		log_start_commit(journal, commit_tid);
227 		log_wait_commit(journal, commit_tid);
228 		filemap_write_and_wait(&inode->i_data);
229 	}
230 	truncate_inode_pages(&inode->i_data, 0);
231 
232 	ext3_discard_reservation(inode);
233 	rsv = ei->i_block_alloc_info;
234 	ei->i_block_alloc_info = NULL;
235 	if (unlikely(rsv))
236 		kfree(rsv);
237 
238 	if (!want_delete)
239 		goto no_delete;
240 
241 	handle = start_transaction(inode);
242 	if (IS_ERR(handle)) {
243 		/*
244 		 * If we're going to skip the normal cleanup, we still need to
245 		 * make sure that the in-core orphan linked list is properly
246 		 * cleaned up.
247 		 */
248 		ext3_orphan_del(NULL, inode);
249 		goto no_delete;
250 	}
251 
252 	if (IS_SYNC(inode))
253 		handle->h_sync = 1;
254 	inode->i_size = 0;
255 	if (inode->i_blocks)
256 		ext3_truncate(inode);
257 	/*
258 	 * Kill off the orphan record created when the inode lost the last
259 	 * link.  Note that ext3_orphan_del() has to be able to cope with the
260 	 * deletion of a non-existent orphan - ext3_truncate() could
261 	 * have removed the record.
262 	 */
263 	ext3_orphan_del(handle, inode);
264 	ei->i_dtime = get_seconds();
265 
266 	/*
267 	 * One subtle ordering requirement: if anything has gone wrong
268 	 * (transaction abort, IO errors, whatever), then we can still
269 	 * do these next steps (the fs will already have been marked as
270 	 * having errors), but we can't free the inode if the mark_dirty
271 	 * fails.
272 	 */
273 	if (ext3_mark_inode_dirty(handle, inode)) {
274 		/* If that failed, just dquot_drop() and be done with that */
275 		dquot_drop(inode);
276 		end_writeback(inode);
277 	} else {
278 		ext3_xattr_delete_inode(handle, inode);
279 		dquot_free_inode(inode);
280 		dquot_drop(inode);
281 		end_writeback(inode);
282 		ext3_free_inode(handle, inode);
283 	}
284 	ext3_journal_stop(handle);
285 	return;
286 no_delete:
287 	end_writeback(inode);
288 	dquot_drop(inode);
289 }
290 
291 typedef struct {
292 	__le32	*p;
293 	__le32	key;
294 	struct buffer_head *bh;
295 } Indirect;
296 
add_chain(Indirect * p,struct buffer_head * bh,__le32 * v)297 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
298 {
299 	p->key = *(p->p = v);
300 	p->bh = bh;
301 }
302 
verify_chain(Indirect * from,Indirect * to)303 static int verify_chain(Indirect *from, Indirect *to)
304 {
305 	while (from <= to && from->key == *from->p)
306 		from++;
307 	return (from > to);
308 }
309 
310 /**
311  *	ext3_block_to_path - parse the block number into array of offsets
312  *	@inode: inode in question (we are only interested in its superblock)
313  *	@i_block: block number to be parsed
314  *	@offsets: array to store the offsets in
315  *      @boundary: set this non-zero if the referred-to block is likely to be
316  *             followed (on disk) by an indirect block.
317  *
318  *	To store the locations of file's data ext3 uses a data structure common
319  *	for UNIX filesystems - tree of pointers anchored in the inode, with
320  *	data blocks at leaves and indirect blocks in intermediate nodes.
321  *	This function translates the block number into path in that tree -
322  *	return value is the path length and @offsets[n] is the offset of
323  *	pointer to (n+1)th node in the nth one. If @block is out of range
324  *	(negative or too large) warning is printed and zero returned.
325  *
326  *	Note: function doesn't find node addresses, so no IO is needed. All
327  *	we need to know is the capacity of indirect blocks (taken from the
328  *	inode->i_sb).
329  */
330 
331 /*
332  * Portability note: the last comparison (check that we fit into triple
333  * indirect block) is spelled differently, because otherwise on an
334  * architecture with 32-bit longs and 8Kb pages we might get into trouble
335  * if our filesystem had 8Kb blocks. We might use long long, but that would
336  * kill us on x86. Oh, well, at least the sign propagation does not matter -
337  * i_block would have to be negative in the very beginning, so we would not
338  * get there at all.
339  */
340 
ext3_block_to_path(struct inode * inode,long i_block,int offsets[4],int * boundary)341 static int ext3_block_to_path(struct inode *inode,
342 			long i_block, int offsets[4], int *boundary)
343 {
344 	int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
345 	int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
346 	const long direct_blocks = EXT3_NDIR_BLOCKS,
347 		indirect_blocks = ptrs,
348 		double_blocks = (1 << (ptrs_bits * 2));
349 	int n = 0;
350 	int final = 0;
351 
352 	if (i_block < 0) {
353 		ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
354 	} else if (i_block < direct_blocks) {
355 		offsets[n++] = i_block;
356 		final = direct_blocks;
357 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
358 		offsets[n++] = EXT3_IND_BLOCK;
359 		offsets[n++] = i_block;
360 		final = ptrs;
361 	} else if ((i_block -= indirect_blocks) < double_blocks) {
362 		offsets[n++] = EXT3_DIND_BLOCK;
363 		offsets[n++] = i_block >> ptrs_bits;
364 		offsets[n++] = i_block & (ptrs - 1);
365 		final = ptrs;
366 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
367 		offsets[n++] = EXT3_TIND_BLOCK;
368 		offsets[n++] = i_block >> (ptrs_bits * 2);
369 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
370 		offsets[n++] = i_block & (ptrs - 1);
371 		final = ptrs;
372 	} else {
373 		ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
374 	}
375 	if (boundary)
376 		*boundary = final - 1 - (i_block & (ptrs - 1));
377 	return n;
378 }
379 
380 /**
381  *	ext3_get_branch - read the chain of indirect blocks leading to data
382  *	@inode: inode in question
383  *	@depth: depth of the chain (1 - direct pointer, etc.)
384  *	@offsets: offsets of pointers in inode/indirect blocks
385  *	@chain: place to store the result
386  *	@err: here we store the error value
387  *
388  *	Function fills the array of triples <key, p, bh> and returns %NULL
389  *	if everything went OK or the pointer to the last filled triple
390  *	(incomplete one) otherwise. Upon the return chain[i].key contains
391  *	the number of (i+1)-th block in the chain (as it is stored in memory,
392  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
393  *	number (it points into struct inode for i==0 and into the bh->b_data
394  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
395  *	block for i>0 and NULL for i==0. In other words, it holds the block
396  *	numbers of the chain, addresses they were taken from (and where we can
397  *	verify that chain did not change) and buffer_heads hosting these
398  *	numbers.
399  *
400  *	Function stops when it stumbles upon zero pointer (absent block)
401  *		(pointer to last triple returned, *@err == 0)
402  *	or when it gets an IO error reading an indirect block
403  *		(ditto, *@err == -EIO)
404  *	or when it notices that chain had been changed while it was reading
405  *		(ditto, *@err == -EAGAIN)
406  *	or when it reads all @depth-1 indirect blocks successfully and finds
407  *	the whole chain, all way to the data (returns %NULL, *err == 0).
408  */
ext3_get_branch(struct inode * inode,int depth,int * offsets,Indirect chain[4],int * err)409 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
410 				 Indirect chain[4], int *err)
411 {
412 	struct super_block *sb = inode->i_sb;
413 	Indirect *p = chain;
414 	struct buffer_head *bh;
415 
416 	*err = 0;
417 	/* i_data is not going away, no lock needed */
418 	add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
419 	if (!p->key)
420 		goto no_block;
421 	while (--depth) {
422 		bh = sb_bread(sb, le32_to_cpu(p->key));
423 		if (!bh)
424 			goto failure;
425 		/* Reader: pointers */
426 		if (!verify_chain(chain, p))
427 			goto changed;
428 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
429 		/* Reader: end */
430 		if (!p->key)
431 			goto no_block;
432 	}
433 	return NULL;
434 
435 changed:
436 	brelse(bh);
437 	*err = -EAGAIN;
438 	goto no_block;
439 failure:
440 	*err = -EIO;
441 no_block:
442 	return p;
443 }
444 
445 /**
446  *	ext3_find_near - find a place for allocation with sufficient locality
447  *	@inode: owner
448  *	@ind: descriptor of indirect block.
449  *
450  *	This function returns the preferred place for block allocation.
451  *	It is used when heuristic for sequential allocation fails.
452  *	Rules are:
453  *	  + if there is a block to the left of our position - allocate near it.
454  *	  + if pointer will live in indirect block - allocate near that block.
455  *	  + if pointer will live in inode - allocate in the same
456  *	    cylinder group.
457  *
458  * In the latter case we colour the starting block by the callers PID to
459  * prevent it from clashing with concurrent allocations for a different inode
460  * in the same block group.   The PID is used here so that functionally related
461  * files will be close-by on-disk.
462  *
463  *	Caller must make sure that @ind is valid and will stay that way.
464  */
ext3_find_near(struct inode * inode,Indirect * ind)465 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
466 {
467 	struct ext3_inode_info *ei = EXT3_I(inode);
468 	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
469 	__le32 *p;
470 	ext3_fsblk_t bg_start;
471 	ext3_grpblk_t colour;
472 
473 	/* Try to find previous block */
474 	for (p = ind->p - 1; p >= start; p--) {
475 		if (*p)
476 			return le32_to_cpu(*p);
477 	}
478 
479 	/* No such thing, so let's try location of indirect block */
480 	if (ind->bh)
481 		return ind->bh->b_blocknr;
482 
483 	/*
484 	 * It is going to be referred to from the inode itself? OK, just put it
485 	 * into the same cylinder group then.
486 	 */
487 	bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
488 	colour = (current->pid % 16) *
489 			(EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
490 	return bg_start + colour;
491 }
492 
493 /**
494  *	ext3_find_goal - find a preferred place for allocation.
495  *	@inode: owner
496  *	@block:  block we want
497  *	@partial: pointer to the last triple within a chain
498  *
499  *	Normally this function find the preferred place for block allocation,
500  *	returns it.
501  */
502 
ext3_find_goal(struct inode * inode,long block,Indirect * partial)503 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
504 				   Indirect *partial)
505 {
506 	struct ext3_block_alloc_info *block_i;
507 
508 	block_i =  EXT3_I(inode)->i_block_alloc_info;
509 
510 	/*
511 	 * try the heuristic for sequential allocation,
512 	 * failing that at least try to get decent locality.
513 	 */
514 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
515 		&& (block_i->last_alloc_physical_block != 0)) {
516 		return block_i->last_alloc_physical_block + 1;
517 	}
518 
519 	return ext3_find_near(inode, partial);
520 }
521 
522 /**
523  *	ext3_blks_to_allocate - Look up the block map and count the number
524  *	of direct blocks need to be allocated for the given branch.
525  *
526  *	@branch: chain of indirect blocks
527  *	@k: number of blocks need for indirect blocks
528  *	@blks: number of data blocks to be mapped.
529  *	@blocks_to_boundary:  the offset in the indirect block
530  *
531  *	return the total number of blocks to be allocate, including the
532  *	direct and indirect blocks.
533  */
ext3_blks_to_allocate(Indirect * branch,int k,unsigned long blks,int blocks_to_boundary)534 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
535 		int blocks_to_boundary)
536 {
537 	unsigned long count = 0;
538 
539 	/*
540 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
541 	 * then it's clear blocks on that path have not allocated
542 	 */
543 	if (k > 0) {
544 		/* right now we don't handle cross boundary allocation */
545 		if (blks < blocks_to_boundary + 1)
546 			count += blks;
547 		else
548 			count += blocks_to_boundary + 1;
549 		return count;
550 	}
551 
552 	count++;
553 	while (count < blks && count <= blocks_to_boundary &&
554 		le32_to_cpu(*(branch[0].p + count)) == 0) {
555 		count++;
556 	}
557 	return count;
558 }
559 
560 /**
561  *	ext3_alloc_blocks - multiple allocate blocks needed for a branch
562  *	@handle: handle for this transaction
563  *	@inode: owner
564  *	@goal: preferred place for allocation
565  *	@indirect_blks: the number of blocks need to allocate for indirect
566  *			blocks
567  *	@blks:	number of blocks need to allocated for direct blocks
568  *	@new_blocks: on return it will store the new block numbers for
569  *	the indirect blocks(if needed) and the first direct block,
570  *	@err: here we store the error value
571  *
572  *	return the number of direct blocks allocated
573  */
ext3_alloc_blocks(handle_t * handle,struct inode * inode,ext3_fsblk_t goal,int indirect_blks,int blks,ext3_fsblk_t new_blocks[4],int * err)574 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
575 			ext3_fsblk_t goal, int indirect_blks, int blks,
576 			ext3_fsblk_t new_blocks[4], int *err)
577 {
578 	int target, i;
579 	unsigned long count = 0;
580 	int index = 0;
581 	ext3_fsblk_t current_block = 0;
582 	int ret = 0;
583 
584 	/*
585 	 * Here we try to allocate the requested multiple blocks at once,
586 	 * on a best-effort basis.
587 	 * To build a branch, we should allocate blocks for
588 	 * the indirect blocks(if not allocated yet), and at least
589 	 * the first direct block of this branch.  That's the
590 	 * minimum number of blocks need to allocate(required)
591 	 */
592 	target = blks + indirect_blks;
593 
594 	while (1) {
595 		count = target;
596 		/* allocating blocks for indirect blocks and direct blocks */
597 		current_block = ext3_new_blocks(handle,inode,goal,&count,err);
598 		if (*err)
599 			goto failed_out;
600 
601 		target -= count;
602 		/* allocate blocks for indirect blocks */
603 		while (index < indirect_blks && count) {
604 			new_blocks[index++] = current_block++;
605 			count--;
606 		}
607 
608 		if (count > 0)
609 			break;
610 	}
611 
612 	/* save the new block number for the first direct block */
613 	new_blocks[index] = current_block;
614 
615 	/* total number of blocks allocated for direct blocks */
616 	ret = count;
617 	*err = 0;
618 	return ret;
619 failed_out:
620 	for (i = 0; i <index; i++)
621 		ext3_free_blocks(handle, inode, new_blocks[i], 1);
622 	return ret;
623 }
624 
625 /**
626  *	ext3_alloc_branch - allocate and set up a chain of blocks.
627  *	@handle: handle for this transaction
628  *	@inode: owner
629  *	@indirect_blks: number of allocated indirect blocks
630  *	@blks: number of allocated direct blocks
631  *	@goal: preferred place for allocation
632  *	@offsets: offsets (in the blocks) to store the pointers to next.
633  *	@branch: place to store the chain in.
634  *
635  *	This function allocates blocks, zeroes out all but the last one,
636  *	links them into chain and (if we are synchronous) writes them to disk.
637  *	In other words, it prepares a branch that can be spliced onto the
638  *	inode. It stores the information about that chain in the branch[], in
639  *	the same format as ext3_get_branch() would do. We are calling it after
640  *	we had read the existing part of chain and partial points to the last
641  *	triple of that (one with zero ->key). Upon the exit we have the same
642  *	picture as after the successful ext3_get_block(), except that in one
643  *	place chain is disconnected - *branch->p is still zero (we did not
644  *	set the last link), but branch->key contains the number that should
645  *	be placed into *branch->p to fill that gap.
646  *
647  *	If allocation fails we free all blocks we've allocated (and forget
648  *	their buffer_heads) and return the error value the from failed
649  *	ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
650  *	as described above and return 0.
651  */
ext3_alloc_branch(handle_t * handle,struct inode * inode,int indirect_blks,int * blks,ext3_fsblk_t goal,int * offsets,Indirect * branch)652 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
653 			int indirect_blks, int *blks, ext3_fsblk_t goal,
654 			int *offsets, Indirect *branch)
655 {
656 	int blocksize = inode->i_sb->s_blocksize;
657 	int i, n = 0;
658 	int err = 0;
659 	struct buffer_head *bh;
660 	int num;
661 	ext3_fsblk_t new_blocks[4];
662 	ext3_fsblk_t current_block;
663 
664 	num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
665 				*blks, new_blocks, &err);
666 	if (err)
667 		return err;
668 
669 	branch[0].key = cpu_to_le32(new_blocks[0]);
670 	/*
671 	 * metadata blocks and data blocks are allocated.
672 	 */
673 	for (n = 1; n <= indirect_blks;  n++) {
674 		/*
675 		 * Get buffer_head for parent block, zero it out
676 		 * and set the pointer to new one, then send
677 		 * parent to disk.
678 		 */
679 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
680 		branch[n].bh = bh;
681 		lock_buffer(bh);
682 		BUFFER_TRACE(bh, "call get_create_access");
683 		err = ext3_journal_get_create_access(handle, bh);
684 		if (err) {
685 			unlock_buffer(bh);
686 			brelse(bh);
687 			goto failed;
688 		}
689 
690 		memset(bh->b_data, 0, blocksize);
691 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
692 		branch[n].key = cpu_to_le32(new_blocks[n]);
693 		*branch[n].p = branch[n].key;
694 		if ( n == indirect_blks) {
695 			current_block = new_blocks[n];
696 			/*
697 			 * End of chain, update the last new metablock of
698 			 * the chain to point to the new allocated
699 			 * data blocks numbers
700 			 */
701 			for (i=1; i < num; i++)
702 				*(branch[n].p + i) = cpu_to_le32(++current_block);
703 		}
704 		BUFFER_TRACE(bh, "marking uptodate");
705 		set_buffer_uptodate(bh);
706 		unlock_buffer(bh);
707 
708 		BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
709 		err = ext3_journal_dirty_metadata(handle, bh);
710 		if (err)
711 			goto failed;
712 	}
713 	*blks = num;
714 	return err;
715 failed:
716 	/* Allocation failed, free what we already allocated */
717 	for (i = 1; i <= n ; i++) {
718 		BUFFER_TRACE(branch[i].bh, "call journal_forget");
719 		ext3_journal_forget(handle, branch[i].bh);
720 	}
721 	for (i = 0; i <indirect_blks; i++)
722 		ext3_free_blocks(handle, inode, new_blocks[i], 1);
723 
724 	ext3_free_blocks(handle, inode, new_blocks[i], num);
725 
726 	return err;
727 }
728 
729 /**
730  * ext3_splice_branch - splice the allocated branch onto inode.
731  * @handle: handle for this transaction
732  * @inode: owner
733  * @block: (logical) number of block we are adding
734  * @where: location of missing link
735  * @num:   number of indirect blocks we are adding
736  * @blks:  number of direct blocks we are adding
737  *
738  * This function fills the missing link and does all housekeeping needed in
739  * inode (->i_blocks, etc.). In case of success we end up with the full
740  * chain to new block and return 0.
741  */
ext3_splice_branch(handle_t * handle,struct inode * inode,long block,Indirect * where,int num,int blks)742 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
743 			long block, Indirect *where, int num, int blks)
744 {
745 	int i;
746 	int err = 0;
747 	struct ext3_block_alloc_info *block_i;
748 	ext3_fsblk_t current_block;
749 	struct ext3_inode_info *ei = EXT3_I(inode);
750 	struct timespec now;
751 
752 	block_i = ei->i_block_alloc_info;
753 	/*
754 	 * If we're splicing into a [td]indirect block (as opposed to the
755 	 * inode) then we need to get write access to the [td]indirect block
756 	 * before the splice.
757 	 */
758 	if (where->bh) {
759 		BUFFER_TRACE(where->bh, "get_write_access");
760 		err = ext3_journal_get_write_access(handle, where->bh);
761 		if (err)
762 			goto err_out;
763 	}
764 	/* That's it */
765 
766 	*where->p = where->key;
767 
768 	/*
769 	 * Update the host buffer_head or inode to point to more just allocated
770 	 * direct blocks blocks
771 	 */
772 	if (num == 0 && blks > 1) {
773 		current_block = le32_to_cpu(where->key) + 1;
774 		for (i = 1; i < blks; i++)
775 			*(where->p + i ) = cpu_to_le32(current_block++);
776 	}
777 
778 	/*
779 	 * update the most recently allocated logical & physical block
780 	 * in i_block_alloc_info, to assist find the proper goal block for next
781 	 * allocation
782 	 */
783 	if (block_i) {
784 		block_i->last_alloc_logical_block = block + blks - 1;
785 		block_i->last_alloc_physical_block =
786 				le32_to_cpu(where[num].key) + blks - 1;
787 	}
788 
789 	/* We are done with atomic stuff, now do the rest of housekeeping */
790 	now = CURRENT_TIME_SEC;
791 	if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
792 		inode->i_ctime = now;
793 		ext3_mark_inode_dirty(handle, inode);
794 	}
795 	/* ext3_mark_inode_dirty already updated i_sync_tid */
796 	atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
797 
798 	/* had we spliced it onto indirect block? */
799 	if (where->bh) {
800 		/*
801 		 * If we spliced it onto an indirect block, we haven't
802 		 * altered the inode.  Note however that if it is being spliced
803 		 * onto an indirect block at the very end of the file (the
804 		 * file is growing) then we *will* alter the inode to reflect
805 		 * the new i_size.  But that is not done here - it is done in
806 		 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
807 		 */
808 		jbd_debug(5, "splicing indirect only\n");
809 		BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
810 		err = ext3_journal_dirty_metadata(handle, where->bh);
811 		if (err)
812 			goto err_out;
813 	} else {
814 		/*
815 		 * OK, we spliced it into the inode itself on a direct block.
816 		 * Inode was dirtied above.
817 		 */
818 		jbd_debug(5, "splicing direct\n");
819 	}
820 	return err;
821 
822 err_out:
823 	for (i = 1; i <= num; i++) {
824 		BUFFER_TRACE(where[i].bh, "call journal_forget");
825 		ext3_journal_forget(handle, where[i].bh);
826 		ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
827 	}
828 	ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
829 
830 	return err;
831 }
832 
833 /*
834  * Allocation strategy is simple: if we have to allocate something, we will
835  * have to go the whole way to leaf. So let's do it before attaching anything
836  * to tree, set linkage between the newborn blocks, write them if sync is
837  * required, recheck the path, free and repeat if check fails, otherwise
838  * set the last missing link (that will protect us from any truncate-generated
839  * removals - all blocks on the path are immune now) and possibly force the
840  * write on the parent block.
841  * That has a nice additional property: no special recovery from the failed
842  * allocations is needed - we simply release blocks and do not touch anything
843  * reachable from inode.
844  *
845  * `handle' can be NULL if create == 0.
846  *
847  * The BKL may not be held on entry here.  Be sure to take it early.
848  * return > 0, # of blocks mapped or allocated.
849  * return = 0, if plain lookup failed.
850  * return < 0, error case.
851  */
ext3_get_blocks_handle(handle_t * handle,struct inode * inode,sector_t iblock,unsigned long maxblocks,struct buffer_head * bh_result,int create)852 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
853 		sector_t iblock, unsigned long maxblocks,
854 		struct buffer_head *bh_result,
855 		int create)
856 {
857 	int err = -EIO;
858 	int offsets[4];
859 	Indirect chain[4];
860 	Indirect *partial;
861 	ext3_fsblk_t goal;
862 	int indirect_blks;
863 	int blocks_to_boundary = 0;
864 	int depth;
865 	struct ext3_inode_info *ei = EXT3_I(inode);
866 	int count = 0;
867 	ext3_fsblk_t first_block = 0;
868 
869 
870 	trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
871 	J_ASSERT(handle != NULL || create == 0);
872 	depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
873 
874 	if (depth == 0)
875 		goto out;
876 
877 	partial = ext3_get_branch(inode, depth, offsets, chain, &err);
878 
879 	/* Simplest case - block found, no allocation needed */
880 	if (!partial) {
881 		first_block = le32_to_cpu(chain[depth - 1].key);
882 		clear_buffer_new(bh_result);
883 		count++;
884 		/*map more blocks*/
885 		while (count < maxblocks && count <= blocks_to_boundary) {
886 			ext3_fsblk_t blk;
887 
888 			if (!verify_chain(chain, chain + depth - 1)) {
889 				/*
890 				 * Indirect block might be removed by
891 				 * truncate while we were reading it.
892 				 * Handling of that case: forget what we've
893 				 * got now. Flag the err as EAGAIN, so it
894 				 * will reread.
895 				 */
896 				err = -EAGAIN;
897 				count = 0;
898 				break;
899 			}
900 			blk = le32_to_cpu(*(chain[depth-1].p + count));
901 
902 			if (blk == first_block + count)
903 				count++;
904 			else
905 				break;
906 		}
907 		if (err != -EAGAIN)
908 			goto got_it;
909 	}
910 
911 	/* Next simple case - plain lookup or failed read of indirect block */
912 	if (!create || err == -EIO)
913 		goto cleanup;
914 
915 	/*
916 	 * Block out ext3_truncate while we alter the tree
917 	 */
918 	mutex_lock(&ei->truncate_mutex);
919 
920 	/*
921 	 * If the indirect block is missing while we are reading
922 	 * the chain(ext3_get_branch() returns -EAGAIN err), or
923 	 * if the chain has been changed after we grab the semaphore,
924 	 * (either because another process truncated this branch, or
925 	 * another get_block allocated this branch) re-grab the chain to see if
926 	 * the request block has been allocated or not.
927 	 *
928 	 * Since we already block the truncate/other get_block
929 	 * at this point, we will have the current copy of the chain when we
930 	 * splice the branch into the tree.
931 	 */
932 	if (err == -EAGAIN || !verify_chain(chain, partial)) {
933 		while (partial > chain) {
934 			brelse(partial->bh);
935 			partial--;
936 		}
937 		partial = ext3_get_branch(inode, depth, offsets, chain, &err);
938 		if (!partial) {
939 			count++;
940 			mutex_unlock(&ei->truncate_mutex);
941 			if (err)
942 				goto cleanup;
943 			clear_buffer_new(bh_result);
944 			goto got_it;
945 		}
946 	}
947 
948 	/*
949 	 * Okay, we need to do block allocation.  Lazily initialize the block
950 	 * allocation info here if necessary
951 	*/
952 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
953 		ext3_init_block_alloc_info(inode);
954 
955 	goal = ext3_find_goal(inode, iblock, partial);
956 
957 	/* the number of blocks need to allocate for [d,t]indirect blocks */
958 	indirect_blks = (chain + depth) - partial - 1;
959 
960 	/*
961 	 * Next look up the indirect map to count the totoal number of
962 	 * direct blocks to allocate for this branch.
963 	 */
964 	count = ext3_blks_to_allocate(partial, indirect_blks,
965 					maxblocks, blocks_to_boundary);
966 	err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
967 				offsets + (partial - chain), partial);
968 
969 	/*
970 	 * The ext3_splice_branch call will free and forget any buffers
971 	 * on the new chain if there is a failure, but that risks using
972 	 * up transaction credits, especially for bitmaps where the
973 	 * credits cannot be returned.  Can we handle this somehow?  We
974 	 * may need to return -EAGAIN upwards in the worst case.  --sct
975 	 */
976 	if (!err)
977 		err = ext3_splice_branch(handle, inode, iblock,
978 					partial, indirect_blks, count);
979 	mutex_unlock(&ei->truncate_mutex);
980 	if (err)
981 		goto cleanup;
982 
983 	set_buffer_new(bh_result);
984 got_it:
985 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
986 	if (count > blocks_to_boundary)
987 		set_buffer_boundary(bh_result);
988 	err = count;
989 	/* Clean up and exit */
990 	partial = chain + depth - 1;	/* the whole chain */
991 cleanup:
992 	while (partial > chain) {
993 		BUFFER_TRACE(partial->bh, "call brelse");
994 		brelse(partial->bh);
995 		partial--;
996 	}
997 	BUFFER_TRACE(bh_result, "returned");
998 out:
999 	trace_ext3_get_blocks_exit(inode, iblock,
1000 				   depth ? le32_to_cpu(chain[depth-1].key) : 0,
1001 				   count, err);
1002 	return err;
1003 }
1004 
1005 /* Maximum number of blocks we map for direct IO at once. */
1006 #define DIO_MAX_BLOCKS 4096
1007 /*
1008  * Number of credits we need for writing DIO_MAX_BLOCKS:
1009  * We need sb + group descriptor + bitmap + inode -> 4
1010  * For B blocks with A block pointers per block we need:
1011  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1012  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1013  */
1014 #define DIO_CREDITS 25
1015 
ext3_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1016 static int ext3_get_block(struct inode *inode, sector_t iblock,
1017 			struct buffer_head *bh_result, int create)
1018 {
1019 	handle_t *handle = ext3_journal_current_handle();
1020 	int ret = 0, started = 0;
1021 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1022 
1023 	if (create && !handle) {	/* Direct IO write... */
1024 		if (max_blocks > DIO_MAX_BLOCKS)
1025 			max_blocks = DIO_MAX_BLOCKS;
1026 		handle = ext3_journal_start(inode, DIO_CREDITS +
1027 				EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
1028 		if (IS_ERR(handle)) {
1029 			ret = PTR_ERR(handle);
1030 			goto out;
1031 		}
1032 		started = 1;
1033 	}
1034 
1035 	ret = ext3_get_blocks_handle(handle, inode, iblock,
1036 					max_blocks, bh_result, create);
1037 	if (ret > 0) {
1038 		bh_result->b_size = (ret << inode->i_blkbits);
1039 		ret = 0;
1040 	}
1041 	if (started)
1042 		ext3_journal_stop(handle);
1043 out:
1044 	return ret;
1045 }
1046 
ext3_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1047 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1048 		u64 start, u64 len)
1049 {
1050 	return generic_block_fiemap(inode, fieinfo, start, len,
1051 				    ext3_get_block);
1052 }
1053 
1054 /*
1055  * `handle' can be NULL if create is zero
1056  */
ext3_getblk(handle_t * handle,struct inode * inode,long block,int create,int * errp)1057 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1058 				long block, int create, int *errp)
1059 {
1060 	struct buffer_head dummy;
1061 	int fatal = 0, err;
1062 
1063 	J_ASSERT(handle != NULL || create == 0);
1064 
1065 	dummy.b_state = 0;
1066 	dummy.b_blocknr = -1000;
1067 	buffer_trace_init(&dummy.b_history);
1068 	err = ext3_get_blocks_handle(handle, inode, block, 1,
1069 					&dummy, create);
1070 	/*
1071 	 * ext3_get_blocks_handle() returns number of blocks
1072 	 * mapped. 0 in case of a HOLE.
1073 	 */
1074 	if (err > 0) {
1075 		if (err > 1)
1076 			WARN_ON(1);
1077 		err = 0;
1078 	}
1079 	*errp = err;
1080 	if (!err && buffer_mapped(&dummy)) {
1081 		struct buffer_head *bh;
1082 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1083 		if (!bh) {
1084 			*errp = -EIO;
1085 			goto err;
1086 		}
1087 		if (buffer_new(&dummy)) {
1088 			J_ASSERT(create != 0);
1089 			J_ASSERT(handle != NULL);
1090 
1091 			/*
1092 			 * Now that we do not always journal data, we should
1093 			 * keep in mind whether this should always journal the
1094 			 * new buffer as metadata.  For now, regular file
1095 			 * writes use ext3_get_block instead, so it's not a
1096 			 * problem.
1097 			 */
1098 			lock_buffer(bh);
1099 			BUFFER_TRACE(bh, "call get_create_access");
1100 			fatal = ext3_journal_get_create_access(handle, bh);
1101 			if (!fatal && !buffer_uptodate(bh)) {
1102 				memset(bh->b_data,0,inode->i_sb->s_blocksize);
1103 				set_buffer_uptodate(bh);
1104 			}
1105 			unlock_buffer(bh);
1106 			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1107 			err = ext3_journal_dirty_metadata(handle, bh);
1108 			if (!fatal)
1109 				fatal = err;
1110 		} else {
1111 			BUFFER_TRACE(bh, "not a new buffer");
1112 		}
1113 		if (fatal) {
1114 			*errp = fatal;
1115 			brelse(bh);
1116 			bh = NULL;
1117 		}
1118 		return bh;
1119 	}
1120 err:
1121 	return NULL;
1122 }
1123 
ext3_bread(handle_t * handle,struct inode * inode,int block,int create,int * err)1124 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1125 			       int block, int create, int *err)
1126 {
1127 	struct buffer_head * bh;
1128 
1129 	bh = ext3_getblk(handle, inode, block, create, err);
1130 	if (!bh)
1131 		return bh;
1132 	if (bh_uptodate_or_lock(bh))
1133 		return bh;
1134 	get_bh(bh);
1135 	bh->b_end_io = end_buffer_read_sync;
1136 	submit_bh(READ | REQ_META | REQ_PRIO, bh);
1137 	wait_on_buffer(bh);
1138 	if (buffer_uptodate(bh))
1139 		return bh;
1140 	put_bh(bh);
1141 	*err = -EIO;
1142 	return NULL;
1143 }
1144 
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))1145 static int walk_page_buffers(	handle_t *handle,
1146 				struct buffer_head *head,
1147 				unsigned from,
1148 				unsigned to,
1149 				int *partial,
1150 				int (*fn)(	handle_t *handle,
1151 						struct buffer_head *bh))
1152 {
1153 	struct buffer_head *bh;
1154 	unsigned block_start, block_end;
1155 	unsigned blocksize = head->b_size;
1156 	int err, ret = 0;
1157 	struct buffer_head *next;
1158 
1159 	for (	bh = head, block_start = 0;
1160 		ret == 0 && (bh != head || !block_start);
1161 		block_start = block_end, bh = next)
1162 	{
1163 		next = bh->b_this_page;
1164 		block_end = block_start + blocksize;
1165 		if (block_end <= from || block_start >= to) {
1166 			if (partial && !buffer_uptodate(bh))
1167 				*partial = 1;
1168 			continue;
1169 		}
1170 		err = (*fn)(handle, bh);
1171 		if (!ret)
1172 			ret = err;
1173 	}
1174 	return ret;
1175 }
1176 
1177 /*
1178  * To preserve ordering, it is essential that the hole instantiation and
1179  * the data write be encapsulated in a single transaction.  We cannot
1180  * close off a transaction and start a new one between the ext3_get_block()
1181  * and the commit_write().  So doing the journal_start at the start of
1182  * prepare_write() is the right place.
1183  *
1184  * Also, this function can nest inside ext3_writepage() ->
1185  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1186  * has generated enough buffer credits to do the whole page.  So we won't
1187  * block on the journal in that case, which is good, because the caller may
1188  * be PF_MEMALLOC.
1189  *
1190  * By accident, ext3 can be reentered when a transaction is open via
1191  * quota file writes.  If we were to commit the transaction while thus
1192  * reentered, there can be a deadlock - we would be holding a quota
1193  * lock, and the commit would never complete if another thread had a
1194  * transaction open and was blocking on the quota lock - a ranking
1195  * violation.
1196  *
1197  * So what we do is to rely on the fact that journal_stop/journal_start
1198  * will _not_ run commit under these circumstances because handle->h_ref
1199  * is elevated.  We'll still have enough credits for the tiny quotafile
1200  * write.
1201  */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1202 static int do_journal_get_write_access(handle_t *handle,
1203 					struct buffer_head *bh)
1204 {
1205 	int dirty = buffer_dirty(bh);
1206 	int ret;
1207 
1208 	if (!buffer_mapped(bh) || buffer_freed(bh))
1209 		return 0;
1210 	/*
1211 	 * __block_prepare_write() could have dirtied some buffers. Clean
1212 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1213 	 * otherwise about fs integrity issues. Setting of the dirty bit
1214 	 * by __block_prepare_write() isn't a real problem here as we clear
1215 	 * the bit before releasing a page lock and thus writeback cannot
1216 	 * ever write the buffer.
1217 	 */
1218 	if (dirty)
1219 		clear_buffer_dirty(bh);
1220 	ret = ext3_journal_get_write_access(handle, bh);
1221 	if (!ret && dirty)
1222 		ret = ext3_journal_dirty_metadata(handle, bh);
1223 	return ret;
1224 }
1225 
1226 /*
1227  * Truncate blocks that were not used by write. We have to truncate the
1228  * pagecache as well so that corresponding buffers get properly unmapped.
1229  */
ext3_truncate_failed_write(struct inode * inode)1230 static void ext3_truncate_failed_write(struct inode *inode)
1231 {
1232 	truncate_inode_pages(inode->i_mapping, inode->i_size);
1233 	ext3_truncate(inode);
1234 }
1235 
1236 /*
1237  * Truncate blocks that were not used by direct IO write. We have to zero out
1238  * the last file block as well because direct IO might have written to it.
1239  */
ext3_truncate_failed_direct_write(struct inode * inode)1240 static void ext3_truncate_failed_direct_write(struct inode *inode)
1241 {
1242 	ext3_block_truncate_page(inode, inode->i_size);
1243 	ext3_truncate(inode);
1244 }
1245 
ext3_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1246 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1247 				loff_t pos, unsigned len, unsigned flags,
1248 				struct page **pagep, void **fsdata)
1249 {
1250 	struct inode *inode = mapping->host;
1251 	int ret;
1252 	handle_t *handle;
1253 	int retries = 0;
1254 	struct page *page;
1255 	pgoff_t index;
1256 	unsigned from, to;
1257 	/* Reserve one block more for addition to orphan list in case
1258 	 * we allocate blocks but write fails for some reason */
1259 	int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1260 
1261 	trace_ext3_write_begin(inode, pos, len, flags);
1262 
1263 	index = pos >> PAGE_CACHE_SHIFT;
1264 	from = pos & (PAGE_CACHE_SIZE - 1);
1265 	to = from + len;
1266 
1267 retry:
1268 	page = grab_cache_page_write_begin(mapping, index, flags);
1269 	if (!page)
1270 		return -ENOMEM;
1271 	*pagep = page;
1272 
1273 	handle = ext3_journal_start(inode, needed_blocks);
1274 	if (IS_ERR(handle)) {
1275 		unlock_page(page);
1276 		page_cache_release(page);
1277 		ret = PTR_ERR(handle);
1278 		goto out;
1279 	}
1280 	ret = __block_write_begin(page, pos, len, ext3_get_block);
1281 	if (ret)
1282 		goto write_begin_failed;
1283 
1284 	if (ext3_should_journal_data(inode)) {
1285 		ret = walk_page_buffers(handle, page_buffers(page),
1286 				from, to, NULL, do_journal_get_write_access);
1287 	}
1288 write_begin_failed:
1289 	if (ret) {
1290 		/*
1291 		 * block_write_begin may have instantiated a few blocks
1292 		 * outside i_size.  Trim these off again. Don't need
1293 		 * i_size_read because we hold i_mutex.
1294 		 *
1295 		 * Add inode to orphan list in case we crash before truncate
1296 		 * finishes. Do this only if ext3_can_truncate() agrees so
1297 		 * that orphan processing code is happy.
1298 		 */
1299 		if (pos + len > inode->i_size && ext3_can_truncate(inode))
1300 			ext3_orphan_add(handle, inode);
1301 		ext3_journal_stop(handle);
1302 		unlock_page(page);
1303 		page_cache_release(page);
1304 		if (pos + len > inode->i_size)
1305 			ext3_truncate_failed_write(inode);
1306 	}
1307 	if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1308 		goto retry;
1309 out:
1310 	return ret;
1311 }
1312 
1313 
ext3_journal_dirty_data(handle_t * handle,struct buffer_head * bh)1314 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1315 {
1316 	int err = journal_dirty_data(handle, bh);
1317 	if (err)
1318 		ext3_journal_abort_handle(__func__, __func__,
1319 						bh, handle, err);
1320 	return err;
1321 }
1322 
1323 /* For ordered writepage and write_end functions */
journal_dirty_data_fn(handle_t * handle,struct buffer_head * bh)1324 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1325 {
1326 	/*
1327 	 * Write could have mapped the buffer but it didn't copy the data in
1328 	 * yet. So avoid filing such buffer into a transaction.
1329 	 */
1330 	if (buffer_mapped(bh) && buffer_uptodate(bh))
1331 		return ext3_journal_dirty_data(handle, bh);
1332 	return 0;
1333 }
1334 
1335 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1336 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1337 {
1338 	if (!buffer_mapped(bh) || buffer_freed(bh))
1339 		return 0;
1340 	set_buffer_uptodate(bh);
1341 	return ext3_journal_dirty_metadata(handle, bh);
1342 }
1343 
1344 /*
1345  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1346  * for the whole page but later we failed to copy the data in. Update inode
1347  * size according to what we managed to copy. The rest is going to be
1348  * truncated in write_end function.
1349  */
update_file_sizes(struct inode * inode,loff_t pos,unsigned copied)1350 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1351 {
1352 	/* What matters to us is i_disksize. We don't write i_size anywhere */
1353 	if (pos + copied > inode->i_size)
1354 		i_size_write(inode, pos + copied);
1355 	if (pos + copied > EXT3_I(inode)->i_disksize) {
1356 		EXT3_I(inode)->i_disksize = pos + copied;
1357 		mark_inode_dirty(inode);
1358 	}
1359 }
1360 
1361 /*
1362  * We need to pick up the new inode size which generic_commit_write gave us
1363  * `file' can be NULL - eg, when called from page_symlink().
1364  *
1365  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1366  * buffers are managed internally.
1367  */
ext3_ordered_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1368 static int ext3_ordered_write_end(struct file *file,
1369 				struct address_space *mapping,
1370 				loff_t pos, unsigned len, unsigned copied,
1371 				struct page *page, void *fsdata)
1372 {
1373 	handle_t *handle = ext3_journal_current_handle();
1374 	struct inode *inode = file->f_mapping->host;
1375 	unsigned from, to;
1376 	int ret = 0, ret2;
1377 
1378 	trace_ext3_ordered_write_end(inode, pos, len, copied);
1379 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1380 
1381 	from = pos & (PAGE_CACHE_SIZE - 1);
1382 	to = from + copied;
1383 	ret = walk_page_buffers(handle, page_buffers(page),
1384 		from, to, NULL, journal_dirty_data_fn);
1385 
1386 	if (ret == 0)
1387 		update_file_sizes(inode, pos, copied);
1388 	/*
1389 	 * There may be allocated blocks outside of i_size because
1390 	 * we failed to copy some data. Prepare for truncate.
1391 	 */
1392 	if (pos + len > inode->i_size && ext3_can_truncate(inode))
1393 		ext3_orphan_add(handle, inode);
1394 	ret2 = ext3_journal_stop(handle);
1395 	if (!ret)
1396 		ret = ret2;
1397 	unlock_page(page);
1398 	page_cache_release(page);
1399 
1400 	if (pos + len > inode->i_size)
1401 		ext3_truncate_failed_write(inode);
1402 	return ret ? ret : copied;
1403 }
1404 
ext3_writeback_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1405 static int ext3_writeback_write_end(struct file *file,
1406 				struct address_space *mapping,
1407 				loff_t pos, unsigned len, unsigned copied,
1408 				struct page *page, void *fsdata)
1409 {
1410 	handle_t *handle = ext3_journal_current_handle();
1411 	struct inode *inode = file->f_mapping->host;
1412 	int ret;
1413 
1414 	trace_ext3_writeback_write_end(inode, pos, len, copied);
1415 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1416 	update_file_sizes(inode, pos, copied);
1417 	/*
1418 	 * There may be allocated blocks outside of i_size because
1419 	 * we failed to copy some data. Prepare for truncate.
1420 	 */
1421 	if (pos + len > inode->i_size && ext3_can_truncate(inode))
1422 		ext3_orphan_add(handle, inode);
1423 	ret = ext3_journal_stop(handle);
1424 	unlock_page(page);
1425 	page_cache_release(page);
1426 
1427 	if (pos + len > inode->i_size)
1428 		ext3_truncate_failed_write(inode);
1429 	return ret ? ret : copied;
1430 }
1431 
ext3_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1432 static int ext3_journalled_write_end(struct file *file,
1433 				struct address_space *mapping,
1434 				loff_t pos, unsigned len, unsigned copied,
1435 				struct page *page, void *fsdata)
1436 {
1437 	handle_t *handle = ext3_journal_current_handle();
1438 	struct inode *inode = mapping->host;
1439 	struct ext3_inode_info *ei = EXT3_I(inode);
1440 	int ret = 0, ret2;
1441 	int partial = 0;
1442 	unsigned from, to;
1443 
1444 	trace_ext3_journalled_write_end(inode, pos, len, copied);
1445 	from = pos & (PAGE_CACHE_SIZE - 1);
1446 	to = from + len;
1447 
1448 	if (copied < len) {
1449 		if (!PageUptodate(page))
1450 			copied = 0;
1451 		page_zero_new_buffers(page, from + copied, to);
1452 		to = from + copied;
1453 	}
1454 
1455 	ret = walk_page_buffers(handle, page_buffers(page), from,
1456 				to, &partial, write_end_fn);
1457 	if (!partial)
1458 		SetPageUptodate(page);
1459 
1460 	if (pos + copied > inode->i_size)
1461 		i_size_write(inode, pos + copied);
1462 	/*
1463 	 * There may be allocated blocks outside of i_size because
1464 	 * we failed to copy some data. Prepare for truncate.
1465 	 */
1466 	if (pos + len > inode->i_size && ext3_can_truncate(inode))
1467 		ext3_orphan_add(handle, inode);
1468 	ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1469 	atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
1470 	if (inode->i_size > ei->i_disksize) {
1471 		ei->i_disksize = inode->i_size;
1472 		ret2 = ext3_mark_inode_dirty(handle, inode);
1473 		if (!ret)
1474 			ret = ret2;
1475 	}
1476 
1477 	ret2 = ext3_journal_stop(handle);
1478 	if (!ret)
1479 		ret = ret2;
1480 	unlock_page(page);
1481 	page_cache_release(page);
1482 
1483 	if (pos + len > inode->i_size)
1484 		ext3_truncate_failed_write(inode);
1485 	return ret ? ret : copied;
1486 }
1487 
1488 /*
1489  * bmap() is special.  It gets used by applications such as lilo and by
1490  * the swapper to find the on-disk block of a specific piece of data.
1491  *
1492  * Naturally, this is dangerous if the block concerned is still in the
1493  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1494  * filesystem and enables swap, then they may get a nasty shock when the
1495  * data getting swapped to that swapfile suddenly gets overwritten by
1496  * the original zero's written out previously to the journal and
1497  * awaiting writeback in the kernel's buffer cache.
1498  *
1499  * So, if we see any bmap calls here on a modified, data-journaled file,
1500  * take extra steps to flush any blocks which might be in the cache.
1501  */
ext3_bmap(struct address_space * mapping,sector_t block)1502 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1503 {
1504 	struct inode *inode = mapping->host;
1505 	journal_t *journal;
1506 	int err;
1507 
1508 	if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1509 		/*
1510 		 * This is a REALLY heavyweight approach, but the use of
1511 		 * bmap on dirty files is expected to be extremely rare:
1512 		 * only if we run lilo or swapon on a freshly made file
1513 		 * do we expect this to happen.
1514 		 *
1515 		 * (bmap requires CAP_SYS_RAWIO so this does not
1516 		 * represent an unprivileged user DOS attack --- we'd be
1517 		 * in trouble if mortal users could trigger this path at
1518 		 * will.)
1519 		 *
1520 		 * NB. EXT3_STATE_JDATA is not set on files other than
1521 		 * regular files.  If somebody wants to bmap a directory
1522 		 * or symlink and gets confused because the buffer
1523 		 * hasn't yet been flushed to disk, they deserve
1524 		 * everything they get.
1525 		 */
1526 
1527 		ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1528 		journal = EXT3_JOURNAL(inode);
1529 		journal_lock_updates(journal);
1530 		err = journal_flush(journal);
1531 		journal_unlock_updates(journal);
1532 
1533 		if (err)
1534 			return 0;
1535 	}
1536 
1537 	return generic_block_bmap(mapping,block,ext3_get_block);
1538 }
1539 
bget_one(handle_t * handle,struct buffer_head * bh)1540 static int bget_one(handle_t *handle, struct buffer_head *bh)
1541 {
1542 	get_bh(bh);
1543 	return 0;
1544 }
1545 
bput_one(handle_t * handle,struct buffer_head * bh)1546 static int bput_one(handle_t *handle, struct buffer_head *bh)
1547 {
1548 	put_bh(bh);
1549 	return 0;
1550 }
1551 
buffer_unmapped(handle_t * handle,struct buffer_head * bh)1552 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1553 {
1554 	return !buffer_mapped(bh);
1555 }
1556 
1557 /*
1558  * Note that we always start a transaction even if we're not journalling
1559  * data.  This is to preserve ordering: any hole instantiation within
1560  * __block_write_full_page -> ext3_get_block() should be journalled
1561  * along with the data so we don't crash and then get metadata which
1562  * refers to old data.
1563  *
1564  * In all journalling modes block_write_full_page() will start the I/O.
1565  *
1566  * Problem:
1567  *
1568  *	ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1569  *		ext3_writepage()
1570  *
1571  * Similar for:
1572  *
1573  *	ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1574  *
1575  * Same applies to ext3_get_block().  We will deadlock on various things like
1576  * lock_journal and i_truncate_mutex.
1577  *
1578  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1579  * allocations fail.
1580  *
1581  * 16May01: If we're reentered then journal_current_handle() will be
1582  *	    non-zero. We simply *return*.
1583  *
1584  * 1 July 2001: @@@ FIXME:
1585  *   In journalled data mode, a data buffer may be metadata against the
1586  *   current transaction.  But the same file is part of a shared mapping
1587  *   and someone does a writepage() on it.
1588  *
1589  *   We will move the buffer onto the async_data list, but *after* it has
1590  *   been dirtied. So there's a small window where we have dirty data on
1591  *   BJ_Metadata.
1592  *
1593  *   Note that this only applies to the last partial page in the file.  The
1594  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1595  *   broken code anyway: it's wrong for msync()).
1596  *
1597  *   It's a rare case: affects the final partial page, for journalled data
1598  *   where the file is subject to bith write() and writepage() in the same
1599  *   transction.  To fix it we'll need a custom block_write_full_page().
1600  *   We'll probably need that anyway for journalling writepage() output.
1601  *
1602  * We don't honour synchronous mounts for writepage().  That would be
1603  * disastrous.  Any write() or metadata operation will sync the fs for
1604  * us.
1605  *
1606  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1607  * we don't need to open a transaction here.
1608  */
ext3_ordered_writepage(struct page * page,struct writeback_control * wbc)1609 static int ext3_ordered_writepage(struct page *page,
1610 				struct writeback_control *wbc)
1611 {
1612 	struct inode *inode = page->mapping->host;
1613 	struct buffer_head *page_bufs;
1614 	handle_t *handle = NULL;
1615 	int ret = 0;
1616 	int err;
1617 
1618 	J_ASSERT(PageLocked(page));
1619 	/*
1620 	 * We don't want to warn for emergency remount. The condition is
1621 	 * ordered to avoid dereferencing inode->i_sb in non-error case to
1622 	 * avoid slow-downs.
1623 	 */
1624 	WARN_ON_ONCE(IS_RDONLY(inode) &&
1625 		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1626 
1627 	/*
1628 	 * We give up here if we're reentered, because it might be for a
1629 	 * different filesystem.
1630 	 */
1631 	if (ext3_journal_current_handle())
1632 		goto out_fail;
1633 
1634 	trace_ext3_ordered_writepage(page);
1635 	if (!page_has_buffers(page)) {
1636 		create_empty_buffers(page, inode->i_sb->s_blocksize,
1637 				(1 << BH_Dirty)|(1 << BH_Uptodate));
1638 		page_bufs = page_buffers(page);
1639 	} else {
1640 		page_bufs = page_buffers(page);
1641 		if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1642 				       NULL, buffer_unmapped)) {
1643 			/* Provide NULL get_block() to catch bugs if buffers
1644 			 * weren't really mapped */
1645 			return block_write_full_page(page, NULL, wbc);
1646 		}
1647 	}
1648 	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1649 
1650 	if (IS_ERR(handle)) {
1651 		ret = PTR_ERR(handle);
1652 		goto out_fail;
1653 	}
1654 
1655 	walk_page_buffers(handle, page_bufs, 0,
1656 			PAGE_CACHE_SIZE, NULL, bget_one);
1657 
1658 	ret = block_write_full_page(page, ext3_get_block, wbc);
1659 
1660 	/*
1661 	 * The page can become unlocked at any point now, and
1662 	 * truncate can then come in and change things.  So we
1663 	 * can't touch *page from now on.  But *page_bufs is
1664 	 * safe due to elevated refcount.
1665 	 */
1666 
1667 	/*
1668 	 * And attach them to the current transaction.  But only if
1669 	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
1670 	 * and generally junk.
1671 	 */
1672 	if (ret == 0) {
1673 		err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1674 					NULL, journal_dirty_data_fn);
1675 		if (!ret)
1676 			ret = err;
1677 	}
1678 	walk_page_buffers(handle, page_bufs, 0,
1679 			PAGE_CACHE_SIZE, NULL, bput_one);
1680 	err = ext3_journal_stop(handle);
1681 	if (!ret)
1682 		ret = err;
1683 	return ret;
1684 
1685 out_fail:
1686 	redirty_page_for_writepage(wbc, page);
1687 	unlock_page(page);
1688 	return ret;
1689 }
1690 
ext3_writeback_writepage(struct page * page,struct writeback_control * wbc)1691 static int ext3_writeback_writepage(struct page *page,
1692 				struct writeback_control *wbc)
1693 {
1694 	struct inode *inode = page->mapping->host;
1695 	handle_t *handle = NULL;
1696 	int ret = 0;
1697 	int err;
1698 
1699 	J_ASSERT(PageLocked(page));
1700 	/*
1701 	 * We don't want to warn for emergency remount. The condition is
1702 	 * ordered to avoid dereferencing inode->i_sb in non-error case to
1703 	 * avoid slow-downs.
1704 	 */
1705 	WARN_ON_ONCE(IS_RDONLY(inode) &&
1706 		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1707 
1708 	if (ext3_journal_current_handle())
1709 		goto out_fail;
1710 
1711 	trace_ext3_writeback_writepage(page);
1712 	if (page_has_buffers(page)) {
1713 		if (!walk_page_buffers(NULL, page_buffers(page), 0,
1714 				      PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1715 			/* Provide NULL get_block() to catch bugs if buffers
1716 			 * weren't really mapped */
1717 			return block_write_full_page(page, NULL, wbc);
1718 		}
1719 	}
1720 
1721 	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1722 	if (IS_ERR(handle)) {
1723 		ret = PTR_ERR(handle);
1724 		goto out_fail;
1725 	}
1726 
1727 	ret = block_write_full_page(page, ext3_get_block, wbc);
1728 
1729 	err = ext3_journal_stop(handle);
1730 	if (!ret)
1731 		ret = err;
1732 	return ret;
1733 
1734 out_fail:
1735 	redirty_page_for_writepage(wbc, page);
1736 	unlock_page(page);
1737 	return ret;
1738 }
1739 
ext3_journalled_writepage(struct page * page,struct writeback_control * wbc)1740 static int ext3_journalled_writepage(struct page *page,
1741 				struct writeback_control *wbc)
1742 {
1743 	struct inode *inode = page->mapping->host;
1744 	handle_t *handle = NULL;
1745 	int ret = 0;
1746 	int err;
1747 
1748 	J_ASSERT(PageLocked(page));
1749 	/*
1750 	 * We don't want to warn for emergency remount. The condition is
1751 	 * ordered to avoid dereferencing inode->i_sb in non-error case to
1752 	 * avoid slow-downs.
1753 	 */
1754 	WARN_ON_ONCE(IS_RDONLY(inode) &&
1755 		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1756 
1757 	if (ext3_journal_current_handle())
1758 		goto no_write;
1759 
1760 	trace_ext3_journalled_writepage(page);
1761 	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1762 	if (IS_ERR(handle)) {
1763 		ret = PTR_ERR(handle);
1764 		goto no_write;
1765 	}
1766 
1767 	if (!page_has_buffers(page) || PageChecked(page)) {
1768 		/*
1769 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1770 		 * doesn't seem much point in redirtying the page here.
1771 		 */
1772 		ClearPageChecked(page);
1773 		ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1774 					  ext3_get_block);
1775 		if (ret != 0) {
1776 			ext3_journal_stop(handle);
1777 			goto out_unlock;
1778 		}
1779 		ret = walk_page_buffers(handle, page_buffers(page), 0,
1780 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1781 
1782 		err = walk_page_buffers(handle, page_buffers(page), 0,
1783 				PAGE_CACHE_SIZE, NULL, write_end_fn);
1784 		if (ret == 0)
1785 			ret = err;
1786 		ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1787 		atomic_set(&EXT3_I(inode)->i_datasync_tid,
1788 			   handle->h_transaction->t_tid);
1789 		unlock_page(page);
1790 	} else {
1791 		/*
1792 		 * It may be a page full of checkpoint-mode buffers.  We don't
1793 		 * really know unless we go poke around in the buffer_heads.
1794 		 * But block_write_full_page will do the right thing.
1795 		 */
1796 		ret = block_write_full_page(page, ext3_get_block, wbc);
1797 	}
1798 	err = ext3_journal_stop(handle);
1799 	if (!ret)
1800 		ret = err;
1801 out:
1802 	return ret;
1803 
1804 no_write:
1805 	redirty_page_for_writepage(wbc, page);
1806 out_unlock:
1807 	unlock_page(page);
1808 	goto out;
1809 }
1810 
ext3_readpage(struct file * file,struct page * page)1811 static int ext3_readpage(struct file *file, struct page *page)
1812 {
1813 	trace_ext3_readpage(page);
1814 	return mpage_readpage(page, ext3_get_block);
1815 }
1816 
1817 static int
ext3_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1818 ext3_readpages(struct file *file, struct address_space *mapping,
1819 		struct list_head *pages, unsigned nr_pages)
1820 {
1821 	return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1822 }
1823 
ext3_invalidatepage(struct page * page,unsigned long offset)1824 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1825 {
1826 	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1827 
1828 	trace_ext3_invalidatepage(page, offset);
1829 
1830 	/*
1831 	 * If it's a full truncate we just forget about the pending dirtying
1832 	 */
1833 	if (offset == 0)
1834 		ClearPageChecked(page);
1835 
1836 	journal_invalidatepage(journal, page, offset);
1837 }
1838 
ext3_releasepage(struct page * page,gfp_t wait)1839 static int ext3_releasepage(struct page *page, gfp_t wait)
1840 {
1841 	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1842 
1843 	trace_ext3_releasepage(page);
1844 	WARN_ON(PageChecked(page));
1845 	if (!page_has_buffers(page))
1846 		return 0;
1847 	return journal_try_to_free_buffers(journal, page, wait);
1848 }
1849 
1850 /*
1851  * If the O_DIRECT write will extend the file then add this inode to the
1852  * orphan list.  So recovery will truncate it back to the original size
1853  * if the machine crashes during the write.
1854  *
1855  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1856  * crashes then stale disk data _may_ be exposed inside the file. But current
1857  * VFS code falls back into buffered path in that case so we are safe.
1858  */
ext3_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)1859 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1860 			const struct iovec *iov, loff_t offset,
1861 			unsigned long nr_segs)
1862 {
1863 	struct file *file = iocb->ki_filp;
1864 	struct inode *inode = file->f_mapping->host;
1865 	struct ext3_inode_info *ei = EXT3_I(inode);
1866 	handle_t *handle;
1867 	ssize_t ret;
1868 	int orphan = 0;
1869 	size_t count = iov_length(iov, nr_segs);
1870 	int retries = 0;
1871 
1872 	trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
1873 
1874 	if (rw == WRITE) {
1875 		loff_t final_size = offset + count;
1876 
1877 		if (final_size > inode->i_size) {
1878 			/* Credits for sb + inode write */
1879 			handle = ext3_journal_start(inode, 2);
1880 			if (IS_ERR(handle)) {
1881 				ret = PTR_ERR(handle);
1882 				goto out;
1883 			}
1884 			ret = ext3_orphan_add(handle, inode);
1885 			if (ret) {
1886 				ext3_journal_stop(handle);
1887 				goto out;
1888 			}
1889 			orphan = 1;
1890 			ei->i_disksize = inode->i_size;
1891 			ext3_journal_stop(handle);
1892 		}
1893 	}
1894 
1895 retry:
1896 	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
1897 				 ext3_get_block);
1898 	/*
1899 	 * In case of error extending write may have instantiated a few
1900 	 * blocks outside i_size. Trim these off again.
1901 	 */
1902 	if (unlikely((rw & WRITE) && ret < 0)) {
1903 		loff_t isize = i_size_read(inode);
1904 		loff_t end = offset + iov_length(iov, nr_segs);
1905 
1906 		if (end > isize)
1907 			ext3_truncate_failed_direct_write(inode);
1908 	}
1909 	if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1910 		goto retry;
1911 
1912 	if (orphan) {
1913 		int err;
1914 
1915 		/* Credits for sb + inode write */
1916 		handle = ext3_journal_start(inode, 2);
1917 		if (IS_ERR(handle)) {
1918 			/* This is really bad luck. We've written the data
1919 			 * but cannot extend i_size. Truncate allocated blocks
1920 			 * and pretend the write failed... */
1921 			ext3_truncate_failed_direct_write(inode);
1922 			ret = PTR_ERR(handle);
1923 			goto out;
1924 		}
1925 		if (inode->i_nlink)
1926 			ext3_orphan_del(handle, inode);
1927 		if (ret > 0) {
1928 			loff_t end = offset + ret;
1929 			if (end > inode->i_size) {
1930 				ei->i_disksize = end;
1931 				i_size_write(inode, end);
1932 				/*
1933 				 * We're going to return a positive `ret'
1934 				 * here due to non-zero-length I/O, so there's
1935 				 * no way of reporting error returns from
1936 				 * ext3_mark_inode_dirty() to userspace.  So
1937 				 * ignore it.
1938 				 */
1939 				ext3_mark_inode_dirty(handle, inode);
1940 			}
1941 		}
1942 		err = ext3_journal_stop(handle);
1943 		if (ret == 0)
1944 			ret = err;
1945 	}
1946 out:
1947 	trace_ext3_direct_IO_exit(inode, offset,
1948 				iov_length(iov, nr_segs), rw, ret);
1949 	return ret;
1950 }
1951 
1952 /*
1953  * Pages can be marked dirty completely asynchronously from ext3's journalling
1954  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1955  * much here because ->set_page_dirty is called under VFS locks.  The page is
1956  * not necessarily locked.
1957  *
1958  * We cannot just dirty the page and leave attached buffers clean, because the
1959  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1960  * or jbddirty because all the journalling code will explode.
1961  *
1962  * So what we do is to mark the page "pending dirty" and next time writepage
1963  * is called, propagate that into the buffers appropriately.
1964  */
ext3_journalled_set_page_dirty(struct page * page)1965 static int ext3_journalled_set_page_dirty(struct page *page)
1966 {
1967 	SetPageChecked(page);
1968 	return __set_page_dirty_nobuffers(page);
1969 }
1970 
1971 static const struct address_space_operations ext3_ordered_aops = {
1972 	.readpage		= ext3_readpage,
1973 	.readpages		= ext3_readpages,
1974 	.writepage		= ext3_ordered_writepage,
1975 	.write_begin		= ext3_write_begin,
1976 	.write_end		= ext3_ordered_write_end,
1977 	.bmap			= ext3_bmap,
1978 	.invalidatepage		= ext3_invalidatepage,
1979 	.releasepage		= ext3_releasepage,
1980 	.direct_IO		= ext3_direct_IO,
1981 	.migratepage		= buffer_migrate_page,
1982 	.is_partially_uptodate  = block_is_partially_uptodate,
1983 	.error_remove_page	= generic_error_remove_page,
1984 };
1985 
1986 static const struct address_space_operations ext3_writeback_aops = {
1987 	.readpage		= ext3_readpage,
1988 	.readpages		= ext3_readpages,
1989 	.writepage		= ext3_writeback_writepage,
1990 	.write_begin		= ext3_write_begin,
1991 	.write_end		= ext3_writeback_write_end,
1992 	.bmap			= ext3_bmap,
1993 	.invalidatepage		= ext3_invalidatepage,
1994 	.releasepage		= ext3_releasepage,
1995 	.direct_IO		= ext3_direct_IO,
1996 	.migratepage		= buffer_migrate_page,
1997 	.is_partially_uptodate  = block_is_partially_uptodate,
1998 	.error_remove_page	= generic_error_remove_page,
1999 };
2000 
2001 static const struct address_space_operations ext3_journalled_aops = {
2002 	.readpage		= ext3_readpage,
2003 	.readpages		= ext3_readpages,
2004 	.writepage		= ext3_journalled_writepage,
2005 	.write_begin		= ext3_write_begin,
2006 	.write_end		= ext3_journalled_write_end,
2007 	.set_page_dirty		= ext3_journalled_set_page_dirty,
2008 	.bmap			= ext3_bmap,
2009 	.invalidatepage		= ext3_invalidatepage,
2010 	.releasepage		= ext3_releasepage,
2011 	.is_partially_uptodate  = block_is_partially_uptodate,
2012 	.error_remove_page	= generic_error_remove_page,
2013 };
2014 
ext3_set_aops(struct inode * inode)2015 void ext3_set_aops(struct inode *inode)
2016 {
2017 	if (ext3_should_order_data(inode))
2018 		inode->i_mapping->a_ops = &ext3_ordered_aops;
2019 	else if (ext3_should_writeback_data(inode))
2020 		inode->i_mapping->a_ops = &ext3_writeback_aops;
2021 	else
2022 		inode->i_mapping->a_ops = &ext3_journalled_aops;
2023 }
2024 
2025 /*
2026  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
2027  * up to the end of the block which corresponds to `from'.
2028  * This required during truncate. We need to physically zero the tail end
2029  * of that block so it doesn't yield old data if the file is later grown.
2030  */
ext3_block_truncate_page(struct inode * inode,loff_t from)2031 static int ext3_block_truncate_page(struct inode *inode, loff_t from)
2032 {
2033 	ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2034 	unsigned offset = from & (PAGE_CACHE_SIZE - 1);
2035 	unsigned blocksize, iblock, length, pos;
2036 	struct page *page;
2037 	handle_t *handle = NULL;
2038 	struct buffer_head *bh;
2039 	int err = 0;
2040 
2041 	/* Truncated on block boundary - nothing to do */
2042 	blocksize = inode->i_sb->s_blocksize;
2043 	if ((from & (blocksize - 1)) == 0)
2044 		return 0;
2045 
2046 	page = grab_cache_page(inode->i_mapping, index);
2047 	if (!page)
2048 		return -ENOMEM;
2049 	length = blocksize - (offset & (blocksize - 1));
2050 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2051 
2052 	if (!page_has_buffers(page))
2053 		create_empty_buffers(page, blocksize, 0);
2054 
2055 	/* Find the buffer that contains "offset" */
2056 	bh = page_buffers(page);
2057 	pos = blocksize;
2058 	while (offset >= pos) {
2059 		bh = bh->b_this_page;
2060 		iblock++;
2061 		pos += blocksize;
2062 	}
2063 
2064 	err = 0;
2065 	if (buffer_freed(bh)) {
2066 		BUFFER_TRACE(bh, "freed: skip");
2067 		goto unlock;
2068 	}
2069 
2070 	if (!buffer_mapped(bh)) {
2071 		BUFFER_TRACE(bh, "unmapped");
2072 		ext3_get_block(inode, iblock, bh, 0);
2073 		/* unmapped? It's a hole - nothing to do */
2074 		if (!buffer_mapped(bh)) {
2075 			BUFFER_TRACE(bh, "still unmapped");
2076 			goto unlock;
2077 		}
2078 	}
2079 
2080 	/* Ok, it's mapped. Make sure it's up-to-date */
2081 	if (PageUptodate(page))
2082 		set_buffer_uptodate(bh);
2083 
2084 	if (!bh_uptodate_or_lock(bh)) {
2085 		err = bh_submit_read(bh);
2086 		/* Uhhuh. Read error. Complain and punt. */
2087 		if (err)
2088 			goto unlock;
2089 	}
2090 
2091 	/* data=writeback mode doesn't need transaction to zero-out data */
2092 	if (!ext3_should_writeback_data(inode)) {
2093 		/* We journal at most one block */
2094 		handle = ext3_journal_start(inode, 1);
2095 		if (IS_ERR(handle)) {
2096 			clear_highpage(page);
2097 			flush_dcache_page(page);
2098 			err = PTR_ERR(handle);
2099 			goto unlock;
2100 		}
2101 	}
2102 
2103 	if (ext3_should_journal_data(inode)) {
2104 		BUFFER_TRACE(bh, "get write access");
2105 		err = ext3_journal_get_write_access(handle, bh);
2106 		if (err)
2107 			goto stop;
2108 	}
2109 
2110 	zero_user(page, offset, length);
2111 	BUFFER_TRACE(bh, "zeroed end of block");
2112 
2113 	err = 0;
2114 	if (ext3_should_journal_data(inode)) {
2115 		err = ext3_journal_dirty_metadata(handle, bh);
2116 	} else {
2117 		if (ext3_should_order_data(inode))
2118 			err = ext3_journal_dirty_data(handle, bh);
2119 		mark_buffer_dirty(bh);
2120 	}
2121 stop:
2122 	if (handle)
2123 		ext3_journal_stop(handle);
2124 
2125 unlock:
2126 	unlock_page(page);
2127 	page_cache_release(page);
2128 	return err;
2129 }
2130 
2131 /*
2132  * Probably it should be a library function... search for first non-zero word
2133  * or memcmp with zero_page, whatever is better for particular architecture.
2134  * Linus?
2135  */
all_zeroes(__le32 * p,__le32 * q)2136 static inline int all_zeroes(__le32 *p, __le32 *q)
2137 {
2138 	while (p < q)
2139 		if (*p++)
2140 			return 0;
2141 	return 1;
2142 }
2143 
2144 /**
2145  *	ext3_find_shared - find the indirect blocks for partial truncation.
2146  *	@inode:	  inode in question
2147  *	@depth:	  depth of the affected branch
2148  *	@offsets: offsets of pointers in that branch (see ext3_block_to_path)
2149  *	@chain:	  place to store the pointers to partial indirect blocks
2150  *	@top:	  place to the (detached) top of branch
2151  *
2152  *	This is a helper function used by ext3_truncate().
2153  *
2154  *	When we do truncate() we may have to clean the ends of several
2155  *	indirect blocks but leave the blocks themselves alive. Block is
2156  *	partially truncated if some data below the new i_size is referred
2157  *	from it (and it is on the path to the first completely truncated
2158  *	data block, indeed).  We have to free the top of that path along
2159  *	with everything to the right of the path. Since no allocation
2160  *	past the truncation point is possible until ext3_truncate()
2161  *	finishes, we may safely do the latter, but top of branch may
2162  *	require special attention - pageout below the truncation point
2163  *	might try to populate it.
2164  *
2165  *	We atomically detach the top of branch from the tree, store the
2166  *	block number of its root in *@top, pointers to buffer_heads of
2167  *	partially truncated blocks - in @chain[].bh and pointers to
2168  *	their last elements that should not be removed - in
2169  *	@chain[].p. Return value is the pointer to last filled element
2170  *	of @chain.
2171  *
2172  *	The work left to caller to do the actual freeing of subtrees:
2173  *		a) free the subtree starting from *@top
2174  *		b) free the subtrees whose roots are stored in
2175  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
2176  *		c) free the subtrees growing from the inode past the @chain[0].
2177  *			(no partially truncated stuff there).  */
2178 
ext3_find_shared(struct inode * inode,int depth,int offsets[4],Indirect chain[4],__le32 * top)2179 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2180 			int offsets[4], Indirect chain[4], __le32 *top)
2181 {
2182 	Indirect *partial, *p;
2183 	int k, err;
2184 
2185 	*top = 0;
2186 	/* Make k index the deepest non-null offset + 1 */
2187 	for (k = depth; k > 1 && !offsets[k-1]; k--)
2188 		;
2189 	partial = ext3_get_branch(inode, k, offsets, chain, &err);
2190 	/* Writer: pointers */
2191 	if (!partial)
2192 		partial = chain + k-1;
2193 	/*
2194 	 * If the branch acquired continuation since we've looked at it -
2195 	 * fine, it should all survive and (new) top doesn't belong to us.
2196 	 */
2197 	if (!partial->key && *partial->p)
2198 		/* Writer: end */
2199 		goto no_top;
2200 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2201 		;
2202 	/*
2203 	 * OK, we've found the last block that must survive. The rest of our
2204 	 * branch should be detached before unlocking. However, if that rest
2205 	 * of branch is all ours and does not grow immediately from the inode
2206 	 * it's easier to cheat and just decrement partial->p.
2207 	 */
2208 	if (p == chain + k - 1 && p > chain) {
2209 		p->p--;
2210 	} else {
2211 		*top = *p->p;
2212 		/* Nope, don't do this in ext3.  Must leave the tree intact */
2213 #if 0
2214 		*p->p = 0;
2215 #endif
2216 	}
2217 	/* Writer: end */
2218 
2219 	while(partial > p) {
2220 		brelse(partial->bh);
2221 		partial--;
2222 	}
2223 no_top:
2224 	return partial;
2225 }
2226 
2227 /*
2228  * Zero a number of block pointers in either an inode or an indirect block.
2229  * If we restart the transaction we must again get write access to the
2230  * indirect block for further modification.
2231  *
2232  * We release `count' blocks on disk, but (last - first) may be greater
2233  * than `count' because there can be holes in there.
2234  */
ext3_clear_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext3_fsblk_t block_to_free,unsigned long count,__le32 * first,__le32 * last)2235 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2236 		struct buffer_head *bh, ext3_fsblk_t block_to_free,
2237 		unsigned long count, __le32 *first, __le32 *last)
2238 {
2239 	__le32 *p;
2240 	if (try_to_extend_transaction(handle, inode)) {
2241 		if (bh) {
2242 			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2243 			if (ext3_journal_dirty_metadata(handle, bh))
2244 				return;
2245 		}
2246 		ext3_mark_inode_dirty(handle, inode);
2247 		truncate_restart_transaction(handle, inode);
2248 		if (bh) {
2249 			BUFFER_TRACE(bh, "retaking write access");
2250 			if (ext3_journal_get_write_access(handle, bh))
2251 				return;
2252 		}
2253 	}
2254 
2255 	/*
2256 	 * Any buffers which are on the journal will be in memory. We find
2257 	 * them on the hash table so journal_revoke() will run journal_forget()
2258 	 * on them.  We've already detached each block from the file, so
2259 	 * bforget() in journal_forget() should be safe.
2260 	 *
2261 	 * AKPM: turn on bforget in journal_forget()!!!
2262 	 */
2263 	for (p = first; p < last; p++) {
2264 		u32 nr = le32_to_cpu(*p);
2265 		if (nr) {
2266 			struct buffer_head *bh;
2267 
2268 			*p = 0;
2269 			bh = sb_find_get_block(inode->i_sb, nr);
2270 			ext3_forget(handle, 0, inode, bh, nr);
2271 		}
2272 	}
2273 
2274 	ext3_free_blocks(handle, inode, block_to_free, count);
2275 }
2276 
2277 /**
2278  * ext3_free_data - free a list of data blocks
2279  * @handle:	handle for this transaction
2280  * @inode:	inode we are dealing with
2281  * @this_bh:	indirect buffer_head which contains *@first and *@last
2282  * @first:	array of block numbers
2283  * @last:	points immediately past the end of array
2284  *
2285  * We are freeing all blocks referred from that array (numbers are stored as
2286  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2287  *
2288  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2289  * blocks are contiguous then releasing them at one time will only affect one
2290  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2291  * actually use a lot of journal space.
2292  *
2293  * @this_bh will be %NULL if @first and @last point into the inode's direct
2294  * block pointers.
2295  */
ext3_free_data(handle_t * handle,struct inode * inode,struct buffer_head * this_bh,__le32 * first,__le32 * last)2296 static void ext3_free_data(handle_t *handle, struct inode *inode,
2297 			   struct buffer_head *this_bh,
2298 			   __le32 *first, __le32 *last)
2299 {
2300 	ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2301 	unsigned long count = 0;	    /* Number of blocks in the run */
2302 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
2303 					       corresponding to
2304 					       block_to_free */
2305 	ext3_fsblk_t nr;		    /* Current block # */
2306 	__le32 *p;			    /* Pointer into inode/ind
2307 					       for current block */
2308 	int err;
2309 
2310 	if (this_bh) {				/* For indirect block */
2311 		BUFFER_TRACE(this_bh, "get_write_access");
2312 		err = ext3_journal_get_write_access(handle, this_bh);
2313 		/* Important: if we can't update the indirect pointers
2314 		 * to the blocks, we can't free them. */
2315 		if (err)
2316 			return;
2317 	}
2318 
2319 	for (p = first; p < last; p++) {
2320 		nr = le32_to_cpu(*p);
2321 		if (nr) {
2322 			/* accumulate blocks to free if they're contiguous */
2323 			if (count == 0) {
2324 				block_to_free = nr;
2325 				block_to_free_p = p;
2326 				count = 1;
2327 			} else if (nr == block_to_free + count) {
2328 				count++;
2329 			} else {
2330 				ext3_clear_blocks(handle, inode, this_bh,
2331 						  block_to_free,
2332 						  count, block_to_free_p, p);
2333 				block_to_free = nr;
2334 				block_to_free_p = p;
2335 				count = 1;
2336 			}
2337 		}
2338 	}
2339 
2340 	if (count > 0)
2341 		ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2342 				  count, block_to_free_p, p);
2343 
2344 	if (this_bh) {
2345 		BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2346 
2347 		/*
2348 		 * The buffer head should have an attached journal head at this
2349 		 * point. However, if the data is corrupted and an indirect
2350 		 * block pointed to itself, it would have been detached when
2351 		 * the block was cleared. Check for this instead of OOPSing.
2352 		 */
2353 		if (bh2jh(this_bh))
2354 			ext3_journal_dirty_metadata(handle, this_bh);
2355 		else
2356 			ext3_error(inode->i_sb, "ext3_free_data",
2357 				   "circular indirect block detected, "
2358 				   "inode=%lu, block=%llu",
2359 				   inode->i_ino,
2360 				   (unsigned long long)this_bh->b_blocknr);
2361 	}
2362 }
2363 
2364 /**
2365  *	ext3_free_branches - free an array of branches
2366  *	@handle: JBD handle for this transaction
2367  *	@inode:	inode we are dealing with
2368  *	@parent_bh: the buffer_head which contains *@first and *@last
2369  *	@first:	array of block numbers
2370  *	@last:	pointer immediately past the end of array
2371  *	@depth:	depth of the branches to free
2372  *
2373  *	We are freeing all blocks referred from these branches (numbers are
2374  *	stored as little-endian 32-bit) and updating @inode->i_blocks
2375  *	appropriately.
2376  */
ext3_free_branches(handle_t * handle,struct inode * inode,struct buffer_head * parent_bh,__le32 * first,__le32 * last,int depth)2377 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2378 			       struct buffer_head *parent_bh,
2379 			       __le32 *first, __le32 *last, int depth)
2380 {
2381 	ext3_fsblk_t nr;
2382 	__le32 *p;
2383 
2384 	if (is_handle_aborted(handle))
2385 		return;
2386 
2387 	if (depth--) {
2388 		struct buffer_head *bh;
2389 		int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2390 		p = last;
2391 		while (--p >= first) {
2392 			nr = le32_to_cpu(*p);
2393 			if (!nr)
2394 				continue;		/* A hole */
2395 
2396 			/* Go read the buffer for the next level down */
2397 			bh = sb_bread(inode->i_sb, nr);
2398 
2399 			/*
2400 			 * A read failure? Report error and clear slot
2401 			 * (should be rare).
2402 			 */
2403 			if (!bh) {
2404 				ext3_error(inode->i_sb, "ext3_free_branches",
2405 					   "Read failure, inode=%lu, block="E3FSBLK,
2406 					   inode->i_ino, nr);
2407 				continue;
2408 			}
2409 
2410 			/* This zaps the entire block.  Bottom up. */
2411 			BUFFER_TRACE(bh, "free child branches");
2412 			ext3_free_branches(handle, inode, bh,
2413 					   (__le32*)bh->b_data,
2414 					   (__le32*)bh->b_data + addr_per_block,
2415 					   depth);
2416 
2417 			/*
2418 			 * Everything below this this pointer has been
2419 			 * released.  Now let this top-of-subtree go.
2420 			 *
2421 			 * We want the freeing of this indirect block to be
2422 			 * atomic in the journal with the updating of the
2423 			 * bitmap block which owns it.  So make some room in
2424 			 * the journal.
2425 			 *
2426 			 * We zero the parent pointer *after* freeing its
2427 			 * pointee in the bitmaps, so if extend_transaction()
2428 			 * for some reason fails to put the bitmap changes and
2429 			 * the release into the same transaction, recovery
2430 			 * will merely complain about releasing a free block,
2431 			 * rather than leaking blocks.
2432 			 */
2433 			if (is_handle_aborted(handle))
2434 				return;
2435 			if (try_to_extend_transaction(handle, inode)) {
2436 				ext3_mark_inode_dirty(handle, inode);
2437 				truncate_restart_transaction(handle, inode);
2438 			}
2439 
2440 			/*
2441 			 * We've probably journalled the indirect block several
2442 			 * times during the truncate.  But it's no longer
2443 			 * needed and we now drop it from the transaction via
2444 			 * journal_revoke().
2445 			 *
2446 			 * That's easy if it's exclusively part of this
2447 			 * transaction.  But if it's part of the committing
2448 			 * transaction then journal_forget() will simply
2449 			 * brelse() it.  That means that if the underlying
2450 			 * block is reallocated in ext3_get_block(),
2451 			 * unmap_underlying_metadata() will find this block
2452 			 * and will try to get rid of it.  damn, damn. Thus
2453 			 * we don't allow a block to be reallocated until
2454 			 * a transaction freeing it has fully committed.
2455 			 *
2456 			 * We also have to make sure journal replay after a
2457 			 * crash does not overwrite non-journaled data blocks
2458 			 * with old metadata when the block got reallocated for
2459 			 * data.  Thus we have to store a revoke record for a
2460 			 * block in the same transaction in which we free the
2461 			 * block.
2462 			 */
2463 			ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2464 
2465 			ext3_free_blocks(handle, inode, nr, 1);
2466 
2467 			if (parent_bh) {
2468 				/*
2469 				 * The block which we have just freed is
2470 				 * pointed to by an indirect block: journal it
2471 				 */
2472 				BUFFER_TRACE(parent_bh, "get_write_access");
2473 				if (!ext3_journal_get_write_access(handle,
2474 								   parent_bh)){
2475 					*p = 0;
2476 					BUFFER_TRACE(parent_bh,
2477 					"call ext3_journal_dirty_metadata");
2478 					ext3_journal_dirty_metadata(handle,
2479 								    parent_bh);
2480 				}
2481 			}
2482 		}
2483 	} else {
2484 		/* We have reached the bottom of the tree. */
2485 		BUFFER_TRACE(parent_bh, "free data blocks");
2486 		ext3_free_data(handle, inode, parent_bh, first, last);
2487 	}
2488 }
2489 
ext3_can_truncate(struct inode * inode)2490 int ext3_can_truncate(struct inode *inode)
2491 {
2492 	if (S_ISREG(inode->i_mode))
2493 		return 1;
2494 	if (S_ISDIR(inode->i_mode))
2495 		return 1;
2496 	if (S_ISLNK(inode->i_mode))
2497 		return !ext3_inode_is_fast_symlink(inode);
2498 	return 0;
2499 }
2500 
2501 /*
2502  * ext3_truncate()
2503  *
2504  * We block out ext3_get_block() block instantiations across the entire
2505  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2506  * simultaneously on behalf of the same inode.
2507  *
2508  * As we work through the truncate and commit bits of it to the journal there
2509  * is one core, guiding principle: the file's tree must always be consistent on
2510  * disk.  We must be able to restart the truncate after a crash.
2511  *
2512  * The file's tree may be transiently inconsistent in memory (although it
2513  * probably isn't), but whenever we close off and commit a journal transaction,
2514  * the contents of (the filesystem + the journal) must be consistent and
2515  * restartable.  It's pretty simple, really: bottom up, right to left (although
2516  * left-to-right works OK too).
2517  *
2518  * Note that at recovery time, journal replay occurs *before* the restart of
2519  * truncate against the orphan inode list.
2520  *
2521  * The committed inode has the new, desired i_size (which is the same as
2522  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2523  * that this inode's truncate did not complete and it will again call
2524  * ext3_truncate() to have another go.  So there will be instantiated blocks
2525  * to the right of the truncation point in a crashed ext3 filesystem.  But
2526  * that's fine - as long as they are linked from the inode, the post-crash
2527  * ext3_truncate() run will find them and release them.
2528  */
ext3_truncate(struct inode * inode)2529 void ext3_truncate(struct inode *inode)
2530 {
2531 	handle_t *handle;
2532 	struct ext3_inode_info *ei = EXT3_I(inode);
2533 	__le32 *i_data = ei->i_data;
2534 	int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2535 	int offsets[4];
2536 	Indirect chain[4];
2537 	Indirect *partial;
2538 	__le32 nr = 0;
2539 	int n;
2540 	long last_block;
2541 	unsigned blocksize = inode->i_sb->s_blocksize;
2542 
2543 	trace_ext3_truncate_enter(inode);
2544 
2545 	if (!ext3_can_truncate(inode))
2546 		goto out_notrans;
2547 
2548 	if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2549 		ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2550 
2551 	handle = start_transaction(inode);
2552 	if (IS_ERR(handle))
2553 		goto out_notrans;
2554 
2555 	last_block = (inode->i_size + blocksize-1)
2556 					>> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2557 	n = ext3_block_to_path(inode, last_block, offsets, NULL);
2558 	if (n == 0)
2559 		goto out_stop;	/* error */
2560 
2561 	/*
2562 	 * OK.  This truncate is going to happen.  We add the inode to the
2563 	 * orphan list, so that if this truncate spans multiple transactions,
2564 	 * and we crash, we will resume the truncate when the filesystem
2565 	 * recovers.  It also marks the inode dirty, to catch the new size.
2566 	 *
2567 	 * Implication: the file must always be in a sane, consistent
2568 	 * truncatable state while each transaction commits.
2569 	 */
2570 	if (ext3_orphan_add(handle, inode))
2571 		goto out_stop;
2572 
2573 	/*
2574 	 * The orphan list entry will now protect us from any crash which
2575 	 * occurs before the truncate completes, so it is now safe to propagate
2576 	 * the new, shorter inode size (held for now in i_size) into the
2577 	 * on-disk inode. We do this via i_disksize, which is the value which
2578 	 * ext3 *really* writes onto the disk inode.
2579 	 */
2580 	ei->i_disksize = inode->i_size;
2581 
2582 	/*
2583 	 * From here we block out all ext3_get_block() callers who want to
2584 	 * modify the block allocation tree.
2585 	 */
2586 	mutex_lock(&ei->truncate_mutex);
2587 
2588 	if (n == 1) {		/* direct blocks */
2589 		ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2590 			       i_data + EXT3_NDIR_BLOCKS);
2591 		goto do_indirects;
2592 	}
2593 
2594 	partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2595 	/* Kill the top of shared branch (not detached) */
2596 	if (nr) {
2597 		if (partial == chain) {
2598 			/* Shared branch grows from the inode */
2599 			ext3_free_branches(handle, inode, NULL,
2600 					   &nr, &nr+1, (chain+n-1) - partial);
2601 			*partial->p = 0;
2602 			/*
2603 			 * We mark the inode dirty prior to restart,
2604 			 * and prior to stop.  No need for it here.
2605 			 */
2606 		} else {
2607 			/* Shared branch grows from an indirect block */
2608 			ext3_free_branches(handle, inode, partial->bh,
2609 					partial->p,
2610 					partial->p+1, (chain+n-1) - partial);
2611 		}
2612 	}
2613 	/* Clear the ends of indirect blocks on the shared branch */
2614 	while (partial > chain) {
2615 		ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2616 				   (__le32*)partial->bh->b_data+addr_per_block,
2617 				   (chain+n-1) - partial);
2618 		BUFFER_TRACE(partial->bh, "call brelse");
2619 		brelse (partial->bh);
2620 		partial--;
2621 	}
2622 do_indirects:
2623 	/* Kill the remaining (whole) subtrees */
2624 	switch (offsets[0]) {
2625 	default:
2626 		nr = i_data[EXT3_IND_BLOCK];
2627 		if (nr) {
2628 			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2629 			i_data[EXT3_IND_BLOCK] = 0;
2630 		}
2631 	case EXT3_IND_BLOCK:
2632 		nr = i_data[EXT3_DIND_BLOCK];
2633 		if (nr) {
2634 			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2635 			i_data[EXT3_DIND_BLOCK] = 0;
2636 		}
2637 	case EXT3_DIND_BLOCK:
2638 		nr = i_data[EXT3_TIND_BLOCK];
2639 		if (nr) {
2640 			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2641 			i_data[EXT3_TIND_BLOCK] = 0;
2642 		}
2643 	case EXT3_TIND_BLOCK:
2644 		;
2645 	}
2646 
2647 	ext3_discard_reservation(inode);
2648 
2649 	mutex_unlock(&ei->truncate_mutex);
2650 	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2651 	ext3_mark_inode_dirty(handle, inode);
2652 
2653 	/*
2654 	 * In a multi-transaction truncate, we only make the final transaction
2655 	 * synchronous
2656 	 */
2657 	if (IS_SYNC(inode))
2658 		handle->h_sync = 1;
2659 out_stop:
2660 	/*
2661 	 * If this was a simple ftruncate(), and the file will remain alive
2662 	 * then we need to clear up the orphan record which we created above.
2663 	 * However, if this was a real unlink then we were called by
2664 	 * ext3_evict_inode(), and we allow that function to clean up the
2665 	 * orphan info for us.
2666 	 */
2667 	if (inode->i_nlink)
2668 		ext3_orphan_del(handle, inode);
2669 
2670 	ext3_journal_stop(handle);
2671 	trace_ext3_truncate_exit(inode);
2672 	return;
2673 out_notrans:
2674 	/*
2675 	 * Delete the inode from orphan list so that it doesn't stay there
2676 	 * forever and trigger assertion on umount.
2677 	 */
2678 	if (inode->i_nlink)
2679 		ext3_orphan_del(NULL, inode);
2680 	trace_ext3_truncate_exit(inode);
2681 }
2682 
ext3_get_inode_block(struct super_block * sb,unsigned long ino,struct ext3_iloc * iloc)2683 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2684 		unsigned long ino, struct ext3_iloc *iloc)
2685 {
2686 	unsigned long block_group;
2687 	unsigned long offset;
2688 	ext3_fsblk_t block;
2689 	struct ext3_group_desc *gdp;
2690 
2691 	if (!ext3_valid_inum(sb, ino)) {
2692 		/*
2693 		 * This error is already checked for in namei.c unless we are
2694 		 * looking at an NFS filehandle, in which case no error
2695 		 * report is needed
2696 		 */
2697 		return 0;
2698 	}
2699 
2700 	block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2701 	gdp = ext3_get_group_desc(sb, block_group, NULL);
2702 	if (!gdp)
2703 		return 0;
2704 	/*
2705 	 * Figure out the offset within the block group inode table
2706 	 */
2707 	offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2708 		EXT3_INODE_SIZE(sb);
2709 	block = le32_to_cpu(gdp->bg_inode_table) +
2710 		(offset >> EXT3_BLOCK_SIZE_BITS(sb));
2711 
2712 	iloc->block_group = block_group;
2713 	iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2714 	return block;
2715 }
2716 
2717 /*
2718  * ext3_get_inode_loc returns with an extra refcount against the inode's
2719  * underlying buffer_head on success. If 'in_mem' is true, we have all
2720  * data in memory that is needed to recreate the on-disk version of this
2721  * inode.
2722  */
__ext3_get_inode_loc(struct inode * inode,struct ext3_iloc * iloc,int in_mem)2723 static int __ext3_get_inode_loc(struct inode *inode,
2724 				struct ext3_iloc *iloc, int in_mem)
2725 {
2726 	ext3_fsblk_t block;
2727 	struct buffer_head *bh;
2728 
2729 	block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2730 	if (!block)
2731 		return -EIO;
2732 
2733 	bh = sb_getblk(inode->i_sb, block);
2734 	if (!bh) {
2735 		ext3_error (inode->i_sb, "ext3_get_inode_loc",
2736 				"unable to read inode block - "
2737 				"inode=%lu, block="E3FSBLK,
2738 				 inode->i_ino, block);
2739 		return -EIO;
2740 	}
2741 	if (!buffer_uptodate(bh)) {
2742 		lock_buffer(bh);
2743 
2744 		/*
2745 		 * If the buffer has the write error flag, we have failed
2746 		 * to write out another inode in the same block.  In this
2747 		 * case, we don't have to read the block because we may
2748 		 * read the old inode data successfully.
2749 		 */
2750 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2751 			set_buffer_uptodate(bh);
2752 
2753 		if (buffer_uptodate(bh)) {
2754 			/* someone brought it uptodate while we waited */
2755 			unlock_buffer(bh);
2756 			goto has_buffer;
2757 		}
2758 
2759 		/*
2760 		 * If we have all information of the inode in memory and this
2761 		 * is the only valid inode in the block, we need not read the
2762 		 * block.
2763 		 */
2764 		if (in_mem) {
2765 			struct buffer_head *bitmap_bh;
2766 			struct ext3_group_desc *desc;
2767 			int inodes_per_buffer;
2768 			int inode_offset, i;
2769 			int block_group;
2770 			int start;
2771 
2772 			block_group = (inode->i_ino - 1) /
2773 					EXT3_INODES_PER_GROUP(inode->i_sb);
2774 			inodes_per_buffer = bh->b_size /
2775 				EXT3_INODE_SIZE(inode->i_sb);
2776 			inode_offset = ((inode->i_ino - 1) %
2777 					EXT3_INODES_PER_GROUP(inode->i_sb));
2778 			start = inode_offset & ~(inodes_per_buffer - 1);
2779 
2780 			/* Is the inode bitmap in cache? */
2781 			desc = ext3_get_group_desc(inode->i_sb,
2782 						block_group, NULL);
2783 			if (!desc)
2784 				goto make_io;
2785 
2786 			bitmap_bh = sb_getblk(inode->i_sb,
2787 					le32_to_cpu(desc->bg_inode_bitmap));
2788 			if (!bitmap_bh)
2789 				goto make_io;
2790 
2791 			/*
2792 			 * If the inode bitmap isn't in cache then the
2793 			 * optimisation may end up performing two reads instead
2794 			 * of one, so skip it.
2795 			 */
2796 			if (!buffer_uptodate(bitmap_bh)) {
2797 				brelse(bitmap_bh);
2798 				goto make_io;
2799 			}
2800 			for (i = start; i < start + inodes_per_buffer; i++) {
2801 				if (i == inode_offset)
2802 					continue;
2803 				if (ext3_test_bit(i, bitmap_bh->b_data))
2804 					break;
2805 			}
2806 			brelse(bitmap_bh);
2807 			if (i == start + inodes_per_buffer) {
2808 				/* all other inodes are free, so skip I/O */
2809 				memset(bh->b_data, 0, bh->b_size);
2810 				set_buffer_uptodate(bh);
2811 				unlock_buffer(bh);
2812 				goto has_buffer;
2813 			}
2814 		}
2815 
2816 make_io:
2817 		/*
2818 		 * There are other valid inodes in the buffer, this inode
2819 		 * has in-inode xattrs, or we don't have this inode in memory.
2820 		 * Read the block from disk.
2821 		 */
2822 		trace_ext3_load_inode(inode);
2823 		get_bh(bh);
2824 		bh->b_end_io = end_buffer_read_sync;
2825 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
2826 		wait_on_buffer(bh);
2827 		if (!buffer_uptodate(bh)) {
2828 			ext3_error(inode->i_sb, "ext3_get_inode_loc",
2829 					"unable to read inode block - "
2830 					"inode=%lu, block="E3FSBLK,
2831 					inode->i_ino, block);
2832 			brelse(bh);
2833 			return -EIO;
2834 		}
2835 	}
2836 has_buffer:
2837 	iloc->bh = bh;
2838 	return 0;
2839 }
2840 
ext3_get_inode_loc(struct inode * inode,struct ext3_iloc * iloc)2841 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2842 {
2843 	/* We have all inode data except xattrs in memory here. */
2844 	return __ext3_get_inode_loc(inode, iloc,
2845 		!ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2846 }
2847 
ext3_set_inode_flags(struct inode * inode)2848 void ext3_set_inode_flags(struct inode *inode)
2849 {
2850 	unsigned int flags = EXT3_I(inode)->i_flags;
2851 
2852 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2853 	if (flags & EXT3_SYNC_FL)
2854 		inode->i_flags |= S_SYNC;
2855 	if (flags & EXT3_APPEND_FL)
2856 		inode->i_flags |= S_APPEND;
2857 	if (flags & EXT3_IMMUTABLE_FL)
2858 		inode->i_flags |= S_IMMUTABLE;
2859 	if (flags & EXT3_NOATIME_FL)
2860 		inode->i_flags |= S_NOATIME;
2861 	if (flags & EXT3_DIRSYNC_FL)
2862 		inode->i_flags |= S_DIRSYNC;
2863 }
2864 
2865 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
ext3_get_inode_flags(struct ext3_inode_info * ei)2866 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2867 {
2868 	unsigned int flags = ei->vfs_inode.i_flags;
2869 
2870 	ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2871 			EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2872 	if (flags & S_SYNC)
2873 		ei->i_flags |= EXT3_SYNC_FL;
2874 	if (flags & S_APPEND)
2875 		ei->i_flags |= EXT3_APPEND_FL;
2876 	if (flags & S_IMMUTABLE)
2877 		ei->i_flags |= EXT3_IMMUTABLE_FL;
2878 	if (flags & S_NOATIME)
2879 		ei->i_flags |= EXT3_NOATIME_FL;
2880 	if (flags & S_DIRSYNC)
2881 		ei->i_flags |= EXT3_DIRSYNC_FL;
2882 }
2883 
ext3_iget(struct super_block * sb,unsigned long ino)2884 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2885 {
2886 	struct ext3_iloc iloc;
2887 	struct ext3_inode *raw_inode;
2888 	struct ext3_inode_info *ei;
2889 	struct buffer_head *bh;
2890 	struct inode *inode;
2891 	journal_t *journal = EXT3_SB(sb)->s_journal;
2892 	transaction_t *transaction;
2893 	long ret;
2894 	int block;
2895 
2896 	inode = iget_locked(sb, ino);
2897 	if (!inode)
2898 		return ERR_PTR(-ENOMEM);
2899 	if (!(inode->i_state & I_NEW))
2900 		return inode;
2901 
2902 	ei = EXT3_I(inode);
2903 	ei->i_block_alloc_info = NULL;
2904 
2905 	ret = __ext3_get_inode_loc(inode, &iloc, 0);
2906 	if (ret < 0)
2907 		goto bad_inode;
2908 	bh = iloc.bh;
2909 	raw_inode = ext3_raw_inode(&iloc);
2910 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2911 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2912 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2913 	if(!(test_opt (inode->i_sb, NO_UID32))) {
2914 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2915 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2916 	}
2917 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
2918 	inode->i_size = le32_to_cpu(raw_inode->i_size);
2919 	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2920 	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2921 	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2922 	inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2923 
2924 	ei->i_state_flags = 0;
2925 	ei->i_dir_start_lookup = 0;
2926 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2927 	/* We now have enough fields to check if the inode was active or not.
2928 	 * This is needed because nfsd might try to access dead inodes
2929 	 * the test is that same one that e2fsck uses
2930 	 * NeilBrown 1999oct15
2931 	 */
2932 	if (inode->i_nlink == 0) {
2933 		if (inode->i_mode == 0 ||
2934 		    !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2935 			/* this inode is deleted */
2936 			brelse (bh);
2937 			ret = -ESTALE;
2938 			goto bad_inode;
2939 		}
2940 		/* The only unlinked inodes we let through here have
2941 		 * valid i_mode and are being read by the orphan
2942 		 * recovery code: that's fine, we're about to complete
2943 		 * the process of deleting those. */
2944 	}
2945 	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2946 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2947 #ifdef EXT3_FRAGMENTS
2948 	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2949 	ei->i_frag_no = raw_inode->i_frag;
2950 	ei->i_frag_size = raw_inode->i_fsize;
2951 #endif
2952 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2953 	if (!S_ISREG(inode->i_mode)) {
2954 		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2955 	} else {
2956 		inode->i_size |=
2957 			((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2958 	}
2959 	ei->i_disksize = inode->i_size;
2960 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2961 	ei->i_block_group = iloc.block_group;
2962 	/*
2963 	 * NOTE! The in-memory inode i_data array is in little-endian order
2964 	 * even on big-endian machines: we do NOT byteswap the block numbers!
2965 	 */
2966 	for (block = 0; block < EXT3_N_BLOCKS; block++)
2967 		ei->i_data[block] = raw_inode->i_block[block];
2968 	INIT_LIST_HEAD(&ei->i_orphan);
2969 
2970 	/*
2971 	 * Set transaction id's of transactions that have to be committed
2972 	 * to finish f[data]sync. We set them to currently running transaction
2973 	 * as we cannot be sure that the inode or some of its metadata isn't
2974 	 * part of the transaction - the inode could have been reclaimed and
2975 	 * now it is reread from disk.
2976 	 */
2977 	if (journal) {
2978 		tid_t tid;
2979 
2980 		spin_lock(&journal->j_state_lock);
2981 		if (journal->j_running_transaction)
2982 			transaction = journal->j_running_transaction;
2983 		else
2984 			transaction = journal->j_committing_transaction;
2985 		if (transaction)
2986 			tid = transaction->t_tid;
2987 		else
2988 			tid = journal->j_commit_sequence;
2989 		spin_unlock(&journal->j_state_lock);
2990 		atomic_set(&ei->i_sync_tid, tid);
2991 		atomic_set(&ei->i_datasync_tid, tid);
2992 	}
2993 
2994 	if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2995 	    EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2996 		/*
2997 		 * When mke2fs creates big inodes it does not zero out
2998 		 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2999 		 * so ignore those first few inodes.
3000 		 */
3001 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3002 		if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3003 		    EXT3_INODE_SIZE(inode->i_sb)) {
3004 			brelse (bh);
3005 			ret = -EIO;
3006 			goto bad_inode;
3007 		}
3008 		if (ei->i_extra_isize == 0) {
3009 			/* The extra space is currently unused. Use it. */
3010 			ei->i_extra_isize = sizeof(struct ext3_inode) -
3011 					    EXT3_GOOD_OLD_INODE_SIZE;
3012 		} else {
3013 			__le32 *magic = (void *)raw_inode +
3014 					EXT3_GOOD_OLD_INODE_SIZE +
3015 					ei->i_extra_isize;
3016 			if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
3017 				 ext3_set_inode_state(inode, EXT3_STATE_XATTR);
3018 		}
3019 	} else
3020 		ei->i_extra_isize = 0;
3021 
3022 	if (S_ISREG(inode->i_mode)) {
3023 		inode->i_op = &ext3_file_inode_operations;
3024 		inode->i_fop = &ext3_file_operations;
3025 		ext3_set_aops(inode);
3026 	} else if (S_ISDIR(inode->i_mode)) {
3027 		inode->i_op = &ext3_dir_inode_operations;
3028 		inode->i_fop = &ext3_dir_operations;
3029 	} else if (S_ISLNK(inode->i_mode)) {
3030 		if (ext3_inode_is_fast_symlink(inode)) {
3031 			inode->i_op = &ext3_fast_symlink_inode_operations;
3032 			nd_terminate_link(ei->i_data, inode->i_size,
3033 				sizeof(ei->i_data) - 1);
3034 		} else {
3035 			inode->i_op = &ext3_symlink_inode_operations;
3036 			ext3_set_aops(inode);
3037 		}
3038 	} else {
3039 		inode->i_op = &ext3_special_inode_operations;
3040 		if (raw_inode->i_block[0])
3041 			init_special_inode(inode, inode->i_mode,
3042 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3043 		else
3044 			init_special_inode(inode, inode->i_mode,
3045 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3046 	}
3047 	brelse (iloc.bh);
3048 	ext3_set_inode_flags(inode);
3049 	unlock_new_inode(inode);
3050 	return inode;
3051 
3052 bad_inode:
3053 	iget_failed(inode);
3054 	return ERR_PTR(ret);
3055 }
3056 
3057 /*
3058  * Post the struct inode info into an on-disk inode location in the
3059  * buffer-cache.  This gobbles the caller's reference to the
3060  * buffer_head in the inode location struct.
3061  *
3062  * The caller must have write access to iloc->bh.
3063  */
ext3_do_update_inode(handle_t * handle,struct inode * inode,struct ext3_iloc * iloc)3064 static int ext3_do_update_inode(handle_t *handle,
3065 				struct inode *inode,
3066 				struct ext3_iloc *iloc)
3067 {
3068 	struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
3069 	struct ext3_inode_info *ei = EXT3_I(inode);
3070 	struct buffer_head *bh = iloc->bh;
3071 	int err = 0, rc, block;
3072 	int need_datasync = 0;
3073 	__le32 disksize;
3074 
3075 again:
3076 	/* we can't allow multiple procs in here at once, its a bit racey */
3077 	lock_buffer(bh);
3078 
3079 	/* For fields not not tracking in the in-memory inode,
3080 	 * initialise them to zero for new inodes. */
3081 	if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3082 		memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3083 
3084 	ext3_get_inode_flags(ei);
3085 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3086 	if(!(test_opt(inode->i_sb, NO_UID32))) {
3087 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3088 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3089 /*
3090  * Fix up interoperability with old kernels. Otherwise, old inodes get
3091  * re-used with the upper 16 bits of the uid/gid intact
3092  */
3093 		if(!ei->i_dtime) {
3094 			raw_inode->i_uid_high =
3095 				cpu_to_le16(high_16_bits(inode->i_uid));
3096 			raw_inode->i_gid_high =
3097 				cpu_to_le16(high_16_bits(inode->i_gid));
3098 		} else {
3099 			raw_inode->i_uid_high = 0;
3100 			raw_inode->i_gid_high = 0;
3101 		}
3102 	} else {
3103 		raw_inode->i_uid_low =
3104 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
3105 		raw_inode->i_gid_low =
3106 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
3107 		raw_inode->i_uid_high = 0;
3108 		raw_inode->i_gid_high = 0;
3109 	}
3110 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3111 	disksize = cpu_to_le32(ei->i_disksize);
3112 	if (disksize != raw_inode->i_size) {
3113 		need_datasync = 1;
3114 		raw_inode->i_size = disksize;
3115 	}
3116 	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3117 	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3118 	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3119 	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3120 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3121 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3122 #ifdef EXT3_FRAGMENTS
3123 	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3124 	raw_inode->i_frag = ei->i_frag_no;
3125 	raw_inode->i_fsize = ei->i_frag_size;
3126 #endif
3127 	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3128 	if (!S_ISREG(inode->i_mode)) {
3129 		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3130 	} else {
3131 		disksize = cpu_to_le32(ei->i_disksize >> 32);
3132 		if (disksize != raw_inode->i_size_high) {
3133 			raw_inode->i_size_high = disksize;
3134 			need_datasync = 1;
3135 		}
3136 		if (ei->i_disksize > 0x7fffffffULL) {
3137 			struct super_block *sb = inode->i_sb;
3138 			if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3139 					EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3140 			    EXT3_SB(sb)->s_es->s_rev_level ==
3141 					cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3142 			       /* If this is the first large file
3143 				* created, add a flag to the superblock.
3144 				*/
3145 				unlock_buffer(bh);
3146 				err = ext3_journal_get_write_access(handle,
3147 						EXT3_SB(sb)->s_sbh);
3148 				if (err)
3149 					goto out_brelse;
3150 
3151 				ext3_update_dynamic_rev(sb);
3152 				EXT3_SET_RO_COMPAT_FEATURE(sb,
3153 					EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3154 				handle->h_sync = 1;
3155 				err = ext3_journal_dirty_metadata(handle,
3156 						EXT3_SB(sb)->s_sbh);
3157 				/* get our lock and start over */
3158 				goto again;
3159 			}
3160 		}
3161 	}
3162 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3163 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3164 		if (old_valid_dev(inode->i_rdev)) {
3165 			raw_inode->i_block[0] =
3166 				cpu_to_le32(old_encode_dev(inode->i_rdev));
3167 			raw_inode->i_block[1] = 0;
3168 		} else {
3169 			raw_inode->i_block[0] = 0;
3170 			raw_inode->i_block[1] =
3171 				cpu_to_le32(new_encode_dev(inode->i_rdev));
3172 			raw_inode->i_block[2] = 0;
3173 		}
3174 	} else for (block = 0; block < EXT3_N_BLOCKS; block++)
3175 		raw_inode->i_block[block] = ei->i_data[block];
3176 
3177 	if (ei->i_extra_isize)
3178 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3179 
3180 	BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3181 	unlock_buffer(bh);
3182 	rc = ext3_journal_dirty_metadata(handle, bh);
3183 	if (!err)
3184 		err = rc;
3185 	ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3186 
3187 	atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3188 	if (need_datasync)
3189 		atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
3190 out_brelse:
3191 	brelse (bh);
3192 	ext3_std_error(inode->i_sb, err);
3193 	return err;
3194 }
3195 
3196 /*
3197  * ext3_write_inode()
3198  *
3199  * We are called from a few places:
3200  *
3201  * - Within generic_file_write() for O_SYNC files.
3202  *   Here, there will be no transaction running. We wait for any running
3203  *   trasnaction to commit.
3204  *
3205  * - Within sys_sync(), kupdate and such.
3206  *   We wait on commit, if tol to.
3207  *
3208  * - Within prune_icache() (PF_MEMALLOC == true)
3209  *   Here we simply return.  We can't afford to block kswapd on the
3210  *   journal commit.
3211  *
3212  * In all cases it is actually safe for us to return without doing anything,
3213  * because the inode has been copied into a raw inode buffer in
3214  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3215  * knfsd.
3216  *
3217  * Note that we are absolutely dependent upon all inode dirtiers doing the
3218  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3219  * which we are interested.
3220  *
3221  * It would be a bug for them to not do this.  The code:
3222  *
3223  *	mark_inode_dirty(inode)
3224  *	stuff();
3225  *	inode->i_size = expr;
3226  *
3227  * is in error because a kswapd-driven write_inode() could occur while
3228  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3229  * will no longer be on the superblock's dirty inode list.
3230  */
ext3_write_inode(struct inode * inode,struct writeback_control * wbc)3231 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3232 {
3233 	if (current->flags & PF_MEMALLOC)
3234 		return 0;
3235 
3236 	if (ext3_journal_current_handle()) {
3237 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3238 		dump_stack();
3239 		return -EIO;
3240 	}
3241 
3242 	if (wbc->sync_mode != WB_SYNC_ALL)
3243 		return 0;
3244 
3245 	return ext3_force_commit(inode->i_sb);
3246 }
3247 
3248 /*
3249  * ext3_setattr()
3250  *
3251  * Called from notify_change.
3252  *
3253  * We want to trap VFS attempts to truncate the file as soon as
3254  * possible.  In particular, we want to make sure that when the VFS
3255  * shrinks i_size, we put the inode on the orphan list and modify
3256  * i_disksize immediately, so that during the subsequent flushing of
3257  * dirty pages and freeing of disk blocks, we can guarantee that any
3258  * commit will leave the blocks being flushed in an unused state on
3259  * disk.  (On recovery, the inode will get truncated and the blocks will
3260  * be freed, so we have a strong guarantee that no future commit will
3261  * leave these blocks visible to the user.)
3262  *
3263  * Called with inode->sem down.
3264  */
ext3_setattr(struct dentry * dentry,struct iattr * attr)3265 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3266 {
3267 	struct inode *inode = dentry->d_inode;
3268 	int error, rc = 0;
3269 	const unsigned int ia_valid = attr->ia_valid;
3270 
3271 	error = inode_change_ok(inode, attr);
3272 	if (error)
3273 		return error;
3274 
3275 	if (is_quota_modification(inode, attr))
3276 		dquot_initialize(inode);
3277 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3278 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3279 		handle_t *handle;
3280 
3281 		/* (user+group)*(old+new) structure, inode write (sb,
3282 		 * inode block, ? - but truncate inode update has it) */
3283 		handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3284 					EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3285 		if (IS_ERR(handle)) {
3286 			error = PTR_ERR(handle);
3287 			goto err_out;
3288 		}
3289 		error = dquot_transfer(inode, attr);
3290 		if (error) {
3291 			ext3_journal_stop(handle);
3292 			return error;
3293 		}
3294 		/* Update corresponding info in inode so that everything is in
3295 		 * one transaction */
3296 		if (attr->ia_valid & ATTR_UID)
3297 			inode->i_uid = attr->ia_uid;
3298 		if (attr->ia_valid & ATTR_GID)
3299 			inode->i_gid = attr->ia_gid;
3300 		error = ext3_mark_inode_dirty(handle, inode);
3301 		ext3_journal_stop(handle);
3302 	}
3303 
3304 	if (attr->ia_valid & ATTR_SIZE)
3305 		inode_dio_wait(inode);
3306 
3307 	if (S_ISREG(inode->i_mode) &&
3308 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3309 		handle_t *handle;
3310 
3311 		handle = ext3_journal_start(inode, 3);
3312 		if (IS_ERR(handle)) {
3313 			error = PTR_ERR(handle);
3314 			goto err_out;
3315 		}
3316 
3317 		error = ext3_orphan_add(handle, inode);
3318 		if (error) {
3319 			ext3_journal_stop(handle);
3320 			goto err_out;
3321 		}
3322 		EXT3_I(inode)->i_disksize = attr->ia_size;
3323 		error = ext3_mark_inode_dirty(handle, inode);
3324 		ext3_journal_stop(handle);
3325 		if (error) {
3326 			/* Some hard fs error must have happened. Bail out. */
3327 			ext3_orphan_del(NULL, inode);
3328 			goto err_out;
3329 		}
3330 		rc = ext3_block_truncate_page(inode, attr->ia_size);
3331 		if (rc) {
3332 			/* Cleanup orphan list and exit */
3333 			handle = ext3_journal_start(inode, 3);
3334 			if (IS_ERR(handle)) {
3335 				ext3_orphan_del(NULL, inode);
3336 				goto err_out;
3337 			}
3338 			ext3_orphan_del(handle, inode);
3339 			ext3_journal_stop(handle);
3340 			goto err_out;
3341 		}
3342 	}
3343 
3344 	if ((attr->ia_valid & ATTR_SIZE) &&
3345 	    attr->ia_size != i_size_read(inode)) {
3346 		truncate_setsize(inode, attr->ia_size);
3347 		ext3_truncate(inode);
3348 	}
3349 
3350 	setattr_copy(inode, attr);
3351 	mark_inode_dirty(inode);
3352 
3353 	if (ia_valid & ATTR_MODE)
3354 		rc = ext3_acl_chmod(inode);
3355 
3356 err_out:
3357 	ext3_std_error(inode->i_sb, error);
3358 	if (!error)
3359 		error = rc;
3360 	return error;
3361 }
3362 
3363 
3364 /*
3365  * How many blocks doth make a writepage()?
3366  *
3367  * With N blocks per page, it may be:
3368  * N data blocks
3369  * 2 indirect block
3370  * 2 dindirect
3371  * 1 tindirect
3372  * N+5 bitmap blocks (from the above)
3373  * N+5 group descriptor summary blocks
3374  * 1 inode block
3375  * 1 superblock.
3376  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3377  *
3378  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3379  *
3380  * With ordered or writeback data it's the same, less the N data blocks.
3381  *
3382  * If the inode's direct blocks can hold an integral number of pages then a
3383  * page cannot straddle two indirect blocks, and we can only touch one indirect
3384  * and dindirect block, and the "5" above becomes "3".
3385  *
3386  * This still overestimates under most circumstances.  If we were to pass the
3387  * start and end offsets in here as well we could do block_to_path() on each
3388  * block and work out the exact number of indirects which are touched.  Pah.
3389  */
3390 
ext3_writepage_trans_blocks(struct inode * inode)3391 static int ext3_writepage_trans_blocks(struct inode *inode)
3392 {
3393 	int bpp = ext3_journal_blocks_per_page(inode);
3394 	int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3395 	int ret;
3396 
3397 	if (ext3_should_journal_data(inode))
3398 		ret = 3 * (bpp + indirects) + 2;
3399 	else
3400 		ret = 2 * (bpp + indirects) + indirects + 2;
3401 
3402 #ifdef CONFIG_QUOTA
3403 	/* We know that structure was already allocated during dquot_initialize so
3404 	 * we will be updating only the data blocks + inodes */
3405 	ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3406 #endif
3407 
3408 	return ret;
3409 }
3410 
3411 /*
3412  * The caller must have previously called ext3_reserve_inode_write().
3413  * Give this, we know that the caller already has write access to iloc->bh.
3414  */
ext3_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext3_iloc * iloc)3415 int ext3_mark_iloc_dirty(handle_t *handle,
3416 		struct inode *inode, struct ext3_iloc *iloc)
3417 {
3418 	int err = 0;
3419 
3420 	/* the do_update_inode consumes one bh->b_count */
3421 	get_bh(iloc->bh);
3422 
3423 	/* ext3_do_update_inode() does journal_dirty_metadata */
3424 	err = ext3_do_update_inode(handle, inode, iloc);
3425 	put_bh(iloc->bh);
3426 	return err;
3427 }
3428 
3429 /*
3430  * On success, We end up with an outstanding reference count against
3431  * iloc->bh.  This _must_ be cleaned up later.
3432  */
3433 
3434 int
ext3_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext3_iloc * iloc)3435 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3436 			 struct ext3_iloc *iloc)
3437 {
3438 	int err = 0;
3439 	if (handle) {
3440 		err = ext3_get_inode_loc(inode, iloc);
3441 		if (!err) {
3442 			BUFFER_TRACE(iloc->bh, "get_write_access");
3443 			err = ext3_journal_get_write_access(handle, iloc->bh);
3444 			if (err) {
3445 				brelse(iloc->bh);
3446 				iloc->bh = NULL;
3447 			}
3448 		}
3449 	}
3450 	ext3_std_error(inode->i_sb, err);
3451 	return err;
3452 }
3453 
3454 /*
3455  * What we do here is to mark the in-core inode as clean with respect to inode
3456  * dirtiness (it may still be data-dirty).
3457  * This means that the in-core inode may be reaped by prune_icache
3458  * without having to perform any I/O.  This is a very good thing,
3459  * because *any* task may call prune_icache - even ones which
3460  * have a transaction open against a different journal.
3461  *
3462  * Is this cheating?  Not really.  Sure, we haven't written the
3463  * inode out, but prune_icache isn't a user-visible syncing function.
3464  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3465  * we start and wait on commits.
3466  *
3467  * Is this efficient/effective?  Well, we're being nice to the system
3468  * by cleaning up our inodes proactively so they can be reaped
3469  * without I/O.  But we are potentially leaving up to five seconds'
3470  * worth of inodes floating about which prune_icache wants us to
3471  * write out.  One way to fix that would be to get prune_icache()
3472  * to do a write_super() to free up some memory.  It has the desired
3473  * effect.
3474  */
ext3_mark_inode_dirty(handle_t * handle,struct inode * inode)3475 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3476 {
3477 	struct ext3_iloc iloc;
3478 	int err;
3479 
3480 	might_sleep();
3481 	trace_ext3_mark_inode_dirty(inode, _RET_IP_);
3482 	err = ext3_reserve_inode_write(handle, inode, &iloc);
3483 	if (!err)
3484 		err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3485 	return err;
3486 }
3487 
3488 /*
3489  * ext3_dirty_inode() is called from __mark_inode_dirty()
3490  *
3491  * We're really interested in the case where a file is being extended.
3492  * i_size has been changed by generic_commit_write() and we thus need
3493  * to include the updated inode in the current transaction.
3494  *
3495  * Also, dquot_alloc_space() will always dirty the inode when blocks
3496  * are allocated to the file.
3497  *
3498  * If the inode is marked synchronous, we don't honour that here - doing
3499  * so would cause a commit on atime updates, which we don't bother doing.
3500  * We handle synchronous inodes at the highest possible level.
3501  */
ext3_dirty_inode(struct inode * inode,int flags)3502 void ext3_dirty_inode(struct inode *inode, int flags)
3503 {
3504 	handle_t *current_handle = ext3_journal_current_handle();
3505 	handle_t *handle;
3506 
3507 	handle = ext3_journal_start(inode, 2);
3508 	if (IS_ERR(handle))
3509 		goto out;
3510 	if (current_handle &&
3511 		current_handle->h_transaction != handle->h_transaction) {
3512 		/* This task has a transaction open against a different fs */
3513 		printk(KERN_EMERG "%s: transactions do not match!\n",
3514 		       __func__);
3515 	} else {
3516 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
3517 				current_handle);
3518 		ext3_mark_inode_dirty(handle, inode);
3519 	}
3520 	ext3_journal_stop(handle);
3521 out:
3522 	return;
3523 }
3524 
3525 #if 0
3526 /*
3527  * Bind an inode's backing buffer_head into this transaction, to prevent
3528  * it from being flushed to disk early.  Unlike
3529  * ext3_reserve_inode_write, this leaves behind no bh reference and
3530  * returns no iloc structure, so the caller needs to repeat the iloc
3531  * lookup to mark the inode dirty later.
3532  */
3533 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3534 {
3535 	struct ext3_iloc iloc;
3536 
3537 	int err = 0;
3538 	if (handle) {
3539 		err = ext3_get_inode_loc(inode, &iloc);
3540 		if (!err) {
3541 			BUFFER_TRACE(iloc.bh, "get_write_access");
3542 			err = journal_get_write_access(handle, iloc.bh);
3543 			if (!err)
3544 				err = ext3_journal_dirty_metadata(handle,
3545 								  iloc.bh);
3546 			brelse(iloc.bh);
3547 		}
3548 	}
3549 	ext3_std_error(inode->i_sb, err);
3550 	return err;
3551 }
3552 #endif
3553 
ext3_change_inode_journal_flag(struct inode * inode,int val)3554 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3555 {
3556 	journal_t *journal;
3557 	handle_t *handle;
3558 	int err;
3559 
3560 	/*
3561 	 * We have to be very careful here: changing a data block's
3562 	 * journaling status dynamically is dangerous.  If we write a
3563 	 * data block to the journal, change the status and then delete
3564 	 * that block, we risk forgetting to revoke the old log record
3565 	 * from the journal and so a subsequent replay can corrupt data.
3566 	 * So, first we make sure that the journal is empty and that
3567 	 * nobody is changing anything.
3568 	 */
3569 
3570 	journal = EXT3_JOURNAL(inode);
3571 	if (is_journal_aborted(journal))
3572 		return -EROFS;
3573 
3574 	journal_lock_updates(journal);
3575 	journal_flush(journal);
3576 
3577 	/*
3578 	 * OK, there are no updates running now, and all cached data is
3579 	 * synced to disk.  We are now in a completely consistent state
3580 	 * which doesn't have anything in the journal, and we know that
3581 	 * no filesystem updates are running, so it is safe to modify
3582 	 * the inode's in-core data-journaling state flag now.
3583 	 */
3584 
3585 	if (val)
3586 		EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3587 	else
3588 		EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3589 	ext3_set_aops(inode);
3590 
3591 	journal_unlock_updates(journal);
3592 
3593 	/* Finally we can mark the inode as dirty. */
3594 
3595 	handle = ext3_journal_start(inode, 1);
3596 	if (IS_ERR(handle))
3597 		return PTR_ERR(handle);
3598 
3599 	err = ext3_mark_inode_dirty(handle, inode);
3600 	handle->h_sync = 1;
3601 	ext3_journal_stop(handle);
3602 	ext3_std_error(inode->i_sb, err);
3603 
3604 	return err;
3605 }
3606