1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include <linux/namei.h>
41 #include "xattr.h"
42 #include "acl.h"
43 
44 static int ext3_writepage_trans_blocks(struct inode *inode);
45 
46 /*
47  * Test whether an inode is a fast symlink.
48  */
ext3_inode_is_fast_symlink(struct inode * inode)49 static int ext3_inode_is_fast_symlink(struct inode *inode)
50 {
51 	int ea_blocks = EXT3_I(inode)->i_file_acl ?
52 		(inode->i_sb->s_blocksize >> 9) : 0;
53 
54 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
55 }
56 
57 /*
58  * The ext3 forget function must perform a revoke if we are freeing data
59  * which has been journaled.  Metadata (eg. indirect blocks) must be
60  * revoked in all cases.
61  *
62  * "bh" may be NULL: a metadata block may have been freed from memory
63  * but there may still be a record of it in the journal, and that record
64  * still needs to be revoked.
65  */
ext3_forget(handle_t * handle,int is_metadata,struct inode * inode,struct buffer_head * bh,ext3_fsblk_t blocknr)66 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
67 			struct buffer_head *bh, ext3_fsblk_t blocknr)
68 {
69 	int err;
70 
71 	might_sleep();
72 
73 	BUFFER_TRACE(bh, "enter");
74 
75 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76 		  "data mode %lx\n",
77 		  bh, is_metadata, inode->i_mode,
78 		  test_opt(inode->i_sb, DATA_FLAGS));
79 
80 	/* Never use the revoke function if we are doing full data
81 	 * journaling: there is no need to, and a V1 superblock won't
82 	 * support it.  Otherwise, only skip the revoke on un-journaled
83 	 * data blocks. */
84 
85 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86 	    (!is_metadata && !ext3_should_journal_data(inode))) {
87 		if (bh) {
88 			BUFFER_TRACE(bh, "call journal_forget");
89 			return ext3_journal_forget(handle, bh);
90 		}
91 		return 0;
92 	}
93 
94 	/*
95 	 * data!=journal && (is_metadata || should_journal_data(inode))
96 	 */
97 	BUFFER_TRACE(bh, "call ext3_journal_revoke");
98 	err = ext3_journal_revoke(handle, blocknr, bh);
99 	if (err)
100 		ext3_abort(inode->i_sb, __func__,
101 			   "error %d when attempting revoke", err);
102 	BUFFER_TRACE(bh, "exit");
103 	return err;
104 }
105 
106 /*
107  * Work out how many blocks we need to proceed with the next chunk of a
108  * truncate transaction.
109  */
blocks_for_truncate(struct inode * inode)110 static unsigned long blocks_for_truncate(struct inode *inode)
111 {
112 	unsigned long needed;
113 
114 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
115 
116 	/* Give ourselves just enough room to cope with inodes in which
117 	 * i_blocks is corrupt: we've seen disk corruptions in the past
118 	 * which resulted in random data in an inode which looked enough
119 	 * like a regular file for ext3 to try to delete it.  Things
120 	 * will go a bit crazy if that happens, but at least we should
121 	 * try not to panic the whole kernel. */
122 	if (needed < 2)
123 		needed = 2;
124 
125 	/* But we need to bound the transaction so we don't overflow the
126 	 * journal. */
127 	if (needed > EXT3_MAX_TRANS_DATA)
128 		needed = EXT3_MAX_TRANS_DATA;
129 
130 	return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
131 }
132 
133 /*
134  * Truncate transactions can be complex and absolutely huge.  So we need to
135  * be able to restart the transaction at a conventient checkpoint to make
136  * sure we don't overflow the journal.
137  *
138  * start_transaction gets us a new handle for a truncate transaction,
139  * and extend_transaction tries to extend the existing one a bit.  If
140  * extend fails, we need to propagate the failure up and restart the
141  * transaction in the top-level truncate loop. --sct
142  */
start_transaction(struct inode * inode)143 static handle_t *start_transaction(struct inode *inode)
144 {
145 	handle_t *result;
146 
147 	result = ext3_journal_start(inode, blocks_for_truncate(inode));
148 	if (!IS_ERR(result))
149 		return result;
150 
151 	ext3_std_error(inode->i_sb, PTR_ERR(result));
152 	return result;
153 }
154 
155 /*
156  * Try to extend this transaction for the purposes of truncation.
157  *
158  * Returns 0 if we managed to create more room.  If we can't create more
159  * room, and the transaction must be restarted we return 1.
160  */
try_to_extend_transaction(handle_t * handle,struct inode * inode)161 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
162 {
163 	if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
164 		return 0;
165 	if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
166 		return 0;
167 	return 1;
168 }
169 
170 /*
171  * Restart the transaction associated with *handle.  This does a commit,
172  * so before we call here everything must be consistently dirtied against
173  * this transaction.
174  */
truncate_restart_transaction(handle_t * handle,struct inode * inode)175 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
176 {
177 	int ret;
178 
179 	jbd_debug(2, "restarting handle %p\n", handle);
180 	/*
181 	 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
182 	 * At this moment, get_block can be called only for blocks inside
183 	 * i_size since page cache has been already dropped and writes are
184 	 * blocked by i_mutex. So we can safely drop the truncate_mutex.
185 	 */
186 	mutex_unlock(&EXT3_I(inode)->truncate_mutex);
187 	ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
188 	mutex_lock(&EXT3_I(inode)->truncate_mutex);
189 	return ret;
190 }
191 
192 /*
193  * Called at inode eviction from icache
194  */
ext3_evict_inode(struct inode * inode)195 void ext3_evict_inode (struct inode *inode)
196 {
197 	struct ext3_block_alloc_info *rsv;
198 	handle_t *handle;
199 	int want_delete = 0;
200 
201 	if (!inode->i_nlink && !is_bad_inode(inode)) {
202 		dquot_initialize(inode);
203 		want_delete = 1;
204 	}
205 
206 	truncate_inode_pages(&inode->i_data, 0);
207 
208 	ext3_discard_reservation(inode);
209 	rsv = EXT3_I(inode)->i_block_alloc_info;
210 	EXT3_I(inode)->i_block_alloc_info = NULL;
211 	if (unlikely(rsv))
212 		kfree(rsv);
213 
214 	if (!want_delete)
215 		goto no_delete;
216 
217 	handle = start_transaction(inode);
218 	if (IS_ERR(handle)) {
219 		/*
220 		 * If we're going to skip the normal cleanup, we still need to
221 		 * make sure that the in-core orphan linked list is properly
222 		 * cleaned up.
223 		 */
224 		ext3_orphan_del(NULL, inode);
225 		goto no_delete;
226 	}
227 
228 	if (IS_SYNC(inode))
229 		handle->h_sync = 1;
230 	inode->i_size = 0;
231 	if (inode->i_blocks)
232 		ext3_truncate(inode);
233 	/*
234 	 * Kill off the orphan record which ext3_truncate created.
235 	 * AKPM: I think this can be inside the above `if'.
236 	 * Note that ext3_orphan_del() has to be able to cope with the
237 	 * deletion of a non-existent orphan - this is because we don't
238 	 * know if ext3_truncate() actually created an orphan record.
239 	 * (Well, we could do this if we need to, but heck - it works)
240 	 */
241 	ext3_orphan_del(handle, inode);
242 	EXT3_I(inode)->i_dtime	= get_seconds();
243 
244 	/*
245 	 * One subtle ordering requirement: if anything has gone wrong
246 	 * (transaction abort, IO errors, whatever), then we can still
247 	 * do these next steps (the fs will already have been marked as
248 	 * having errors), but we can't free the inode if the mark_dirty
249 	 * fails.
250 	 */
251 	if (ext3_mark_inode_dirty(handle, inode)) {
252 		/* If that failed, just dquot_drop() and be done with that */
253 		dquot_drop(inode);
254 		end_writeback(inode);
255 	} else {
256 		ext3_xattr_delete_inode(handle, inode);
257 		dquot_free_inode(inode);
258 		dquot_drop(inode);
259 		end_writeback(inode);
260 		ext3_free_inode(handle, inode);
261 	}
262 	ext3_journal_stop(handle);
263 	return;
264 no_delete:
265 	end_writeback(inode);
266 	dquot_drop(inode);
267 }
268 
269 typedef struct {
270 	__le32	*p;
271 	__le32	key;
272 	struct buffer_head *bh;
273 } Indirect;
274 
add_chain(Indirect * p,struct buffer_head * bh,__le32 * v)275 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
276 {
277 	p->key = *(p->p = v);
278 	p->bh = bh;
279 }
280 
verify_chain(Indirect * from,Indirect * to)281 static int verify_chain(Indirect *from, Indirect *to)
282 {
283 	while (from <= to && from->key == *from->p)
284 		from++;
285 	return (from > to);
286 }
287 
288 /**
289  *	ext3_block_to_path - parse the block number into array of offsets
290  *	@inode: inode in question (we are only interested in its superblock)
291  *	@i_block: block number to be parsed
292  *	@offsets: array to store the offsets in
293  *      @boundary: set this non-zero if the referred-to block is likely to be
294  *             followed (on disk) by an indirect block.
295  *
296  *	To store the locations of file's data ext3 uses a data structure common
297  *	for UNIX filesystems - tree of pointers anchored in the inode, with
298  *	data blocks at leaves and indirect blocks in intermediate nodes.
299  *	This function translates the block number into path in that tree -
300  *	return value is the path length and @offsets[n] is the offset of
301  *	pointer to (n+1)th node in the nth one. If @block is out of range
302  *	(negative or too large) warning is printed and zero returned.
303  *
304  *	Note: function doesn't find node addresses, so no IO is needed. All
305  *	we need to know is the capacity of indirect blocks (taken from the
306  *	inode->i_sb).
307  */
308 
309 /*
310  * Portability note: the last comparison (check that we fit into triple
311  * indirect block) is spelled differently, because otherwise on an
312  * architecture with 32-bit longs and 8Kb pages we might get into trouble
313  * if our filesystem had 8Kb blocks. We might use long long, but that would
314  * kill us on x86. Oh, well, at least the sign propagation does not matter -
315  * i_block would have to be negative in the very beginning, so we would not
316  * get there at all.
317  */
318 
ext3_block_to_path(struct inode * inode,long i_block,int offsets[4],int * boundary)319 static int ext3_block_to_path(struct inode *inode,
320 			long i_block, int offsets[4], int *boundary)
321 {
322 	int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
323 	int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
324 	const long direct_blocks = EXT3_NDIR_BLOCKS,
325 		indirect_blocks = ptrs,
326 		double_blocks = (1 << (ptrs_bits * 2));
327 	int n = 0;
328 	int final = 0;
329 
330 	if (i_block < 0) {
331 		ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
332 	} else if (i_block < direct_blocks) {
333 		offsets[n++] = i_block;
334 		final = direct_blocks;
335 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
336 		offsets[n++] = EXT3_IND_BLOCK;
337 		offsets[n++] = i_block;
338 		final = ptrs;
339 	} else if ((i_block -= indirect_blocks) < double_blocks) {
340 		offsets[n++] = EXT3_DIND_BLOCK;
341 		offsets[n++] = i_block >> ptrs_bits;
342 		offsets[n++] = i_block & (ptrs - 1);
343 		final = ptrs;
344 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
345 		offsets[n++] = EXT3_TIND_BLOCK;
346 		offsets[n++] = i_block >> (ptrs_bits * 2);
347 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
348 		offsets[n++] = i_block & (ptrs - 1);
349 		final = ptrs;
350 	} else {
351 		ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
352 	}
353 	if (boundary)
354 		*boundary = final - 1 - (i_block & (ptrs - 1));
355 	return n;
356 }
357 
358 /**
359  *	ext3_get_branch - read the chain of indirect blocks leading to data
360  *	@inode: inode in question
361  *	@depth: depth of the chain (1 - direct pointer, etc.)
362  *	@offsets: offsets of pointers in inode/indirect blocks
363  *	@chain: place to store the result
364  *	@err: here we store the error value
365  *
366  *	Function fills the array of triples <key, p, bh> and returns %NULL
367  *	if everything went OK or the pointer to the last filled triple
368  *	(incomplete one) otherwise. Upon the return chain[i].key contains
369  *	the number of (i+1)-th block in the chain (as it is stored in memory,
370  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
371  *	number (it points into struct inode for i==0 and into the bh->b_data
372  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
373  *	block for i>0 and NULL for i==0. In other words, it holds the block
374  *	numbers of the chain, addresses they were taken from (and where we can
375  *	verify that chain did not change) and buffer_heads hosting these
376  *	numbers.
377  *
378  *	Function stops when it stumbles upon zero pointer (absent block)
379  *		(pointer to last triple returned, *@err == 0)
380  *	or when it gets an IO error reading an indirect block
381  *		(ditto, *@err == -EIO)
382  *	or when it notices that chain had been changed while it was reading
383  *		(ditto, *@err == -EAGAIN)
384  *	or when it reads all @depth-1 indirect blocks successfully and finds
385  *	the whole chain, all way to the data (returns %NULL, *err == 0).
386  */
ext3_get_branch(struct inode * inode,int depth,int * offsets,Indirect chain[4],int * err)387 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
388 				 Indirect chain[4], int *err)
389 {
390 	struct super_block *sb = inode->i_sb;
391 	Indirect *p = chain;
392 	struct buffer_head *bh;
393 
394 	*err = 0;
395 	/* i_data is not going away, no lock needed */
396 	add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
397 	if (!p->key)
398 		goto no_block;
399 	while (--depth) {
400 		bh = sb_bread(sb, le32_to_cpu(p->key));
401 		if (!bh)
402 			goto failure;
403 		/* Reader: pointers */
404 		if (!verify_chain(chain, p))
405 			goto changed;
406 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
407 		/* Reader: end */
408 		if (!p->key)
409 			goto no_block;
410 	}
411 	return NULL;
412 
413 changed:
414 	brelse(bh);
415 	*err = -EAGAIN;
416 	goto no_block;
417 failure:
418 	*err = -EIO;
419 no_block:
420 	return p;
421 }
422 
423 /**
424  *	ext3_find_near - find a place for allocation with sufficient locality
425  *	@inode: owner
426  *	@ind: descriptor of indirect block.
427  *
428  *	This function returns the preferred place for block allocation.
429  *	It is used when heuristic for sequential allocation fails.
430  *	Rules are:
431  *	  + if there is a block to the left of our position - allocate near it.
432  *	  + if pointer will live in indirect block - allocate near that block.
433  *	  + if pointer will live in inode - allocate in the same
434  *	    cylinder group.
435  *
436  * In the latter case we colour the starting block by the callers PID to
437  * prevent it from clashing with concurrent allocations for a different inode
438  * in the same block group.   The PID is used here so that functionally related
439  * files will be close-by on-disk.
440  *
441  *	Caller must make sure that @ind is valid and will stay that way.
442  */
ext3_find_near(struct inode * inode,Indirect * ind)443 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
444 {
445 	struct ext3_inode_info *ei = EXT3_I(inode);
446 	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
447 	__le32 *p;
448 	ext3_fsblk_t bg_start;
449 	ext3_grpblk_t colour;
450 
451 	/* Try to find previous block */
452 	for (p = ind->p - 1; p >= start; p--) {
453 		if (*p)
454 			return le32_to_cpu(*p);
455 	}
456 
457 	/* No such thing, so let's try location of indirect block */
458 	if (ind->bh)
459 		return ind->bh->b_blocknr;
460 
461 	/*
462 	 * It is going to be referred to from the inode itself? OK, just put it
463 	 * into the same cylinder group then.
464 	 */
465 	bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
466 	colour = (current->pid % 16) *
467 			(EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
468 	return bg_start + colour;
469 }
470 
471 /**
472  *	ext3_find_goal - find a preferred place for allocation.
473  *	@inode: owner
474  *	@block:  block we want
475  *	@partial: pointer to the last triple within a chain
476  *
477  *	Normally this function find the preferred place for block allocation,
478  *	returns it.
479  */
480 
ext3_find_goal(struct inode * inode,long block,Indirect * partial)481 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
482 				   Indirect *partial)
483 {
484 	struct ext3_block_alloc_info *block_i;
485 
486 	block_i =  EXT3_I(inode)->i_block_alloc_info;
487 
488 	/*
489 	 * try the heuristic for sequential allocation,
490 	 * failing that at least try to get decent locality.
491 	 */
492 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
493 		&& (block_i->last_alloc_physical_block != 0)) {
494 		return block_i->last_alloc_physical_block + 1;
495 	}
496 
497 	return ext3_find_near(inode, partial);
498 }
499 
500 /**
501  *	ext3_blks_to_allocate - Look up the block map and count the number
502  *	of direct blocks need to be allocated for the given branch.
503  *
504  *	@branch: chain of indirect blocks
505  *	@k: number of blocks need for indirect blocks
506  *	@blks: number of data blocks to be mapped.
507  *	@blocks_to_boundary:  the offset in the indirect block
508  *
509  *	return the total number of blocks to be allocate, including the
510  *	direct and indirect blocks.
511  */
ext3_blks_to_allocate(Indirect * branch,int k,unsigned long blks,int blocks_to_boundary)512 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
513 		int blocks_to_boundary)
514 {
515 	unsigned long count = 0;
516 
517 	/*
518 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
519 	 * then it's clear blocks on that path have not allocated
520 	 */
521 	if (k > 0) {
522 		/* right now we don't handle cross boundary allocation */
523 		if (blks < blocks_to_boundary + 1)
524 			count += blks;
525 		else
526 			count += blocks_to_boundary + 1;
527 		return count;
528 	}
529 
530 	count++;
531 	while (count < blks && count <= blocks_to_boundary &&
532 		le32_to_cpu(*(branch[0].p + count)) == 0) {
533 		count++;
534 	}
535 	return count;
536 }
537 
538 /**
539  *	ext3_alloc_blocks - multiple allocate blocks needed for a branch
540  *	@handle: handle for this transaction
541  *	@inode: owner
542  *	@goal: preferred place for allocation
543  *	@indirect_blks: the number of blocks need to allocate for indirect
544  *			blocks
545  *	@blks:	number of blocks need to allocated for direct blocks
546  *	@new_blocks: on return it will store the new block numbers for
547  *	the indirect blocks(if needed) and the first direct block,
548  *	@err: here we store the error value
549  *
550  *	return the number of direct blocks allocated
551  */
ext3_alloc_blocks(handle_t * handle,struct inode * inode,ext3_fsblk_t goal,int indirect_blks,int blks,ext3_fsblk_t new_blocks[4],int * err)552 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
553 			ext3_fsblk_t goal, int indirect_blks, int blks,
554 			ext3_fsblk_t new_blocks[4], int *err)
555 {
556 	int target, i;
557 	unsigned long count = 0;
558 	int index = 0;
559 	ext3_fsblk_t current_block = 0;
560 	int ret = 0;
561 
562 	/*
563 	 * Here we try to allocate the requested multiple blocks at once,
564 	 * on a best-effort basis.
565 	 * To build a branch, we should allocate blocks for
566 	 * the indirect blocks(if not allocated yet), and at least
567 	 * the first direct block of this branch.  That's the
568 	 * minimum number of blocks need to allocate(required)
569 	 */
570 	target = blks + indirect_blks;
571 
572 	while (1) {
573 		count = target;
574 		/* allocating blocks for indirect blocks and direct blocks */
575 		current_block = ext3_new_blocks(handle,inode,goal,&count,err);
576 		if (*err)
577 			goto failed_out;
578 
579 		target -= count;
580 		/* allocate blocks for indirect blocks */
581 		while (index < indirect_blks && count) {
582 			new_blocks[index++] = current_block++;
583 			count--;
584 		}
585 
586 		if (count > 0)
587 			break;
588 	}
589 
590 	/* save the new block number for the first direct block */
591 	new_blocks[index] = current_block;
592 
593 	/* total number of blocks allocated for direct blocks */
594 	ret = count;
595 	*err = 0;
596 	return ret;
597 failed_out:
598 	for (i = 0; i <index; i++)
599 		ext3_free_blocks(handle, inode, new_blocks[i], 1);
600 	return ret;
601 }
602 
603 /**
604  *	ext3_alloc_branch - allocate and set up a chain of blocks.
605  *	@handle: handle for this transaction
606  *	@inode: owner
607  *	@indirect_blks: number of allocated indirect blocks
608  *	@blks: number of allocated direct blocks
609  *	@goal: preferred place for allocation
610  *	@offsets: offsets (in the blocks) to store the pointers to next.
611  *	@branch: place to store the chain in.
612  *
613  *	This function allocates blocks, zeroes out all but the last one,
614  *	links them into chain and (if we are synchronous) writes them to disk.
615  *	In other words, it prepares a branch that can be spliced onto the
616  *	inode. It stores the information about that chain in the branch[], in
617  *	the same format as ext3_get_branch() would do. We are calling it after
618  *	we had read the existing part of chain and partial points to the last
619  *	triple of that (one with zero ->key). Upon the exit we have the same
620  *	picture as after the successful ext3_get_block(), except that in one
621  *	place chain is disconnected - *branch->p is still zero (we did not
622  *	set the last link), but branch->key contains the number that should
623  *	be placed into *branch->p to fill that gap.
624  *
625  *	If allocation fails we free all blocks we've allocated (and forget
626  *	their buffer_heads) and return the error value the from failed
627  *	ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
628  *	as described above and return 0.
629  */
ext3_alloc_branch(handle_t * handle,struct inode * inode,int indirect_blks,int * blks,ext3_fsblk_t goal,int * offsets,Indirect * branch)630 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
631 			int indirect_blks, int *blks, ext3_fsblk_t goal,
632 			int *offsets, Indirect *branch)
633 {
634 	int blocksize = inode->i_sb->s_blocksize;
635 	int i, n = 0;
636 	int err = 0;
637 	struct buffer_head *bh;
638 	int num;
639 	ext3_fsblk_t new_blocks[4];
640 	ext3_fsblk_t current_block;
641 
642 	num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
643 				*blks, new_blocks, &err);
644 	if (err)
645 		return err;
646 
647 	branch[0].key = cpu_to_le32(new_blocks[0]);
648 	/*
649 	 * metadata blocks and data blocks are allocated.
650 	 */
651 	for (n = 1; n <= indirect_blks;  n++) {
652 		/*
653 		 * Get buffer_head for parent block, zero it out
654 		 * and set the pointer to new one, then send
655 		 * parent to disk.
656 		 */
657 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
658 		branch[n].bh = bh;
659 		lock_buffer(bh);
660 		BUFFER_TRACE(bh, "call get_create_access");
661 		err = ext3_journal_get_create_access(handle, bh);
662 		if (err) {
663 			unlock_buffer(bh);
664 			brelse(bh);
665 			goto failed;
666 		}
667 
668 		memset(bh->b_data, 0, blocksize);
669 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
670 		branch[n].key = cpu_to_le32(new_blocks[n]);
671 		*branch[n].p = branch[n].key;
672 		if ( n == indirect_blks) {
673 			current_block = new_blocks[n];
674 			/*
675 			 * End of chain, update the last new metablock of
676 			 * the chain to point to the new allocated
677 			 * data blocks numbers
678 			 */
679 			for (i=1; i < num; i++)
680 				*(branch[n].p + i) = cpu_to_le32(++current_block);
681 		}
682 		BUFFER_TRACE(bh, "marking uptodate");
683 		set_buffer_uptodate(bh);
684 		unlock_buffer(bh);
685 
686 		BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
687 		err = ext3_journal_dirty_metadata(handle, bh);
688 		if (err)
689 			goto failed;
690 	}
691 	*blks = num;
692 	return err;
693 failed:
694 	/* Allocation failed, free what we already allocated */
695 	for (i = 1; i <= n ; i++) {
696 		BUFFER_TRACE(branch[i].bh, "call journal_forget");
697 		ext3_journal_forget(handle, branch[i].bh);
698 	}
699 	for (i = 0; i <indirect_blks; i++)
700 		ext3_free_blocks(handle, inode, new_blocks[i], 1);
701 
702 	ext3_free_blocks(handle, inode, new_blocks[i], num);
703 
704 	return err;
705 }
706 
707 /**
708  * ext3_splice_branch - splice the allocated branch onto inode.
709  * @handle: handle for this transaction
710  * @inode: owner
711  * @block: (logical) number of block we are adding
712  * @where: location of missing link
713  * @num:   number of indirect blocks we are adding
714  * @blks:  number of direct blocks we are adding
715  *
716  * This function fills the missing link and does all housekeeping needed in
717  * inode (->i_blocks, etc.). In case of success we end up with the full
718  * chain to new block and return 0.
719  */
ext3_splice_branch(handle_t * handle,struct inode * inode,long block,Indirect * where,int num,int blks)720 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
721 			long block, Indirect *where, int num, int blks)
722 {
723 	int i;
724 	int err = 0;
725 	struct ext3_block_alloc_info *block_i;
726 	ext3_fsblk_t current_block;
727 	struct ext3_inode_info *ei = EXT3_I(inode);
728 
729 	block_i = ei->i_block_alloc_info;
730 	/*
731 	 * If we're splicing into a [td]indirect block (as opposed to the
732 	 * inode) then we need to get write access to the [td]indirect block
733 	 * before the splice.
734 	 */
735 	if (where->bh) {
736 		BUFFER_TRACE(where->bh, "get_write_access");
737 		err = ext3_journal_get_write_access(handle, where->bh);
738 		if (err)
739 			goto err_out;
740 	}
741 	/* That's it */
742 
743 	*where->p = where->key;
744 
745 	/*
746 	 * Update the host buffer_head or inode to point to more just allocated
747 	 * direct blocks blocks
748 	 */
749 	if (num == 0 && blks > 1) {
750 		current_block = le32_to_cpu(where->key) + 1;
751 		for (i = 1; i < blks; i++)
752 			*(where->p + i ) = cpu_to_le32(current_block++);
753 	}
754 
755 	/*
756 	 * update the most recently allocated logical & physical block
757 	 * in i_block_alloc_info, to assist find the proper goal block for next
758 	 * allocation
759 	 */
760 	if (block_i) {
761 		block_i->last_alloc_logical_block = block + blks - 1;
762 		block_i->last_alloc_physical_block =
763 				le32_to_cpu(where[num].key) + blks - 1;
764 	}
765 
766 	/* We are done with atomic stuff, now do the rest of housekeeping */
767 
768 	inode->i_ctime = CURRENT_TIME_SEC;
769 	ext3_mark_inode_dirty(handle, inode);
770 	/* ext3_mark_inode_dirty already updated i_sync_tid */
771 	atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
772 
773 	/* had we spliced it onto indirect block? */
774 	if (where->bh) {
775 		/*
776 		 * If we spliced it onto an indirect block, we haven't
777 		 * altered the inode.  Note however that if it is being spliced
778 		 * onto an indirect block at the very end of the file (the
779 		 * file is growing) then we *will* alter the inode to reflect
780 		 * the new i_size.  But that is not done here - it is done in
781 		 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
782 		 */
783 		jbd_debug(5, "splicing indirect only\n");
784 		BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
785 		err = ext3_journal_dirty_metadata(handle, where->bh);
786 		if (err)
787 			goto err_out;
788 	} else {
789 		/*
790 		 * OK, we spliced it into the inode itself on a direct block.
791 		 * Inode was dirtied above.
792 		 */
793 		jbd_debug(5, "splicing direct\n");
794 	}
795 	return err;
796 
797 err_out:
798 	for (i = 1; i <= num; i++) {
799 		BUFFER_TRACE(where[i].bh, "call journal_forget");
800 		ext3_journal_forget(handle, where[i].bh);
801 		ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
802 	}
803 	ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
804 
805 	return err;
806 }
807 
808 /*
809  * Allocation strategy is simple: if we have to allocate something, we will
810  * have to go the whole way to leaf. So let's do it before attaching anything
811  * to tree, set linkage between the newborn blocks, write them if sync is
812  * required, recheck the path, free and repeat if check fails, otherwise
813  * set the last missing link (that will protect us from any truncate-generated
814  * removals - all blocks on the path are immune now) and possibly force the
815  * write on the parent block.
816  * That has a nice additional property: no special recovery from the failed
817  * allocations is needed - we simply release blocks and do not touch anything
818  * reachable from inode.
819  *
820  * `handle' can be NULL if create == 0.
821  *
822  * The BKL may not be held on entry here.  Be sure to take it early.
823  * return > 0, # of blocks mapped or allocated.
824  * return = 0, if plain lookup failed.
825  * return < 0, error case.
826  */
ext3_get_blocks_handle(handle_t * handle,struct inode * inode,sector_t iblock,unsigned long maxblocks,struct buffer_head * bh_result,int create)827 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
828 		sector_t iblock, unsigned long maxblocks,
829 		struct buffer_head *bh_result,
830 		int create)
831 {
832 	int err = -EIO;
833 	int offsets[4];
834 	Indirect chain[4];
835 	Indirect *partial;
836 	ext3_fsblk_t goal;
837 	int indirect_blks;
838 	int blocks_to_boundary = 0;
839 	int depth;
840 	struct ext3_inode_info *ei = EXT3_I(inode);
841 	int count = 0;
842 	ext3_fsblk_t first_block = 0;
843 
844 
845 	J_ASSERT(handle != NULL || create == 0);
846 	depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
847 
848 	if (depth == 0)
849 		goto out;
850 
851 	partial = ext3_get_branch(inode, depth, offsets, chain, &err);
852 
853 	/* Simplest case - block found, no allocation needed */
854 	if (!partial) {
855 		first_block = le32_to_cpu(chain[depth - 1].key);
856 		clear_buffer_new(bh_result);
857 		count++;
858 		/*map more blocks*/
859 		while (count < maxblocks && count <= blocks_to_boundary) {
860 			ext3_fsblk_t blk;
861 
862 			if (!verify_chain(chain, chain + depth - 1)) {
863 				/*
864 				 * Indirect block might be removed by
865 				 * truncate while we were reading it.
866 				 * Handling of that case: forget what we've
867 				 * got now. Flag the err as EAGAIN, so it
868 				 * will reread.
869 				 */
870 				err = -EAGAIN;
871 				count = 0;
872 				break;
873 			}
874 			blk = le32_to_cpu(*(chain[depth-1].p + count));
875 
876 			if (blk == first_block + count)
877 				count++;
878 			else
879 				break;
880 		}
881 		if (err != -EAGAIN)
882 			goto got_it;
883 	}
884 
885 	/* Next simple case - plain lookup or failed read of indirect block */
886 	if (!create || err == -EIO)
887 		goto cleanup;
888 
889 	mutex_lock(&ei->truncate_mutex);
890 
891 	/*
892 	 * If the indirect block is missing while we are reading
893 	 * the chain(ext3_get_branch() returns -EAGAIN err), or
894 	 * if the chain has been changed after we grab the semaphore,
895 	 * (either because another process truncated this branch, or
896 	 * another get_block allocated this branch) re-grab the chain to see if
897 	 * the request block has been allocated or not.
898 	 *
899 	 * Since we already block the truncate/other get_block
900 	 * at this point, we will have the current copy of the chain when we
901 	 * splice the branch into the tree.
902 	 */
903 	if (err == -EAGAIN || !verify_chain(chain, partial)) {
904 		while (partial > chain) {
905 			brelse(partial->bh);
906 			partial--;
907 		}
908 		partial = ext3_get_branch(inode, depth, offsets, chain, &err);
909 		if (!partial) {
910 			count++;
911 			mutex_unlock(&ei->truncate_mutex);
912 			if (err)
913 				goto cleanup;
914 			clear_buffer_new(bh_result);
915 			goto got_it;
916 		}
917 	}
918 
919 	/*
920 	 * Okay, we need to do block allocation.  Lazily initialize the block
921 	 * allocation info here if necessary
922 	*/
923 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
924 		ext3_init_block_alloc_info(inode);
925 
926 	goal = ext3_find_goal(inode, iblock, partial);
927 
928 	/* the number of blocks need to allocate for [d,t]indirect blocks */
929 	indirect_blks = (chain + depth) - partial - 1;
930 
931 	/*
932 	 * Next look up the indirect map to count the totoal number of
933 	 * direct blocks to allocate for this branch.
934 	 */
935 	count = ext3_blks_to_allocate(partial, indirect_blks,
936 					maxblocks, blocks_to_boundary);
937 	/*
938 	 * Block out ext3_truncate while we alter the tree
939 	 */
940 	err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
941 				offsets + (partial - chain), partial);
942 
943 	/*
944 	 * The ext3_splice_branch call will free and forget any buffers
945 	 * on the new chain if there is a failure, but that risks using
946 	 * up transaction credits, especially for bitmaps where the
947 	 * credits cannot be returned.  Can we handle this somehow?  We
948 	 * may need to return -EAGAIN upwards in the worst case.  --sct
949 	 */
950 	if (!err)
951 		err = ext3_splice_branch(handle, inode, iblock,
952 					partial, indirect_blks, count);
953 	mutex_unlock(&ei->truncate_mutex);
954 	if (err)
955 		goto cleanup;
956 
957 	set_buffer_new(bh_result);
958 got_it:
959 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
960 	if (count > blocks_to_boundary)
961 		set_buffer_boundary(bh_result);
962 	err = count;
963 	/* Clean up and exit */
964 	partial = chain + depth - 1;	/* the whole chain */
965 cleanup:
966 	while (partial > chain) {
967 		BUFFER_TRACE(partial->bh, "call brelse");
968 		brelse(partial->bh);
969 		partial--;
970 	}
971 	BUFFER_TRACE(bh_result, "returned");
972 out:
973 	return err;
974 }
975 
976 /* Maximum number of blocks we map for direct IO at once. */
977 #define DIO_MAX_BLOCKS 4096
978 /*
979  * Number of credits we need for writing DIO_MAX_BLOCKS:
980  * We need sb + group descriptor + bitmap + inode -> 4
981  * For B blocks with A block pointers per block we need:
982  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
983  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
984  */
985 #define DIO_CREDITS 25
986 
ext3_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)987 static int ext3_get_block(struct inode *inode, sector_t iblock,
988 			struct buffer_head *bh_result, int create)
989 {
990 	handle_t *handle = ext3_journal_current_handle();
991 	int ret = 0, started = 0;
992 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
993 
994 	if (create && !handle) {	/* Direct IO write... */
995 		if (max_blocks > DIO_MAX_BLOCKS)
996 			max_blocks = DIO_MAX_BLOCKS;
997 		handle = ext3_journal_start(inode, DIO_CREDITS +
998 				EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
999 		if (IS_ERR(handle)) {
1000 			ret = PTR_ERR(handle);
1001 			goto out;
1002 		}
1003 		started = 1;
1004 	}
1005 
1006 	ret = ext3_get_blocks_handle(handle, inode, iblock,
1007 					max_blocks, bh_result, create);
1008 	if (ret > 0) {
1009 		bh_result->b_size = (ret << inode->i_blkbits);
1010 		ret = 0;
1011 	}
1012 	if (started)
1013 		ext3_journal_stop(handle);
1014 out:
1015 	return ret;
1016 }
1017 
ext3_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1018 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1019 		u64 start, u64 len)
1020 {
1021 	return generic_block_fiemap(inode, fieinfo, start, len,
1022 				    ext3_get_block);
1023 }
1024 
1025 /*
1026  * `handle' can be NULL if create is zero
1027  */
ext3_getblk(handle_t * handle,struct inode * inode,long block,int create,int * errp)1028 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1029 				long block, int create, int *errp)
1030 {
1031 	struct buffer_head dummy;
1032 	int fatal = 0, err;
1033 
1034 	J_ASSERT(handle != NULL || create == 0);
1035 
1036 	dummy.b_state = 0;
1037 	dummy.b_blocknr = -1000;
1038 	buffer_trace_init(&dummy.b_history);
1039 	err = ext3_get_blocks_handle(handle, inode, block, 1,
1040 					&dummy, create);
1041 	/*
1042 	 * ext3_get_blocks_handle() returns number of blocks
1043 	 * mapped. 0 in case of a HOLE.
1044 	 */
1045 	if (err > 0) {
1046 		if (err > 1)
1047 			WARN_ON(1);
1048 		err = 0;
1049 	}
1050 	*errp = err;
1051 	if (!err && buffer_mapped(&dummy)) {
1052 		struct buffer_head *bh;
1053 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1054 		if (!bh) {
1055 			*errp = -EIO;
1056 			goto err;
1057 		}
1058 		if (buffer_new(&dummy)) {
1059 			J_ASSERT(create != 0);
1060 			J_ASSERT(handle != NULL);
1061 
1062 			/*
1063 			 * Now that we do not always journal data, we should
1064 			 * keep in mind whether this should always journal the
1065 			 * new buffer as metadata.  For now, regular file
1066 			 * writes use ext3_get_block instead, so it's not a
1067 			 * problem.
1068 			 */
1069 			lock_buffer(bh);
1070 			BUFFER_TRACE(bh, "call get_create_access");
1071 			fatal = ext3_journal_get_create_access(handle, bh);
1072 			if (!fatal && !buffer_uptodate(bh)) {
1073 				memset(bh->b_data,0,inode->i_sb->s_blocksize);
1074 				set_buffer_uptodate(bh);
1075 			}
1076 			unlock_buffer(bh);
1077 			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1078 			err = ext3_journal_dirty_metadata(handle, bh);
1079 			if (!fatal)
1080 				fatal = err;
1081 		} else {
1082 			BUFFER_TRACE(bh, "not a new buffer");
1083 		}
1084 		if (fatal) {
1085 			*errp = fatal;
1086 			brelse(bh);
1087 			bh = NULL;
1088 		}
1089 		return bh;
1090 	}
1091 err:
1092 	return NULL;
1093 }
1094 
ext3_bread(handle_t * handle,struct inode * inode,int block,int create,int * err)1095 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1096 			       int block, int create, int *err)
1097 {
1098 	struct buffer_head * bh;
1099 
1100 	bh = ext3_getblk(handle, inode, block, create, err);
1101 	if (!bh)
1102 		return bh;
1103 	if (buffer_uptodate(bh))
1104 		return bh;
1105 	ll_rw_block(READ_META, 1, &bh);
1106 	wait_on_buffer(bh);
1107 	if (buffer_uptodate(bh))
1108 		return bh;
1109 	put_bh(bh);
1110 	*err = -EIO;
1111 	return NULL;
1112 }
1113 
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))1114 static int walk_page_buffers(	handle_t *handle,
1115 				struct buffer_head *head,
1116 				unsigned from,
1117 				unsigned to,
1118 				int *partial,
1119 				int (*fn)(	handle_t *handle,
1120 						struct buffer_head *bh))
1121 {
1122 	struct buffer_head *bh;
1123 	unsigned block_start, block_end;
1124 	unsigned blocksize = head->b_size;
1125 	int err, ret = 0;
1126 	struct buffer_head *next;
1127 
1128 	for (	bh = head, block_start = 0;
1129 		ret == 0 && (bh != head || !block_start);
1130 		block_start = block_end, bh = next)
1131 	{
1132 		next = bh->b_this_page;
1133 		block_end = block_start + blocksize;
1134 		if (block_end <= from || block_start >= to) {
1135 			if (partial && !buffer_uptodate(bh))
1136 				*partial = 1;
1137 			continue;
1138 		}
1139 		err = (*fn)(handle, bh);
1140 		if (!ret)
1141 			ret = err;
1142 	}
1143 	return ret;
1144 }
1145 
1146 /*
1147  * To preserve ordering, it is essential that the hole instantiation and
1148  * the data write be encapsulated in a single transaction.  We cannot
1149  * close off a transaction and start a new one between the ext3_get_block()
1150  * and the commit_write().  So doing the journal_start at the start of
1151  * prepare_write() is the right place.
1152  *
1153  * Also, this function can nest inside ext3_writepage() ->
1154  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1155  * has generated enough buffer credits to do the whole page.  So we won't
1156  * block on the journal in that case, which is good, because the caller may
1157  * be PF_MEMALLOC.
1158  *
1159  * By accident, ext3 can be reentered when a transaction is open via
1160  * quota file writes.  If we were to commit the transaction while thus
1161  * reentered, there can be a deadlock - we would be holding a quota
1162  * lock, and the commit would never complete if another thread had a
1163  * transaction open and was blocking on the quota lock - a ranking
1164  * violation.
1165  *
1166  * So what we do is to rely on the fact that journal_stop/journal_start
1167  * will _not_ run commit under these circumstances because handle->h_ref
1168  * is elevated.  We'll still have enough credits for the tiny quotafile
1169  * write.
1170  */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1171 static int do_journal_get_write_access(handle_t *handle,
1172 					struct buffer_head *bh)
1173 {
1174 	int dirty = buffer_dirty(bh);
1175 	int ret;
1176 
1177 	if (!buffer_mapped(bh) || buffer_freed(bh))
1178 		return 0;
1179 	/*
1180 	 * __block_prepare_write() could have dirtied some buffers. Clean
1181 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1182 	 * otherwise about fs integrity issues. Setting of the dirty bit
1183 	 * by __block_prepare_write() isn't a real problem here as we clear
1184 	 * the bit before releasing a page lock and thus writeback cannot
1185 	 * ever write the buffer.
1186 	 */
1187 	if (dirty)
1188 		clear_buffer_dirty(bh);
1189 	ret = ext3_journal_get_write_access(handle, bh);
1190 	if (!ret && dirty)
1191 		ret = ext3_journal_dirty_metadata(handle, bh);
1192 	return ret;
1193 }
1194 
1195 /*
1196  * Truncate blocks that were not used by write. We have to truncate the
1197  * pagecache as well so that corresponding buffers get properly unmapped.
1198  */
ext3_truncate_failed_write(struct inode * inode)1199 static void ext3_truncate_failed_write(struct inode *inode)
1200 {
1201 	truncate_inode_pages(inode->i_mapping, inode->i_size);
1202 	ext3_truncate(inode);
1203 }
1204 
ext3_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1205 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1206 				loff_t pos, unsigned len, unsigned flags,
1207 				struct page **pagep, void **fsdata)
1208 {
1209 	struct inode *inode = mapping->host;
1210 	int ret;
1211 	handle_t *handle;
1212 	int retries = 0;
1213 	struct page *page;
1214 	pgoff_t index;
1215 	unsigned from, to;
1216 	/* Reserve one block more for addition to orphan list in case
1217 	 * we allocate blocks but write fails for some reason */
1218 	int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1219 
1220 	index = pos >> PAGE_CACHE_SHIFT;
1221 	from = pos & (PAGE_CACHE_SIZE - 1);
1222 	to = from + len;
1223 
1224 retry:
1225 	page = grab_cache_page_write_begin(mapping, index, flags);
1226 	if (!page)
1227 		return -ENOMEM;
1228 	*pagep = page;
1229 
1230 	handle = ext3_journal_start(inode, needed_blocks);
1231 	if (IS_ERR(handle)) {
1232 		unlock_page(page);
1233 		page_cache_release(page);
1234 		ret = PTR_ERR(handle);
1235 		goto out;
1236 	}
1237 	ret = __block_write_begin(page, pos, len, ext3_get_block);
1238 	if (ret)
1239 		goto write_begin_failed;
1240 
1241 	if (ext3_should_journal_data(inode)) {
1242 		ret = walk_page_buffers(handle, page_buffers(page),
1243 				from, to, NULL, do_journal_get_write_access);
1244 	}
1245 write_begin_failed:
1246 	if (ret) {
1247 		/*
1248 		 * block_write_begin may have instantiated a few blocks
1249 		 * outside i_size.  Trim these off again. Don't need
1250 		 * i_size_read because we hold i_mutex.
1251 		 *
1252 		 * Add inode to orphan list in case we crash before truncate
1253 		 * finishes. Do this only if ext3_can_truncate() agrees so
1254 		 * that orphan processing code is happy.
1255 		 */
1256 		if (pos + len > inode->i_size && ext3_can_truncate(inode))
1257 			ext3_orphan_add(handle, inode);
1258 		ext3_journal_stop(handle);
1259 		unlock_page(page);
1260 		page_cache_release(page);
1261 		if (pos + len > inode->i_size)
1262 			ext3_truncate_failed_write(inode);
1263 	}
1264 	if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1265 		goto retry;
1266 out:
1267 	return ret;
1268 }
1269 
1270 
ext3_journal_dirty_data(handle_t * handle,struct buffer_head * bh)1271 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1272 {
1273 	int err = journal_dirty_data(handle, bh);
1274 	if (err)
1275 		ext3_journal_abort_handle(__func__, __func__,
1276 						bh, handle, err);
1277 	return err;
1278 }
1279 
1280 /* For ordered writepage and write_end functions */
journal_dirty_data_fn(handle_t * handle,struct buffer_head * bh)1281 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1282 {
1283 	/*
1284 	 * Write could have mapped the buffer but it didn't copy the data in
1285 	 * yet. So avoid filing such buffer into a transaction.
1286 	 */
1287 	if (buffer_mapped(bh) && buffer_uptodate(bh))
1288 		return ext3_journal_dirty_data(handle, bh);
1289 	return 0;
1290 }
1291 
1292 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1293 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1294 {
1295 	if (!buffer_mapped(bh) || buffer_freed(bh))
1296 		return 0;
1297 	set_buffer_uptodate(bh);
1298 	return ext3_journal_dirty_metadata(handle, bh);
1299 }
1300 
1301 /*
1302  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1303  * for the whole page but later we failed to copy the data in. Update inode
1304  * size according to what we managed to copy. The rest is going to be
1305  * truncated in write_end function.
1306  */
update_file_sizes(struct inode * inode,loff_t pos,unsigned copied)1307 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1308 {
1309 	/* What matters to us is i_disksize. We don't write i_size anywhere */
1310 	if (pos + copied > inode->i_size)
1311 		i_size_write(inode, pos + copied);
1312 	if (pos + copied > EXT3_I(inode)->i_disksize) {
1313 		EXT3_I(inode)->i_disksize = pos + copied;
1314 		mark_inode_dirty(inode);
1315 	}
1316 }
1317 
1318 /*
1319  * We need to pick up the new inode size which generic_commit_write gave us
1320  * `file' can be NULL - eg, when called from page_symlink().
1321  *
1322  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1323  * buffers are managed internally.
1324  */
ext3_ordered_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1325 static int ext3_ordered_write_end(struct file *file,
1326 				struct address_space *mapping,
1327 				loff_t pos, unsigned len, unsigned copied,
1328 				struct page *page, void *fsdata)
1329 {
1330 	handle_t *handle = ext3_journal_current_handle();
1331 	struct inode *inode = file->f_mapping->host;
1332 	unsigned from, to;
1333 	int ret = 0, ret2;
1334 
1335 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1336 
1337 	from = pos & (PAGE_CACHE_SIZE - 1);
1338 	to = from + copied;
1339 	ret = walk_page_buffers(handle, page_buffers(page),
1340 		from, to, NULL, journal_dirty_data_fn);
1341 
1342 	if (ret == 0)
1343 		update_file_sizes(inode, pos, copied);
1344 	/*
1345 	 * There may be allocated blocks outside of i_size because
1346 	 * we failed to copy some data. Prepare for truncate.
1347 	 */
1348 	if (pos + len > inode->i_size && ext3_can_truncate(inode))
1349 		ext3_orphan_add(handle, inode);
1350 	ret2 = ext3_journal_stop(handle);
1351 	if (!ret)
1352 		ret = ret2;
1353 	unlock_page(page);
1354 	page_cache_release(page);
1355 
1356 	if (pos + len > inode->i_size)
1357 		ext3_truncate_failed_write(inode);
1358 	return ret ? ret : copied;
1359 }
1360 
ext3_writeback_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1361 static int ext3_writeback_write_end(struct file *file,
1362 				struct address_space *mapping,
1363 				loff_t pos, unsigned len, unsigned copied,
1364 				struct page *page, void *fsdata)
1365 {
1366 	handle_t *handle = ext3_journal_current_handle();
1367 	struct inode *inode = file->f_mapping->host;
1368 	int ret;
1369 
1370 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1371 	update_file_sizes(inode, pos, copied);
1372 	/*
1373 	 * There may be allocated blocks outside of i_size because
1374 	 * we failed to copy some data. Prepare for truncate.
1375 	 */
1376 	if (pos + len > inode->i_size && ext3_can_truncate(inode))
1377 		ext3_orphan_add(handle, inode);
1378 	ret = ext3_journal_stop(handle);
1379 	unlock_page(page);
1380 	page_cache_release(page);
1381 
1382 	if (pos + len > inode->i_size)
1383 		ext3_truncate_failed_write(inode);
1384 	return ret ? ret : copied;
1385 }
1386 
ext3_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1387 static int ext3_journalled_write_end(struct file *file,
1388 				struct address_space *mapping,
1389 				loff_t pos, unsigned len, unsigned copied,
1390 				struct page *page, void *fsdata)
1391 {
1392 	handle_t *handle = ext3_journal_current_handle();
1393 	struct inode *inode = mapping->host;
1394 	int ret = 0, ret2;
1395 	int partial = 0;
1396 	unsigned from, to;
1397 
1398 	from = pos & (PAGE_CACHE_SIZE - 1);
1399 	to = from + len;
1400 
1401 	if (copied < len) {
1402 		if (!PageUptodate(page))
1403 			copied = 0;
1404 		page_zero_new_buffers(page, from + copied, to);
1405 		to = from + copied;
1406 	}
1407 
1408 	ret = walk_page_buffers(handle, page_buffers(page), from,
1409 				to, &partial, write_end_fn);
1410 	if (!partial)
1411 		SetPageUptodate(page);
1412 
1413 	if (pos + copied > inode->i_size)
1414 		i_size_write(inode, pos + copied);
1415 	/*
1416 	 * There may be allocated blocks outside of i_size because
1417 	 * we failed to copy some data. Prepare for truncate.
1418 	 */
1419 	if (pos + len > inode->i_size && ext3_can_truncate(inode))
1420 		ext3_orphan_add(handle, inode);
1421 	ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1422 	if (inode->i_size > EXT3_I(inode)->i_disksize) {
1423 		EXT3_I(inode)->i_disksize = inode->i_size;
1424 		ret2 = ext3_mark_inode_dirty(handle, inode);
1425 		if (!ret)
1426 			ret = ret2;
1427 	}
1428 
1429 	ret2 = ext3_journal_stop(handle);
1430 	if (!ret)
1431 		ret = ret2;
1432 	unlock_page(page);
1433 	page_cache_release(page);
1434 
1435 	if (pos + len > inode->i_size)
1436 		ext3_truncate_failed_write(inode);
1437 	return ret ? ret : copied;
1438 }
1439 
1440 /*
1441  * bmap() is special.  It gets used by applications such as lilo and by
1442  * the swapper to find the on-disk block of a specific piece of data.
1443  *
1444  * Naturally, this is dangerous if the block concerned is still in the
1445  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1446  * filesystem and enables swap, then they may get a nasty shock when the
1447  * data getting swapped to that swapfile suddenly gets overwritten by
1448  * the original zero's written out previously to the journal and
1449  * awaiting writeback in the kernel's buffer cache.
1450  *
1451  * So, if we see any bmap calls here on a modified, data-journaled file,
1452  * take extra steps to flush any blocks which might be in the cache.
1453  */
ext3_bmap(struct address_space * mapping,sector_t block)1454 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1455 {
1456 	struct inode *inode = mapping->host;
1457 	journal_t *journal;
1458 	int err;
1459 
1460 	if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1461 		/*
1462 		 * This is a REALLY heavyweight approach, but the use of
1463 		 * bmap on dirty files is expected to be extremely rare:
1464 		 * only if we run lilo or swapon on a freshly made file
1465 		 * do we expect this to happen.
1466 		 *
1467 		 * (bmap requires CAP_SYS_RAWIO so this does not
1468 		 * represent an unprivileged user DOS attack --- we'd be
1469 		 * in trouble if mortal users could trigger this path at
1470 		 * will.)
1471 		 *
1472 		 * NB. EXT3_STATE_JDATA is not set on files other than
1473 		 * regular files.  If somebody wants to bmap a directory
1474 		 * or symlink and gets confused because the buffer
1475 		 * hasn't yet been flushed to disk, they deserve
1476 		 * everything they get.
1477 		 */
1478 
1479 		ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1480 		journal = EXT3_JOURNAL(inode);
1481 		journal_lock_updates(journal);
1482 		err = journal_flush(journal);
1483 		journal_unlock_updates(journal);
1484 
1485 		if (err)
1486 			return 0;
1487 	}
1488 
1489 	return generic_block_bmap(mapping,block,ext3_get_block);
1490 }
1491 
bget_one(handle_t * handle,struct buffer_head * bh)1492 static int bget_one(handle_t *handle, struct buffer_head *bh)
1493 {
1494 	get_bh(bh);
1495 	return 0;
1496 }
1497 
bput_one(handle_t * handle,struct buffer_head * bh)1498 static int bput_one(handle_t *handle, struct buffer_head *bh)
1499 {
1500 	put_bh(bh);
1501 	return 0;
1502 }
1503 
buffer_unmapped(handle_t * handle,struct buffer_head * bh)1504 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1505 {
1506 	return !buffer_mapped(bh);
1507 }
1508 
1509 /*
1510  * Note that we always start a transaction even if we're not journalling
1511  * data.  This is to preserve ordering: any hole instantiation within
1512  * __block_write_full_page -> ext3_get_block() should be journalled
1513  * along with the data so we don't crash and then get metadata which
1514  * refers to old data.
1515  *
1516  * In all journalling modes block_write_full_page() will start the I/O.
1517  *
1518  * Problem:
1519  *
1520  *	ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1521  *		ext3_writepage()
1522  *
1523  * Similar for:
1524  *
1525  *	ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1526  *
1527  * Same applies to ext3_get_block().  We will deadlock on various things like
1528  * lock_journal and i_truncate_mutex.
1529  *
1530  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1531  * allocations fail.
1532  *
1533  * 16May01: If we're reentered then journal_current_handle() will be
1534  *	    non-zero. We simply *return*.
1535  *
1536  * 1 July 2001: @@@ FIXME:
1537  *   In journalled data mode, a data buffer may be metadata against the
1538  *   current transaction.  But the same file is part of a shared mapping
1539  *   and someone does a writepage() on it.
1540  *
1541  *   We will move the buffer onto the async_data list, but *after* it has
1542  *   been dirtied. So there's a small window where we have dirty data on
1543  *   BJ_Metadata.
1544  *
1545  *   Note that this only applies to the last partial page in the file.  The
1546  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1547  *   broken code anyway: it's wrong for msync()).
1548  *
1549  *   It's a rare case: affects the final partial page, for journalled data
1550  *   where the file is subject to bith write() and writepage() in the same
1551  *   transction.  To fix it we'll need a custom block_write_full_page().
1552  *   We'll probably need that anyway for journalling writepage() output.
1553  *
1554  * We don't honour synchronous mounts for writepage().  That would be
1555  * disastrous.  Any write() or metadata operation will sync the fs for
1556  * us.
1557  *
1558  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1559  * we don't need to open a transaction here.
1560  */
ext3_ordered_writepage(struct page * page,struct writeback_control * wbc)1561 static int ext3_ordered_writepage(struct page *page,
1562 				struct writeback_control *wbc)
1563 {
1564 	struct inode *inode = page->mapping->host;
1565 	struct buffer_head *page_bufs;
1566 	handle_t *handle = NULL;
1567 	int ret = 0;
1568 	int err;
1569 
1570 	J_ASSERT(PageLocked(page));
1571 	WARN_ON_ONCE(IS_RDONLY(inode));
1572 
1573 	/*
1574 	 * We give up here if we're reentered, because it might be for a
1575 	 * different filesystem.
1576 	 */
1577 	if (ext3_journal_current_handle())
1578 		goto out_fail;
1579 
1580 	if (!page_has_buffers(page)) {
1581 		create_empty_buffers(page, inode->i_sb->s_blocksize,
1582 				(1 << BH_Dirty)|(1 << BH_Uptodate));
1583 		page_bufs = page_buffers(page);
1584 	} else {
1585 		page_bufs = page_buffers(page);
1586 		if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1587 				       NULL, buffer_unmapped)) {
1588 			/* Provide NULL get_block() to catch bugs if buffers
1589 			 * weren't really mapped */
1590 			return block_write_full_page(page, NULL, wbc);
1591 		}
1592 	}
1593 	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1594 
1595 	if (IS_ERR(handle)) {
1596 		ret = PTR_ERR(handle);
1597 		goto out_fail;
1598 	}
1599 
1600 	walk_page_buffers(handle, page_bufs, 0,
1601 			PAGE_CACHE_SIZE, NULL, bget_one);
1602 
1603 	ret = block_write_full_page(page, ext3_get_block, wbc);
1604 
1605 	/*
1606 	 * The page can become unlocked at any point now, and
1607 	 * truncate can then come in and change things.  So we
1608 	 * can't touch *page from now on.  But *page_bufs is
1609 	 * safe due to elevated refcount.
1610 	 */
1611 
1612 	/*
1613 	 * And attach them to the current transaction.  But only if
1614 	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
1615 	 * and generally junk.
1616 	 */
1617 	if (ret == 0) {
1618 		err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1619 					NULL, journal_dirty_data_fn);
1620 		if (!ret)
1621 			ret = err;
1622 	}
1623 	walk_page_buffers(handle, page_bufs, 0,
1624 			PAGE_CACHE_SIZE, NULL, bput_one);
1625 	err = ext3_journal_stop(handle);
1626 	if (!ret)
1627 		ret = err;
1628 	return ret;
1629 
1630 out_fail:
1631 	redirty_page_for_writepage(wbc, page);
1632 	unlock_page(page);
1633 	return ret;
1634 }
1635 
ext3_writeback_writepage(struct page * page,struct writeback_control * wbc)1636 static int ext3_writeback_writepage(struct page *page,
1637 				struct writeback_control *wbc)
1638 {
1639 	struct inode *inode = page->mapping->host;
1640 	handle_t *handle = NULL;
1641 	int ret = 0;
1642 	int err;
1643 
1644 	J_ASSERT(PageLocked(page));
1645 	WARN_ON_ONCE(IS_RDONLY(inode));
1646 
1647 	if (ext3_journal_current_handle())
1648 		goto out_fail;
1649 
1650 	if (page_has_buffers(page)) {
1651 		if (!walk_page_buffers(NULL, page_buffers(page), 0,
1652 				      PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1653 			/* Provide NULL get_block() to catch bugs if buffers
1654 			 * weren't really mapped */
1655 			return block_write_full_page(page, NULL, wbc);
1656 		}
1657 	}
1658 
1659 	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1660 	if (IS_ERR(handle)) {
1661 		ret = PTR_ERR(handle);
1662 		goto out_fail;
1663 	}
1664 
1665 	ret = block_write_full_page(page, ext3_get_block, wbc);
1666 
1667 	err = ext3_journal_stop(handle);
1668 	if (!ret)
1669 		ret = err;
1670 	return ret;
1671 
1672 out_fail:
1673 	redirty_page_for_writepage(wbc, page);
1674 	unlock_page(page);
1675 	return ret;
1676 }
1677 
ext3_journalled_writepage(struct page * page,struct writeback_control * wbc)1678 static int ext3_journalled_writepage(struct page *page,
1679 				struct writeback_control *wbc)
1680 {
1681 	struct inode *inode = page->mapping->host;
1682 	handle_t *handle = NULL;
1683 	int ret = 0;
1684 	int err;
1685 
1686 	J_ASSERT(PageLocked(page));
1687 	WARN_ON_ONCE(IS_RDONLY(inode));
1688 
1689 	if (ext3_journal_current_handle())
1690 		goto no_write;
1691 
1692 	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1693 	if (IS_ERR(handle)) {
1694 		ret = PTR_ERR(handle);
1695 		goto no_write;
1696 	}
1697 
1698 	if (!page_has_buffers(page) || PageChecked(page)) {
1699 		/*
1700 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1701 		 * doesn't seem much point in redirtying the page here.
1702 		 */
1703 		ClearPageChecked(page);
1704 		ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1705 					  ext3_get_block);
1706 		if (ret != 0) {
1707 			ext3_journal_stop(handle);
1708 			goto out_unlock;
1709 		}
1710 		ret = walk_page_buffers(handle, page_buffers(page), 0,
1711 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1712 
1713 		err = walk_page_buffers(handle, page_buffers(page), 0,
1714 				PAGE_CACHE_SIZE, NULL, write_end_fn);
1715 		if (ret == 0)
1716 			ret = err;
1717 		ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1718 		unlock_page(page);
1719 	} else {
1720 		/*
1721 		 * It may be a page full of checkpoint-mode buffers.  We don't
1722 		 * really know unless we go poke around in the buffer_heads.
1723 		 * But block_write_full_page will do the right thing.
1724 		 */
1725 		ret = block_write_full_page(page, ext3_get_block, wbc);
1726 	}
1727 	err = ext3_journal_stop(handle);
1728 	if (!ret)
1729 		ret = err;
1730 out:
1731 	return ret;
1732 
1733 no_write:
1734 	redirty_page_for_writepage(wbc, page);
1735 out_unlock:
1736 	unlock_page(page);
1737 	goto out;
1738 }
1739 
ext3_readpage(struct file * file,struct page * page)1740 static int ext3_readpage(struct file *file, struct page *page)
1741 {
1742 	return mpage_readpage(page, ext3_get_block);
1743 }
1744 
1745 static int
ext3_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1746 ext3_readpages(struct file *file, struct address_space *mapping,
1747 		struct list_head *pages, unsigned nr_pages)
1748 {
1749 	return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1750 }
1751 
ext3_invalidatepage(struct page * page,unsigned long offset)1752 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1753 {
1754 	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1755 
1756 	/*
1757 	 * If it's a full truncate we just forget about the pending dirtying
1758 	 */
1759 	if (offset == 0)
1760 		ClearPageChecked(page);
1761 
1762 	journal_invalidatepage(journal, page, offset);
1763 }
1764 
ext3_releasepage(struct page * page,gfp_t wait)1765 static int ext3_releasepage(struct page *page, gfp_t wait)
1766 {
1767 	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1768 
1769 	WARN_ON(PageChecked(page));
1770 	if (!page_has_buffers(page))
1771 		return 0;
1772 	return journal_try_to_free_buffers(journal, page, wait);
1773 }
1774 
1775 /*
1776  * If the O_DIRECT write will extend the file then add this inode to the
1777  * orphan list.  So recovery will truncate it back to the original size
1778  * if the machine crashes during the write.
1779  *
1780  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1781  * crashes then stale disk data _may_ be exposed inside the file. But current
1782  * VFS code falls back into buffered path in that case so we are safe.
1783  */
ext3_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)1784 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1785 			const struct iovec *iov, loff_t offset,
1786 			unsigned long nr_segs)
1787 {
1788 	struct file *file = iocb->ki_filp;
1789 	struct inode *inode = file->f_mapping->host;
1790 	struct ext3_inode_info *ei = EXT3_I(inode);
1791 	handle_t *handle;
1792 	ssize_t ret;
1793 	int orphan = 0;
1794 	size_t count = iov_length(iov, nr_segs);
1795 	int retries = 0;
1796 
1797 	if (rw == WRITE) {
1798 		loff_t final_size = offset + count;
1799 
1800 		if (final_size > inode->i_size) {
1801 			/* Credits for sb + inode write */
1802 			handle = ext3_journal_start(inode, 2);
1803 			if (IS_ERR(handle)) {
1804 				ret = PTR_ERR(handle);
1805 				goto out;
1806 			}
1807 			ret = ext3_orphan_add(handle, inode);
1808 			if (ret) {
1809 				ext3_journal_stop(handle);
1810 				goto out;
1811 			}
1812 			orphan = 1;
1813 			ei->i_disksize = inode->i_size;
1814 			ext3_journal_stop(handle);
1815 		}
1816 	}
1817 
1818 retry:
1819 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1820 				 offset, nr_segs,
1821 				 ext3_get_block, NULL);
1822 	/*
1823 	 * In case of error extending write may have instantiated a few
1824 	 * blocks outside i_size. Trim these off again.
1825 	 */
1826 	if (unlikely((rw & WRITE) && ret < 0)) {
1827 		loff_t isize = i_size_read(inode);
1828 		loff_t end = offset + iov_length(iov, nr_segs);
1829 
1830 		if (end > isize)
1831 			vmtruncate(inode, isize);
1832 	}
1833 	if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1834 		goto retry;
1835 
1836 	if (orphan) {
1837 		int err;
1838 
1839 		/* Credits for sb + inode write */
1840 		handle = ext3_journal_start(inode, 2);
1841 		if (IS_ERR(handle)) {
1842 			/* This is really bad luck. We've written the data
1843 			 * but cannot extend i_size. Truncate allocated blocks
1844 			 * and pretend the write failed... */
1845 			ext3_truncate(inode);
1846 			ret = PTR_ERR(handle);
1847 			goto out;
1848 		}
1849 		if (inode->i_nlink)
1850 			ext3_orphan_del(handle, inode);
1851 		if (ret > 0) {
1852 			loff_t end = offset + ret;
1853 			if (end > inode->i_size) {
1854 				ei->i_disksize = end;
1855 				i_size_write(inode, end);
1856 				/*
1857 				 * We're going to return a positive `ret'
1858 				 * here due to non-zero-length I/O, so there's
1859 				 * no way of reporting error returns from
1860 				 * ext3_mark_inode_dirty() to userspace.  So
1861 				 * ignore it.
1862 				 */
1863 				ext3_mark_inode_dirty(handle, inode);
1864 			}
1865 		}
1866 		err = ext3_journal_stop(handle);
1867 		if (ret == 0)
1868 			ret = err;
1869 	}
1870 out:
1871 	return ret;
1872 }
1873 
1874 /*
1875  * Pages can be marked dirty completely asynchronously from ext3's journalling
1876  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1877  * much here because ->set_page_dirty is called under VFS locks.  The page is
1878  * not necessarily locked.
1879  *
1880  * We cannot just dirty the page and leave attached buffers clean, because the
1881  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1882  * or jbddirty because all the journalling code will explode.
1883  *
1884  * So what we do is to mark the page "pending dirty" and next time writepage
1885  * is called, propagate that into the buffers appropriately.
1886  */
ext3_journalled_set_page_dirty(struct page * page)1887 static int ext3_journalled_set_page_dirty(struct page *page)
1888 {
1889 	SetPageChecked(page);
1890 	return __set_page_dirty_nobuffers(page);
1891 }
1892 
1893 static const struct address_space_operations ext3_ordered_aops = {
1894 	.readpage		= ext3_readpage,
1895 	.readpages		= ext3_readpages,
1896 	.writepage		= ext3_ordered_writepage,
1897 	.write_begin		= ext3_write_begin,
1898 	.write_end		= ext3_ordered_write_end,
1899 	.bmap			= ext3_bmap,
1900 	.invalidatepage		= ext3_invalidatepage,
1901 	.releasepage		= ext3_releasepage,
1902 	.direct_IO		= ext3_direct_IO,
1903 	.migratepage		= buffer_migrate_page,
1904 	.is_partially_uptodate  = block_is_partially_uptodate,
1905 	.error_remove_page	= generic_error_remove_page,
1906 };
1907 
1908 static const struct address_space_operations ext3_writeback_aops = {
1909 	.readpage		= ext3_readpage,
1910 	.readpages		= ext3_readpages,
1911 	.writepage		= ext3_writeback_writepage,
1912 	.write_begin		= ext3_write_begin,
1913 	.write_end		= ext3_writeback_write_end,
1914 	.bmap			= ext3_bmap,
1915 	.invalidatepage		= ext3_invalidatepage,
1916 	.releasepage		= ext3_releasepage,
1917 	.direct_IO		= ext3_direct_IO,
1918 	.migratepage		= buffer_migrate_page,
1919 	.is_partially_uptodate  = block_is_partially_uptodate,
1920 	.error_remove_page	= generic_error_remove_page,
1921 };
1922 
1923 static const struct address_space_operations ext3_journalled_aops = {
1924 	.readpage		= ext3_readpage,
1925 	.readpages		= ext3_readpages,
1926 	.writepage		= ext3_journalled_writepage,
1927 	.write_begin		= ext3_write_begin,
1928 	.write_end		= ext3_journalled_write_end,
1929 	.set_page_dirty		= ext3_journalled_set_page_dirty,
1930 	.bmap			= ext3_bmap,
1931 	.invalidatepage		= ext3_invalidatepage,
1932 	.releasepage		= ext3_releasepage,
1933 	.is_partially_uptodate  = block_is_partially_uptodate,
1934 	.error_remove_page	= generic_error_remove_page,
1935 };
1936 
ext3_set_aops(struct inode * inode)1937 void ext3_set_aops(struct inode *inode)
1938 {
1939 	if (ext3_should_order_data(inode))
1940 		inode->i_mapping->a_ops = &ext3_ordered_aops;
1941 	else if (ext3_should_writeback_data(inode))
1942 		inode->i_mapping->a_ops = &ext3_writeback_aops;
1943 	else
1944 		inode->i_mapping->a_ops = &ext3_journalled_aops;
1945 }
1946 
1947 /*
1948  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1949  * up to the end of the block which corresponds to `from'.
1950  * This required during truncate. We need to physically zero the tail end
1951  * of that block so it doesn't yield old data if the file is later grown.
1952  */
ext3_block_truncate_page(handle_t * handle,struct page * page,struct address_space * mapping,loff_t from)1953 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1954 		struct address_space *mapping, loff_t from)
1955 {
1956 	ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1957 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
1958 	unsigned blocksize, iblock, length, pos;
1959 	struct inode *inode = mapping->host;
1960 	struct buffer_head *bh;
1961 	int err = 0;
1962 
1963 	blocksize = inode->i_sb->s_blocksize;
1964 	length = blocksize - (offset & (blocksize - 1));
1965 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1966 
1967 	if (!page_has_buffers(page))
1968 		create_empty_buffers(page, blocksize, 0);
1969 
1970 	/* Find the buffer that contains "offset" */
1971 	bh = page_buffers(page);
1972 	pos = blocksize;
1973 	while (offset >= pos) {
1974 		bh = bh->b_this_page;
1975 		iblock++;
1976 		pos += blocksize;
1977 	}
1978 
1979 	err = 0;
1980 	if (buffer_freed(bh)) {
1981 		BUFFER_TRACE(bh, "freed: skip");
1982 		goto unlock;
1983 	}
1984 
1985 	if (!buffer_mapped(bh)) {
1986 		BUFFER_TRACE(bh, "unmapped");
1987 		ext3_get_block(inode, iblock, bh, 0);
1988 		/* unmapped? It's a hole - nothing to do */
1989 		if (!buffer_mapped(bh)) {
1990 			BUFFER_TRACE(bh, "still unmapped");
1991 			goto unlock;
1992 		}
1993 	}
1994 
1995 	/* Ok, it's mapped. Make sure it's up-to-date */
1996 	if (PageUptodate(page))
1997 		set_buffer_uptodate(bh);
1998 
1999 	if (!buffer_uptodate(bh)) {
2000 		err = -EIO;
2001 		ll_rw_block(READ, 1, &bh);
2002 		wait_on_buffer(bh);
2003 		/* Uhhuh. Read error. Complain and punt. */
2004 		if (!buffer_uptodate(bh))
2005 			goto unlock;
2006 	}
2007 
2008 	if (ext3_should_journal_data(inode)) {
2009 		BUFFER_TRACE(bh, "get write access");
2010 		err = ext3_journal_get_write_access(handle, bh);
2011 		if (err)
2012 			goto unlock;
2013 	}
2014 
2015 	zero_user(page, offset, length);
2016 	BUFFER_TRACE(bh, "zeroed end of block");
2017 
2018 	err = 0;
2019 	if (ext3_should_journal_data(inode)) {
2020 		err = ext3_journal_dirty_metadata(handle, bh);
2021 	} else {
2022 		if (ext3_should_order_data(inode))
2023 			err = ext3_journal_dirty_data(handle, bh);
2024 		mark_buffer_dirty(bh);
2025 	}
2026 
2027 unlock:
2028 	unlock_page(page);
2029 	page_cache_release(page);
2030 	return err;
2031 }
2032 
2033 /*
2034  * Probably it should be a library function... search for first non-zero word
2035  * or memcmp with zero_page, whatever is better for particular architecture.
2036  * Linus?
2037  */
all_zeroes(__le32 * p,__le32 * q)2038 static inline int all_zeroes(__le32 *p, __le32 *q)
2039 {
2040 	while (p < q)
2041 		if (*p++)
2042 			return 0;
2043 	return 1;
2044 }
2045 
2046 /**
2047  *	ext3_find_shared - find the indirect blocks for partial truncation.
2048  *	@inode:	  inode in question
2049  *	@depth:	  depth of the affected branch
2050  *	@offsets: offsets of pointers in that branch (see ext3_block_to_path)
2051  *	@chain:	  place to store the pointers to partial indirect blocks
2052  *	@top:	  place to the (detached) top of branch
2053  *
2054  *	This is a helper function used by ext3_truncate().
2055  *
2056  *	When we do truncate() we may have to clean the ends of several
2057  *	indirect blocks but leave the blocks themselves alive. Block is
2058  *	partially truncated if some data below the new i_size is referred
2059  *	from it (and it is on the path to the first completely truncated
2060  *	data block, indeed).  We have to free the top of that path along
2061  *	with everything to the right of the path. Since no allocation
2062  *	past the truncation point is possible until ext3_truncate()
2063  *	finishes, we may safely do the latter, but top of branch may
2064  *	require special attention - pageout below the truncation point
2065  *	might try to populate it.
2066  *
2067  *	We atomically detach the top of branch from the tree, store the
2068  *	block number of its root in *@top, pointers to buffer_heads of
2069  *	partially truncated blocks - in @chain[].bh and pointers to
2070  *	their last elements that should not be removed - in
2071  *	@chain[].p. Return value is the pointer to last filled element
2072  *	of @chain.
2073  *
2074  *	The work left to caller to do the actual freeing of subtrees:
2075  *		a) free the subtree starting from *@top
2076  *		b) free the subtrees whose roots are stored in
2077  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
2078  *		c) free the subtrees growing from the inode past the @chain[0].
2079  *			(no partially truncated stuff there).  */
2080 
ext3_find_shared(struct inode * inode,int depth,int offsets[4],Indirect chain[4],__le32 * top)2081 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2082 			int offsets[4], Indirect chain[4], __le32 *top)
2083 {
2084 	Indirect *partial, *p;
2085 	int k, err;
2086 
2087 	*top = 0;
2088 	/* Make k index the deepest non-null offset + 1 */
2089 	for (k = depth; k > 1 && !offsets[k-1]; k--)
2090 		;
2091 	partial = ext3_get_branch(inode, k, offsets, chain, &err);
2092 	/* Writer: pointers */
2093 	if (!partial)
2094 		partial = chain + k-1;
2095 	/*
2096 	 * If the branch acquired continuation since we've looked at it -
2097 	 * fine, it should all survive and (new) top doesn't belong to us.
2098 	 */
2099 	if (!partial->key && *partial->p)
2100 		/* Writer: end */
2101 		goto no_top;
2102 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2103 		;
2104 	/*
2105 	 * OK, we've found the last block that must survive. The rest of our
2106 	 * branch should be detached before unlocking. However, if that rest
2107 	 * of branch is all ours and does not grow immediately from the inode
2108 	 * it's easier to cheat and just decrement partial->p.
2109 	 */
2110 	if (p == chain + k - 1 && p > chain) {
2111 		p->p--;
2112 	} else {
2113 		*top = *p->p;
2114 		/* Nope, don't do this in ext3.  Must leave the tree intact */
2115 #if 0
2116 		*p->p = 0;
2117 #endif
2118 	}
2119 	/* Writer: end */
2120 
2121 	while(partial > p) {
2122 		brelse(partial->bh);
2123 		partial--;
2124 	}
2125 no_top:
2126 	return partial;
2127 }
2128 
2129 /*
2130  * Zero a number of block pointers in either an inode or an indirect block.
2131  * If we restart the transaction we must again get write access to the
2132  * indirect block for further modification.
2133  *
2134  * We release `count' blocks on disk, but (last - first) may be greater
2135  * than `count' because there can be holes in there.
2136  */
ext3_clear_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext3_fsblk_t block_to_free,unsigned long count,__le32 * first,__le32 * last)2137 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2138 		struct buffer_head *bh, ext3_fsblk_t block_to_free,
2139 		unsigned long count, __le32 *first, __le32 *last)
2140 {
2141 	__le32 *p;
2142 	if (try_to_extend_transaction(handle, inode)) {
2143 		if (bh) {
2144 			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2145 			if (ext3_journal_dirty_metadata(handle, bh))
2146 				return;
2147 		}
2148 		ext3_mark_inode_dirty(handle, inode);
2149 		truncate_restart_transaction(handle, inode);
2150 		if (bh) {
2151 			BUFFER_TRACE(bh, "retaking write access");
2152 			if (ext3_journal_get_write_access(handle, bh))
2153 				return;
2154 		}
2155 	}
2156 
2157 	/*
2158 	 * Any buffers which are on the journal will be in memory. We find
2159 	 * them on the hash table so journal_revoke() will run journal_forget()
2160 	 * on them.  We've already detached each block from the file, so
2161 	 * bforget() in journal_forget() should be safe.
2162 	 *
2163 	 * AKPM: turn on bforget in journal_forget()!!!
2164 	 */
2165 	for (p = first; p < last; p++) {
2166 		u32 nr = le32_to_cpu(*p);
2167 		if (nr) {
2168 			struct buffer_head *bh;
2169 
2170 			*p = 0;
2171 			bh = sb_find_get_block(inode->i_sb, nr);
2172 			ext3_forget(handle, 0, inode, bh, nr);
2173 		}
2174 	}
2175 
2176 	ext3_free_blocks(handle, inode, block_to_free, count);
2177 }
2178 
2179 /**
2180  * ext3_free_data - free a list of data blocks
2181  * @handle:	handle for this transaction
2182  * @inode:	inode we are dealing with
2183  * @this_bh:	indirect buffer_head which contains *@first and *@last
2184  * @first:	array of block numbers
2185  * @last:	points immediately past the end of array
2186  *
2187  * We are freeing all blocks referred from that array (numbers are stored as
2188  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2189  *
2190  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2191  * blocks are contiguous then releasing them at one time will only affect one
2192  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2193  * actually use a lot of journal space.
2194  *
2195  * @this_bh will be %NULL if @first and @last point into the inode's direct
2196  * block pointers.
2197  */
ext3_free_data(handle_t * handle,struct inode * inode,struct buffer_head * this_bh,__le32 * first,__le32 * last)2198 static void ext3_free_data(handle_t *handle, struct inode *inode,
2199 			   struct buffer_head *this_bh,
2200 			   __le32 *first, __le32 *last)
2201 {
2202 	ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2203 	unsigned long count = 0;	    /* Number of blocks in the run */
2204 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
2205 					       corresponding to
2206 					       block_to_free */
2207 	ext3_fsblk_t nr;		    /* Current block # */
2208 	__le32 *p;			    /* Pointer into inode/ind
2209 					       for current block */
2210 	int err;
2211 
2212 	if (this_bh) {				/* For indirect block */
2213 		BUFFER_TRACE(this_bh, "get_write_access");
2214 		err = ext3_journal_get_write_access(handle, this_bh);
2215 		/* Important: if we can't update the indirect pointers
2216 		 * to the blocks, we can't free them. */
2217 		if (err)
2218 			return;
2219 	}
2220 
2221 	for (p = first; p < last; p++) {
2222 		nr = le32_to_cpu(*p);
2223 		if (nr) {
2224 			/* accumulate blocks to free if they're contiguous */
2225 			if (count == 0) {
2226 				block_to_free = nr;
2227 				block_to_free_p = p;
2228 				count = 1;
2229 			} else if (nr == block_to_free + count) {
2230 				count++;
2231 			} else {
2232 				ext3_clear_blocks(handle, inode, this_bh,
2233 						  block_to_free,
2234 						  count, block_to_free_p, p);
2235 				block_to_free = nr;
2236 				block_to_free_p = p;
2237 				count = 1;
2238 			}
2239 		}
2240 	}
2241 
2242 	if (count > 0)
2243 		ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2244 				  count, block_to_free_p, p);
2245 
2246 	if (this_bh) {
2247 		BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2248 
2249 		/*
2250 		 * The buffer head should have an attached journal head at this
2251 		 * point. However, if the data is corrupted and an indirect
2252 		 * block pointed to itself, it would have been detached when
2253 		 * the block was cleared. Check for this instead of OOPSing.
2254 		 */
2255 		if (bh2jh(this_bh))
2256 			ext3_journal_dirty_metadata(handle, this_bh);
2257 		else
2258 			ext3_error(inode->i_sb, "ext3_free_data",
2259 				   "circular indirect block detected, "
2260 				   "inode=%lu, block=%llu",
2261 				   inode->i_ino,
2262 				   (unsigned long long)this_bh->b_blocknr);
2263 	}
2264 }
2265 
2266 /**
2267  *	ext3_free_branches - free an array of branches
2268  *	@handle: JBD handle for this transaction
2269  *	@inode:	inode we are dealing with
2270  *	@parent_bh: the buffer_head which contains *@first and *@last
2271  *	@first:	array of block numbers
2272  *	@last:	pointer immediately past the end of array
2273  *	@depth:	depth of the branches to free
2274  *
2275  *	We are freeing all blocks referred from these branches (numbers are
2276  *	stored as little-endian 32-bit) and updating @inode->i_blocks
2277  *	appropriately.
2278  */
ext3_free_branches(handle_t * handle,struct inode * inode,struct buffer_head * parent_bh,__le32 * first,__le32 * last,int depth)2279 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2280 			       struct buffer_head *parent_bh,
2281 			       __le32 *first, __le32 *last, int depth)
2282 {
2283 	ext3_fsblk_t nr;
2284 	__le32 *p;
2285 
2286 	if (is_handle_aborted(handle))
2287 		return;
2288 
2289 	if (depth--) {
2290 		struct buffer_head *bh;
2291 		int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2292 		p = last;
2293 		while (--p >= first) {
2294 			nr = le32_to_cpu(*p);
2295 			if (!nr)
2296 				continue;		/* A hole */
2297 
2298 			/* Go read the buffer for the next level down */
2299 			bh = sb_bread(inode->i_sb, nr);
2300 
2301 			/*
2302 			 * A read failure? Report error and clear slot
2303 			 * (should be rare).
2304 			 */
2305 			if (!bh) {
2306 				ext3_error(inode->i_sb, "ext3_free_branches",
2307 					   "Read failure, inode=%lu, block="E3FSBLK,
2308 					   inode->i_ino, nr);
2309 				continue;
2310 			}
2311 
2312 			/* This zaps the entire block.  Bottom up. */
2313 			BUFFER_TRACE(bh, "free child branches");
2314 			ext3_free_branches(handle, inode, bh,
2315 					   (__le32*)bh->b_data,
2316 					   (__le32*)bh->b_data + addr_per_block,
2317 					   depth);
2318 
2319 			/*
2320 			 * Everything below this this pointer has been
2321 			 * released.  Now let this top-of-subtree go.
2322 			 *
2323 			 * We want the freeing of this indirect block to be
2324 			 * atomic in the journal with the updating of the
2325 			 * bitmap block which owns it.  So make some room in
2326 			 * the journal.
2327 			 *
2328 			 * We zero the parent pointer *after* freeing its
2329 			 * pointee in the bitmaps, so if extend_transaction()
2330 			 * for some reason fails to put the bitmap changes and
2331 			 * the release into the same transaction, recovery
2332 			 * will merely complain about releasing a free block,
2333 			 * rather than leaking blocks.
2334 			 */
2335 			if (is_handle_aborted(handle))
2336 				return;
2337 			if (try_to_extend_transaction(handle, inode)) {
2338 				ext3_mark_inode_dirty(handle, inode);
2339 				truncate_restart_transaction(handle, inode);
2340 			}
2341 
2342 			/*
2343 			 * We've probably journalled the indirect block several
2344 			 * times during the truncate.  But it's no longer
2345 			 * needed and we now drop it from the transaction via
2346 			 * journal_revoke().
2347 			 *
2348 			 * That's easy if it's exclusively part of this
2349 			 * transaction.  But if it's part of the committing
2350 			 * transaction then journal_forget() will simply
2351 			 * brelse() it.  That means that if the underlying
2352 			 * block is reallocated in ext3_get_block(),
2353 			 * unmap_underlying_metadata() will find this block
2354 			 * and will try to get rid of it.  damn, damn. Thus
2355 			 * we don't allow a block to be reallocated until
2356 			 * a transaction freeing it has fully committed.
2357 			 *
2358 			 * We also have to make sure journal replay after a
2359 			 * crash does not overwrite non-journaled data blocks
2360 			 * with old metadata when the block got reallocated for
2361 			 * data.  Thus we have to store a revoke record for a
2362 			 * block in the same transaction in which we free the
2363 			 * block.
2364 			 */
2365 			ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2366 
2367 			ext3_free_blocks(handle, inode, nr, 1);
2368 
2369 			if (parent_bh) {
2370 				/*
2371 				 * The block which we have just freed is
2372 				 * pointed to by an indirect block: journal it
2373 				 */
2374 				BUFFER_TRACE(parent_bh, "get_write_access");
2375 				if (!ext3_journal_get_write_access(handle,
2376 								   parent_bh)){
2377 					*p = 0;
2378 					BUFFER_TRACE(parent_bh,
2379 					"call ext3_journal_dirty_metadata");
2380 					ext3_journal_dirty_metadata(handle,
2381 								    parent_bh);
2382 				}
2383 			}
2384 		}
2385 	} else {
2386 		/* We have reached the bottom of the tree. */
2387 		BUFFER_TRACE(parent_bh, "free data blocks");
2388 		ext3_free_data(handle, inode, parent_bh, first, last);
2389 	}
2390 }
2391 
ext3_can_truncate(struct inode * inode)2392 int ext3_can_truncate(struct inode *inode)
2393 {
2394 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2395 		return 0;
2396 	if (S_ISREG(inode->i_mode))
2397 		return 1;
2398 	if (S_ISDIR(inode->i_mode))
2399 		return 1;
2400 	if (S_ISLNK(inode->i_mode))
2401 		return !ext3_inode_is_fast_symlink(inode);
2402 	return 0;
2403 }
2404 
2405 /*
2406  * ext3_truncate()
2407  *
2408  * We block out ext3_get_block() block instantiations across the entire
2409  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2410  * simultaneously on behalf of the same inode.
2411  *
2412  * As we work through the truncate and commmit bits of it to the journal there
2413  * is one core, guiding principle: the file's tree must always be consistent on
2414  * disk.  We must be able to restart the truncate after a crash.
2415  *
2416  * The file's tree may be transiently inconsistent in memory (although it
2417  * probably isn't), but whenever we close off and commit a journal transaction,
2418  * the contents of (the filesystem + the journal) must be consistent and
2419  * restartable.  It's pretty simple, really: bottom up, right to left (although
2420  * left-to-right works OK too).
2421  *
2422  * Note that at recovery time, journal replay occurs *before* the restart of
2423  * truncate against the orphan inode list.
2424  *
2425  * The committed inode has the new, desired i_size (which is the same as
2426  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2427  * that this inode's truncate did not complete and it will again call
2428  * ext3_truncate() to have another go.  So there will be instantiated blocks
2429  * to the right of the truncation point in a crashed ext3 filesystem.  But
2430  * that's fine - as long as they are linked from the inode, the post-crash
2431  * ext3_truncate() run will find them and release them.
2432  */
ext3_truncate(struct inode * inode)2433 void ext3_truncate(struct inode *inode)
2434 {
2435 	handle_t *handle;
2436 	struct ext3_inode_info *ei = EXT3_I(inode);
2437 	__le32 *i_data = ei->i_data;
2438 	int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2439 	struct address_space *mapping = inode->i_mapping;
2440 	int offsets[4];
2441 	Indirect chain[4];
2442 	Indirect *partial;
2443 	__le32 nr = 0;
2444 	int n;
2445 	long last_block;
2446 	unsigned blocksize = inode->i_sb->s_blocksize;
2447 	struct page *page;
2448 
2449 	if (!ext3_can_truncate(inode))
2450 		goto out_notrans;
2451 
2452 	if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2453 		ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2454 
2455 	/*
2456 	 * We have to lock the EOF page here, because lock_page() nests
2457 	 * outside journal_start().
2458 	 */
2459 	if ((inode->i_size & (blocksize - 1)) == 0) {
2460 		/* Block boundary? Nothing to do */
2461 		page = NULL;
2462 	} else {
2463 		page = grab_cache_page(mapping,
2464 				inode->i_size >> PAGE_CACHE_SHIFT);
2465 		if (!page)
2466 			goto out_notrans;
2467 	}
2468 
2469 	handle = start_transaction(inode);
2470 	if (IS_ERR(handle)) {
2471 		if (page) {
2472 			clear_highpage(page);
2473 			flush_dcache_page(page);
2474 			unlock_page(page);
2475 			page_cache_release(page);
2476 		}
2477 		goto out_notrans;
2478 	}
2479 
2480 	last_block = (inode->i_size + blocksize-1)
2481 					>> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2482 
2483 	if (page)
2484 		ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2485 
2486 	n = ext3_block_to_path(inode, last_block, offsets, NULL);
2487 	if (n == 0)
2488 		goto out_stop;	/* error */
2489 
2490 	/*
2491 	 * OK.  This truncate is going to happen.  We add the inode to the
2492 	 * orphan list, so that if this truncate spans multiple transactions,
2493 	 * and we crash, we will resume the truncate when the filesystem
2494 	 * recovers.  It also marks the inode dirty, to catch the new size.
2495 	 *
2496 	 * Implication: the file must always be in a sane, consistent
2497 	 * truncatable state while each transaction commits.
2498 	 */
2499 	if (ext3_orphan_add(handle, inode))
2500 		goto out_stop;
2501 
2502 	/*
2503 	 * The orphan list entry will now protect us from any crash which
2504 	 * occurs before the truncate completes, so it is now safe to propagate
2505 	 * the new, shorter inode size (held for now in i_size) into the
2506 	 * on-disk inode. We do this via i_disksize, which is the value which
2507 	 * ext3 *really* writes onto the disk inode.
2508 	 */
2509 	ei->i_disksize = inode->i_size;
2510 
2511 	/*
2512 	 * From here we block out all ext3_get_block() callers who want to
2513 	 * modify the block allocation tree.
2514 	 */
2515 	mutex_lock(&ei->truncate_mutex);
2516 
2517 	if (n == 1) {		/* direct blocks */
2518 		ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2519 			       i_data + EXT3_NDIR_BLOCKS);
2520 		goto do_indirects;
2521 	}
2522 
2523 	partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2524 	/* Kill the top of shared branch (not detached) */
2525 	if (nr) {
2526 		if (partial == chain) {
2527 			/* Shared branch grows from the inode */
2528 			ext3_free_branches(handle, inode, NULL,
2529 					   &nr, &nr+1, (chain+n-1) - partial);
2530 			*partial->p = 0;
2531 			/*
2532 			 * We mark the inode dirty prior to restart,
2533 			 * and prior to stop.  No need for it here.
2534 			 */
2535 		} else {
2536 			/* Shared branch grows from an indirect block */
2537 			ext3_free_branches(handle, inode, partial->bh,
2538 					partial->p,
2539 					partial->p+1, (chain+n-1) - partial);
2540 		}
2541 	}
2542 	/* Clear the ends of indirect blocks on the shared branch */
2543 	while (partial > chain) {
2544 		ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2545 				   (__le32*)partial->bh->b_data+addr_per_block,
2546 				   (chain+n-1) - partial);
2547 		BUFFER_TRACE(partial->bh, "call brelse");
2548 		brelse (partial->bh);
2549 		partial--;
2550 	}
2551 do_indirects:
2552 	/* Kill the remaining (whole) subtrees */
2553 	switch (offsets[0]) {
2554 	default:
2555 		nr = i_data[EXT3_IND_BLOCK];
2556 		if (nr) {
2557 			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2558 			i_data[EXT3_IND_BLOCK] = 0;
2559 		}
2560 	case EXT3_IND_BLOCK:
2561 		nr = i_data[EXT3_DIND_BLOCK];
2562 		if (nr) {
2563 			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2564 			i_data[EXT3_DIND_BLOCK] = 0;
2565 		}
2566 	case EXT3_DIND_BLOCK:
2567 		nr = i_data[EXT3_TIND_BLOCK];
2568 		if (nr) {
2569 			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2570 			i_data[EXT3_TIND_BLOCK] = 0;
2571 		}
2572 	case EXT3_TIND_BLOCK:
2573 		;
2574 	}
2575 
2576 	ext3_discard_reservation(inode);
2577 
2578 	mutex_unlock(&ei->truncate_mutex);
2579 	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2580 	ext3_mark_inode_dirty(handle, inode);
2581 
2582 	/*
2583 	 * In a multi-transaction truncate, we only make the final transaction
2584 	 * synchronous
2585 	 */
2586 	if (IS_SYNC(inode))
2587 		handle->h_sync = 1;
2588 out_stop:
2589 	/*
2590 	 * If this was a simple ftruncate(), and the file will remain alive
2591 	 * then we need to clear up the orphan record which we created above.
2592 	 * However, if this was a real unlink then we were called by
2593 	 * ext3_evict_inode(), and we allow that function to clean up the
2594 	 * orphan info for us.
2595 	 */
2596 	if (inode->i_nlink)
2597 		ext3_orphan_del(handle, inode);
2598 
2599 	ext3_journal_stop(handle);
2600 	return;
2601 out_notrans:
2602 	/*
2603 	 * Delete the inode from orphan list so that it doesn't stay there
2604 	 * forever and trigger assertion on umount.
2605 	 */
2606 	if (inode->i_nlink)
2607 		ext3_orphan_del(NULL, inode);
2608 }
2609 
ext3_get_inode_block(struct super_block * sb,unsigned long ino,struct ext3_iloc * iloc)2610 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2611 		unsigned long ino, struct ext3_iloc *iloc)
2612 {
2613 	unsigned long block_group;
2614 	unsigned long offset;
2615 	ext3_fsblk_t block;
2616 	struct ext3_group_desc *gdp;
2617 
2618 	if (!ext3_valid_inum(sb, ino)) {
2619 		/*
2620 		 * This error is already checked for in namei.c unless we are
2621 		 * looking at an NFS filehandle, in which case no error
2622 		 * report is needed
2623 		 */
2624 		return 0;
2625 	}
2626 
2627 	block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2628 	gdp = ext3_get_group_desc(sb, block_group, NULL);
2629 	if (!gdp)
2630 		return 0;
2631 	/*
2632 	 * Figure out the offset within the block group inode table
2633 	 */
2634 	offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2635 		EXT3_INODE_SIZE(sb);
2636 	block = le32_to_cpu(gdp->bg_inode_table) +
2637 		(offset >> EXT3_BLOCK_SIZE_BITS(sb));
2638 
2639 	iloc->block_group = block_group;
2640 	iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2641 	return block;
2642 }
2643 
2644 /*
2645  * ext3_get_inode_loc returns with an extra refcount against the inode's
2646  * underlying buffer_head on success. If 'in_mem' is true, we have all
2647  * data in memory that is needed to recreate the on-disk version of this
2648  * inode.
2649  */
__ext3_get_inode_loc(struct inode * inode,struct ext3_iloc * iloc,int in_mem)2650 static int __ext3_get_inode_loc(struct inode *inode,
2651 				struct ext3_iloc *iloc, int in_mem)
2652 {
2653 	ext3_fsblk_t block;
2654 	struct buffer_head *bh;
2655 
2656 	block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2657 	if (!block)
2658 		return -EIO;
2659 
2660 	bh = sb_getblk(inode->i_sb, block);
2661 	if (!bh) {
2662 		ext3_error (inode->i_sb, "ext3_get_inode_loc",
2663 				"unable to read inode block - "
2664 				"inode=%lu, block="E3FSBLK,
2665 				 inode->i_ino, block);
2666 		return -EIO;
2667 	}
2668 	if (!buffer_uptodate(bh)) {
2669 		lock_buffer(bh);
2670 
2671 		/*
2672 		 * If the buffer has the write error flag, we have failed
2673 		 * to write out another inode in the same block.  In this
2674 		 * case, we don't have to read the block because we may
2675 		 * read the old inode data successfully.
2676 		 */
2677 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2678 			set_buffer_uptodate(bh);
2679 
2680 		if (buffer_uptodate(bh)) {
2681 			/* someone brought it uptodate while we waited */
2682 			unlock_buffer(bh);
2683 			goto has_buffer;
2684 		}
2685 
2686 		/*
2687 		 * If we have all information of the inode in memory and this
2688 		 * is the only valid inode in the block, we need not read the
2689 		 * block.
2690 		 */
2691 		if (in_mem) {
2692 			struct buffer_head *bitmap_bh;
2693 			struct ext3_group_desc *desc;
2694 			int inodes_per_buffer;
2695 			int inode_offset, i;
2696 			int block_group;
2697 			int start;
2698 
2699 			block_group = (inode->i_ino - 1) /
2700 					EXT3_INODES_PER_GROUP(inode->i_sb);
2701 			inodes_per_buffer = bh->b_size /
2702 				EXT3_INODE_SIZE(inode->i_sb);
2703 			inode_offset = ((inode->i_ino - 1) %
2704 					EXT3_INODES_PER_GROUP(inode->i_sb));
2705 			start = inode_offset & ~(inodes_per_buffer - 1);
2706 
2707 			/* Is the inode bitmap in cache? */
2708 			desc = ext3_get_group_desc(inode->i_sb,
2709 						block_group, NULL);
2710 			if (!desc)
2711 				goto make_io;
2712 
2713 			bitmap_bh = sb_getblk(inode->i_sb,
2714 					le32_to_cpu(desc->bg_inode_bitmap));
2715 			if (!bitmap_bh)
2716 				goto make_io;
2717 
2718 			/*
2719 			 * If the inode bitmap isn't in cache then the
2720 			 * optimisation may end up performing two reads instead
2721 			 * of one, so skip it.
2722 			 */
2723 			if (!buffer_uptodate(bitmap_bh)) {
2724 				brelse(bitmap_bh);
2725 				goto make_io;
2726 			}
2727 			for (i = start; i < start + inodes_per_buffer; i++) {
2728 				if (i == inode_offset)
2729 					continue;
2730 				if (ext3_test_bit(i, bitmap_bh->b_data))
2731 					break;
2732 			}
2733 			brelse(bitmap_bh);
2734 			if (i == start + inodes_per_buffer) {
2735 				/* all other inodes are free, so skip I/O */
2736 				memset(bh->b_data, 0, bh->b_size);
2737 				set_buffer_uptodate(bh);
2738 				unlock_buffer(bh);
2739 				goto has_buffer;
2740 			}
2741 		}
2742 
2743 make_io:
2744 		/*
2745 		 * There are other valid inodes in the buffer, this inode
2746 		 * has in-inode xattrs, or we don't have this inode in memory.
2747 		 * Read the block from disk.
2748 		 */
2749 		get_bh(bh);
2750 		bh->b_end_io = end_buffer_read_sync;
2751 		submit_bh(READ_META, bh);
2752 		wait_on_buffer(bh);
2753 		if (!buffer_uptodate(bh)) {
2754 			ext3_error(inode->i_sb, "ext3_get_inode_loc",
2755 					"unable to read inode block - "
2756 					"inode=%lu, block="E3FSBLK,
2757 					inode->i_ino, block);
2758 			brelse(bh);
2759 			return -EIO;
2760 		}
2761 	}
2762 has_buffer:
2763 	iloc->bh = bh;
2764 	return 0;
2765 }
2766 
ext3_get_inode_loc(struct inode * inode,struct ext3_iloc * iloc)2767 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2768 {
2769 	/* We have all inode data except xattrs in memory here. */
2770 	return __ext3_get_inode_loc(inode, iloc,
2771 		!ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2772 }
2773 
ext3_set_inode_flags(struct inode * inode)2774 void ext3_set_inode_flags(struct inode *inode)
2775 {
2776 	unsigned int flags = EXT3_I(inode)->i_flags;
2777 
2778 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2779 	if (flags & EXT3_SYNC_FL)
2780 		inode->i_flags |= S_SYNC;
2781 	if (flags & EXT3_APPEND_FL)
2782 		inode->i_flags |= S_APPEND;
2783 	if (flags & EXT3_IMMUTABLE_FL)
2784 		inode->i_flags |= S_IMMUTABLE;
2785 	if (flags & EXT3_NOATIME_FL)
2786 		inode->i_flags |= S_NOATIME;
2787 	if (flags & EXT3_DIRSYNC_FL)
2788 		inode->i_flags |= S_DIRSYNC;
2789 }
2790 
2791 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
ext3_get_inode_flags(struct ext3_inode_info * ei)2792 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2793 {
2794 	unsigned int flags = ei->vfs_inode.i_flags;
2795 
2796 	ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2797 			EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2798 	if (flags & S_SYNC)
2799 		ei->i_flags |= EXT3_SYNC_FL;
2800 	if (flags & S_APPEND)
2801 		ei->i_flags |= EXT3_APPEND_FL;
2802 	if (flags & S_IMMUTABLE)
2803 		ei->i_flags |= EXT3_IMMUTABLE_FL;
2804 	if (flags & S_NOATIME)
2805 		ei->i_flags |= EXT3_NOATIME_FL;
2806 	if (flags & S_DIRSYNC)
2807 		ei->i_flags |= EXT3_DIRSYNC_FL;
2808 }
2809 
ext3_iget(struct super_block * sb,unsigned long ino)2810 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2811 {
2812 	struct ext3_iloc iloc;
2813 	struct ext3_inode *raw_inode;
2814 	struct ext3_inode_info *ei;
2815 	struct buffer_head *bh;
2816 	struct inode *inode;
2817 	journal_t *journal = EXT3_SB(sb)->s_journal;
2818 	transaction_t *transaction;
2819 	long ret;
2820 	int block;
2821 
2822 	inode = iget_locked(sb, ino);
2823 	if (!inode)
2824 		return ERR_PTR(-ENOMEM);
2825 	if (!(inode->i_state & I_NEW))
2826 		return inode;
2827 
2828 	ei = EXT3_I(inode);
2829 	ei->i_block_alloc_info = NULL;
2830 
2831 	ret = __ext3_get_inode_loc(inode, &iloc, 0);
2832 	if (ret < 0)
2833 		goto bad_inode;
2834 	bh = iloc.bh;
2835 	raw_inode = ext3_raw_inode(&iloc);
2836 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2837 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2838 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2839 	if(!(test_opt (inode->i_sb, NO_UID32))) {
2840 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2841 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2842 	}
2843 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2844 	inode->i_size = le32_to_cpu(raw_inode->i_size);
2845 	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2846 	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2847 	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2848 	inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2849 
2850 	ei->i_state_flags = 0;
2851 	ei->i_dir_start_lookup = 0;
2852 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2853 	/* We now have enough fields to check if the inode was active or not.
2854 	 * This is needed because nfsd might try to access dead inodes
2855 	 * the test is that same one that e2fsck uses
2856 	 * NeilBrown 1999oct15
2857 	 */
2858 	if (inode->i_nlink == 0) {
2859 		if (inode->i_mode == 0 ||
2860 		    !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2861 			/* this inode is deleted */
2862 			brelse (bh);
2863 			ret = -ESTALE;
2864 			goto bad_inode;
2865 		}
2866 		/* The only unlinked inodes we let through here have
2867 		 * valid i_mode and are being read by the orphan
2868 		 * recovery code: that's fine, we're about to complete
2869 		 * the process of deleting those. */
2870 	}
2871 	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2872 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2873 #ifdef EXT3_FRAGMENTS
2874 	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2875 	ei->i_frag_no = raw_inode->i_frag;
2876 	ei->i_frag_size = raw_inode->i_fsize;
2877 #endif
2878 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2879 	if (!S_ISREG(inode->i_mode)) {
2880 		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2881 	} else {
2882 		inode->i_size |=
2883 			((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2884 	}
2885 	ei->i_disksize = inode->i_size;
2886 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2887 	ei->i_block_group = iloc.block_group;
2888 	/*
2889 	 * NOTE! The in-memory inode i_data array is in little-endian order
2890 	 * even on big-endian machines: we do NOT byteswap the block numbers!
2891 	 */
2892 	for (block = 0; block < EXT3_N_BLOCKS; block++)
2893 		ei->i_data[block] = raw_inode->i_block[block];
2894 	INIT_LIST_HEAD(&ei->i_orphan);
2895 
2896 	/*
2897 	 * Set transaction id's of transactions that have to be committed
2898 	 * to finish f[data]sync. We set them to currently running transaction
2899 	 * as we cannot be sure that the inode or some of its metadata isn't
2900 	 * part of the transaction - the inode could have been reclaimed and
2901 	 * now it is reread from disk.
2902 	 */
2903 	if (journal) {
2904 		tid_t tid;
2905 
2906 		spin_lock(&journal->j_state_lock);
2907 		if (journal->j_running_transaction)
2908 			transaction = journal->j_running_transaction;
2909 		else
2910 			transaction = journal->j_committing_transaction;
2911 		if (transaction)
2912 			tid = transaction->t_tid;
2913 		else
2914 			tid = journal->j_commit_sequence;
2915 		spin_unlock(&journal->j_state_lock);
2916 		atomic_set(&ei->i_sync_tid, tid);
2917 		atomic_set(&ei->i_datasync_tid, tid);
2918 	}
2919 
2920 	if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2921 	    EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2922 		/*
2923 		 * When mke2fs creates big inodes it does not zero out
2924 		 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2925 		 * so ignore those first few inodes.
2926 		 */
2927 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2928 		if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2929 		    EXT3_INODE_SIZE(inode->i_sb)) {
2930 			brelse (bh);
2931 			ret = -EIO;
2932 			goto bad_inode;
2933 		}
2934 		if (ei->i_extra_isize == 0) {
2935 			/* The extra space is currently unused. Use it. */
2936 			ei->i_extra_isize = sizeof(struct ext3_inode) -
2937 					    EXT3_GOOD_OLD_INODE_SIZE;
2938 		} else {
2939 			__le32 *magic = (void *)raw_inode +
2940 					EXT3_GOOD_OLD_INODE_SIZE +
2941 					ei->i_extra_isize;
2942 			if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2943 				 ext3_set_inode_state(inode, EXT3_STATE_XATTR);
2944 		}
2945 	} else
2946 		ei->i_extra_isize = 0;
2947 
2948 	if (S_ISREG(inode->i_mode)) {
2949 		inode->i_op = &ext3_file_inode_operations;
2950 		inode->i_fop = &ext3_file_operations;
2951 		ext3_set_aops(inode);
2952 	} else if (S_ISDIR(inode->i_mode)) {
2953 		inode->i_op = &ext3_dir_inode_operations;
2954 		inode->i_fop = &ext3_dir_operations;
2955 	} else if (S_ISLNK(inode->i_mode)) {
2956 		if (ext3_inode_is_fast_symlink(inode)) {
2957 			inode->i_op = &ext3_fast_symlink_inode_operations;
2958 			nd_terminate_link(ei->i_data, inode->i_size,
2959 				sizeof(ei->i_data) - 1);
2960 		} else {
2961 			inode->i_op = &ext3_symlink_inode_operations;
2962 			ext3_set_aops(inode);
2963 		}
2964 	} else {
2965 		inode->i_op = &ext3_special_inode_operations;
2966 		if (raw_inode->i_block[0])
2967 			init_special_inode(inode, inode->i_mode,
2968 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2969 		else
2970 			init_special_inode(inode, inode->i_mode,
2971 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2972 	}
2973 	brelse (iloc.bh);
2974 	ext3_set_inode_flags(inode);
2975 	unlock_new_inode(inode);
2976 	return inode;
2977 
2978 bad_inode:
2979 	iget_failed(inode);
2980 	return ERR_PTR(ret);
2981 }
2982 
2983 /*
2984  * Post the struct inode info into an on-disk inode location in the
2985  * buffer-cache.  This gobbles the caller's reference to the
2986  * buffer_head in the inode location struct.
2987  *
2988  * The caller must have write access to iloc->bh.
2989  */
ext3_do_update_inode(handle_t * handle,struct inode * inode,struct ext3_iloc * iloc)2990 static int ext3_do_update_inode(handle_t *handle,
2991 				struct inode *inode,
2992 				struct ext3_iloc *iloc)
2993 {
2994 	struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2995 	struct ext3_inode_info *ei = EXT3_I(inode);
2996 	struct buffer_head *bh = iloc->bh;
2997 	int err = 0, rc, block;
2998 
2999 again:
3000 	/* we can't allow multiple procs in here at once, its a bit racey */
3001 	lock_buffer(bh);
3002 
3003 	/* For fields not not tracking in the in-memory inode,
3004 	 * initialise them to zero for new inodes. */
3005 	if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3006 		memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3007 
3008 	ext3_get_inode_flags(ei);
3009 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3010 	if(!(test_opt(inode->i_sb, NO_UID32))) {
3011 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3012 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3013 /*
3014  * Fix up interoperability with old kernels. Otherwise, old inodes get
3015  * re-used with the upper 16 bits of the uid/gid intact
3016  */
3017 		if(!ei->i_dtime) {
3018 			raw_inode->i_uid_high =
3019 				cpu_to_le16(high_16_bits(inode->i_uid));
3020 			raw_inode->i_gid_high =
3021 				cpu_to_le16(high_16_bits(inode->i_gid));
3022 		} else {
3023 			raw_inode->i_uid_high = 0;
3024 			raw_inode->i_gid_high = 0;
3025 		}
3026 	} else {
3027 		raw_inode->i_uid_low =
3028 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
3029 		raw_inode->i_gid_low =
3030 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
3031 		raw_inode->i_uid_high = 0;
3032 		raw_inode->i_gid_high = 0;
3033 	}
3034 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3035 	raw_inode->i_size = cpu_to_le32(ei->i_disksize);
3036 	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3037 	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3038 	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3039 	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3040 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3041 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3042 #ifdef EXT3_FRAGMENTS
3043 	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3044 	raw_inode->i_frag = ei->i_frag_no;
3045 	raw_inode->i_fsize = ei->i_frag_size;
3046 #endif
3047 	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3048 	if (!S_ISREG(inode->i_mode)) {
3049 		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3050 	} else {
3051 		raw_inode->i_size_high =
3052 			cpu_to_le32(ei->i_disksize >> 32);
3053 		if (ei->i_disksize > 0x7fffffffULL) {
3054 			struct super_block *sb = inode->i_sb;
3055 			if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3056 					EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3057 			    EXT3_SB(sb)->s_es->s_rev_level ==
3058 					cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3059 			       /* If this is the first large file
3060 				* created, add a flag to the superblock.
3061 				*/
3062 				unlock_buffer(bh);
3063 				err = ext3_journal_get_write_access(handle,
3064 						EXT3_SB(sb)->s_sbh);
3065 				if (err)
3066 					goto out_brelse;
3067 
3068 				ext3_update_dynamic_rev(sb);
3069 				EXT3_SET_RO_COMPAT_FEATURE(sb,
3070 					EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3071 				handle->h_sync = 1;
3072 				err = ext3_journal_dirty_metadata(handle,
3073 						EXT3_SB(sb)->s_sbh);
3074 				/* get our lock and start over */
3075 				goto again;
3076 			}
3077 		}
3078 	}
3079 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3080 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3081 		if (old_valid_dev(inode->i_rdev)) {
3082 			raw_inode->i_block[0] =
3083 				cpu_to_le32(old_encode_dev(inode->i_rdev));
3084 			raw_inode->i_block[1] = 0;
3085 		} else {
3086 			raw_inode->i_block[0] = 0;
3087 			raw_inode->i_block[1] =
3088 				cpu_to_le32(new_encode_dev(inode->i_rdev));
3089 			raw_inode->i_block[2] = 0;
3090 		}
3091 	} else for (block = 0; block < EXT3_N_BLOCKS; block++)
3092 		raw_inode->i_block[block] = ei->i_data[block];
3093 
3094 	if (ei->i_extra_isize)
3095 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3096 
3097 	BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3098 	unlock_buffer(bh);
3099 	rc = ext3_journal_dirty_metadata(handle, bh);
3100 	if (!err)
3101 		err = rc;
3102 	ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3103 
3104 	atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3105 out_brelse:
3106 	brelse (bh);
3107 	ext3_std_error(inode->i_sb, err);
3108 	return err;
3109 }
3110 
3111 /*
3112  * ext3_write_inode()
3113  *
3114  * We are called from a few places:
3115  *
3116  * - Within generic_file_write() for O_SYNC files.
3117  *   Here, there will be no transaction running. We wait for any running
3118  *   trasnaction to commit.
3119  *
3120  * - Within sys_sync(), kupdate and such.
3121  *   We wait on commit, if tol to.
3122  *
3123  * - Within prune_icache() (PF_MEMALLOC == true)
3124  *   Here we simply return.  We can't afford to block kswapd on the
3125  *   journal commit.
3126  *
3127  * In all cases it is actually safe for us to return without doing anything,
3128  * because the inode has been copied into a raw inode buffer in
3129  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3130  * knfsd.
3131  *
3132  * Note that we are absolutely dependent upon all inode dirtiers doing the
3133  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3134  * which we are interested.
3135  *
3136  * It would be a bug for them to not do this.  The code:
3137  *
3138  *	mark_inode_dirty(inode)
3139  *	stuff();
3140  *	inode->i_size = expr;
3141  *
3142  * is in error because a kswapd-driven write_inode() could occur while
3143  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3144  * will no longer be on the superblock's dirty inode list.
3145  */
ext3_write_inode(struct inode * inode,struct writeback_control * wbc)3146 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3147 {
3148 	if (current->flags & PF_MEMALLOC)
3149 		return 0;
3150 
3151 	if (ext3_journal_current_handle()) {
3152 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3153 		dump_stack();
3154 		return -EIO;
3155 	}
3156 
3157 	if (wbc->sync_mode != WB_SYNC_ALL)
3158 		return 0;
3159 
3160 	return ext3_force_commit(inode->i_sb);
3161 }
3162 
3163 /*
3164  * ext3_setattr()
3165  *
3166  * Called from notify_change.
3167  *
3168  * We want to trap VFS attempts to truncate the file as soon as
3169  * possible.  In particular, we want to make sure that when the VFS
3170  * shrinks i_size, we put the inode on the orphan list and modify
3171  * i_disksize immediately, so that during the subsequent flushing of
3172  * dirty pages and freeing of disk blocks, we can guarantee that any
3173  * commit will leave the blocks being flushed in an unused state on
3174  * disk.  (On recovery, the inode will get truncated and the blocks will
3175  * be freed, so we have a strong guarantee that no future commit will
3176  * leave these blocks visible to the user.)
3177  *
3178  * Called with inode->sem down.
3179  */
ext3_setattr(struct dentry * dentry,struct iattr * attr)3180 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3181 {
3182 	struct inode *inode = dentry->d_inode;
3183 	int error, rc = 0;
3184 	const unsigned int ia_valid = attr->ia_valid;
3185 
3186 	error = inode_change_ok(inode, attr);
3187 	if (error)
3188 		return error;
3189 
3190 	if (is_quota_modification(inode, attr))
3191 		dquot_initialize(inode);
3192 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3193 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3194 		handle_t *handle;
3195 
3196 		/* (user+group)*(old+new) structure, inode write (sb,
3197 		 * inode block, ? - but truncate inode update has it) */
3198 		handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3199 					EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3200 		if (IS_ERR(handle)) {
3201 			error = PTR_ERR(handle);
3202 			goto err_out;
3203 		}
3204 		error = dquot_transfer(inode, attr);
3205 		if (error) {
3206 			ext3_journal_stop(handle);
3207 			return error;
3208 		}
3209 		/* Update corresponding info in inode so that everything is in
3210 		 * one transaction */
3211 		if (attr->ia_valid & ATTR_UID)
3212 			inode->i_uid = attr->ia_uid;
3213 		if (attr->ia_valid & ATTR_GID)
3214 			inode->i_gid = attr->ia_gid;
3215 		error = ext3_mark_inode_dirty(handle, inode);
3216 		ext3_journal_stop(handle);
3217 	}
3218 
3219 	if (S_ISREG(inode->i_mode) &&
3220 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3221 		handle_t *handle;
3222 
3223 		handle = ext3_journal_start(inode, 3);
3224 		if (IS_ERR(handle)) {
3225 			error = PTR_ERR(handle);
3226 			goto err_out;
3227 		}
3228 
3229 		error = ext3_orphan_add(handle, inode);
3230 		EXT3_I(inode)->i_disksize = attr->ia_size;
3231 		rc = ext3_mark_inode_dirty(handle, inode);
3232 		if (!error)
3233 			error = rc;
3234 		ext3_journal_stop(handle);
3235 	}
3236 
3237 	if ((attr->ia_valid & ATTR_SIZE) &&
3238 	    attr->ia_size != i_size_read(inode)) {
3239 		rc = vmtruncate(inode, attr->ia_size);
3240 		if (rc)
3241 			goto err_out;
3242 	}
3243 
3244 	setattr_copy(inode, attr);
3245 	mark_inode_dirty(inode);
3246 
3247 	if (ia_valid & ATTR_MODE)
3248 		rc = ext3_acl_chmod(inode);
3249 
3250 err_out:
3251 	ext3_std_error(inode->i_sb, error);
3252 	if (!error)
3253 		error = rc;
3254 	return error;
3255 }
3256 
3257 
3258 /*
3259  * How many blocks doth make a writepage()?
3260  *
3261  * With N blocks per page, it may be:
3262  * N data blocks
3263  * 2 indirect block
3264  * 2 dindirect
3265  * 1 tindirect
3266  * N+5 bitmap blocks (from the above)
3267  * N+5 group descriptor summary blocks
3268  * 1 inode block
3269  * 1 superblock.
3270  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3271  *
3272  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3273  *
3274  * With ordered or writeback data it's the same, less the N data blocks.
3275  *
3276  * If the inode's direct blocks can hold an integral number of pages then a
3277  * page cannot straddle two indirect blocks, and we can only touch one indirect
3278  * and dindirect block, and the "5" above becomes "3".
3279  *
3280  * This still overestimates under most circumstances.  If we were to pass the
3281  * start and end offsets in here as well we could do block_to_path() on each
3282  * block and work out the exact number of indirects which are touched.  Pah.
3283  */
3284 
ext3_writepage_trans_blocks(struct inode * inode)3285 static int ext3_writepage_trans_blocks(struct inode *inode)
3286 {
3287 	int bpp = ext3_journal_blocks_per_page(inode);
3288 	int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3289 	int ret;
3290 
3291 	if (ext3_should_journal_data(inode))
3292 		ret = 3 * (bpp + indirects) + 2;
3293 	else
3294 		ret = 2 * (bpp + indirects) + indirects + 2;
3295 
3296 #ifdef CONFIG_QUOTA
3297 	/* We know that structure was already allocated during dquot_initialize so
3298 	 * we will be updating only the data blocks + inodes */
3299 	ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3300 #endif
3301 
3302 	return ret;
3303 }
3304 
3305 /*
3306  * The caller must have previously called ext3_reserve_inode_write().
3307  * Give this, we know that the caller already has write access to iloc->bh.
3308  */
ext3_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext3_iloc * iloc)3309 int ext3_mark_iloc_dirty(handle_t *handle,
3310 		struct inode *inode, struct ext3_iloc *iloc)
3311 {
3312 	int err = 0;
3313 
3314 	/* the do_update_inode consumes one bh->b_count */
3315 	get_bh(iloc->bh);
3316 
3317 	/* ext3_do_update_inode() does journal_dirty_metadata */
3318 	err = ext3_do_update_inode(handle, inode, iloc);
3319 	put_bh(iloc->bh);
3320 	return err;
3321 }
3322 
3323 /*
3324  * On success, We end up with an outstanding reference count against
3325  * iloc->bh.  This _must_ be cleaned up later.
3326  */
3327 
3328 int
ext3_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext3_iloc * iloc)3329 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3330 			 struct ext3_iloc *iloc)
3331 {
3332 	int err = 0;
3333 	if (handle) {
3334 		err = ext3_get_inode_loc(inode, iloc);
3335 		if (!err) {
3336 			BUFFER_TRACE(iloc->bh, "get_write_access");
3337 			err = ext3_journal_get_write_access(handle, iloc->bh);
3338 			if (err) {
3339 				brelse(iloc->bh);
3340 				iloc->bh = NULL;
3341 			}
3342 		}
3343 	}
3344 	ext3_std_error(inode->i_sb, err);
3345 	return err;
3346 }
3347 
3348 /*
3349  * What we do here is to mark the in-core inode as clean with respect to inode
3350  * dirtiness (it may still be data-dirty).
3351  * This means that the in-core inode may be reaped by prune_icache
3352  * without having to perform any I/O.  This is a very good thing,
3353  * because *any* task may call prune_icache - even ones which
3354  * have a transaction open against a different journal.
3355  *
3356  * Is this cheating?  Not really.  Sure, we haven't written the
3357  * inode out, but prune_icache isn't a user-visible syncing function.
3358  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3359  * we start and wait on commits.
3360  *
3361  * Is this efficient/effective?  Well, we're being nice to the system
3362  * by cleaning up our inodes proactively so they can be reaped
3363  * without I/O.  But we are potentially leaving up to five seconds'
3364  * worth of inodes floating about which prune_icache wants us to
3365  * write out.  One way to fix that would be to get prune_icache()
3366  * to do a write_super() to free up some memory.  It has the desired
3367  * effect.
3368  */
ext3_mark_inode_dirty(handle_t * handle,struct inode * inode)3369 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3370 {
3371 	struct ext3_iloc iloc;
3372 	int err;
3373 
3374 	might_sleep();
3375 	err = ext3_reserve_inode_write(handle, inode, &iloc);
3376 	if (!err)
3377 		err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3378 	return err;
3379 }
3380 
3381 /*
3382  * ext3_dirty_inode() is called from __mark_inode_dirty()
3383  *
3384  * We're really interested in the case where a file is being extended.
3385  * i_size has been changed by generic_commit_write() and we thus need
3386  * to include the updated inode in the current transaction.
3387  *
3388  * Also, dquot_alloc_space() will always dirty the inode when blocks
3389  * are allocated to the file.
3390  *
3391  * If the inode is marked synchronous, we don't honour that here - doing
3392  * so would cause a commit on atime updates, which we don't bother doing.
3393  * We handle synchronous inodes at the highest possible level.
3394  */
ext3_dirty_inode(struct inode * inode)3395 void ext3_dirty_inode(struct inode *inode)
3396 {
3397 	handle_t *current_handle = ext3_journal_current_handle();
3398 	handle_t *handle;
3399 
3400 	handle = ext3_journal_start(inode, 2);
3401 	if (IS_ERR(handle))
3402 		goto out;
3403 	if (current_handle &&
3404 		current_handle->h_transaction != handle->h_transaction) {
3405 		/* This task has a transaction open against a different fs */
3406 		printk(KERN_EMERG "%s: transactions do not match!\n",
3407 		       __func__);
3408 	} else {
3409 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
3410 				current_handle);
3411 		ext3_mark_inode_dirty(handle, inode);
3412 	}
3413 	ext3_journal_stop(handle);
3414 out:
3415 	return;
3416 }
3417 
3418 #if 0
3419 /*
3420  * Bind an inode's backing buffer_head into this transaction, to prevent
3421  * it from being flushed to disk early.  Unlike
3422  * ext3_reserve_inode_write, this leaves behind no bh reference and
3423  * returns no iloc structure, so the caller needs to repeat the iloc
3424  * lookup to mark the inode dirty later.
3425  */
3426 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3427 {
3428 	struct ext3_iloc iloc;
3429 
3430 	int err = 0;
3431 	if (handle) {
3432 		err = ext3_get_inode_loc(inode, &iloc);
3433 		if (!err) {
3434 			BUFFER_TRACE(iloc.bh, "get_write_access");
3435 			err = journal_get_write_access(handle, iloc.bh);
3436 			if (!err)
3437 				err = ext3_journal_dirty_metadata(handle,
3438 								  iloc.bh);
3439 			brelse(iloc.bh);
3440 		}
3441 	}
3442 	ext3_std_error(inode->i_sb, err);
3443 	return err;
3444 }
3445 #endif
3446 
ext3_change_inode_journal_flag(struct inode * inode,int val)3447 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3448 {
3449 	journal_t *journal;
3450 	handle_t *handle;
3451 	int err;
3452 
3453 	/*
3454 	 * We have to be very careful here: changing a data block's
3455 	 * journaling status dynamically is dangerous.  If we write a
3456 	 * data block to the journal, change the status and then delete
3457 	 * that block, we risk forgetting to revoke the old log record
3458 	 * from the journal and so a subsequent replay can corrupt data.
3459 	 * So, first we make sure that the journal is empty and that
3460 	 * nobody is changing anything.
3461 	 */
3462 
3463 	journal = EXT3_JOURNAL(inode);
3464 	if (is_journal_aborted(journal))
3465 		return -EROFS;
3466 
3467 	journal_lock_updates(journal);
3468 	journal_flush(journal);
3469 
3470 	/*
3471 	 * OK, there are no updates running now, and all cached data is
3472 	 * synced to disk.  We are now in a completely consistent state
3473 	 * which doesn't have anything in the journal, and we know that
3474 	 * no filesystem updates are running, so it is safe to modify
3475 	 * the inode's in-core data-journaling state flag now.
3476 	 */
3477 
3478 	if (val)
3479 		EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3480 	else
3481 		EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3482 	ext3_set_aops(inode);
3483 
3484 	journal_unlock_updates(journal);
3485 
3486 	/* Finally we can mark the inode as dirty. */
3487 
3488 	handle = ext3_journal_start(inode, 1);
3489 	if (IS_ERR(handle))
3490 		return PTR_ERR(handle);
3491 
3492 	err = ext3_mark_inode_dirty(handle, inode);
3493 	handle->h_sync = 1;
3494 	ext3_journal_stop(handle);
3495 	ext3_std_error(inode->i_sb, err);
3496 
3497 	return err;
3498 }
3499