1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  * 	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  * 	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/fs.h>
26 #include <linux/sched.h>
27 #include <linux/ext3_jbd.h>
28 #include <linux/jbd.h>
29 #include <linux/locks.h>
30 #include <linux/smp_lock.h>
31 #include <linux/highuid.h>
32 #include <linux/quotaops.h>
33 #include <linux/module.h>
34 
35 /*
36  * SEARCH_FROM_ZERO forces each block allocation to search from the start
37  * of the filesystem.  This is to force rapid reallocation of recently-freed
38  * blocks.  The file fragmentation is horrendous.
39  */
40 #undef SEARCH_FROM_ZERO
41 
42 /*
43  * Test whether an inode is a fast symlink.
44  */
ext3_inode_is_fast_symlink(struct inode * inode)45 static inline int ext3_inode_is_fast_symlink(struct inode *inode)
46 {
47 	int ea_blocks = EXT3_I(inode)->i_file_acl ?
48 		(inode->i_sb->s_blocksize >> 9) : 0;
49 
50 	return (S_ISLNK(inode->i_mode) &&
51 		inode->i_blocks - ea_blocks == 0);
52 }
53 
54 /* The ext3 forget function must perform a revoke if we are freeing data
55  * which has been journaled.  Metadata (eg. indirect blocks) must be
56  * revoked in all cases.
57  *
58  * "bh" may be NULL: a metadata block may have been freed from memory
59  * but there may still be a record of it in the journal, and that record
60  * still needs to be revoked.
61  */
62 
ext3_forget(handle_t * handle,int is_metadata,struct inode * inode,struct buffer_head * bh,int blocknr)63 static int ext3_forget(handle_t *handle, int is_metadata,
64 		       struct inode *inode, struct buffer_head *bh,
65 		       int blocknr)
66 {
67 	int err;
68 
69 	BUFFER_TRACE(bh, "enter");
70 
71 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72 		  "data mode %lx\n",
73 		  bh, is_metadata, inode->i_mode,
74 		  test_opt(inode->i_sb, DATA_FLAGS));
75 
76 	/* Never use the revoke function if we are doing full data
77 	 * journaling: there is no need to, and a V1 superblock won't
78 	 * support it.  Otherwise, only skip the revoke on un-journaled
79 	 * data blocks. */
80 
81 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
82 	    (!is_metadata && !ext3_should_journal_data(inode))) {
83 		if (bh) {
84 			BUFFER_TRACE(bh, "call journal_forget");
85 			ext3_journal_forget(handle, bh);
86 		}
87 		return 0;
88 	}
89 
90 	/*
91 	 * data!=journal && (is_metadata || should_journal_data(inode))
92 	 */
93 	BUFFER_TRACE(bh, "call ext3_journal_revoke");
94 	err = ext3_journal_revoke(handle, blocknr, bh);
95 	if (err)
96 		ext3_abort(inode->i_sb, __FUNCTION__,
97 			   "error %d when attempting revoke", err);
98 	BUFFER_TRACE(bh, "exit");
99 	return err;
100 }
101 
102 /*
103  * Work out how many blocks we need to progress with the next chunk of a
104  * truncate transaction.
105  */
106 
blocks_for_truncate(struct inode * inode)107 static unsigned long blocks_for_truncate(struct inode *inode)
108 {
109 	unsigned long needed;
110 
111 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
112 
113 	/* Give ourselves just enough room to cope with inodes in which
114 	 * i_blocks is corrupt: we've seen disk corruptions in the past
115 	 * which resulted in random data in an inode which looked enough
116 	 * like a regular file for ext3 to try to delete it.  Things
117 	 * will go a bit crazy if that happens, but at least we should
118 	 * try not to panic the whole kernel. */
119 	if (needed < 2)
120 		needed = 2;
121 
122 	/* But we need to bound the transaction so we don't overflow the
123 	 * journal. */
124 	if (needed > EXT3_MAX_TRANS_DATA)
125 		needed = EXT3_MAX_TRANS_DATA;
126 
127 	return EXT3_DATA_TRANS_BLOCKS + needed;
128 }
129 
130 /*
131  * Truncate transactions can be complex and absolutely huge.  So we need to
132  * be able to restart the transaction at a conventient checkpoint to make
133  * sure we don't overflow the journal.
134  *
135  * start_transaction gets us a new handle for a truncate transaction,
136  * and extend_transaction tries to extend the existing one a bit.  If
137  * extend fails, we need to propagate the failure up and restart the
138  * transaction in the top-level truncate loop. --sct
139  */
140 
start_transaction(struct inode * inode)141 static handle_t *start_transaction(struct inode *inode)
142 {
143 	handle_t *result;
144 
145 	result = ext3_journal_start(inode, blocks_for_truncate(inode));
146 	if (!IS_ERR(result))
147 		return result;
148 
149 	ext3_std_error(inode->i_sb, PTR_ERR(result));
150 	return result;
151 }
152 
153 /*
154  * Try to extend this transaction for the purposes of truncation.
155  *
156  * Returns 0 if we managed to create more room.  If we can't create more
157  * room, and the transaction must be restarted we return 1.
158  */
try_to_extend_transaction(handle_t * handle,struct inode * inode)159 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
160 {
161 	if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
162 		return 0;
163 	if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
164 		return 0;
165 	return 1;
166 }
167 
168 /*
169  * Restart the transaction associated with *handle.  This does a commit,
170  * so before we call here everything must be consistently dirtied against
171  * this transaction.
172  */
ext3_journal_test_restart(handle_t * handle,struct inode * inode)173 static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
174 {
175 	jbd_debug(2, "restarting handle %p\n", handle);
176 	return ext3_journal_restart(handle, blocks_for_truncate(inode));
177 }
178 
179 /*
180  * Called at each iput()
181  */
ext3_put_inode(struct inode * inode)182 void ext3_put_inode (struct inode * inode)
183 {
184 	ext3_discard_prealloc (inode);
185 }
186 
187 /*
188  * Called at the last iput() if i_nlink is zero.
189  */
ext3_delete_inode(struct inode * inode)190 void ext3_delete_inode (struct inode * inode)
191 {
192 	handle_t *handle;
193 
194 	if (is_bad_inode(inode) ||
195 	    inode->i_ino == EXT3_ACL_IDX_INO ||
196 	    inode->i_ino == EXT3_ACL_DATA_INO)
197 		goto no_delete;
198 
199 	lock_kernel();
200 	handle = start_transaction(inode);
201 	if (IS_ERR(handle)) {
202 		/* If we're going to skip the normal cleanup, we still
203 		 * need to make sure that the in-core orphan linked list
204 		 * is properly cleaned up. */
205 		ext3_orphan_del(NULL, inode);
206 
207 		ext3_std_error(inode->i_sb, PTR_ERR(handle));
208 		unlock_kernel();
209 		goto no_delete;
210 	}
211 
212 	if (IS_SYNC(inode))
213 		handle->h_sync = 1;
214 	inode->i_size = 0;
215 	if (inode->i_blocks)
216 		ext3_truncate(inode);
217 	/*
218 	 * Kill off the orphan record which ext3_truncate created.
219 	 * AKPM: I think this can be inside the above `if'.
220 	 * Note that ext3_orphan_del() has to be able to cope with the
221 	 * deletion of a non-existent orphan - this is because we don't
222 	 * know if ext3_truncate() actually created an orphan record.
223 	 * (Well, we could do this if we need to, but heck - it works)
224 	 */
225 	ext3_orphan_del(handle, inode);
226 	inode->u.ext3_i.i_dtime	= CURRENT_TIME;
227 
228 	/*
229 	 * One subtle ordering requirement: if anything has gone wrong
230 	 * (transaction abort, IO errors, whatever), then we can still
231 	 * do these next steps (the fs will already have been marked as
232 	 * having errors), but we can't free the inode if the mark_dirty
233 	 * fails.
234 	 */
235 	if (ext3_mark_inode_dirty(handle, inode))
236 		/* If that failed, just do the required in-core inode clear. */
237 		clear_inode(inode);
238 	else
239 		ext3_free_inode(handle, inode);
240 	ext3_journal_stop(handle, inode);
241 	unlock_kernel();
242 	return;
243 no_delete:
244 	clear_inode(inode);	/* We must guarantee clearing of inode... */
245 }
246 
ext3_discard_prealloc(struct inode * inode)247 void ext3_discard_prealloc (struct inode * inode)
248 {
249 #ifdef EXT3_PREALLOCATE
250 	lock_kernel();
251 	/* Writer: ->i_prealloc* */
252 	if (inode->u.ext3_i.i_prealloc_count) {
253 		unsigned short total = inode->u.ext3_i.i_prealloc_count;
254 		unsigned long block = inode->u.ext3_i.i_prealloc_block;
255 		inode->u.ext3_i.i_prealloc_count = 0;
256 		inode->u.ext3_i.i_prealloc_block = 0;
257 		/* Writer: end */
258 		ext3_free_blocks (inode, block, total);
259 	}
260 	unlock_kernel();
261 #endif
262 }
263 
ext3_alloc_block(handle_t * handle,struct inode * inode,unsigned long goal,int * err)264 static int ext3_alloc_block (handle_t *handle,
265 			struct inode * inode, unsigned long goal, int *err)
266 {
267 #ifdef EXT3FS_DEBUG
268 	static unsigned long alloc_hits = 0, alloc_attempts = 0;
269 #endif
270 	unsigned long result;
271 
272 #ifdef EXT3_PREALLOCATE
273 	/* Writer: ->i_prealloc* */
274 	if (inode->u.ext3_i.i_prealloc_count &&
275 	    (goal == inode->u.ext3_i.i_prealloc_block ||
276 	     goal + 1 == inode->u.ext3_i.i_prealloc_block))
277 	{
278 		result = inode->u.ext3_i.i_prealloc_block++;
279 		inode->u.ext3_i.i_prealloc_count--;
280 		/* Writer: end */
281 		ext3_debug ("preallocation hit (%lu/%lu).\n",
282 			    ++alloc_hits, ++alloc_attempts);
283 	} else {
284 		ext3_discard_prealloc (inode);
285 		ext3_debug ("preallocation miss (%lu/%lu).\n",
286 			    alloc_hits, ++alloc_attempts);
287 		if (S_ISREG(inode->i_mode))
288 			result = ext3_new_block (inode, goal,
289 				 &inode->u.ext3_i.i_prealloc_count,
290 				 &inode->u.ext3_i.i_prealloc_block, err);
291 		else
292 			result = ext3_new_block (inode, goal, 0, 0, err);
293 		/*
294 		 * AKPM: this is somewhat sticky.  I'm not surprised it was
295 		 * disabled in 2.2's ext3.  Need to integrate b_committed_data
296 		 * guarding with preallocation, if indeed preallocation is
297 		 * effective.
298 		 */
299 	}
300 #else
301 	result = ext3_new_block (handle, inode, goal, 0, 0, err);
302 #endif
303 	return result;
304 }
305 
306 
307 typedef struct {
308 	u32	*p;
309 	u32	key;
310 	struct buffer_head *bh;
311 } Indirect;
312 
add_chain(Indirect * p,struct buffer_head * bh,u32 * v)313 static inline void add_chain(Indirect *p, struct buffer_head *bh, u32 *v)
314 {
315 	p->key = *(p->p = v);
316 	p->bh = bh;
317 }
318 
verify_chain(Indirect * from,Indirect * to)319 static inline int verify_chain(Indirect *from, Indirect *to)
320 {
321 	while (from <= to && from->key == *from->p)
322 		from++;
323 	return (from > to);
324 }
325 
326 /**
327  *	ext3_block_to_path - parse the block number into array of offsets
328  *	@inode: inode in question (we are only interested in its superblock)
329  *	@i_block: block number to be parsed
330  *	@offsets: array to store the offsets in
331  *
332  *	To store the locations of file's data ext3 uses a data structure common
333  *	for UNIX filesystems - tree of pointers anchored in the inode, with
334  *	data blocks at leaves and indirect blocks in intermediate nodes.
335  *	This function translates the block number into path in that tree -
336  *	return value is the path length and @offsets[n] is the offset of
337  *	pointer to (n+1)th node in the nth one. If @block is out of range
338  *	(negative or too large) warning is printed and zero returned.
339  *
340  *	Note: function doesn't find node addresses, so no IO is needed. All
341  *	we need to know is the capacity of indirect blocks (taken from the
342  *	inode->i_sb).
343  */
344 
345 /*
346  * Portability note: the last comparison (check that we fit into triple
347  * indirect block) is spelled differently, because otherwise on an
348  * architecture with 32-bit longs and 8Kb pages we might get into trouble
349  * if our filesystem had 8Kb blocks. We might use long long, but that would
350  * kill us on x86. Oh, well, at least the sign propagation does not matter -
351  * i_block would have to be negative in the very beginning, so we would not
352  * get there at all.
353  */
354 
ext3_block_to_path(struct inode * inode,long i_block,int offsets[4])355 static int ext3_block_to_path(struct inode *inode, long i_block, int offsets[4])
356 {
357 	int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
358 	int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
359 	const long direct_blocks = EXT3_NDIR_BLOCKS,
360 		indirect_blocks = ptrs,
361 		double_blocks = (1 << (ptrs_bits * 2));
362 	int n = 0;
363 
364 	if (i_block < 0) {
365 		ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
366 	} else if (i_block < direct_blocks) {
367 		offsets[n++] = i_block;
368 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
369 		offsets[n++] = EXT3_IND_BLOCK;
370 		offsets[n++] = i_block;
371 	} else if ((i_block -= indirect_blocks) < double_blocks) {
372 		offsets[n++] = EXT3_DIND_BLOCK;
373 		offsets[n++] = i_block >> ptrs_bits;
374 		offsets[n++] = i_block & (ptrs - 1);
375 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
376 		offsets[n++] = EXT3_TIND_BLOCK;
377 		offsets[n++] = i_block >> (ptrs_bits * 2);
378 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
379 		offsets[n++] = i_block & (ptrs - 1);
380 	} else {
381 		ext3_warning (inode->i_sb, "ext3_block_to_path", "block > big");
382 	}
383 	return n;
384 }
385 
386 /**
387  *	ext3_get_branch - read the chain of indirect blocks leading to data
388  *	@inode: inode in question
389  *	@depth: depth of the chain (1 - direct pointer, etc.)
390  *	@offsets: offsets of pointers in inode/indirect blocks
391  *	@chain: place to store the result
392  *	@err: here we store the error value
393  *
394  *	Function fills the array of triples <key, p, bh> and returns %NULL
395  *	if everything went OK or the pointer to the last filled triple
396  *	(incomplete one) otherwise. Upon the return chain[i].key contains
397  *	the number of (i+1)-th block in the chain (as it is stored in memory,
398  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
399  *	number (it points into struct inode for i==0 and into the bh->b_data
400  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
401  *	block for i>0 and NULL for i==0. In other words, it holds the block
402  *	numbers of the chain, addresses they were taken from (and where we can
403  *	verify that chain did not change) and buffer_heads hosting these
404  *	numbers.
405  *
406  *	Function stops when it stumbles upon zero pointer (absent block)
407  *		(pointer to last triple returned, *@err == 0)
408  *	or when it gets an IO error reading an indirect block
409  *		(ditto, *@err == -EIO)
410  *	or when it notices that chain had been changed while it was reading
411  *		(ditto, *@err == -EAGAIN)
412  *	or when it reads all @depth-1 indirect blocks successfully and finds
413  *	the whole chain, all way to the data (returns %NULL, *err == 0).
414  */
ext3_get_branch(struct inode * inode,int depth,int * offsets,Indirect chain[4],int * err)415 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
416 				 Indirect chain[4], int *err)
417 {
418 	struct super_block *sb = inode->i_sb;
419 	Indirect *p = chain;
420 	struct buffer_head *bh;
421 
422 	*err = 0;
423 	/* i_data is not going away, no lock needed */
424 	add_chain (chain, NULL, inode->u.ext3_i.i_data + *offsets);
425 	if (!p->key)
426 		goto no_block;
427 	while (--depth) {
428 		bh = sb_bread(sb, le32_to_cpu(p->key));
429 		if (!bh)
430 			goto failure;
431 		/* Reader: pointers */
432 		if (!verify_chain(chain, p))
433 			goto changed;
434 		add_chain(++p, bh, (u32*)bh->b_data + *++offsets);
435 		/* Reader: end */
436 		if (!p->key)
437 			goto no_block;
438 	}
439 	return NULL;
440 
441 changed:
442 	brelse(bh);
443 	*err = -EAGAIN;
444 	goto no_block;
445 failure:
446 	*err = -EIO;
447 no_block:
448 	return p;
449 }
450 
451 /**
452  *	ext3_find_near - find a place for allocation with sufficient locality
453  *	@inode: owner
454  *	@ind: descriptor of indirect block.
455  *
456  *	This function returns the prefered place for block allocation.
457  *	It is used when heuristic for sequential allocation fails.
458  *	Rules are:
459  *	  + if there is a block to the left of our position - allocate near it.
460  *	  + if pointer will live in indirect block - allocate near that block.
461  *	  + if pointer will live in inode - allocate in the same
462  *	    cylinder group.
463  *	Caller must make sure that @ind is valid and will stay that way.
464  */
465 
ext3_find_near(struct inode * inode,Indirect * ind)466 static inline unsigned long ext3_find_near(struct inode *inode, Indirect *ind)
467 {
468 	u32 *start = ind->bh ? (u32*) ind->bh->b_data : inode->u.ext3_i.i_data;
469 	u32 *p;
470 
471 	/* Try to find previous block */
472 	for (p = ind->p - 1; p >= start; p--)
473 		if (*p)
474 			return le32_to_cpu(*p);
475 
476 	/* No such thing, so let's try location of indirect block */
477 	if (ind->bh)
478 		return ind->bh->b_blocknr;
479 
480 	/*
481 	 * It is going to be refered from inode itself? OK, just put it into
482 	 * the same cylinder group then.
483 	 */
484 	return (inode->u.ext3_i.i_block_group *
485 		EXT3_BLOCKS_PER_GROUP(inode->i_sb)) +
486 	       le32_to_cpu(inode->i_sb->u.ext3_sb.s_es->s_first_data_block);
487 }
488 
489 /**
490  *	ext3_find_goal - find a prefered place for allocation.
491  *	@inode: owner
492  *	@block:  block we want
493  *	@chain:  chain of indirect blocks
494  *	@partial: pointer to the last triple within a chain
495  *	@goal:	place to store the result.
496  *
497  *	Normally this function find the prefered place for block allocation,
498  *	stores it in *@goal and returns zero. If the branch had been changed
499  *	under us we return -EAGAIN.
500  */
501 
ext3_find_goal(struct inode * inode,long block,Indirect chain[4],Indirect * partial,unsigned long * goal)502 static int ext3_find_goal(struct inode *inode, long block, Indirect chain[4],
503 			  Indirect *partial, unsigned long *goal)
504 {
505 	/* Writer: ->i_next_alloc* */
506 	if (block == inode->u.ext3_i.i_next_alloc_block + 1) {
507 		inode->u.ext3_i.i_next_alloc_block++;
508 		inode->u.ext3_i.i_next_alloc_goal++;
509 	}
510 #ifdef SEARCH_FROM_ZERO
511 	inode->u.ext3_i.i_next_alloc_block = 0;
512 	inode->u.ext3_i.i_next_alloc_goal = 0;
513 #endif
514 	/* Writer: end */
515 	/* Reader: pointers, ->i_next_alloc* */
516 	if (verify_chain(chain, partial)) {
517 		/*
518 		 * try the heuristic for sequential allocation,
519 		 * failing that at least try to get decent locality.
520 		 */
521 		if (block == inode->u.ext3_i.i_next_alloc_block)
522 			*goal = inode->u.ext3_i.i_next_alloc_goal;
523 		if (!*goal)
524 			*goal = ext3_find_near(inode, partial);
525 #ifdef SEARCH_FROM_ZERO
526 		*goal = 0;
527 #endif
528 		return 0;
529 	}
530 	/* Reader: end */
531 	return -EAGAIN;
532 }
533 
534 /**
535  *	ext3_alloc_branch - allocate and set up a chain of blocks.
536  *	@inode: owner
537  *	@num: depth of the chain (number of blocks to allocate)
538  *	@offsets: offsets (in the blocks) to store the pointers to next.
539  *	@branch: place to store the chain in.
540  *
541  *	This function allocates @num blocks, zeroes out all but the last one,
542  *	links them into chain and (if we are synchronous) writes them to disk.
543  *	In other words, it prepares a branch that can be spliced onto the
544  *	inode. It stores the information about that chain in the branch[], in
545  *	the same format as ext3_get_branch() would do. We are calling it after
546  *	we had read the existing part of chain and partial points to the last
547  *	triple of that (one with zero ->key). Upon the exit we have the same
548  *	picture as after the successful ext3_get_block(), excpet that in one
549  *	place chain is disconnected - *branch->p is still zero (we did not
550  *	set the last link), but branch->key contains the number that should
551  *	be placed into *branch->p to fill that gap.
552  *
553  *	If allocation fails we free all blocks we've allocated (and forget
554  *	their buffer_heads) and return the error value the from failed
555  *	ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
556  *	as described above and return 0.
557  */
558 
ext3_alloc_branch(handle_t * handle,struct inode * inode,int num,unsigned long goal,int * offsets,Indirect * branch)559 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
560 			     int num,
561 			     unsigned long goal,
562 			     int *offsets,
563 			     Indirect *branch)
564 {
565 	int blocksize = inode->i_sb->s_blocksize;
566 	int n = 0, keys = 0;
567 	int err = 0;
568 	int i;
569 	int parent = ext3_alloc_block(handle, inode, goal, &err);
570 
571 	branch[0].key = cpu_to_le32(parent);
572 	if (parent) {
573 		keys = 1;
574 		for (n = 1; n < num; n++) {
575 			struct buffer_head *bh;
576 			/* Allocate the next block */
577 			int nr = ext3_alloc_block(handle, inode, parent, &err);
578 			if (!nr)
579 				break;
580 			branch[n].key = cpu_to_le32(nr);
581 			keys = n+1;
582 
583 			/*
584 			 * Get buffer_head for parent block, zero it out
585 			 * and set the pointer to new one, then send
586 			 * parent to disk.
587 			 */
588 			bh = sb_getblk(inode->i_sb, parent);
589 			branch[n].bh = bh;
590 			lock_buffer(bh);
591 			BUFFER_TRACE(bh, "call get_create_access");
592 			err = ext3_journal_get_create_access(handle, bh);
593 			if (err) {
594 				unlock_buffer(bh);
595 				brelse(bh);
596 				break;
597 			}
598 
599 			memset(bh->b_data, 0, blocksize);
600 			branch[n].p = (u32*) bh->b_data + offsets[n];
601 			*branch[n].p = branch[n].key;
602 			BUFFER_TRACE(bh, "marking uptodate");
603 			mark_buffer_uptodate(bh, 1);
604 			unlock_buffer(bh);
605 
606 			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
607 			err = ext3_journal_dirty_metadata(handle, bh);
608 			if (err)
609 				break;
610 
611 			parent = nr;
612 		}
613 	}
614 	if (n == num)
615 		return 0;
616 
617 	/* Allocation failed, free what we already allocated */
618 	for (i = 1; i < keys; i++) {
619 		BUFFER_TRACE(branch[i].bh, "call journal_forget");
620 		ext3_journal_forget(handle, branch[i].bh);
621 	}
622 	for (i = 0; i < keys; i++)
623 		ext3_free_blocks(handle, inode, le32_to_cpu(branch[i].key), 1);
624 	return err;
625 }
626 
627 /**
628  *	ext3_splice_branch - splice the allocated branch onto inode.
629  *	@inode: owner
630  *	@block: (logical) number of block we are adding
631  *	@chain: chain of indirect blocks (with a missing link - see
632  *		ext3_alloc_branch)
633  *	@where: location of missing link
634  *	@num:   number of blocks we are adding
635  *
636  *	This function verifies that chain (up to the missing link) had not
637  *	changed, fills the missing link and does all housekeeping needed in
638  *	inode (->i_blocks, etc.). In case of success we end up with the full
639  *	chain to new block and return 0. Otherwise (== chain had been changed)
640  *	we free the new blocks (forgetting their buffer_heads, indeed) and
641  *	return -EAGAIN.
642  */
643 
ext3_splice_branch(handle_t * handle,struct inode * inode,long block,Indirect chain[4],Indirect * where,int num)644 static int ext3_splice_branch(handle_t *handle, struct inode *inode, long block,
645 			      Indirect chain[4], Indirect *where, int num)
646 {
647 	int i;
648 	int err = 0;
649 
650 	/*
651 	 * If we're splicing into a [td]indirect block (as opposed to the
652 	 * inode) then we need to get write access to the [td]indirect block
653 	 * before the splice.
654 	 */
655 	if (where->bh) {
656 		BUFFER_TRACE(where->bh, "get_write_access");
657 		err = ext3_journal_get_write_access(handle, where->bh);
658 		if (err)
659 			goto err_out;
660 	}
661 	/* Verify that place we are splicing to is still there and vacant */
662 
663 	/* Writer: pointers, ->i_next_alloc* */
664 	if (!verify_chain(chain, where-1) || *where->p)
665 		/* Writer: end */
666 		goto changed;
667 
668 	/* That's it */
669 
670 	*where->p = where->key;
671 	inode->u.ext3_i.i_next_alloc_block = block;
672 	inode->u.ext3_i.i_next_alloc_goal = le32_to_cpu(where[num-1].key);
673 #ifdef SEARCH_FROM_ZERO
674 	inode->u.ext3_i.i_next_alloc_block = 0;
675 	inode->u.ext3_i.i_next_alloc_goal = 0;
676 #endif
677 	/* Writer: end */
678 
679 	/* We are done with atomic stuff, now do the rest of housekeeping */
680 
681 	inode->i_ctime = CURRENT_TIME;
682 	ext3_mark_inode_dirty(handle, inode);
683 
684 	/* had we spliced it onto indirect block? */
685 	if (where->bh) {
686 		/*
687 		 * akpm: If we spliced it onto an indirect block, we haven't
688 		 * altered the inode.  Note however that if it is being spliced
689 		 * onto an indirect block at the very end of the file (the
690 		 * file is growing) then we *will* alter the inode to reflect
691 		 * the new i_size.  But that is not done here - it is done in
692 		 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
693 		 */
694 		jbd_debug(5, "splicing indirect only\n");
695 		BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
696 		err = ext3_journal_dirty_metadata(handle, where->bh);
697 		if (err)
698 			goto err_out;
699 	} else {
700 		/*
701 		 * OK, we spliced it into the inode itself on a direct block.
702 		 * Inode was dirtied above.
703 		 */
704 		jbd_debug(5, "splicing direct\n");
705 	}
706 	return err;
707 
708 changed:
709 	/*
710 	 * AKPM: if where[i].bh isn't part of the current updating
711 	 * transaction then we explode nastily.  Test this code path.
712 	 */
713 	jbd_debug(1, "the chain changed: try again\n");
714 	err = -EAGAIN;
715 
716 err_out:
717 	for (i = 1; i < num; i++) {
718 		BUFFER_TRACE(where[i].bh, "call journal_forget");
719 		ext3_journal_forget(handle, where[i].bh);
720 	}
721 	/* For the normal collision cleanup case, we free up the blocks.
722 	 * On genuine filesystem errors we don't even think about doing
723 	 * that. */
724 	if (err == -EAGAIN)
725 		for (i = 0; i < num; i++)
726 			ext3_free_blocks(handle, inode,
727 					 le32_to_cpu(where[i].key), 1);
728 	return err;
729 }
730 
731 /*
732  * Allocation strategy is simple: if we have to allocate something, we will
733  * have to go the whole way to leaf. So let's do it before attaching anything
734  * to tree, set linkage between the newborn blocks, write them if sync is
735  * required, recheck the path, free and repeat if check fails, otherwise
736  * set the last missing link (that will protect us from any truncate-generated
737  * removals - all blocks on the path are immune now) and possibly force the
738  * write on the parent block.
739  * That has a nice additional property: no special recovery from the failed
740  * allocations is needed - we simply release blocks and do not touch anything
741  * reachable from inode.
742  *
743  * akpm: `handle' can be NULL if create == 0.
744  *
745  * The BKL may not be held on entry here.  Be sure to take it early.
746  */
747 
ext3_get_block_handle(handle_t * handle,struct inode * inode,long iblock,struct buffer_head * bh_result,int create)748 static int ext3_get_block_handle(handle_t *handle, struct inode *inode,
749 				 long iblock,
750 				 struct buffer_head *bh_result, int create)
751 {
752 	int err = -EIO;
753 	int offsets[4];
754 	Indirect chain[4];
755 	Indirect *partial;
756 	unsigned long goal;
757 	int left;
758 	int depth = ext3_block_to_path(inode, iblock, offsets);
759 	loff_t new_size;
760 
761 	J_ASSERT(handle != NULL || create == 0);
762 
763 	if (depth == 0)
764 		goto out;
765 
766 	lock_kernel();
767 reread:
768 	partial = ext3_get_branch(inode, depth, offsets, chain, &err);
769 
770 	/* Simplest case - block found, no allocation needed */
771 	if (!partial) {
772 		bh_result->b_state &= ~(1UL << BH_New);
773 got_it:
774 		bh_result->b_dev = inode->i_dev;
775 		bh_result->b_blocknr = le32_to_cpu(chain[depth-1].key);
776 		bh_result->b_state |= (1UL << BH_Mapped);
777 		/* Clean up and exit */
778 		partial = chain+depth-1; /* the whole chain */
779 		goto cleanup;
780 	}
781 
782 	/* Next simple case - plain lookup or failed read of indirect block */
783 	if (!create || err == -EIO) {
784 cleanup:
785 		while (partial > chain) {
786 			BUFFER_TRACE(partial->bh, "call brelse");
787 			brelse(partial->bh);
788 			partial--;
789 		}
790 		BUFFER_TRACE(bh_result, "returned");
791 		unlock_kernel();
792 out:
793 		return err;
794 	}
795 
796 	/*
797 	 * Indirect block might be removed by truncate while we were
798 	 * reading it. Handling of that case (forget what we've got and
799 	 * reread) is taken out of the main path.
800 	 */
801 	if (err == -EAGAIN)
802 		goto changed;
803 
804 	goal = 0;
805 	if (ext3_find_goal(inode, iblock, chain, partial, &goal) < 0)
806 		goto changed;
807 
808 	left = (chain + depth) - partial;
809 
810 	/*
811 	 * Block out ext3_truncate while we alter the tree
812 	 */
813 	down_read(&inode->u.ext3_i.truncate_sem);
814 	err = ext3_alloc_branch(handle, inode, left, goal,
815 					offsets+(partial-chain), partial);
816 
817 	/* The ext3_splice_branch call will free and forget any buffers
818 	 * on the new chain if there is a failure, but that risks using
819 	 * up transaction credits, especially for bitmaps where the
820 	 * credits cannot be returned.  Can we handle this somehow?  We
821 	 * may need to return -EAGAIN upwards in the worst case.  --sct */
822 	if (!err)
823 		err = ext3_splice_branch(handle, inode, iblock, chain,
824 					 partial, left);
825 	up_read(&inode->u.ext3_i.truncate_sem);
826 	if (err == -EAGAIN)
827 		goto changed;
828 	if (err)
829 		goto cleanup;
830 
831 	new_size = inode->i_size;
832 	/*
833 	 * This is not racy against ext3_truncate's modification of i_disksize
834 	 * because VM/VFS ensures that the file cannot be extended while
835 	 * truncate is in progress.  It is racy between multiple parallel
836 	 * instances of get_block, but we have the BKL.
837 	 */
838 	if (new_size > inode->u.ext3_i.i_disksize)
839 		inode->u.ext3_i.i_disksize = new_size;
840 
841 	bh_result->b_state |= (1UL << BH_New);
842 	goto got_it;
843 
844 changed:
845 	while (partial > chain) {
846 		jbd_debug(1, "buffer chain changed, retrying\n");
847 		BUFFER_TRACE(partial->bh, "brelsing");
848 		brelse(partial->bh);
849 		partial--;
850 	}
851 	goto reread;
852 }
853 
854 /*
855  * The BKL is not held on entry here.
856  */
ext3_get_block(struct inode * inode,long iblock,struct buffer_head * bh_result,int create)857 static int ext3_get_block(struct inode *inode, long iblock,
858 			struct buffer_head *bh_result, int create)
859 {
860 	handle_t *handle = 0;
861 	int ret;
862 
863 	if (create) {
864 		handle = ext3_journal_current_handle();
865 		J_ASSERT(handle != 0);
866 	}
867 	ret = ext3_get_block_handle(handle, inode, iblock, bh_result, create);
868 	return ret;
869 }
870 
871 /*
872  * `handle' can be NULL if create is zero
873  */
ext3_getblk(handle_t * handle,struct inode * inode,long block,int create,int * errp)874 struct buffer_head *ext3_getblk(handle_t *handle, struct inode * inode,
875 				long block, int create, int * errp)
876 {
877 	struct buffer_head dummy;
878 	int fatal = 0, err;
879 
880 	J_ASSERT(handle != NULL || create == 0);
881 
882 	dummy.b_state = 0;
883 	dummy.b_blocknr = -1000;
884 	buffer_trace_init(&dummy.b_history);
885 	*errp = ext3_get_block_handle(handle, inode, block, &dummy, create);
886 	if (!*errp && buffer_mapped(&dummy)) {
887 		struct buffer_head *bh;
888 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
889 		if (buffer_new(&dummy)) {
890 			J_ASSERT(create != 0);
891 			J_ASSERT(handle != 0);
892 
893 			/* Now that we do not always journal data, we
894 			   should keep in mind whether this should
895 			   always journal the new buffer as metadata.
896 			   For now, regular file writes use
897 			   ext3_get_block instead, so it's not a
898 			   problem. */
899 			lock_kernel();
900 			lock_buffer(bh);
901 			BUFFER_TRACE(bh, "call get_create_access");
902 			fatal = ext3_journal_get_create_access(handle, bh);
903 			if (!fatal) {
904 				memset(bh->b_data, 0,
905 				       inode->i_sb->s_blocksize);
906 				mark_buffer_uptodate(bh, 1);
907 			}
908 			unlock_buffer(bh);
909 			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
910 			err = ext3_journal_dirty_metadata(handle, bh);
911 			if (!fatal) fatal = err;
912 			unlock_kernel();
913 		} else {
914 			BUFFER_TRACE(bh, "not a new buffer");
915 		}
916 		if (fatal) {
917 			*errp = fatal;
918 			brelse(bh);
919 			bh = NULL;
920 		}
921 		return bh;
922 	}
923 	return NULL;
924 }
925 
ext3_bread(handle_t * handle,struct inode * inode,int block,int create,int * err)926 struct buffer_head *ext3_bread(handle_t *handle, struct inode * inode,
927 			       int block, int create, int *err)
928 {
929 	struct buffer_head * bh;
930 	int prev_blocks;
931 
932 	prev_blocks = inode->i_blocks;
933 
934 	bh = ext3_getblk (handle, inode, block, create, err);
935 	if (!bh)
936 		return bh;
937 #ifdef EXT3_PREALLOCATE
938 	/*
939 	 * If the inode has grown, and this is a directory, then use a few
940 	 * more of the preallocated blocks to keep directory fragmentation
941 	 * down.  The preallocated blocks are guaranteed to be contiguous.
942 	 */
943 	if (create &&
944 	    S_ISDIR(inode->i_mode) &&
945 	    inode->i_blocks > prev_blocks &&
946 	    EXT3_HAS_COMPAT_FEATURE(inode->i_sb,
947 				    EXT3_FEATURE_COMPAT_DIR_PREALLOC)) {
948 		int i;
949 		struct buffer_head *tmp_bh;
950 
951 		for (i = 1;
952 		     inode->u.ext3_i.i_prealloc_count &&
953 		     i < EXT3_SB(inode->i_sb)->s_es->s_prealloc_dir_blocks;
954 		     i++) {
955 			/*
956 			 * ext3_getblk will zero out the contents of the
957 			 * directory for us
958 			 */
959 			tmp_bh = ext3_getblk(handle, inode,
960 						block+i, create, err);
961 			if (!tmp_bh) {
962 				brelse (bh);
963 				return 0;
964 			}
965 			brelse (tmp_bh);
966 		}
967 	}
968 #endif
969 	if (buffer_uptodate(bh))
970 		return bh;
971 	ll_rw_block (READ, 1, &bh);
972 	wait_on_buffer (bh);
973 	if (buffer_uptodate(bh))
974 		return bh;
975 	brelse (bh);
976 	*err = -EIO;
977 	return NULL;
978 }
979 
walk_page_buffers(handle_t * handle,struct inode * inode,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct inode * inode,struct buffer_head * bh))980 static int walk_page_buffers(	handle_t *handle,
981 				struct inode *inode,
982 				struct buffer_head *head,
983 				unsigned from,
984 				unsigned to,
985 				int *partial,
986 				int (*fn)(	handle_t *handle,
987 						struct inode *inode,
988 						struct buffer_head *bh))
989 {
990 	struct buffer_head *bh;
991 	unsigned block_start, block_end;
992 	unsigned blocksize = head->b_size;
993 	int err, ret = 0;
994 
995 	for (	bh = head, block_start = 0;
996 		ret == 0 && (bh != head || !block_start);
997 	    	block_start = block_end, bh = bh->b_this_page)
998 	{
999 		block_end = block_start + blocksize;
1000 		if (block_end <= from || block_start >= to) {
1001 			if (partial && !buffer_uptodate(bh))
1002 				*partial = 1;
1003 			continue;
1004 		}
1005 		err = (*fn)(handle, inode, bh);
1006 		if (!ret)
1007 			ret = err;
1008 	}
1009 	return ret;
1010 }
1011 
1012 /*
1013  * To preserve ordering, it is essential that the hole instantiation and
1014  * the data write be encapsulated in a single transaction.  We cannot
1015  * close off a transaction and start a new one between the ext3_get_block()
1016  * and the commit_write().  So doing the journal_start at the start of
1017  * prepare_write() is the right place.
1018  *
1019  * Also, this function can nest inside ext3_writepage() ->
1020  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1021  * has generated enough buffer credits to do the whole page.  So we won't
1022  * block on the journal in that case, which is good, because the caller may
1023  * be PF_MEMALLOC.
1024  *
1025  * By accident, ext3 can be reentered when a transaction is open via
1026  * quota file writes.  If we were to commit the transaction while thus
1027  * reentered, there can be a deadlock - we would be holding a quota
1028  * lock, and the commit would never complete if another thread had a
1029  * transaction open and was blocking on the quota lock - a ranking
1030  * violation.
1031  *
1032  * So what we do is to rely on the fact that journal_stop/journal_start
1033  * will _not_ run commit under these circumstances because handle->h_ref
1034  * is elevated.  We'll still have enough credits for the tiny quotafile
1035  * write.
1036  */
1037 
do_journal_get_write_access(handle_t * handle,struct inode * inode,struct buffer_head * bh)1038 static int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1039 				       struct buffer_head *bh)
1040 {
1041 	return ext3_journal_get_write_access(handle, bh);
1042 }
1043 
ext3_prepare_write(struct file * file,struct page * page,unsigned from,unsigned to)1044 static int ext3_prepare_write(struct file *file, struct page *page,
1045 			      unsigned from, unsigned to)
1046 {
1047 	struct inode *inode = page->mapping->host;
1048 	int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
1049 	handle_t *handle;
1050 
1051 	lock_kernel();
1052 	handle = ext3_journal_start(inode, needed_blocks);
1053 	if (IS_ERR(handle)) {
1054 		ret = PTR_ERR(handle);
1055 		goto out;
1056 	}
1057 	unlock_kernel();
1058 	ret = block_prepare_write(page, from, to, ext3_get_block);
1059 	lock_kernel();
1060 	if (ret != 0)
1061 		goto prepare_write_failed;
1062 
1063 	if (ext3_should_journal_data(inode)) {
1064 		ret = walk_page_buffers(handle, inode, page->buffers,
1065 				from, to, NULL, do_journal_get_write_access);
1066 		if (ret) {
1067 			/*
1068 			 * We're going to fail this prepare_write(),
1069 			 * so commit_write() will not be called.
1070 			 * We need to undo block_prepare_write()'s kmap().
1071 			 * AKPM: Do we need to clear PageUptodate?  I don't
1072 			 * think so.
1073 			 */
1074 			kunmap(page);
1075 		}
1076 	}
1077 prepare_write_failed:
1078 	if (ret)
1079 		ext3_journal_stop(handle, inode);
1080 out:
1081 	unlock_kernel();
1082 	return ret;
1083 }
1084 
journal_dirty_sync_data(handle_t * handle,struct inode * inode,struct buffer_head * bh)1085 static int journal_dirty_sync_data(handle_t *handle, struct inode *inode,
1086 				   struct buffer_head *bh)
1087 {
1088 	int ret = ext3_journal_dirty_data(handle, bh, 0);
1089 	buffer_insert_inode_data_queue(bh, inode);
1090 	return ret;
1091 }
1092 
1093 /*
1094  * For ext3_writepage().  We also brelse() the buffer to account for
1095  * the bget() which ext3_writepage() performs.
1096  */
journal_dirty_async_data(handle_t * handle,struct inode * inode,struct buffer_head * bh)1097 static int journal_dirty_async_data(handle_t *handle, struct inode *inode,
1098 				    struct buffer_head *bh)
1099 {
1100 	int ret = ext3_journal_dirty_data(handle, bh, 1);
1101 	buffer_insert_inode_data_queue(bh, inode);
1102 	__brelse(bh);
1103 	return ret;
1104 }
1105 
1106 /* For commit_write() in data=journal mode */
commit_write_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh)1107 static int commit_write_fn(handle_t *handle, struct inode *inode,
1108 			   struct buffer_head *bh)
1109 {
1110 	set_bit(BH_Uptodate, &bh->b_state);
1111 	return ext3_journal_dirty_metadata(handle, bh);
1112 }
1113 
1114 /*
1115  * We need to pick up the new inode size which generic_commit_write gave us
1116  * `file' can be NULL - eg, when called from block_symlink().
1117  *
1118  * ext3 inode->i_dirty_buffers policy:  If we're journalling data we
1119  * definitely don't want them to appear on the inode at all - instead
1120  * we need to manage them at the JBD layer and we need to intercept
1121  * the relevant sync operations and translate them into journal operations.
1122  *
1123  * If we're not journalling data then we can just leave the buffers
1124  * on ->i_dirty_buffers.  If someone writes them out for us then thanks.
1125  * Otherwise we'll do it in commit, if we're using ordered data.
1126  */
1127 
ext3_commit_write(struct file * file,struct page * page,unsigned from,unsigned to)1128 static int ext3_commit_write(struct file *file, struct page *page,
1129 			     unsigned from, unsigned to)
1130 {
1131 	handle_t *handle = ext3_journal_current_handle();
1132 	struct inode *inode = page->mapping->host;
1133 	int ret = 0, ret2;
1134 
1135 	lock_kernel();
1136 	if (ext3_should_journal_data(inode)) {
1137 		/*
1138 		 * Here we duplicate the generic_commit_write() functionality
1139 		 */
1140 		int partial = 0;
1141 		loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1142 
1143 		ret = walk_page_buffers(handle, inode, page->buffers,
1144 			from, to, &partial, commit_write_fn);
1145 		if (!partial)
1146 			SetPageUptodate(page);
1147 		kunmap(page);
1148 		if (pos > inode->i_size)
1149 			inode->i_size = pos;
1150 		EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1151 	} else {
1152 		if (ext3_should_order_data(inode)) {
1153 			ret = walk_page_buffers(handle, inode, page->buffers,
1154 				from, to, NULL, journal_dirty_sync_data);
1155 		}
1156 		/* Be careful here if generic_commit_write becomes a
1157 		 * required invocation after block_prepare_write. */
1158 		if (ret == 0) {
1159 			ret = generic_commit_write(file, page, from, to);
1160 		} else {
1161 			/*
1162 			 * block_prepare_write() was called, but we're not
1163 			 * going to call generic_commit_write().  So we
1164 			 * need to perform generic_commit_write()'s kunmap
1165 			 * by hand.
1166 			 */
1167 			kunmap(page);
1168 		}
1169 	}
1170 	if (inode->i_size > inode->u.ext3_i.i_disksize) {
1171 		inode->u.ext3_i.i_disksize = inode->i_size;
1172 		ret2 = ext3_mark_inode_dirty(handle, inode);
1173 		if (!ret)
1174 			ret = ret2;
1175 	}
1176 	ret2 = ext3_journal_stop(handle, inode);
1177 	unlock_kernel();
1178 	if (!ret)
1179 		ret = ret2;
1180 	return ret;
1181 }
1182 
1183 /*
1184  * bmap() is special.  It gets used by applications such as lilo and by
1185  * the swapper to find the on-disk block of a specific piece of data.
1186  *
1187  * Naturally, this is dangerous if the block concerned is still in the
1188  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1189  * filesystem and enables swap, then they may get a nasty shock when the
1190  * data getting swapped to that swapfile suddenly gets overwritten by
1191  * the original zero's written out previously to the journal and
1192  * awaiting writeback in the kernel's buffer cache.
1193  *
1194  * So, if we see any bmap calls here on a modified, data-journaled file,
1195  * take extra steps to flush any blocks which might be in the cache.
1196  */
ext3_bmap(struct address_space * mapping,long block)1197 static int ext3_bmap(struct address_space *mapping, long block)
1198 {
1199 	struct inode *inode = mapping->host;
1200 	journal_t *journal;
1201 	int err;
1202 
1203 	if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1204 		/*
1205 		 * This is a REALLY heavyweight approach, but the use of
1206 		 * bmap on dirty files is expected to be extremely rare:
1207 		 * only if we run lilo or swapon on a freshly made file
1208 		 * do we expect this to happen.
1209 		 *
1210 		 * (bmap requires CAP_SYS_RAWIO so this does not
1211 		 * represent an unprivileged user DOS attack --- we'd be
1212 		 * in trouble if mortal users could trigger this path at
1213 		 * will.)
1214 		 *
1215 		 * NB. EXT3_STATE_JDATA is not set on files other than
1216 		 * regular files.  If somebody wants to bmap a directory
1217 		 * or symlink and gets confused because the buffer
1218 		 * hasn't yet been flushed to disk, they deserve
1219 		 * everything they get.
1220 		 */
1221 
1222 		EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1223 		journal = EXT3_JOURNAL(inode);
1224 		journal_lock_updates(journal);
1225 		err = journal_flush(journal);
1226 		journal_unlock_updates(journal);
1227 
1228 		if (err)
1229 			return 0;
1230 	}
1231 
1232 	return generic_block_bmap(mapping,block,ext3_get_block);
1233 }
1234 
bget_one(handle_t * handle,struct inode * inode,struct buffer_head * bh)1235 static int bget_one(handle_t *handle, struct inode *inode,
1236 		    struct buffer_head *bh)
1237 {
1238 	atomic_inc(&bh->b_count);
1239 	return 0;
1240 }
1241 
1242 /*
1243  * Note that we always start a transaction even if we're not journalling
1244  * data.  This is to preserve ordering: any hole instantiation within
1245  * __block_write_full_page -> ext3_get_block() should be journalled
1246  * along with the data so we don't crash and then get metadata which
1247  * refers to old data.
1248  *
1249  * In all journalling modes block_write_full_page() will start the I/O.
1250  *
1251  * Problem:
1252  *
1253  *	ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1254  *		ext3_writepage()
1255  *
1256  * Similar for:
1257  *
1258  *	ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1259  *
1260  * Same applies to ext3_get_block().  We will deadlock on various things like
1261  * lock_journal and i_truncate_sem.
1262  *
1263  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1264  * allocations fail.
1265  *
1266  * 16May01: If we're reentered then journal_current_handle() will be
1267  *	    non-zero. We simply *return*.
1268  *
1269  * 1 July 2001: @@@ FIXME:
1270  *   In journalled data mode, a data buffer may be metadata against the
1271  *   current transaction.  But the same file is part of a shared mapping
1272  *   and someone does a writepage() on it.
1273  *
1274  *   We will move the buffer onto the async_data list, but *after* it has
1275  *   been dirtied. So there's a small window where we have dirty data on
1276  *   BJ_Metadata.
1277  *
1278  *   Note that this only applies to the last partial page in the file.  The
1279  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1280  *   broken code anyway: it's wrong for msync()).
1281  *
1282  *   It's a rare case: affects the final partial page, for journalled data
1283  *   where the file is subject to bith write() and writepage() in the same
1284  *   transction.  To fix it we'll need a custom block_write_full_page().
1285  *   We'll probably need that anyway for journalling writepage() output.
1286  *
1287  * We don't honour synchronous mounts for writepage().  That would be
1288  * disastrous.  Any write() or metadata operation will sync the fs for
1289  * us.
1290  */
ext3_writepage(struct page * page)1291 static int ext3_writepage(struct page *page)
1292 {
1293 	struct inode *inode = page->mapping->host;
1294 	struct buffer_head *page_buffers;
1295 	handle_t *handle = NULL;
1296 	int ret = 0, err;
1297 	int needed;
1298 	int order_data;
1299 
1300 	J_ASSERT(PageLocked(page));
1301 
1302 	/*
1303 	 * We give up here if we're reentered, because it might be
1304 	 * for a different filesystem.  One *could* look for a
1305 	 * nested transaction opportunity.
1306 	 */
1307 	lock_kernel();
1308 	if (ext3_journal_current_handle())
1309 		goto out_fail;
1310 
1311 	needed = ext3_writepage_trans_blocks(inode);
1312 	if (current->flags & PF_MEMALLOC)
1313 		handle = ext3_journal_try_start(inode, needed);
1314 	else
1315 		handle = ext3_journal_start(inode, needed);
1316 
1317 	if (IS_ERR(handle)) {
1318 		ret = PTR_ERR(handle);
1319 		goto out_fail;
1320 	}
1321 
1322 	order_data = ext3_should_order_data(inode) ||
1323 			ext3_should_journal_data(inode);
1324 
1325 	unlock_kernel();
1326 
1327 	page_buffers = NULL;	/* Purely to prevent compiler warning */
1328 
1329 	/* bget() all the buffers */
1330 	if (order_data) {
1331 		if (!page->buffers)
1332 			create_empty_buffers(page,
1333 				inode->i_dev, inode->i_sb->s_blocksize);
1334 		page_buffers = page->buffers;
1335 		walk_page_buffers(handle, inode, page_buffers, 0,
1336 				PAGE_CACHE_SIZE, NULL, bget_one);
1337 	}
1338 
1339 	ret = block_write_full_page(page, ext3_get_block);
1340 
1341 	/*
1342 	 * The page can become unlocked at any point now, and
1343 	 * truncate can then come in and change things.  So we
1344 	 * can't touch *page from now on.  But *page_buffers is
1345 	 * safe due to elevated refcount.
1346 	 */
1347 
1348 	handle = ext3_journal_current_handle();
1349 	lock_kernel();
1350 
1351 	/* And attach them to the current transaction */
1352 	if (order_data) {
1353 		err = walk_page_buffers(handle, inode, page_buffers,
1354 			0, PAGE_CACHE_SIZE, NULL, journal_dirty_async_data);
1355 		if (!ret)
1356 			ret = err;
1357 	}
1358 
1359 	err = ext3_journal_stop(handle, inode);
1360 	if (!ret)
1361 		ret = err;
1362 	unlock_kernel();
1363 	return ret;
1364 
1365 out_fail:
1366 
1367 	unlock_kernel();
1368 	SetPageDirty(page);
1369 	UnlockPage(page);
1370 	return ret;
1371 }
1372 
ext3_readpage(struct file * file,struct page * page)1373 static int ext3_readpage(struct file *file, struct page *page)
1374 {
1375 	return block_read_full_page(page,ext3_get_block);
1376 }
1377 
1378 
ext3_flushpage(struct page * page,unsigned long offset)1379 static int ext3_flushpage(struct page *page, unsigned long offset)
1380 {
1381 	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1382 	return journal_flushpage(journal, page, offset);
1383 }
1384 
ext3_releasepage(struct page * page,int wait)1385 static int ext3_releasepage(struct page *page, int wait)
1386 {
1387 	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1388 	return journal_try_to_free_buffers(journal, page, wait);
1389 }
1390 
1391 
1392 struct address_space_operations ext3_aops = {
1393 	readpage:	ext3_readpage,		/* BKL not held.  Don't need */
1394 	writepage:	ext3_writepage,		/* BKL not held.  We take it */
1395 	sync_page:	block_sync_page,
1396 	prepare_write:	ext3_prepare_write,	/* BKL not held.  We take it */
1397 	commit_write:	ext3_commit_write,	/* BKL not held.  We take it */
1398 	bmap:		ext3_bmap,		/* BKL held */
1399 	flushpage:	ext3_flushpage,		/* BKL not held.  Don't need */
1400 	releasepage:	ext3_releasepage,	/* BKL not held.  Don't need */
1401 };
1402 
1403 /*
1404  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1405  * up to the end of the block which corresponds to `from'.
1406  * This required during truncate. We need to physically zero the tail end
1407  * of that block so it doesn't yield old data if the file is later grown.
1408  */
ext3_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)1409 static int ext3_block_truncate_page(handle_t *handle,
1410 		struct address_space *mapping, loff_t from)
1411 {
1412 	unsigned long index = from >> PAGE_CACHE_SHIFT;
1413 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
1414 	unsigned blocksize, iblock, length, pos;
1415 	struct inode *inode = mapping->host;
1416 	struct page *page;
1417 	struct buffer_head *bh;
1418 	int err;
1419 
1420 	blocksize = inode->i_sb->s_blocksize;
1421 	length = offset & (blocksize - 1);
1422 
1423 	/* Block boundary? Nothing to do */
1424 	if (!length)
1425 		return 0;
1426 
1427 	length = blocksize - length;
1428 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1429 
1430 	page = find_or_create_page(mapping, index, GFP_NOFS);
1431 	err = -ENOMEM;
1432 	if (!page)
1433 		goto out;
1434 
1435 	if (!page->buffers)
1436 		create_empty_buffers(page, inode->i_dev, blocksize);
1437 
1438 	/* Find the buffer that contains "offset" */
1439 	bh = page->buffers;
1440 	pos = blocksize;
1441 	while (offset >= pos) {
1442 		bh = bh->b_this_page;
1443 		iblock++;
1444 		pos += blocksize;
1445 	}
1446 
1447 	err = 0;
1448 	if (!buffer_mapped(bh)) {
1449 		/* Hole? Nothing to do */
1450 		if (buffer_uptodate(bh))
1451 			goto unlock;
1452 		ext3_get_block(inode, iblock, bh, 0);
1453 		/* Still unmapped? Nothing to do */
1454 		if (!buffer_mapped(bh))
1455 			goto unlock;
1456 	}
1457 
1458 	/* Ok, it's mapped. Make sure it's up-to-date */
1459 	if (Page_Uptodate(page))
1460 		set_bit(BH_Uptodate, &bh->b_state);
1461 
1462 	if (!buffer_uptodate(bh)) {
1463 		err = -EIO;
1464 		ll_rw_block(READ, 1, &bh);
1465 		wait_on_buffer(bh);
1466 		/* Uhhuh. Read error. Complain and punt. */
1467 		if (!buffer_uptodate(bh))
1468 			goto unlock;
1469 	}
1470 
1471 	if (ext3_should_journal_data(inode)) {
1472 		BUFFER_TRACE(bh, "get write access");
1473 		err = ext3_journal_get_write_access(handle, bh);
1474 		if (err)
1475 			goto unlock;
1476 	}
1477 
1478 	memset(kmap(page) + offset, 0, length);
1479 	flush_dcache_page(page);
1480 	kunmap(page);
1481 
1482 	BUFFER_TRACE(bh, "zeroed end of block");
1483 
1484 	err = 0;
1485 	if (ext3_should_journal_data(inode)) {
1486 		err = ext3_journal_dirty_metadata(handle, bh);
1487 	} else {
1488 		if (ext3_should_order_data(inode))
1489 			err = ext3_journal_dirty_data(handle, bh, 0);
1490 		__mark_buffer_dirty(bh);
1491 	}
1492 
1493 unlock:
1494 	UnlockPage(page);
1495 	page_cache_release(page);
1496 out:
1497 	return err;
1498 }
1499 
1500 /*
1501  * Probably it should be a library function... search for first non-zero word
1502  * or memcmp with zero_page, whatever is better for particular architecture.
1503  * Linus?
1504  */
all_zeroes(u32 * p,u32 * q)1505 static inline int all_zeroes(u32 *p, u32 *q)
1506 {
1507 	while (p < q)
1508 		if (*p++)
1509 			return 0;
1510 	return 1;
1511 }
1512 
1513 /**
1514  *	ext3_find_shared - find the indirect blocks for partial truncation.
1515  *	@inode:	  inode in question
1516  *	@depth:	  depth of the affected branch
1517  *	@offsets: offsets of pointers in that branch (see ext3_block_to_path)
1518  *	@chain:	  place to store the pointers to partial indirect blocks
1519  *	@top:	  place to the (detached) top of branch
1520  *
1521  *	This is a helper function used by ext3_truncate().
1522  *
1523  *	When we do truncate() we may have to clean the ends of several
1524  *	indirect blocks but leave the blocks themselves alive. Block is
1525  *	partially truncated if some data below the new i_size is refered
1526  *	from it (and it is on the path to the first completely truncated
1527  *	data block, indeed).  We have to free the top of that path along
1528  *	with everything to the right of the path. Since no allocation
1529  *	past the truncation point is possible until ext3_truncate()
1530  *	finishes, we may safely do the latter, but top of branch may
1531  *	require special attention - pageout below the truncation point
1532  *	might try to populate it.
1533  *
1534  *	We atomically detach the top of branch from the tree, store the
1535  *	block number of its root in *@top, pointers to buffer_heads of
1536  *	partially truncated blocks - in @chain[].bh and pointers to
1537  *	their last elements that should not be removed - in
1538  *	@chain[].p. Return value is the pointer to last filled element
1539  *	of @chain.
1540  *
1541  *	The work left to caller to do the actual freeing of subtrees:
1542  *		a) free the subtree starting from *@top
1543  *		b) free the subtrees whose roots are stored in
1544  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
1545  *		c) free the subtrees growing from the inode past the @chain[0].
1546  *			(no partially truncated stuff there).  */
1547 
ext3_find_shared(struct inode * inode,int depth,int offsets[4],Indirect chain[4],u32 * top)1548 static Indirect *ext3_find_shared(struct inode *inode,
1549 				int depth,
1550 				int offsets[4],
1551 				Indirect chain[4],
1552 				u32 *top)
1553 {
1554 	Indirect *partial, *p;
1555 	int k, err;
1556 
1557 	*top = 0;
1558 	/* Make k index the deepest non-null offest + 1 */
1559 	for (k = depth; k > 1 && !offsets[k-1]; k--)
1560 		;
1561 	partial = ext3_get_branch(inode, k, offsets, chain, &err);
1562 	/* Writer: pointers */
1563 	if (!partial)
1564 		partial = chain + k-1;
1565 	/*
1566 	 * If the branch acquired continuation since we've looked at it -
1567 	 * fine, it should all survive and (new) top doesn't belong to us.
1568 	 */
1569 	if (!partial->key && *partial->p)
1570 		/* Writer: end */
1571 		goto no_top;
1572 	for (p=partial; p>chain && all_zeroes((u32*)p->bh->b_data,p->p); p--)
1573 		;
1574 	/*
1575 	 * OK, we've found the last block that must survive. The rest of our
1576 	 * branch should be detached before unlocking. However, if that rest
1577 	 * of branch is all ours and does not grow immediately from the inode
1578 	 * it's easier to cheat and just decrement partial->p.
1579 	 */
1580 	if (p == chain + k - 1 && p > chain) {
1581 		p->p--;
1582 	} else {
1583 		*top = *p->p;
1584 		/* Nope, don't do this in ext3.  Must leave the tree intact */
1585 #if 0
1586 		*p->p = 0;
1587 #endif
1588 	}
1589 	/* Writer: end */
1590 
1591 	while(partial > p)
1592 	{
1593 		brelse(partial->bh);
1594 		partial--;
1595 	}
1596 no_top:
1597 	return partial;
1598 }
1599 
1600 /*
1601  * Zero a number of block pointers in either an inode or an indirect block.
1602  * If we restart the transaction we must again get write access to the
1603  * indirect block for further modification.
1604  *
1605  * We release `count' blocks on disk, but (last - first) may be greater
1606  * than `count' because there can be holes in there.
1607  */
1608 static void
ext3_clear_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,unsigned long block_to_free,unsigned long count,u32 * first,u32 * last)1609 ext3_clear_blocks(handle_t *handle, struct inode *inode, struct buffer_head *bh,
1610 		unsigned long block_to_free, unsigned long count,
1611 		u32 *first, u32 *last)
1612 {
1613 	u32 *p;
1614 	if (try_to_extend_transaction(handle, inode)) {
1615 		if (bh) {
1616 			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1617 			ext3_journal_dirty_metadata(handle, bh);
1618 		}
1619 		ext3_mark_inode_dirty(handle, inode);
1620 		ext3_journal_test_restart(handle, inode);
1621 		if (bh) {
1622 			BUFFER_TRACE(bh, "retaking write access");
1623 			ext3_journal_get_write_access(handle, bh);
1624 		}
1625 	}
1626 
1627 	/*
1628 	 * Any buffers which are on the journal will be in memory. We find
1629 	 * them on the hash table so journal_revoke() will run journal_forget()
1630 	 * on them.  We've already detached each block from the file, so
1631 	 * bforget() in journal_forget() should be safe.
1632 	 *
1633 	 * AKPM: turn on bforget in journal_forget()!!!
1634 	 */
1635 	for (p = first; p < last; p++) {
1636 		u32 nr = le32_to_cpu(*p);
1637 		if (nr) {
1638 			struct buffer_head *bh;
1639 
1640 			*p = 0;
1641 			bh = sb_get_hash_table(inode->i_sb, nr);
1642 			ext3_forget(handle, 0, inode, bh, nr);
1643 		}
1644 	}
1645 
1646 	ext3_free_blocks(handle, inode, block_to_free, count);
1647 }
1648 
1649 /**
1650  * ext3_free_data - free a list of data blocks
1651  * @handle:	handle for this transaction
1652  * @inode:	inode we are dealing with
1653  * @this_bh:	indirect buffer_head which contains *@first and *@last
1654  * @first:	array of block numbers
1655  * @last:	points immediately past the end of array
1656  *
1657  * We are freeing all blocks refered from that array (numbers are stored as
1658  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1659  *
1660  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1661  * blocks are contiguous then releasing them at one time will only affect one
1662  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1663  * actually use a lot of journal space.
1664  *
1665  * @this_bh will be %NULL if @first and @last point into the inode's direct
1666  * block pointers.
1667  */
ext3_free_data(handle_t * handle,struct inode * inode,struct buffer_head * this_bh,u32 * first,u32 * last)1668 static void ext3_free_data(handle_t *handle, struct inode *inode,
1669 			   struct buffer_head *this_bh, u32 *first, u32 *last)
1670 {
1671 	unsigned long block_to_free = 0;    /* Starting block # of a run */
1672 	unsigned long count = 0;	    /* Number of blocks in the run */
1673 	u32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
1674 					       corresponding to
1675 					       block_to_free */
1676 	unsigned long nr;		    /* Current block # */
1677 	u32 *p;				    /* Pointer into inode/ind
1678 					       for current block */
1679 	int err;
1680 
1681 	if (this_bh) {				/* For indirect block */
1682 		BUFFER_TRACE(this_bh, "get_write_access");
1683 		err = ext3_journal_get_write_access(handle, this_bh);
1684 		/* Important: if we can't update the indirect pointers
1685 		 * to the blocks, we can't free them. */
1686 		if (err)
1687 			return;
1688 	}
1689 
1690 	for (p = first; p < last; p++) {
1691 		nr = le32_to_cpu(*p);
1692 		if (nr) {
1693 			/* accumulate blocks to free if they're contiguous */
1694 			if (count == 0) {
1695 				block_to_free = nr;
1696 				block_to_free_p = p;
1697 				count = 1;
1698 			} else if (nr == block_to_free + count) {
1699 				count++;
1700 			} else {
1701 				ext3_clear_blocks(handle, inode, this_bh,
1702 						  block_to_free,
1703 						  count, block_to_free_p, p);
1704 				block_to_free = nr;
1705 				block_to_free_p = p;
1706 				count = 1;
1707 			}
1708 		}
1709 	}
1710 
1711 	if (count > 0)
1712 		ext3_clear_blocks(handle, inode, this_bh, block_to_free,
1713 				  count, block_to_free_p, p);
1714 
1715 	if (this_bh) {
1716 		BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
1717 		ext3_journal_dirty_metadata(handle, this_bh);
1718 	}
1719 }
1720 
1721 /**
1722  *	ext3_free_branches - free an array of branches
1723  *	@handle: JBD handle for this transaction
1724  *	@inode:	inode we are dealing with
1725  *	@parent_bh: the buffer_head which contains *@first and *@last
1726  *	@first:	array of block numbers
1727  *	@last:	pointer immediately past the end of array
1728  *	@depth:	depth of the branches to free
1729  *
1730  *	We are freeing all blocks refered from these branches (numbers are
1731  *	stored as little-endian 32-bit) and updating @inode->i_blocks
1732  *	appropriately.
1733  */
ext3_free_branches(handle_t * handle,struct inode * inode,struct buffer_head * parent_bh,u32 * first,u32 * last,int depth)1734 static void ext3_free_branches(handle_t *handle, struct inode *inode,
1735 			       struct buffer_head *parent_bh,
1736 			       u32 *first, u32 *last, int depth)
1737 {
1738 	unsigned long nr;
1739 	u32 *p;
1740 
1741 	if (is_handle_aborted(handle))
1742 		return;
1743 
1744 	if (depth--) {
1745 		struct buffer_head *bh;
1746 		int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
1747 		p = last;
1748 		while (--p >= first) {
1749 			nr = le32_to_cpu(*p);
1750 			if (!nr)
1751 				continue;		/* A hole */
1752 
1753 			/* Go read the buffer for the next level down */
1754 			bh = sb_bread(inode->i_sb, nr);
1755 
1756 			/*
1757 			 * A read failure? Report error and clear slot
1758 			 * (should be rare).
1759 			 */
1760 			if (!bh) {
1761 				ext3_error(inode->i_sb, "ext3_free_branches",
1762 					   "Read failure, inode=%ld, block=%ld",
1763 					   inode->i_ino, nr);
1764 				continue;
1765 			}
1766 
1767 			/* This zaps the entire block.  Bottom up. */
1768 			BUFFER_TRACE(bh, "free child branches");
1769 			ext3_free_branches(handle, inode, bh, (u32*)bh->b_data,
1770 					   (u32*)bh->b_data + addr_per_block,
1771 					   depth);
1772 
1773 			/*
1774 			 * We've probably journalled the indirect block several
1775 			 * times during the truncate.  But it's no longer
1776 			 * needed and we now drop it from the transaction via
1777 			 * journal_revoke().
1778 			 *
1779 			 * That's easy if it's exclusively part of this
1780 			 * transaction.  But if it's part of the committing
1781 			 * transaction then journal_forget() will simply
1782 			 * brelse() it.  That means that if the underlying
1783 			 * block is reallocated in ext3_get_block(),
1784 			 * unmap_underlying_metadata() will find this block
1785 			 * and will try to get rid of it.  damn, damn.
1786 			 *
1787 			 * If this block has already been committed to the
1788 			 * journal, a revoke record will be written.  And
1789 			 * revoke records must be emitted *before* clearing
1790 			 * this block's bit in the bitmaps.
1791 			 */
1792 			ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
1793 
1794 			/*
1795 			 * Everything below this this pointer has been
1796 			 * released.  Now let this top-of-subtree go.
1797 			 *
1798 			 * We want the freeing of this indirect block to be
1799 			 * atomic in the journal with the updating of the
1800 			 * bitmap block which owns it.  So make some room in
1801 			 * the journal.
1802 			 *
1803 			 * We zero the parent pointer *after* freeing its
1804 			 * pointee in the bitmaps, so if extend_transaction()
1805 			 * for some reason fails to put the bitmap changes and
1806 			 * the release into the same transaction, recovery
1807 			 * will merely complain about releasing a free block,
1808 			 * rather than leaking blocks.
1809 			 */
1810 			if (is_handle_aborted(handle))
1811 				return;
1812 			if (try_to_extend_transaction(handle, inode)) {
1813 				ext3_mark_inode_dirty(handle, inode);
1814 				ext3_journal_test_restart(handle, inode);
1815 			}
1816 
1817 			ext3_free_blocks(handle, inode, nr, 1);
1818 
1819 			if (parent_bh) {
1820 				/*
1821 				 * The block which we have just freed is
1822 				 * pointed to by an indirect block: journal it
1823 				 */
1824 				BUFFER_TRACE(parent_bh, "get_write_access");
1825 				if (!ext3_journal_get_write_access(handle,
1826 								   parent_bh)){
1827 					*p = 0;
1828 					BUFFER_TRACE(parent_bh,
1829 					"call ext3_journal_dirty_metadata");
1830 					ext3_journal_dirty_metadata(handle,
1831 								    parent_bh);
1832 				}
1833 			}
1834 		}
1835 	} else {
1836 		/* We have reached the bottom of the tree. */
1837 		BUFFER_TRACE(parent_bh, "free data blocks");
1838 		ext3_free_data(handle, inode, parent_bh, first, last);
1839 	}
1840 }
1841 
1842 /*
1843  * ext3_truncate()
1844  *
1845  * We block out ext3_get_block() block instantiations across the entire
1846  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
1847  * simultaneously on behalf of the same inode.
1848  *
1849  * As we work through the truncate and commmit bits of it to the journal there
1850  * is one core, guiding principle: the file's tree must always be consistent on
1851  * disk.  We must be able to restart the truncate after a crash.
1852  *
1853  * The file's tree may be transiently inconsistent in memory (although it
1854  * probably isn't), but whenever we close off and commit a journal transaction,
1855  * the contents of (the filesystem + the journal) must be consistent and
1856  * restartable.  It's pretty simple, really: bottom up, right to left (although
1857  * left-to-right works OK too).
1858  *
1859  * Note that at recovery time, journal replay occurs *before* the restart of
1860  * truncate against the orphan inode list.
1861  *
1862  * The committed inode has the new, desired i_size (which is the same as
1863  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
1864  * that this inode's truncate did not complete and it will again call
1865  * ext3_truncate() to have another go.  So there will be instantiated blocks
1866  * to the right of the truncation point in a crashed ext3 filesystem.  But
1867  * that's fine - as long as they are linked from the inode, the post-crash
1868  * ext3_truncate() run will find them and release them.
1869  */
1870 
ext3_truncate(struct inode * inode)1871 void ext3_truncate(struct inode * inode)
1872 {
1873 	handle_t *handle;
1874 	u32 *i_data = inode->u.ext3_i.i_data;
1875 	int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
1876 	int offsets[4];
1877 	Indirect chain[4];
1878 	Indirect *partial;
1879 	int nr = 0;
1880 	int n;
1881 	long last_block;
1882 	unsigned blocksize;
1883 
1884 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1885 	    S_ISLNK(inode->i_mode)))
1886 		return;
1887 	if (ext3_inode_is_fast_symlink(inode))
1888 		return;
1889 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1890 		return;
1891 
1892 	ext3_discard_prealloc(inode);
1893 
1894 	handle = start_transaction(inode);
1895 	if (IS_ERR(handle))
1896 		return;		/* AKPM: return what? */
1897 
1898 	blocksize = inode->i_sb->s_blocksize;
1899 	last_block = (inode->i_size + blocksize-1)
1900 					>> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
1901 
1902 	ext3_block_truncate_page(handle, inode->i_mapping, inode->i_size);
1903 
1904 
1905 	n = ext3_block_to_path(inode, last_block, offsets);
1906 	if (n == 0)
1907 		goto out_stop;	/* error */
1908 
1909 	/*
1910 	 * OK.  This truncate is going to happen.  We add the inode to the
1911 	 * orphan list, so that if this truncate spans multiple transactions,
1912 	 * and we crash, we will resume the truncate when the filesystem
1913 	 * recovers.  It also marks the inode dirty, to catch the new size.
1914 	 *
1915 	 * Implication: the file must always be in a sane, consistent
1916 	 * truncatable state while each transaction commits.
1917 	 */
1918 	if (ext3_orphan_add(handle, inode))
1919 		goto out_stop;
1920 
1921 	/*
1922 	 * The orphan list entry will now protect us from any crash which
1923 	 * occurs before the truncate completes, so it is now safe to propagate
1924 	 * the new, shorter inode size (held for now in i_size) into the
1925 	 * on-disk inode. We do this via i_disksize, which is the value which
1926 	 * ext3 *really* writes onto the disk inode.
1927 	 */
1928 	inode->u.ext3_i.i_disksize = inode->i_size;
1929 
1930 	/*
1931 	 * From here we block out all ext3_get_block() callers who want to
1932 	 * modify the block allocation tree.
1933 	 */
1934 	down_write(&inode->u.ext3_i.truncate_sem);
1935 
1936 	if (n == 1) {		/* direct blocks */
1937 		ext3_free_data(handle, inode, NULL, i_data+offsets[0],
1938 			       i_data + EXT3_NDIR_BLOCKS);
1939 		goto do_indirects;
1940 	}
1941 
1942 	partial = ext3_find_shared(inode, n, offsets, chain, &nr);
1943 	/* Kill the top of shared branch (not detached) */
1944 	if (nr) {
1945 		if (partial == chain) {
1946 			/* Shared branch grows from the inode */
1947 			ext3_free_branches(handle, inode, NULL,
1948 					   &nr, &nr+1, (chain+n-1) - partial);
1949 			*partial->p = 0;
1950 			/*
1951 			 * We mark the inode dirty prior to restart,
1952 			 * and prior to stop.  No need for it here.
1953 			 */
1954 		} else {
1955 			/* Shared branch grows from an indirect block */
1956 			BUFFER_TRACE(partial->bh, "get_write_access");
1957 			ext3_free_branches(handle, inode, partial->bh,
1958 					partial->p,
1959 					partial->p+1, (chain+n-1) - partial);
1960 		}
1961 	}
1962 	/* Clear the ends of indirect blocks on the shared branch */
1963 	while (partial > chain) {
1964 		ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
1965 				   (u32*)partial->bh->b_data + addr_per_block,
1966 				   (chain+n-1) - partial);
1967 		BUFFER_TRACE(partial->bh, "call brelse");
1968 		brelse (partial->bh);
1969 		partial--;
1970 	}
1971 do_indirects:
1972 	/* Kill the remaining (whole) subtrees */
1973 	switch (offsets[0]) {
1974 		default:
1975 			nr = i_data[EXT3_IND_BLOCK];
1976 			if (nr) {
1977 				ext3_free_branches(handle, inode, NULL,
1978 						   &nr, &nr+1, 1);
1979 				i_data[EXT3_IND_BLOCK] = 0;
1980 			}
1981 		case EXT3_IND_BLOCK:
1982 			nr = i_data[EXT3_DIND_BLOCK];
1983 			if (nr) {
1984 				ext3_free_branches(handle, inode, NULL,
1985 						   &nr, &nr+1, 2);
1986 				i_data[EXT3_DIND_BLOCK] = 0;
1987 			}
1988 		case EXT3_DIND_BLOCK:
1989 			nr = i_data[EXT3_TIND_BLOCK];
1990 			if (nr) {
1991 				ext3_free_branches(handle, inode, NULL,
1992 						   &nr, &nr+1, 3);
1993 				i_data[EXT3_TIND_BLOCK] = 0;
1994 			}
1995 		case EXT3_TIND_BLOCK:
1996 			;
1997 	}
1998 	up_write(&inode->u.ext3_i.truncate_sem);
1999 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2000 	ext3_mark_inode_dirty(handle, inode);
2001 
2002 	/* In a multi-transaction truncate, we only make the final
2003 	 * transaction synchronous */
2004 	if (IS_SYNC(inode))
2005 		handle->h_sync = 1;
2006 out_stop:
2007 	/*
2008 	 * If this was a simple ftruncate(), and the file will remain alive
2009 	 * then we need to clear up the orphan record which we created above.
2010 	 * However, if this was a real unlink then we were called by
2011 	 * ext3_delete_inode(), and we allow that function to clean up the
2012 	 * orphan info for us.
2013 	 */
2014 	if (inode->i_nlink)
2015 		ext3_orphan_del(handle, inode);
2016 
2017 	ext3_journal_stop(handle, inode);
2018 }
2019 
2020 /*
2021  * ext3_get_inode_loc returns with an extra refcount against the
2022  * inode's underlying buffer_head on success.
2023  */
2024 
ext3_get_inode_loc(struct inode * inode,struct ext3_iloc * iloc)2025 int ext3_get_inode_loc (struct inode *inode, struct ext3_iloc *iloc)
2026 {
2027 	struct buffer_head *bh = 0;
2028 	unsigned long block;
2029 	unsigned long block_group;
2030 	unsigned long group_desc;
2031 	unsigned long desc;
2032 	unsigned long offset;
2033 	struct ext3_group_desc * gdp;
2034 
2035 	if ((inode->i_ino != EXT3_ROOT_INO &&
2036 		inode->i_ino != EXT3_ACL_IDX_INO &&
2037 		inode->i_ino != EXT3_ACL_DATA_INO &&
2038 		inode->i_ino != EXT3_JOURNAL_INO &&
2039 		inode->i_ino < EXT3_FIRST_INO(inode->i_sb)) ||
2040 		inode->i_ino > le32_to_cpu(
2041 			inode->i_sb->u.ext3_sb.s_es->s_inodes_count)) {
2042 		ext3_error (inode->i_sb, "ext3_get_inode_loc",
2043 			    "bad inode number: %lu", inode->i_ino);
2044 		goto bad_inode;
2045 	}
2046 	block_group = (inode->i_ino - 1) / EXT3_INODES_PER_GROUP(inode->i_sb);
2047 	if (block_group >= inode->i_sb->u.ext3_sb.s_groups_count) {
2048 		ext3_error (inode->i_sb, "ext3_get_inode_loc",
2049 			    "group >= groups count");
2050 		goto bad_inode;
2051 	}
2052 	group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(inode->i_sb);
2053 	desc = block_group & (EXT3_DESC_PER_BLOCK(inode->i_sb) - 1);
2054 	bh = inode->i_sb->u.ext3_sb.s_group_desc[group_desc];
2055 	if (!bh) {
2056 		ext3_error (inode->i_sb, "ext3_get_inode_loc",
2057 			    "Descriptor not loaded");
2058 		goto bad_inode;
2059 	}
2060 
2061 	gdp = (struct ext3_group_desc *) bh->b_data;
2062 	/*
2063 	 * Figure out the offset within the block group inode table
2064 	 */
2065 	offset = ((inode->i_ino - 1) % EXT3_INODES_PER_GROUP(inode->i_sb)) *
2066 		EXT3_INODE_SIZE(inode->i_sb);
2067 	block = le32_to_cpu(gdp[desc].bg_inode_table) +
2068 		(offset >> EXT3_BLOCK_SIZE_BITS(inode->i_sb));
2069 	if (!(bh = sb_bread(inode->i_sb, block))) {
2070 		ext3_error (inode->i_sb, "ext3_get_inode_loc",
2071 			    "unable to read inode block - "
2072 			    "inode=%lu, block=%lu", inode->i_ino, block);
2073 		goto bad_inode;
2074 	}
2075 	offset &= (EXT3_BLOCK_SIZE(inode->i_sb) - 1);
2076 
2077 	iloc->bh = bh;
2078 	iloc->raw_inode = (struct ext3_inode *) (bh->b_data + offset);
2079 	iloc->block_group = block_group;
2080 
2081 	return 0;
2082 
2083  bad_inode:
2084 	return -EIO;
2085 }
2086 
ext3_set_inode_flags(struct inode * inode)2087 void ext3_set_inode_flags(struct inode *inode)
2088 {
2089 	unsigned int flags = inode->u.ext3_i.i_flags;
2090 
2091 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME);
2092 	if (flags & EXT3_SYNC_FL)
2093 		inode->i_flags |= S_SYNC;
2094 	if (flags & EXT3_APPEND_FL)
2095 		inode->i_flags |= S_APPEND;
2096 	if (flags & EXT3_IMMUTABLE_FL)
2097 		inode->i_flags |= S_IMMUTABLE;
2098 	if (flags & EXT3_NOATIME_FL)
2099 		inode->i_flags |= S_NOATIME;
2100 }
2101 
2102 
ext3_read_inode(struct inode * inode)2103 void ext3_read_inode(struct inode * inode)
2104 {
2105 	struct ext3_iloc iloc;
2106 	struct ext3_inode *raw_inode;
2107 	struct buffer_head *bh;
2108 	int block;
2109 
2110 	if(ext3_get_inode_loc(inode, &iloc))
2111 		goto bad_inode;
2112 	bh = iloc.bh;
2113 	raw_inode = iloc.raw_inode;
2114 	init_rwsem(&inode->u.ext3_i.truncate_sem);
2115 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2116 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2117 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2118 	if(!(test_opt (inode->i_sb, NO_UID32))) {
2119 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2120 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2121 	}
2122 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2123 	inode->i_size = le32_to_cpu(raw_inode->i_size);
2124 	inode->i_atime = le32_to_cpu(raw_inode->i_atime);
2125 	inode->i_ctime = le32_to_cpu(raw_inode->i_ctime);
2126 	inode->i_mtime = le32_to_cpu(raw_inode->i_mtime);
2127 	inode->u.ext3_i.i_dtime = le32_to_cpu(raw_inode->i_dtime);
2128 	/* We now have enough fields to check if the inode was active or not.
2129 	 * This is needed because nfsd might try to access dead inodes
2130 	 * the test is that same one that e2fsck uses
2131 	 * NeilBrown 1999oct15
2132 	 */
2133 	if (inode->i_nlink == 0) {
2134 		if (inode->i_mode == 0 ||
2135 		    !(inode->i_sb->u.ext3_sb.s_mount_state & EXT3_ORPHAN_FS)) {
2136 			/* this inode is deleted */
2137 			brelse (bh);
2138 			goto bad_inode;
2139 		}
2140 		/* The only unlinked inodes we let through here have
2141 		 * valid i_mode and are being read by the orphan
2142 		 * recovery code: that's fine, we're about to complete
2143 		 * the process of deleting those. */
2144 	}
2145 	inode->i_blksize = PAGE_SIZE;	/* This is the optimal IO size
2146 					 * (for stat), not the fs block
2147 					 * size */
2148 	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2149 	inode->i_version = ++event;
2150 	inode->u.ext3_i.i_flags = le32_to_cpu(raw_inode->i_flags);
2151 #ifdef EXT3_FRAGMENTS
2152 	inode->u.ext3_i.i_faddr = le32_to_cpu(raw_inode->i_faddr);
2153 	inode->u.ext3_i.i_frag_no = raw_inode->i_frag;
2154 	inode->u.ext3_i.i_frag_size = raw_inode->i_fsize;
2155 #endif
2156 	inode->u.ext3_i.i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2157 	if (!S_ISREG(inode->i_mode)) {
2158 		inode->u.ext3_i.i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2159 	} else {
2160 		inode->i_size |=
2161 			((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2162 	}
2163 	inode->u.ext3_i.i_disksize = inode->i_size;
2164 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2165 #ifdef EXT3_PREALLOCATE
2166 	inode->u.ext3_i.i_prealloc_count = 0;
2167 #endif
2168 	inode->u.ext3_i.i_block_group = iloc.block_group;
2169 
2170 	/*
2171 	 * NOTE! The in-memory inode i_data array is in little-endian order
2172 	 * even on big-endian machines: we do NOT byteswap the block numbers!
2173 	 */
2174 	for (block = 0; block < EXT3_N_BLOCKS; block++)
2175 		inode->u.ext3_i.i_data[block] = iloc.raw_inode->i_block[block];
2176 	INIT_LIST_HEAD(&inode->u.ext3_i.i_orphan);
2177 
2178 	if (inode->i_ino == EXT3_ACL_IDX_INO ||
2179 	    inode->i_ino == EXT3_ACL_DATA_INO)
2180 		/* Nothing to do */ ;
2181 	else if (S_ISREG(inode->i_mode)) {
2182 		inode->i_op = &ext3_file_inode_operations;
2183 		inode->i_fop = &ext3_file_operations;
2184 		inode->i_mapping->a_ops = &ext3_aops;
2185 	} else if (S_ISDIR(inode->i_mode)) {
2186 		inode->i_op = &ext3_dir_inode_operations;
2187 		inode->i_fop = &ext3_dir_operations;
2188 	} else if (S_ISLNK(inode->i_mode)) {
2189 		if (ext3_inode_is_fast_symlink(inode))
2190 			inode->i_op = &ext3_fast_symlink_inode_operations;
2191 		else {
2192 			inode->i_op = &page_symlink_inode_operations;
2193 			inode->i_mapping->a_ops = &ext3_aops;
2194 		}
2195 	} else
2196 		init_special_inode(inode, inode->i_mode,
2197 				   le32_to_cpu(iloc.raw_inode->i_block[0]));
2198 	brelse(iloc.bh);
2199 	ext3_set_inode_flags(inode);
2200 	return;
2201 
2202 bad_inode:
2203 	make_bad_inode(inode);
2204 	return;
2205 }
2206 
2207 /*
2208  * Post the struct inode info into an on-disk inode location in the
2209  * buffer-cache.  This gobbles the caller's reference to the
2210  * buffer_head in the inode location struct.
2211  */
2212 
ext3_do_update_inode(handle_t * handle,struct inode * inode,struct ext3_iloc * iloc)2213 static int ext3_do_update_inode(handle_t *handle,
2214 				struct inode *inode,
2215 				struct ext3_iloc *iloc)
2216 {
2217 	struct ext3_inode *raw_inode = iloc->raw_inode;
2218 	struct buffer_head *bh = iloc->bh;
2219 	int err = 0, rc, block;
2220 
2221 	if (handle) {
2222 		BUFFER_TRACE(bh, "get_write_access");
2223 		err = ext3_journal_get_write_access(handle, bh);
2224 		if (err)
2225 			goto out_brelse;
2226 	}
2227 	/* For fields not not tracking in the in-memory inode,
2228 	 * initialise them to zero for new inodes. */
2229 	if (EXT3_I(inode)->i_state & EXT3_STATE_NEW)
2230 		memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2231 
2232 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2233 	if(!(test_opt(inode->i_sb, NO_UID32))) {
2234 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2235 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2236 /*
2237  * Fix up interoperability with old kernels. Otherwise, old inodes get
2238  * re-used with the upper 16 bits of the uid/gid intact
2239  */
2240 		if(!inode->u.ext3_i.i_dtime) {
2241 			raw_inode->i_uid_high =
2242 				cpu_to_le16(high_16_bits(inode->i_uid));
2243 			raw_inode->i_gid_high =
2244 				cpu_to_le16(high_16_bits(inode->i_gid));
2245 		} else {
2246 			raw_inode->i_uid_high = 0;
2247 			raw_inode->i_gid_high = 0;
2248 		}
2249 	} else {
2250 		raw_inode->i_uid_low =
2251 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
2252 		raw_inode->i_gid_low =
2253 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
2254 		raw_inode->i_uid_high = 0;
2255 		raw_inode->i_gid_high = 0;
2256 	}
2257 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2258 	raw_inode->i_size = cpu_to_le32(inode->u.ext3_i.i_disksize);
2259 	raw_inode->i_atime = cpu_to_le32(inode->i_atime);
2260 	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime);
2261 	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime);
2262 	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2263 	raw_inode->i_dtime = cpu_to_le32(inode->u.ext3_i.i_dtime);
2264 	raw_inode->i_flags = cpu_to_le32(inode->u.ext3_i.i_flags);
2265 #ifdef EXT3_FRAGMENTS
2266 	raw_inode->i_faddr = cpu_to_le32(inode->u.ext3_i.i_faddr);
2267 	raw_inode->i_frag = inode->u.ext3_i.i_frag_no;
2268 	raw_inode->i_fsize = inode->u.ext3_i.i_frag_size;
2269 #endif
2270 	raw_inode->i_file_acl = cpu_to_le32(inode->u.ext3_i.i_file_acl);
2271 	if (!S_ISREG(inode->i_mode)) {
2272 		raw_inode->i_dir_acl = cpu_to_le32(inode->u.ext3_i.i_dir_acl);
2273 	} else {
2274 		raw_inode->i_size_high =
2275 			cpu_to_le32(inode->u.ext3_i.i_disksize >> 32);
2276 		if (inode->u.ext3_i.i_disksize > 0x7fffffffULL) {
2277 			struct super_block *sb = inode->i_sb;
2278 			if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2279 					EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2280 			    EXT3_SB(sb)->s_es->s_rev_level ==
2281 					cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2282 			       /* If this is the first large file
2283 				* created, add a flag to the superblock.
2284 				*/
2285 				err = ext3_journal_get_write_access(handle,
2286 						sb->u.ext3_sb.s_sbh);
2287 				if (err)
2288 					goto out_brelse;
2289 				ext3_update_dynamic_rev(sb);
2290 				EXT3_SET_RO_COMPAT_FEATURE(sb,
2291 					EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2292 				sb->s_dirt = 1;
2293 				handle->h_sync = 1;
2294 				err = ext3_journal_dirty_metadata(handle,
2295 						sb->u.ext3_sb.s_sbh);
2296 			}
2297 		}
2298 	}
2299 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2300 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
2301 		raw_inode->i_block[0] =
2302 			cpu_to_le32(kdev_t_to_nr(inode->i_rdev));
2303 	else for (block = 0; block < EXT3_N_BLOCKS; block++)
2304 		raw_inode->i_block[block] = inode->u.ext3_i.i_data[block];
2305 
2306 	BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2307 	rc = ext3_journal_dirty_metadata(handle, bh);
2308 	if (!err)
2309 		err = rc;
2310 	EXT3_I(inode)->i_state &= ~EXT3_STATE_NEW;
2311 
2312 out_brelse:
2313 	brelse (bh);
2314 	ext3_std_error(inode->i_sb, err);
2315 	return err;
2316 }
2317 
2318 /*
2319  * ext3_write_inode()
2320  *
2321  * We are called from a few places:
2322  *
2323  * - Within generic_file_write() for O_SYNC files.
2324  *   Here, there will be no transaction running. We wait for any running
2325  *   trasnaction to commit.
2326  *
2327  * - Within sys_sync(), kupdate and such.
2328  *   We wait on commit, if tol to.
2329  *
2330  * - Within prune_icache() (PF_MEMALLOC == true)
2331  *   Here we simply return.  We can't afford to block kswapd on the
2332  *   journal commit.
2333  *
2334  * In all cases it is actually safe for us to return without doing anything,
2335  * because the inode has been copied into a raw inode buffer in
2336  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2337  * knfsd.
2338  *
2339  * Note that we are absolutely dependent upon all inode dirtiers doing the
2340  * right thing: they *must* call mark_inode_dirty() after dirtying info in
2341  * which we are interested.
2342  *
2343  * It would be a bug for them to not do this.  The code:
2344  *
2345  *	mark_inode_dirty(inode)
2346  *	stuff();
2347  *	inode->i_size = expr;
2348  *
2349  * is in error because a kswapd-driven write_inode() could occur while
2350  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
2351  * will no longer be on the superblock's dirty inode list.
2352  */
ext3_write_inode(struct inode * inode,int wait)2353 void ext3_write_inode(struct inode *inode, int wait)
2354 {
2355 	if (current->flags & PF_MEMALLOC)
2356 		return;
2357 
2358 	if (ext3_journal_current_handle()) {
2359 		jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
2360 		return;
2361 	}
2362 
2363 	if (!wait)
2364 		return;
2365 
2366 	ext3_force_commit(inode->i_sb);
2367 }
2368 
2369 /*
2370  * ext3_setattr()
2371  *
2372  * Called from notify_change.
2373  *
2374  * We want to trap VFS attempts to truncate the file as soon as
2375  * possible.  In particular, we want to make sure that when the VFS
2376  * shrinks i_size, we put the inode on the orphan list and modify
2377  * i_disksize immediately, so that during the subsequent flushing of
2378  * dirty pages and freeing of disk blocks, we can guarantee that any
2379  * commit will leave the blocks being flushed in an unused state on
2380  * disk.  (On recovery, the inode will get truncated and the blocks will
2381  * be freed, so we have a strong guarantee that no future commit will
2382  * leave these blocks visible to the user.)
2383  *
2384  * This is only needed for regular files.  rmdir() has its own path, and
2385  * we can never truncate a direcory except on final unlink (at which
2386  * point i_nlink is zero so recovery is easy.)
2387  *
2388  * Called with the BKL.
2389  */
2390 
ext3_setattr(struct dentry * dentry,struct iattr * attr)2391 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
2392 {
2393 	struct inode *inode = dentry->d_inode;
2394 	int error, rc = 0;
2395 	const unsigned int ia_valid = attr->ia_valid;
2396 
2397 	error = inode_change_ok(inode, attr);
2398 	if (error)
2399 		return error;
2400 
2401 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2402 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2403 		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2404 		if (error)
2405 			return error;
2406 	}
2407 
2408 	if (attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
2409 		handle_t *handle;
2410 
2411 		handle = ext3_journal_start(inode, 3);
2412 		if (IS_ERR(handle)) {
2413 			error = PTR_ERR(handle);
2414 			goto err_out;
2415 		}
2416 
2417 		error = ext3_orphan_add(handle, inode);
2418 		inode->u.ext3_i.i_disksize = attr->ia_size;
2419 		rc = ext3_mark_inode_dirty(handle, inode);
2420 		if (!error)
2421 			error = rc;
2422 		ext3_journal_stop(handle, inode);
2423 	}
2424 
2425 	rc = inode_setattr(inode, attr);
2426 
2427 	/* If inode_setattr's call to ext3_truncate failed to get a
2428 	 * transaction handle at all, we need to clean up the in-core
2429 	 * orphan list manually. */
2430 	if (inode->i_nlink)
2431 		ext3_orphan_del(NULL, inode);
2432 
2433 err_out:
2434 	ext3_std_error(inode->i_sb, error);
2435 	if (!error)
2436 		error = rc;
2437 	return error;
2438 }
2439 
2440 
2441 /*
2442  * akpm: how many blocks doth make a writepage()?
2443  *
2444  * With N blocks per page, it may be:
2445  * N data blocks
2446  * 2 indirect block
2447  * 2 dindirect
2448  * 1 tindirect
2449  * N+5 bitmap blocks (from the above)
2450  * N+5 group descriptor summary blocks
2451  * 1 inode block
2452  * 1 superblock.
2453  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
2454  *
2455  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
2456  *
2457  * With ordered or writeback data it's the same, less the N data blocks.
2458  *
2459  * If the inode's direct blocks can hold an integral number of pages then a
2460  * page cannot straddle two indirect blocks, and we can only touch one indirect
2461  * and dindirect block, and the "5" above becomes "3".
2462  *
2463  * This still overestimates under most circumstances.  If we were to pass the
2464  * start and end offsets in here as well we could do block_to_path() on each
2465  * block and work out the exact number of indirects which are touched.  Pah.
2466  */
2467 
ext3_writepage_trans_blocks(struct inode * inode)2468 int ext3_writepage_trans_blocks(struct inode *inode)
2469 {
2470 	int bpp = ext3_journal_blocks_per_page(inode);
2471 	int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
2472 	int ret;
2473 
2474 	if (ext3_should_journal_data(inode))
2475 		ret = 3 * (bpp + indirects) + 2;
2476 	else
2477 		ret = 2 * (bpp + indirects) + 2;
2478 
2479 #ifdef CONFIG_QUOTA
2480 	ret += 2 * EXT3_SINGLEDATA_TRANS_BLOCKS;
2481 #endif
2482 
2483 	return ret;
2484 }
2485 
2486 int
ext3_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext3_iloc * iloc)2487 ext3_mark_iloc_dirty(handle_t *handle,
2488 		     struct inode *inode,
2489 		     struct ext3_iloc *iloc)
2490 {
2491 	int err = 0;
2492 
2493 	if (handle) {
2494 		/* the do_update_inode consumes one bh->b_count */
2495 		atomic_inc(&iloc->bh->b_count);
2496 		err = ext3_do_update_inode(handle, inode, iloc);
2497 		/* ext3_do_update_inode() does journal_dirty_metadata */
2498 		brelse(iloc->bh);
2499 	} else {
2500 		printk(KERN_EMERG "%s: called with no handle!\n", __FUNCTION__);
2501 	}
2502 	return err;
2503 }
2504 
2505 /*
2506  * On success, We end up with an outstanding reference count against
2507  * iloc->bh.  This _must_ be cleaned up later.
2508  */
2509 
2510 int
ext3_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext3_iloc * iloc)2511 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
2512 			 struct ext3_iloc *iloc)
2513 {
2514 	int err = 0;
2515 	if (handle) {
2516 		err = ext3_get_inode_loc(inode, iloc);
2517 		if (!err) {
2518 			BUFFER_TRACE(iloc->bh, "get_write_access");
2519 			err = ext3_journal_get_write_access(handle, iloc->bh);
2520 			if (err) {
2521 				brelse(iloc->bh);
2522 				iloc->bh = NULL;
2523 			}
2524 		}
2525 	}
2526 	ext3_std_error(inode->i_sb, err);
2527 	return err;
2528 }
2529 
2530 /*
2531  * akpm: What we do here is to mark the in-core inode as clean
2532  * with respect to inode dirtiness (it may still be data-dirty).
2533  * This means that the in-core inode may be reaped by prune_icache
2534  * without having to perform any I/O.  This is a very good thing,
2535  * because *any* task may call prune_icache - even ones which
2536  * have a transaction open against a different journal.
2537  *
2538  * Is this cheating?  Not really.  Sure, we haven't written the
2539  * inode out, but prune_icache isn't a user-visible syncing function.
2540  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
2541  * we start and wait on commits.
2542  *
2543  * Is this efficient/effective?  Well, we're being nice to the system
2544  * by cleaning up our inodes proactively so they can be reaped
2545  * without I/O.  But we are potentially leaving up to five seconds'
2546  * worth of inodes floating about which prune_icache wants us to
2547  * write out.  One way to fix that would be to get prune_icache()
2548  * to do a write_super() to free up some memory.  It has the desired
2549  * effect.
2550  */
ext3_mark_inode_dirty(handle_t * handle,struct inode * inode)2551 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
2552 {
2553 	struct ext3_iloc iloc;
2554 	int err;
2555 
2556 	err = ext3_reserve_inode_write(handle, inode, &iloc);
2557 	if (!err)
2558 		err = ext3_mark_iloc_dirty(handle, inode, &iloc);
2559 	return err;
2560 }
2561 
2562 /*
2563  * akpm: ext3_dirty_inode() is called from __mark_inode_dirty()
2564  *
2565  * We're really interested in the case where a file is being extended.
2566  * i_size has been changed by generic_commit_write() and we thus need
2567  * to include the updated inode in the current transaction.
2568  *
2569  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
2570  * are allocated to the file.
2571  *
2572  * If the inode is marked synchronous, we don't honour that here - doing
2573  * so would cause a commit on atime updates, which we don't bother doing.
2574  * We handle synchronous inodes at the highest possible level.
2575  */
ext3_dirty_inode(struct inode * inode)2576 void ext3_dirty_inode(struct inode *inode)
2577 {
2578 	handle_t *current_handle = ext3_journal_current_handle();
2579 	handle_t *handle;
2580 
2581 	lock_kernel();
2582 	handle = ext3_journal_start(inode, 2);
2583 	if (IS_ERR(handle))
2584 		goto out;
2585 	if (current_handle &&
2586 		current_handle->h_transaction != handle->h_transaction) {
2587 		/* This task has a transaction open against a different fs */
2588 		printk(KERN_EMERG "%s: transactions do not match!\n",
2589 			__FUNCTION__);
2590 	} else {
2591 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
2592 				current_handle);
2593 		ext3_mark_inode_dirty(handle, inode);
2594 	}
2595 	ext3_journal_stop(handle, inode);
2596 out:
2597 	unlock_kernel();
2598 }
2599 
2600 #ifdef AKPM
2601 /*
2602  * Bind an inode's backing buffer_head into this transaction, to prevent
2603  * it from being flushed to disk early.  Unlike
2604  * ext3_reserve_inode_write, this leaves behind no bh reference and
2605  * returns no iloc structure, so the caller needs to repeat the iloc
2606  * lookup to mark the inode dirty later.
2607  */
2608 static inline int
ext3_pin_inode(handle_t * handle,struct inode * inode)2609 ext3_pin_inode(handle_t *handle, struct inode *inode)
2610 {
2611 	struct ext3_iloc iloc;
2612 
2613 	int err = 0;
2614 	if (handle) {
2615 		err = ext3_get_inode_loc(inode, &iloc);
2616 		if (!err) {
2617 			BUFFER_TRACE(iloc.bh, "get_write_access");
2618 			err = journal_get_write_access(handle, iloc.bh);
2619 			if (!err)
2620 				err = ext3_journal_dirty_metadata(handle,
2621 								  iloc.bh);
2622 			brelse(iloc.bh);
2623 		}
2624 	}
2625 	ext3_std_error(inode->i_sb, err);
2626 	return err;
2627 }
2628 #endif
2629 
ext3_change_inode_journal_flag(struct inode * inode,int val)2630 int ext3_change_inode_journal_flag(struct inode *inode, int val)
2631 {
2632 	journal_t *journal;
2633 	handle_t *handle;
2634 	int err;
2635 
2636 	/*
2637 	 * We have to be very careful here: changing a data block's
2638 	 * journaling status dynamically is dangerous.  If we write a
2639 	 * data block to the journal, change the status and then delete
2640 	 * that block, we risk forgetting to revoke the old log record
2641 	 * from the journal and so a subsequent replay can corrupt data.
2642 	 * So, first we make sure that the journal is empty and that
2643 	 * nobody is changing anything.
2644 	 */
2645 
2646 	journal = EXT3_JOURNAL(inode);
2647 	if (is_journal_aborted(journal) || IS_RDONLY(inode))
2648 		return -EROFS;
2649 
2650 	journal_lock_updates(journal);
2651 	journal_flush(journal);
2652 
2653 	/*
2654 	 * OK, there are no updates running now, and all cached data is
2655 	 * synced to disk.  We are now in a completely consistent state
2656 	 * which doesn't have anything in the journal, and we know that
2657 	 * no filesystem updates are running, so it is safe to modify
2658 	 * the inode's in-core data-journaling state flag now.
2659 	 */
2660 
2661 	if (val)
2662 		inode->u.ext3_i.i_flags |= EXT3_JOURNAL_DATA_FL;
2663 	else
2664 		inode->u.ext3_i.i_flags &= ~EXT3_JOURNAL_DATA_FL;
2665 
2666 	journal_unlock_updates(journal);
2667 
2668 	/* Finally we can mark the inode as dirty. */
2669 
2670 	handle = ext3_journal_start(inode, 1);
2671 	if (IS_ERR(handle))
2672 		return PTR_ERR(handle);
2673 
2674 	err = ext3_mark_inode_dirty(handle, inode);
2675 	handle->h_sync = 1;
2676 	ext3_journal_stop(handle, inode);
2677 	ext3_std_error(inode->i_sb, err);
2678 
2679 	return err;
2680 }
2681 
2682 
2683 /*
2684  * ext3_aops_journal_start().
2685  *
2686  * <This function died, but the comment lives on>
2687  *
2688  * We need to take the inode semaphore *outside* the
2689  * journal_start/journal_stop.  Otherwise, a different task could do a
2690  * wait_for_commit() while holding ->i_sem, which deadlocks.  The rule
2691  * is: transaction open/closes are considered to be a locking operation
2692  * and they nest *inside* ->i_sem.
2693  * ----------------------------------------------------------------------------
2694  * Possible problem:
2695  *	ext3_file_write()
2696  *	-> generic_file_write()
2697  *	   -> __alloc_pages()
2698  *	      -> page_launder()
2699  *		 -> ext3_writepage()
2700  *
2701  * And the writepage can be on a different fs while we have a
2702  * transaction open against this one!  Bad.
2703  *
2704  * I tried making the task PF_MEMALLOC here, but that simply results in
2705  * 0-order allocation failures passed back to generic_file_write().
2706  * Instead, we rely on the reentrancy protection in ext3_writepage().
2707  * ----------------------------------------------------------------------------
2708  * When we do the journal_start() here we don't really need to reserve
2709  * any blocks - we won't need any until we hit ext3_prepare_write(),
2710  * which does all the needed journal extending.  However!  There is a
2711  * problem with quotas:
2712  *
2713  * Thread 1:
2714  * sys_sync
2715  * ->sync_dquots
2716  *   ->commit_dquot
2717  *     ->lock_dquot
2718  *     ->write_dquot
2719  *       ->ext3_file_write
2720  *         ->journal_start
2721  *         ->ext3_prepare_write
2722  *           ->journal_extend
2723  *           ->journal_start
2724  * Thread 2:
2725  * ext3_create		(for example)
2726  * ->ext3_new_inode
2727  *   ->dquot_initialize
2728  *     ->lock_dquot
2729  *
2730  * Deadlock.  Thread 1's journal_start blocks because thread 2 has a
2731  * transaction open.  Thread 2's transaction will never close because
2732  * thread 2 is stuck waiting for the dquot lock.
2733  *
2734  * So.  We must ensure that thread 1 *never* needs to extend the journal
2735  * for quota writes.  We do that by reserving enough journal blocks
2736  * here, in ext3_aops_journal_start() to ensure that the forthcoming "see if we
2737  * need to extend" test in ext3_prepare_write() succeeds.
2738  */
2739