1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Tests Memory Protection Keys (see Documentation/core-api/protection-keys.rst)
4 *
5 * There are examples in here of:
6 * * how to set protection keys on memory
7 * * how to set/clear bits in pkey registers (the rights register)
8 * * how to handle SEGV_PKUERR signals and extract pkey-relevant
9 * information from the siginfo
10 *
11 * Things to add:
12 * make sure KSM and KSM COW breaking works
13 * prefault pages in at malloc, or not
14 * protect MPX bounds tables with protection keys?
15 * make sure VMA splitting/merging is working correctly
16 * OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys
17 * look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel
18 * do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks
19 *
20 * Compile like this:
21 * gcc -o protection_keys -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
22 * gcc -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
23 */
24 #define _GNU_SOURCE
25 #define __SANE_USERSPACE_TYPES__
26 #include <errno.h>
27 #include <linux/futex.h>
28 #include <time.h>
29 #include <sys/time.h>
30 #include <sys/syscall.h>
31 #include <string.h>
32 #include <stdio.h>
33 #include <stdint.h>
34 #include <stdbool.h>
35 #include <signal.h>
36 #include <assert.h>
37 #include <stdlib.h>
38 #include <ucontext.h>
39 #include <sys/mman.h>
40 #include <sys/types.h>
41 #include <sys/wait.h>
42 #include <sys/stat.h>
43 #include <fcntl.h>
44 #include <unistd.h>
45 #include <sys/ptrace.h>
46 #include <setjmp.h>
47
48 #include "pkey-helpers.h"
49
50 int iteration_nr = 1;
51 int test_nr;
52
53 u64 shadow_pkey_reg;
54 int dprint_in_signal;
55 char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE];
56
cat_into_file(char * str,char * file)57 void cat_into_file(char *str, char *file)
58 {
59 int fd = open(file, O_RDWR);
60 int ret;
61
62 dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file);
63 /*
64 * these need to be raw because they are called under
65 * pkey_assert()
66 */
67 if (fd < 0) {
68 fprintf(stderr, "error opening '%s'\n", str);
69 perror("error: ");
70 exit(__LINE__);
71 }
72
73 ret = write(fd, str, strlen(str));
74 if (ret != strlen(str)) {
75 perror("write to file failed");
76 fprintf(stderr, "filename: '%s' str: '%s'\n", file, str);
77 exit(__LINE__);
78 }
79 close(fd);
80 }
81
82 #if CONTROL_TRACING > 0
83 static int warned_tracing;
tracing_root_ok(void)84 int tracing_root_ok(void)
85 {
86 if (geteuid() != 0) {
87 if (!warned_tracing)
88 fprintf(stderr, "WARNING: not run as root, "
89 "can not do tracing control\n");
90 warned_tracing = 1;
91 return 0;
92 }
93 return 1;
94 }
95 #endif
96
tracing_on(void)97 void tracing_on(void)
98 {
99 #if CONTROL_TRACING > 0
100 #define TRACEDIR "/sys/kernel/debug/tracing"
101 char pidstr[32];
102
103 if (!tracing_root_ok())
104 return;
105
106 sprintf(pidstr, "%d", getpid());
107 cat_into_file("0", TRACEDIR "/tracing_on");
108 cat_into_file("\n", TRACEDIR "/trace");
109 if (1) {
110 cat_into_file("function_graph", TRACEDIR "/current_tracer");
111 cat_into_file("1", TRACEDIR "/options/funcgraph-proc");
112 } else {
113 cat_into_file("nop", TRACEDIR "/current_tracer");
114 }
115 cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid");
116 cat_into_file("1", TRACEDIR "/tracing_on");
117 dprintf1("enabled tracing\n");
118 #endif
119 }
120
tracing_off(void)121 void tracing_off(void)
122 {
123 #if CONTROL_TRACING > 0
124 if (!tracing_root_ok())
125 return;
126 cat_into_file("0", "/sys/kernel/debug/tracing/tracing_on");
127 #endif
128 }
129
abort_hooks(void)130 void abort_hooks(void)
131 {
132 fprintf(stderr, "running %s()...\n", __func__);
133 tracing_off();
134 #ifdef SLEEP_ON_ABORT
135 sleep(SLEEP_ON_ABORT);
136 #endif
137 }
138
139 /*
140 * This attempts to have roughly a page of instructions followed by a few
141 * instructions that do a write, and another page of instructions. That
142 * way, we are pretty sure that the write is in the second page of
143 * instructions and has at least a page of padding behind it.
144 *
145 * *That* lets us be sure to madvise() away the write instruction, which
146 * will then fault, which makes sure that the fault code handles
147 * execute-only memory properly.
148 */
149 #ifdef __powerpc64__
150 /* This way, both 4K and 64K alignment are maintained */
151 __attribute__((__aligned__(65536)))
152 #else
153 __attribute__((__aligned__(PAGE_SIZE)))
154 #endif
lots_o_noops_around_write(int * write_to_me)155 void lots_o_noops_around_write(int *write_to_me)
156 {
157 dprintf3("running %s()\n", __func__);
158 __page_o_noops();
159 /* Assume this happens in the second page of instructions: */
160 *write_to_me = __LINE__;
161 /* pad out by another page: */
162 __page_o_noops();
163 dprintf3("%s() done\n", __func__);
164 }
165
dump_mem(void * dumpme,int len_bytes)166 void dump_mem(void *dumpme, int len_bytes)
167 {
168 char *c = (void *)dumpme;
169 int i;
170
171 for (i = 0; i < len_bytes; i += sizeof(u64)) {
172 u64 *ptr = (u64 *)(c + i);
173 dprintf1("dump[%03d][@%p]: %016llx\n", i, ptr, *ptr);
174 }
175 }
176
hw_pkey_get(int pkey,unsigned long flags)177 static u32 hw_pkey_get(int pkey, unsigned long flags)
178 {
179 u64 pkey_reg = __read_pkey_reg();
180
181 dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n",
182 __func__, pkey, flags, 0, 0);
183 dprintf2("%s() raw pkey_reg: %016llx\n", __func__, pkey_reg);
184
185 return (u32) get_pkey_bits(pkey_reg, pkey);
186 }
187
hw_pkey_set(int pkey,unsigned long rights,unsigned long flags)188 static int hw_pkey_set(int pkey, unsigned long rights, unsigned long flags)
189 {
190 u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
191 u64 old_pkey_reg = __read_pkey_reg();
192 u64 new_pkey_reg;
193
194 /* make sure that 'rights' only contains the bits we expect: */
195 assert(!(rights & ~mask));
196
197 /* modify bits accordingly in old pkey_reg and assign it */
198 new_pkey_reg = set_pkey_bits(old_pkey_reg, pkey, rights);
199
200 __write_pkey_reg(new_pkey_reg);
201
202 dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x"
203 " pkey_reg now: %016llx old_pkey_reg: %016llx\n",
204 __func__, pkey, rights, flags, 0, __read_pkey_reg(),
205 old_pkey_reg);
206 return 0;
207 }
208
pkey_disable_set(int pkey,int flags)209 void pkey_disable_set(int pkey, int flags)
210 {
211 unsigned long syscall_flags = 0;
212 int ret;
213 int pkey_rights;
214 u64 orig_pkey_reg = read_pkey_reg();
215
216 dprintf1("START->%s(%d, 0x%x)\n", __func__,
217 pkey, flags);
218 pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
219
220 pkey_rights = hw_pkey_get(pkey, syscall_flags);
221
222 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
223 pkey, pkey, pkey_rights);
224
225 pkey_assert(pkey_rights >= 0);
226
227 pkey_rights |= flags;
228
229 ret = hw_pkey_set(pkey, pkey_rights, syscall_flags);
230 assert(!ret);
231 /* pkey_reg and flags have the same format */
232 shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
233 dprintf1("%s(%d) shadow: 0x%016llx\n",
234 __func__, pkey, shadow_pkey_reg);
235
236 pkey_assert(ret >= 0);
237
238 pkey_rights = hw_pkey_get(pkey, syscall_flags);
239 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
240 pkey, pkey, pkey_rights);
241
242 dprintf1("%s(%d) pkey_reg: 0x%016llx\n",
243 __func__, pkey, read_pkey_reg());
244 if (flags)
245 pkey_assert(read_pkey_reg() >= orig_pkey_reg);
246 dprintf1("END<---%s(%d, 0x%x)\n", __func__,
247 pkey, flags);
248 }
249
pkey_disable_clear(int pkey,int flags)250 void pkey_disable_clear(int pkey, int flags)
251 {
252 unsigned long syscall_flags = 0;
253 int ret;
254 int pkey_rights = hw_pkey_get(pkey, syscall_flags);
255 u64 orig_pkey_reg = read_pkey_reg();
256
257 pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
258
259 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
260 pkey, pkey, pkey_rights);
261 pkey_assert(pkey_rights >= 0);
262
263 pkey_rights &= ~flags;
264
265 ret = hw_pkey_set(pkey, pkey_rights, 0);
266 shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
267 pkey_assert(ret >= 0);
268
269 pkey_rights = hw_pkey_get(pkey, syscall_flags);
270 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
271 pkey, pkey, pkey_rights);
272
273 dprintf1("%s(%d) pkey_reg: 0x%016llx\n", __func__,
274 pkey, read_pkey_reg());
275 if (flags)
276 assert(read_pkey_reg() <= orig_pkey_reg);
277 }
278
pkey_write_allow(int pkey)279 void pkey_write_allow(int pkey)
280 {
281 pkey_disable_clear(pkey, PKEY_DISABLE_WRITE);
282 }
pkey_write_deny(int pkey)283 void pkey_write_deny(int pkey)
284 {
285 pkey_disable_set(pkey, PKEY_DISABLE_WRITE);
286 }
pkey_access_allow(int pkey)287 void pkey_access_allow(int pkey)
288 {
289 pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS);
290 }
pkey_access_deny(int pkey)291 void pkey_access_deny(int pkey)
292 {
293 pkey_disable_set(pkey, PKEY_DISABLE_ACCESS);
294 }
295
296 /* Failed address bound checks: */
297 #ifndef SEGV_BNDERR
298 # define SEGV_BNDERR 3
299 #endif
300
301 #ifndef SEGV_PKUERR
302 # define SEGV_PKUERR 4
303 #endif
304
si_code_str(int si_code)305 static char *si_code_str(int si_code)
306 {
307 if (si_code == SEGV_MAPERR)
308 return "SEGV_MAPERR";
309 if (si_code == SEGV_ACCERR)
310 return "SEGV_ACCERR";
311 if (si_code == SEGV_BNDERR)
312 return "SEGV_BNDERR";
313 if (si_code == SEGV_PKUERR)
314 return "SEGV_PKUERR";
315 return "UNKNOWN";
316 }
317
318 int pkey_faults;
319 int last_si_pkey = -1;
signal_handler(int signum,siginfo_t * si,void * vucontext)320 void signal_handler(int signum, siginfo_t *si, void *vucontext)
321 {
322 ucontext_t *uctxt = vucontext;
323 int trapno;
324 unsigned long ip;
325 char *fpregs;
326 #if defined(__i386__) || defined(__x86_64__) /* arch */
327 u32 *pkey_reg_ptr;
328 int pkey_reg_offset;
329 #endif /* arch */
330 u64 siginfo_pkey;
331 u32 *si_pkey_ptr;
332
333 dprint_in_signal = 1;
334 dprintf1(">>>>===============SIGSEGV============================\n");
335 dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
336 __func__, __LINE__,
337 __read_pkey_reg(), shadow_pkey_reg);
338
339 trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO];
340 ip = uctxt->uc_mcontext.gregs[REG_IP_IDX];
341 fpregs = (char *) uctxt->uc_mcontext.fpregs;
342
343 dprintf2("%s() trapno: %d ip: 0x%016lx info->si_code: %s/%d\n",
344 __func__, trapno, ip, si_code_str(si->si_code),
345 si->si_code);
346
347 #if defined(__i386__) || defined(__x86_64__) /* arch */
348 #ifdef __i386__
349 /*
350 * 32-bit has some extra padding so that userspace can tell whether
351 * the XSTATE header is present in addition to the "legacy" FPU
352 * state. We just assume that it is here.
353 */
354 fpregs += 0x70;
355 #endif /* i386 */
356 pkey_reg_offset = pkey_reg_xstate_offset();
357 pkey_reg_ptr = (void *)(&fpregs[pkey_reg_offset]);
358
359 /*
360 * If we got a PKEY fault, we *HAVE* to have at least one bit set in
361 * here.
362 */
363 dprintf1("pkey_reg_xstate_offset: %d\n", pkey_reg_xstate_offset());
364 if (DEBUG_LEVEL > 4)
365 dump_mem(pkey_reg_ptr - 128, 256);
366 pkey_assert(*pkey_reg_ptr);
367 #endif /* arch */
368
369 dprintf1("siginfo: %p\n", si);
370 dprintf1(" fpregs: %p\n", fpregs);
371
372 if ((si->si_code == SEGV_MAPERR) ||
373 (si->si_code == SEGV_ACCERR) ||
374 (si->si_code == SEGV_BNDERR)) {
375 printf("non-PK si_code, exiting...\n");
376 exit(4);
377 }
378
379 si_pkey_ptr = siginfo_get_pkey_ptr(si);
380 dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr);
381 dump_mem((u8 *)si_pkey_ptr - 8, 24);
382 siginfo_pkey = *si_pkey_ptr;
383 pkey_assert(siginfo_pkey < NR_PKEYS);
384 last_si_pkey = siginfo_pkey;
385
386 /*
387 * need __read_pkey_reg() version so we do not do shadow_pkey_reg
388 * checking
389 */
390 dprintf1("signal pkey_reg from pkey_reg: %016llx\n",
391 __read_pkey_reg());
392 dprintf1("pkey from siginfo: %016llx\n", siginfo_pkey);
393 #if defined(__i386__) || defined(__x86_64__) /* arch */
394 dprintf1("signal pkey_reg from xsave: %08x\n", *pkey_reg_ptr);
395 *(u64 *)pkey_reg_ptr = 0x00000000;
396 dprintf1("WARNING: set PKEY_REG=0 to allow faulting instruction to continue\n");
397 #elif defined(__powerpc64__) /* arch */
398 /* restore access and let the faulting instruction continue */
399 pkey_access_allow(siginfo_pkey);
400 #endif /* arch */
401 pkey_faults++;
402 dprintf1("<<<<==================================================\n");
403 dprint_in_signal = 0;
404 }
405
wait_all_children(void)406 int wait_all_children(void)
407 {
408 int status;
409 return waitpid(-1, &status, 0);
410 }
411
sig_chld(int x)412 void sig_chld(int x)
413 {
414 dprint_in_signal = 1;
415 dprintf2("[%d] SIGCHLD: %d\n", getpid(), x);
416 dprint_in_signal = 0;
417 }
418
setup_sigsegv_handler(void)419 void setup_sigsegv_handler(void)
420 {
421 int r, rs;
422 struct sigaction newact;
423 struct sigaction oldact;
424
425 /* #PF is mapped to sigsegv */
426 int signum = SIGSEGV;
427
428 newact.sa_handler = 0;
429 newact.sa_sigaction = signal_handler;
430
431 /*sigset_t - signals to block while in the handler */
432 /* get the old signal mask. */
433 rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
434 pkey_assert(rs == 0);
435
436 /* call sa_sigaction, not sa_handler*/
437 newact.sa_flags = SA_SIGINFO;
438
439 newact.sa_restorer = 0; /* void(*)(), obsolete */
440 r = sigaction(signum, &newact, &oldact);
441 r = sigaction(SIGALRM, &newact, &oldact);
442 pkey_assert(r == 0);
443 }
444
setup_handlers(void)445 void setup_handlers(void)
446 {
447 signal(SIGCHLD, &sig_chld);
448 setup_sigsegv_handler();
449 }
450
fork_lazy_child(void)451 pid_t fork_lazy_child(void)
452 {
453 pid_t forkret;
454
455 forkret = fork();
456 pkey_assert(forkret >= 0);
457 dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
458
459 if (!forkret) {
460 /* in the child */
461 while (1) {
462 dprintf1("child sleeping...\n");
463 sleep(30);
464 }
465 }
466 return forkret;
467 }
468
sys_mprotect_pkey(void * ptr,size_t size,unsigned long orig_prot,unsigned long pkey)469 int sys_mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
470 unsigned long pkey)
471 {
472 int sret;
473
474 dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__,
475 ptr, size, orig_prot, pkey);
476
477 errno = 0;
478 sret = syscall(SYS_mprotect_key, ptr, size, orig_prot, pkey);
479 if (errno) {
480 dprintf2("SYS_mprotect_key sret: %d\n", sret);
481 dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot);
482 dprintf2("SYS_mprotect_key failed, errno: %d\n", errno);
483 if (DEBUG_LEVEL >= 2)
484 perror("SYS_mprotect_pkey");
485 }
486 return sret;
487 }
488
sys_pkey_alloc(unsigned long flags,unsigned long init_val)489 int sys_pkey_alloc(unsigned long flags, unsigned long init_val)
490 {
491 int ret = syscall(SYS_pkey_alloc, flags, init_val);
492 dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n",
493 __func__, flags, init_val, ret, errno);
494 return ret;
495 }
496
alloc_pkey(void)497 int alloc_pkey(void)
498 {
499 int ret;
500 unsigned long init_val = 0x0;
501
502 dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
503 __func__, __LINE__, __read_pkey_reg(), shadow_pkey_reg);
504 ret = sys_pkey_alloc(0, init_val);
505 /*
506 * pkey_alloc() sets PKEY register, so we need to reflect it in
507 * shadow_pkey_reg:
508 */
509 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
510 " shadow: 0x%016llx\n",
511 __func__, __LINE__, ret, __read_pkey_reg(),
512 shadow_pkey_reg);
513 if (ret > 0) {
514 /* clear both the bits: */
515 shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
516 ~PKEY_MASK);
517 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
518 " shadow: 0x%016llx\n",
519 __func__,
520 __LINE__, ret, __read_pkey_reg(),
521 shadow_pkey_reg);
522 /*
523 * move the new state in from init_val
524 * (remember, we cheated and init_val == pkey_reg format)
525 */
526 shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
527 init_val);
528 }
529 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
530 " shadow: 0x%016llx\n",
531 __func__, __LINE__, ret, __read_pkey_reg(),
532 shadow_pkey_reg);
533 dprintf1("%s()::%d errno: %d\n", __func__, __LINE__, errno);
534 /* for shadow checking: */
535 read_pkey_reg();
536 dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
537 " shadow: 0x%016llx\n",
538 __func__, __LINE__, ret, __read_pkey_reg(),
539 shadow_pkey_reg);
540 return ret;
541 }
542
sys_pkey_free(unsigned long pkey)543 int sys_pkey_free(unsigned long pkey)
544 {
545 int ret = syscall(SYS_pkey_free, pkey);
546 dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__, pkey, ret);
547 return ret;
548 }
549
550 /*
551 * I had a bug where pkey bits could be set by mprotect() but
552 * not cleared. This ensures we get lots of random bit sets
553 * and clears on the vma and pte pkey bits.
554 */
alloc_random_pkey(void)555 int alloc_random_pkey(void)
556 {
557 int max_nr_pkey_allocs;
558 int ret;
559 int i;
560 int alloced_pkeys[NR_PKEYS];
561 int nr_alloced = 0;
562 int random_index;
563 memset(alloced_pkeys, 0, sizeof(alloced_pkeys));
564
565 /* allocate every possible key and make a note of which ones we got */
566 max_nr_pkey_allocs = NR_PKEYS;
567 for (i = 0; i < max_nr_pkey_allocs; i++) {
568 int new_pkey = alloc_pkey();
569 if (new_pkey < 0)
570 break;
571 alloced_pkeys[nr_alloced++] = new_pkey;
572 }
573
574 pkey_assert(nr_alloced > 0);
575 /* select a random one out of the allocated ones */
576 random_index = rand() % nr_alloced;
577 ret = alloced_pkeys[random_index];
578 /* now zero it out so we don't free it next */
579 alloced_pkeys[random_index] = 0;
580
581 /* go through the allocated ones that we did not want and free them */
582 for (i = 0; i < nr_alloced; i++) {
583 int free_ret;
584 if (!alloced_pkeys[i])
585 continue;
586 free_ret = sys_pkey_free(alloced_pkeys[i]);
587 pkey_assert(!free_ret);
588 }
589 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
590 " shadow: 0x%016llx\n", __func__,
591 __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
592 return ret;
593 }
594
mprotect_pkey(void * ptr,size_t size,unsigned long orig_prot,unsigned long pkey)595 int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
596 unsigned long pkey)
597 {
598 int nr_iterations = random() % 100;
599 int ret;
600
601 while (0) {
602 int rpkey = alloc_random_pkey();
603 ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
604 dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
605 ptr, size, orig_prot, pkey, ret);
606 if (nr_iterations-- < 0)
607 break;
608
609 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
610 " shadow: 0x%016llx\n",
611 __func__, __LINE__, ret, __read_pkey_reg(),
612 shadow_pkey_reg);
613 sys_pkey_free(rpkey);
614 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
615 " shadow: 0x%016llx\n",
616 __func__, __LINE__, ret, __read_pkey_reg(),
617 shadow_pkey_reg);
618 }
619 pkey_assert(pkey < NR_PKEYS);
620
621 ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
622 dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
623 ptr, size, orig_prot, pkey, ret);
624 pkey_assert(!ret);
625 dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
626 " shadow: 0x%016llx\n", __func__,
627 __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
628 return ret;
629 }
630
631 struct pkey_malloc_record {
632 void *ptr;
633 long size;
634 int prot;
635 };
636 struct pkey_malloc_record *pkey_malloc_records;
637 struct pkey_malloc_record *pkey_last_malloc_record;
638 long nr_pkey_malloc_records;
record_pkey_malloc(void * ptr,long size,int prot)639 void record_pkey_malloc(void *ptr, long size, int prot)
640 {
641 long i;
642 struct pkey_malloc_record *rec = NULL;
643
644 for (i = 0; i < nr_pkey_malloc_records; i++) {
645 rec = &pkey_malloc_records[i];
646 /* find a free record */
647 if (rec)
648 break;
649 }
650 if (!rec) {
651 /* every record is full */
652 size_t old_nr_records = nr_pkey_malloc_records;
653 size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1);
654 size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record);
655 dprintf2("new_nr_records: %zd\n", new_nr_records);
656 dprintf2("new_size: %zd\n", new_size);
657 pkey_malloc_records = realloc(pkey_malloc_records, new_size);
658 pkey_assert(pkey_malloc_records != NULL);
659 rec = &pkey_malloc_records[nr_pkey_malloc_records];
660 /*
661 * realloc() does not initialize memory, so zero it from
662 * the first new record all the way to the end.
663 */
664 for (i = 0; i < new_nr_records - old_nr_records; i++)
665 memset(rec + i, 0, sizeof(*rec));
666 }
667 dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n",
668 (int)(rec - pkey_malloc_records), rec, ptr, size);
669 rec->ptr = ptr;
670 rec->size = size;
671 rec->prot = prot;
672 pkey_last_malloc_record = rec;
673 nr_pkey_malloc_records++;
674 }
675
free_pkey_malloc(void * ptr)676 void free_pkey_malloc(void *ptr)
677 {
678 long i;
679 int ret;
680 dprintf3("%s(%p)\n", __func__, ptr);
681 for (i = 0; i < nr_pkey_malloc_records; i++) {
682 struct pkey_malloc_record *rec = &pkey_malloc_records[i];
683 dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n",
684 ptr, i, rec, rec->ptr, rec->size);
685 if ((ptr < rec->ptr) ||
686 (ptr >= rec->ptr + rec->size))
687 continue;
688
689 dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n",
690 ptr, i, rec, rec->ptr, rec->size);
691 nr_pkey_malloc_records--;
692 ret = munmap(rec->ptr, rec->size);
693 dprintf3("munmap ret: %d\n", ret);
694 pkey_assert(!ret);
695 dprintf3("clearing rec->ptr, rec: %p\n", rec);
696 rec->ptr = NULL;
697 dprintf3("done clearing rec->ptr, rec: %p\n", rec);
698 return;
699 }
700 pkey_assert(false);
701 }
702
703
malloc_pkey_with_mprotect(long size,int prot,u16 pkey)704 void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey)
705 {
706 void *ptr;
707 int ret;
708
709 read_pkey_reg();
710 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
711 size, prot, pkey);
712 pkey_assert(pkey < NR_PKEYS);
713 ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
714 pkey_assert(ptr != (void *)-1);
715 ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey);
716 pkey_assert(!ret);
717 record_pkey_malloc(ptr, size, prot);
718 read_pkey_reg();
719
720 dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr);
721 return ptr;
722 }
723
malloc_pkey_anon_huge(long size,int prot,u16 pkey)724 void *malloc_pkey_anon_huge(long size, int prot, u16 pkey)
725 {
726 int ret;
727 void *ptr;
728
729 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
730 size, prot, pkey);
731 /*
732 * Guarantee we can fit at least one huge page in the resulting
733 * allocation by allocating space for 2:
734 */
735 size = ALIGN_UP(size, HPAGE_SIZE * 2);
736 ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
737 pkey_assert(ptr != (void *)-1);
738 record_pkey_malloc(ptr, size, prot);
739 mprotect_pkey(ptr, size, prot, pkey);
740
741 dprintf1("unaligned ptr: %p\n", ptr);
742 ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE);
743 dprintf1(" aligned ptr: %p\n", ptr);
744 ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE);
745 dprintf1("MADV_HUGEPAGE ret: %d\n", ret);
746 ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED);
747 dprintf1("MADV_WILLNEED ret: %d\n", ret);
748 memset(ptr, 0, HPAGE_SIZE);
749
750 dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr);
751 return ptr;
752 }
753
754 int hugetlb_setup_ok;
755 #define SYSFS_FMT_NR_HUGE_PAGES "/sys/kernel/mm/hugepages/hugepages-%ldkB/nr_hugepages"
756 #define GET_NR_HUGE_PAGES 10
setup_hugetlbfs(void)757 void setup_hugetlbfs(void)
758 {
759 int err;
760 int fd;
761 char buf[256];
762 long hpagesz_kb;
763 long hpagesz_mb;
764
765 if (geteuid() != 0) {
766 fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n");
767 return;
768 }
769
770 cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages");
771
772 /*
773 * Now go make sure that we got the pages and that they
774 * are PMD-level pages. Someone might have made PUD-level
775 * pages the default.
776 */
777 hpagesz_kb = HPAGE_SIZE / 1024;
778 hpagesz_mb = hpagesz_kb / 1024;
779 sprintf(buf, SYSFS_FMT_NR_HUGE_PAGES, hpagesz_kb);
780 fd = open(buf, O_RDONLY);
781 if (fd < 0) {
782 fprintf(stderr, "opening sysfs %ldM hugetlb config: %s\n",
783 hpagesz_mb, strerror(errno));
784 return;
785 }
786
787 /* -1 to guarantee leaving the trailing \0 */
788 err = read(fd, buf, sizeof(buf)-1);
789 close(fd);
790 if (err <= 0) {
791 fprintf(stderr, "reading sysfs %ldM hugetlb config: %s\n",
792 hpagesz_mb, strerror(errno));
793 return;
794 }
795
796 if (atoi(buf) != GET_NR_HUGE_PAGES) {
797 fprintf(stderr, "could not confirm %ldM pages, got: '%s' expected %d\n",
798 hpagesz_mb, buf, GET_NR_HUGE_PAGES);
799 return;
800 }
801
802 hugetlb_setup_ok = 1;
803 }
804
malloc_pkey_hugetlb(long size,int prot,u16 pkey)805 void *malloc_pkey_hugetlb(long size, int prot, u16 pkey)
806 {
807 void *ptr;
808 int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB;
809
810 if (!hugetlb_setup_ok)
811 return PTR_ERR_ENOTSUP;
812
813 dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey);
814 size = ALIGN_UP(size, HPAGE_SIZE * 2);
815 pkey_assert(pkey < NR_PKEYS);
816 ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0);
817 pkey_assert(ptr != (void *)-1);
818 mprotect_pkey(ptr, size, prot, pkey);
819
820 record_pkey_malloc(ptr, size, prot);
821
822 dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr);
823 return ptr;
824 }
825
malloc_pkey_mmap_dax(long size,int prot,u16 pkey)826 void *malloc_pkey_mmap_dax(long size, int prot, u16 pkey)
827 {
828 void *ptr;
829 int fd;
830
831 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
832 size, prot, pkey);
833 pkey_assert(pkey < NR_PKEYS);
834 fd = open("/dax/foo", O_RDWR);
835 pkey_assert(fd >= 0);
836
837 ptr = mmap(0, size, prot, MAP_SHARED, fd, 0);
838 pkey_assert(ptr != (void *)-1);
839
840 mprotect_pkey(ptr, size, prot, pkey);
841
842 record_pkey_malloc(ptr, size, prot);
843
844 dprintf1("mmap()'d for pkey %d @ %p\n", pkey, ptr);
845 close(fd);
846 return ptr;
847 }
848
849 void *(*pkey_malloc[])(long size, int prot, u16 pkey) = {
850
851 malloc_pkey_with_mprotect,
852 malloc_pkey_with_mprotect_subpage,
853 malloc_pkey_anon_huge,
854 malloc_pkey_hugetlb
855 /* can not do direct with the pkey_mprotect() API:
856 malloc_pkey_mmap_direct,
857 malloc_pkey_mmap_dax,
858 */
859 };
860
malloc_pkey(long size,int prot,u16 pkey)861 void *malloc_pkey(long size, int prot, u16 pkey)
862 {
863 void *ret;
864 static int malloc_type;
865 int nr_malloc_types = ARRAY_SIZE(pkey_malloc);
866
867 pkey_assert(pkey < NR_PKEYS);
868
869 while (1) {
870 pkey_assert(malloc_type < nr_malloc_types);
871
872 ret = pkey_malloc[malloc_type](size, prot, pkey);
873 pkey_assert(ret != (void *)-1);
874
875 malloc_type++;
876 if (malloc_type >= nr_malloc_types)
877 malloc_type = (random()%nr_malloc_types);
878
879 /* try again if the malloc_type we tried is unsupported */
880 if (ret == PTR_ERR_ENOTSUP)
881 continue;
882
883 break;
884 }
885
886 dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__,
887 size, prot, pkey, ret);
888 return ret;
889 }
890
891 int last_pkey_faults;
892 #define UNKNOWN_PKEY -2
expected_pkey_fault(int pkey)893 void expected_pkey_fault(int pkey)
894 {
895 dprintf2("%s(): last_pkey_faults: %d pkey_faults: %d\n",
896 __func__, last_pkey_faults, pkey_faults);
897 dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey);
898 pkey_assert(last_pkey_faults + 1 == pkey_faults);
899
900 /*
901 * For exec-only memory, we do not know the pkey in
902 * advance, so skip this check.
903 */
904 if (pkey != UNKNOWN_PKEY)
905 pkey_assert(last_si_pkey == pkey);
906
907 #if defined(__i386__) || defined(__x86_64__) /* arch */
908 /*
909 * The signal handler shold have cleared out PKEY register to let the
910 * test program continue. We now have to restore it.
911 */
912 if (__read_pkey_reg() != 0)
913 #else /* arch */
914 if (__read_pkey_reg() != shadow_pkey_reg)
915 #endif /* arch */
916 pkey_assert(0);
917
918 __write_pkey_reg(shadow_pkey_reg);
919 dprintf1("%s() set pkey_reg=%016llx to restore state after signal "
920 "nuked it\n", __func__, shadow_pkey_reg);
921 last_pkey_faults = pkey_faults;
922 last_si_pkey = -1;
923 }
924
925 #define do_not_expect_pkey_fault(msg) do { \
926 if (last_pkey_faults != pkey_faults) \
927 dprintf0("unexpected PKey fault: %s\n", msg); \
928 pkey_assert(last_pkey_faults == pkey_faults); \
929 } while (0)
930
931 int test_fds[10] = { -1 };
932 int nr_test_fds;
__save_test_fd(int fd)933 void __save_test_fd(int fd)
934 {
935 pkey_assert(fd >= 0);
936 pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds));
937 test_fds[nr_test_fds] = fd;
938 nr_test_fds++;
939 }
940
get_test_read_fd(void)941 int get_test_read_fd(void)
942 {
943 int test_fd = open("/etc/passwd", O_RDONLY);
944 __save_test_fd(test_fd);
945 return test_fd;
946 }
947
close_test_fds(void)948 void close_test_fds(void)
949 {
950 int i;
951
952 for (i = 0; i < nr_test_fds; i++) {
953 if (test_fds[i] < 0)
954 continue;
955 close(test_fds[i]);
956 test_fds[i] = -1;
957 }
958 nr_test_fds = 0;
959 }
960
961 #define barrier() __asm__ __volatile__("": : :"memory")
read_ptr(int * ptr)962 __attribute__((noinline)) int read_ptr(int *ptr)
963 {
964 /*
965 * Keep GCC from optimizing this away somehow
966 */
967 barrier();
968 return *ptr;
969 }
970
test_pkey_alloc_free_attach_pkey0(int * ptr,u16 pkey)971 void test_pkey_alloc_free_attach_pkey0(int *ptr, u16 pkey)
972 {
973 int i, err;
974 int max_nr_pkey_allocs;
975 int alloced_pkeys[NR_PKEYS];
976 int nr_alloced = 0;
977 long size;
978
979 pkey_assert(pkey_last_malloc_record);
980 size = pkey_last_malloc_record->size;
981 /*
982 * This is a bit of a hack. But mprotect() requires
983 * huge-page-aligned sizes when operating on hugetlbfs.
984 * So, make sure that we use something that's a multiple
985 * of a huge page when we can.
986 */
987 if (size >= HPAGE_SIZE)
988 size = HPAGE_SIZE;
989
990 /* allocate every possible key and make sure key-0 never got allocated */
991 max_nr_pkey_allocs = NR_PKEYS;
992 for (i = 0; i < max_nr_pkey_allocs; i++) {
993 int new_pkey = alloc_pkey();
994 pkey_assert(new_pkey != 0);
995
996 if (new_pkey < 0)
997 break;
998 alloced_pkeys[nr_alloced++] = new_pkey;
999 }
1000 /* free all the allocated keys */
1001 for (i = 0; i < nr_alloced; i++) {
1002 int free_ret;
1003
1004 if (!alloced_pkeys[i])
1005 continue;
1006 free_ret = sys_pkey_free(alloced_pkeys[i]);
1007 pkey_assert(!free_ret);
1008 }
1009
1010 /* attach key-0 in various modes */
1011 err = sys_mprotect_pkey(ptr, size, PROT_READ, 0);
1012 pkey_assert(!err);
1013 err = sys_mprotect_pkey(ptr, size, PROT_WRITE, 0);
1014 pkey_assert(!err);
1015 err = sys_mprotect_pkey(ptr, size, PROT_EXEC, 0);
1016 pkey_assert(!err);
1017 err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE, 0);
1018 pkey_assert(!err);
1019 err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE|PROT_EXEC, 0);
1020 pkey_assert(!err);
1021 }
1022
test_read_of_write_disabled_region(int * ptr,u16 pkey)1023 void test_read_of_write_disabled_region(int *ptr, u16 pkey)
1024 {
1025 int ptr_contents;
1026
1027 dprintf1("disabling write access to PKEY[1], doing read\n");
1028 pkey_write_deny(pkey);
1029 ptr_contents = read_ptr(ptr);
1030 dprintf1("*ptr: %d\n", ptr_contents);
1031 dprintf1("\n");
1032 }
test_read_of_access_disabled_region(int * ptr,u16 pkey)1033 void test_read_of_access_disabled_region(int *ptr, u16 pkey)
1034 {
1035 int ptr_contents;
1036
1037 dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr);
1038 read_pkey_reg();
1039 pkey_access_deny(pkey);
1040 ptr_contents = read_ptr(ptr);
1041 dprintf1("*ptr: %d\n", ptr_contents);
1042 expected_pkey_fault(pkey);
1043 }
1044
test_read_of_access_disabled_region_with_page_already_mapped(int * ptr,u16 pkey)1045 void test_read_of_access_disabled_region_with_page_already_mapped(int *ptr,
1046 u16 pkey)
1047 {
1048 int ptr_contents;
1049
1050 dprintf1("disabling access to PKEY[%02d], doing read @ %p\n",
1051 pkey, ptr);
1052 ptr_contents = read_ptr(ptr);
1053 dprintf1("reading ptr before disabling the read : %d\n",
1054 ptr_contents);
1055 read_pkey_reg();
1056 pkey_access_deny(pkey);
1057 ptr_contents = read_ptr(ptr);
1058 dprintf1("*ptr: %d\n", ptr_contents);
1059 expected_pkey_fault(pkey);
1060 }
1061
test_write_of_write_disabled_region_with_page_already_mapped(int * ptr,u16 pkey)1062 void test_write_of_write_disabled_region_with_page_already_mapped(int *ptr,
1063 u16 pkey)
1064 {
1065 *ptr = __LINE__;
1066 dprintf1("disabling write access; after accessing the page, "
1067 "to PKEY[%02d], doing write\n", pkey);
1068 pkey_write_deny(pkey);
1069 *ptr = __LINE__;
1070 expected_pkey_fault(pkey);
1071 }
1072
test_write_of_write_disabled_region(int * ptr,u16 pkey)1073 void test_write_of_write_disabled_region(int *ptr, u16 pkey)
1074 {
1075 dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey);
1076 pkey_write_deny(pkey);
1077 *ptr = __LINE__;
1078 expected_pkey_fault(pkey);
1079 }
test_write_of_access_disabled_region(int * ptr,u16 pkey)1080 void test_write_of_access_disabled_region(int *ptr, u16 pkey)
1081 {
1082 dprintf1("disabling access to PKEY[%02d], doing write\n", pkey);
1083 pkey_access_deny(pkey);
1084 *ptr = __LINE__;
1085 expected_pkey_fault(pkey);
1086 }
1087
test_write_of_access_disabled_region_with_page_already_mapped(int * ptr,u16 pkey)1088 void test_write_of_access_disabled_region_with_page_already_mapped(int *ptr,
1089 u16 pkey)
1090 {
1091 *ptr = __LINE__;
1092 dprintf1("disabling access; after accessing the page, "
1093 " to PKEY[%02d], doing write\n", pkey);
1094 pkey_access_deny(pkey);
1095 *ptr = __LINE__;
1096 expected_pkey_fault(pkey);
1097 }
1098
test_kernel_write_of_access_disabled_region(int * ptr,u16 pkey)1099 void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey)
1100 {
1101 int ret;
1102 int test_fd = get_test_read_fd();
1103
1104 dprintf1("disabling access to PKEY[%02d], "
1105 "having kernel read() to buffer\n", pkey);
1106 pkey_access_deny(pkey);
1107 ret = read(test_fd, ptr, 1);
1108 dprintf1("read ret: %d\n", ret);
1109 pkey_assert(ret);
1110 }
test_kernel_write_of_write_disabled_region(int * ptr,u16 pkey)1111 void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey)
1112 {
1113 int ret;
1114 int test_fd = get_test_read_fd();
1115
1116 pkey_write_deny(pkey);
1117 ret = read(test_fd, ptr, 100);
1118 dprintf1("read ret: %d\n", ret);
1119 if (ret < 0 && (DEBUG_LEVEL > 0))
1120 perror("verbose read result (OK for this to be bad)");
1121 pkey_assert(ret);
1122 }
1123
test_kernel_gup_of_access_disabled_region(int * ptr,u16 pkey)1124 void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey)
1125 {
1126 int pipe_ret, vmsplice_ret;
1127 struct iovec iov;
1128 int pipe_fds[2];
1129
1130 pipe_ret = pipe(pipe_fds);
1131
1132 pkey_assert(pipe_ret == 0);
1133 dprintf1("disabling access to PKEY[%02d], "
1134 "having kernel vmsplice from buffer\n", pkey);
1135 pkey_access_deny(pkey);
1136 iov.iov_base = ptr;
1137 iov.iov_len = PAGE_SIZE;
1138 vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT);
1139 dprintf1("vmsplice() ret: %d\n", vmsplice_ret);
1140 pkey_assert(vmsplice_ret == -1);
1141
1142 close(pipe_fds[0]);
1143 close(pipe_fds[1]);
1144 }
1145
test_kernel_gup_write_to_write_disabled_region(int * ptr,u16 pkey)1146 void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey)
1147 {
1148 int ignored = 0xdada;
1149 int futex_ret;
1150 int some_int = __LINE__;
1151
1152 dprintf1("disabling write to PKEY[%02d], "
1153 "doing futex gunk in buffer\n", pkey);
1154 *ptr = some_int;
1155 pkey_write_deny(pkey);
1156 futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL,
1157 &ignored, ignored);
1158 if (DEBUG_LEVEL > 0)
1159 perror("futex");
1160 dprintf1("futex() ret: %d\n", futex_ret);
1161 }
1162
1163 /* Assumes that all pkeys other than 'pkey' are unallocated */
test_pkey_syscalls_on_non_allocated_pkey(int * ptr,u16 pkey)1164 void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey)
1165 {
1166 int err;
1167 int i;
1168
1169 /* Note: 0 is the default pkey, so don't mess with it */
1170 for (i = 1; i < NR_PKEYS; i++) {
1171 if (pkey == i)
1172 continue;
1173
1174 dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i);
1175 err = sys_pkey_free(i);
1176 pkey_assert(err);
1177
1178 err = sys_pkey_free(i);
1179 pkey_assert(err);
1180
1181 err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i);
1182 pkey_assert(err);
1183 }
1184 }
1185
1186 /* Assumes that all pkeys other than 'pkey' are unallocated */
test_pkey_syscalls_bad_args(int * ptr,u16 pkey)1187 void test_pkey_syscalls_bad_args(int *ptr, u16 pkey)
1188 {
1189 int err;
1190 int bad_pkey = NR_PKEYS+99;
1191
1192 /* pass a known-invalid pkey in: */
1193 err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey);
1194 pkey_assert(err);
1195 }
1196
become_child(void)1197 void become_child(void)
1198 {
1199 pid_t forkret;
1200
1201 forkret = fork();
1202 pkey_assert(forkret >= 0);
1203 dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
1204
1205 if (!forkret) {
1206 /* in the child */
1207 return;
1208 }
1209 exit(0);
1210 }
1211
1212 /* Assumes that all pkeys other than 'pkey' are unallocated */
test_pkey_alloc_exhaust(int * ptr,u16 pkey)1213 void test_pkey_alloc_exhaust(int *ptr, u16 pkey)
1214 {
1215 int err;
1216 int allocated_pkeys[NR_PKEYS] = {0};
1217 int nr_allocated_pkeys = 0;
1218 int i;
1219
1220 for (i = 0; i < NR_PKEYS*3; i++) {
1221 int new_pkey;
1222 dprintf1("%s() alloc loop: %d\n", __func__, i);
1223 new_pkey = alloc_pkey();
1224 dprintf4("%s()::%d, err: %d pkey_reg: 0x%016llx"
1225 " shadow: 0x%016llx\n",
1226 __func__, __LINE__, err, __read_pkey_reg(),
1227 shadow_pkey_reg);
1228 read_pkey_reg(); /* for shadow checking */
1229 dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC);
1230 if ((new_pkey == -1) && (errno == ENOSPC)) {
1231 dprintf2("%s() failed to allocate pkey after %d tries\n",
1232 __func__, nr_allocated_pkeys);
1233 } else {
1234 /*
1235 * Ensure the number of successes never
1236 * exceeds the number of keys supported
1237 * in the hardware.
1238 */
1239 pkey_assert(nr_allocated_pkeys < NR_PKEYS);
1240 allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1241 }
1242
1243 /*
1244 * Make sure that allocation state is properly
1245 * preserved across fork().
1246 */
1247 if (i == NR_PKEYS*2)
1248 become_child();
1249 }
1250
1251 dprintf3("%s()::%d\n", __func__, __LINE__);
1252
1253 /*
1254 * On x86:
1255 * There are 16 pkeys supported in hardware. Three are
1256 * allocated by the time we get here:
1257 * 1. The default key (0)
1258 * 2. One possibly consumed by an execute-only mapping.
1259 * 3. One allocated by the test code and passed in via
1260 * 'pkey' to this function.
1261 * Ensure that we can allocate at least another 13 (16-3).
1262 *
1263 * On powerpc:
1264 * There are either 5, 28, 29 or 32 pkeys supported in
1265 * hardware depending on the page size (4K or 64K) and
1266 * platform (powernv or powervm). Four are allocated by
1267 * the time we get here. These include pkey-0, pkey-1,
1268 * exec-only pkey and the one allocated by the test code.
1269 * Ensure that we can allocate the remaining.
1270 */
1271 pkey_assert(i >= (NR_PKEYS - get_arch_reserved_keys() - 1));
1272
1273 for (i = 0; i < nr_allocated_pkeys; i++) {
1274 err = sys_pkey_free(allocated_pkeys[i]);
1275 pkey_assert(!err);
1276 read_pkey_reg(); /* for shadow checking */
1277 }
1278 }
1279
arch_force_pkey_reg_init(void)1280 void arch_force_pkey_reg_init(void)
1281 {
1282 #if defined(__i386__) || defined(__x86_64__) /* arch */
1283 u64 *buf;
1284
1285 /*
1286 * All keys should be allocated and set to allow reads and
1287 * writes, so the register should be all 0. If not, just
1288 * skip the test.
1289 */
1290 if (read_pkey_reg())
1291 return;
1292
1293 /*
1294 * Just allocate an absurd about of memory rather than
1295 * doing the XSAVE size enumeration dance.
1296 */
1297 buf = mmap(NULL, 1*MB, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1298
1299 /* These __builtins require compiling with -mxsave */
1300
1301 /* XSAVE to build a valid buffer: */
1302 __builtin_ia32_xsave(buf, XSTATE_PKEY);
1303 /* Clear XSTATE_BV[PKRU]: */
1304 buf[XSTATE_BV_OFFSET/sizeof(u64)] &= ~XSTATE_PKEY;
1305 /* XRSTOR will likely get PKRU back to the init state: */
1306 __builtin_ia32_xrstor(buf, XSTATE_PKEY);
1307
1308 munmap(buf, 1*MB);
1309 #endif
1310 }
1311
1312
1313 /*
1314 * This is mostly useless on ppc for now. But it will not
1315 * hurt anything and should give some better coverage as
1316 * a long-running test that continually checks the pkey
1317 * register.
1318 */
test_pkey_init_state(int * ptr,u16 pkey)1319 void test_pkey_init_state(int *ptr, u16 pkey)
1320 {
1321 int err;
1322 int allocated_pkeys[NR_PKEYS] = {0};
1323 int nr_allocated_pkeys = 0;
1324 int i;
1325
1326 for (i = 0; i < NR_PKEYS; i++) {
1327 int new_pkey = alloc_pkey();
1328
1329 if (new_pkey < 0)
1330 continue;
1331 allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1332 }
1333
1334 dprintf3("%s()::%d\n", __func__, __LINE__);
1335
1336 arch_force_pkey_reg_init();
1337
1338 /*
1339 * Loop for a bit, hoping to get exercise the kernel
1340 * context switch code.
1341 */
1342 for (i = 0; i < 1000000; i++)
1343 read_pkey_reg();
1344
1345 for (i = 0; i < nr_allocated_pkeys; i++) {
1346 err = sys_pkey_free(allocated_pkeys[i]);
1347 pkey_assert(!err);
1348 read_pkey_reg(); /* for shadow checking */
1349 }
1350 }
1351
1352 /*
1353 * pkey 0 is special. It is allocated by default, so you do not
1354 * have to call pkey_alloc() to use it first. Make sure that it
1355 * is usable.
1356 */
test_mprotect_with_pkey_0(int * ptr,u16 pkey)1357 void test_mprotect_with_pkey_0(int *ptr, u16 pkey)
1358 {
1359 long size;
1360 int prot;
1361
1362 assert(pkey_last_malloc_record);
1363 size = pkey_last_malloc_record->size;
1364 /*
1365 * This is a bit of a hack. But mprotect() requires
1366 * huge-page-aligned sizes when operating on hugetlbfs.
1367 * So, make sure that we use something that's a multiple
1368 * of a huge page when we can.
1369 */
1370 if (size >= HPAGE_SIZE)
1371 size = HPAGE_SIZE;
1372 prot = pkey_last_malloc_record->prot;
1373
1374 /* Use pkey 0 */
1375 mprotect_pkey(ptr, size, prot, 0);
1376
1377 /* Make sure that we can set it back to the original pkey. */
1378 mprotect_pkey(ptr, size, prot, pkey);
1379 }
1380
test_ptrace_of_child(int * ptr,u16 pkey)1381 void test_ptrace_of_child(int *ptr, u16 pkey)
1382 {
1383 __attribute__((__unused__)) int peek_result;
1384 pid_t child_pid;
1385 void *ignored = 0;
1386 long ret;
1387 int status;
1388 /*
1389 * This is the "control" for our little expermient. Make sure
1390 * we can always access it when ptracing.
1391 */
1392 int *plain_ptr_unaligned = malloc(HPAGE_SIZE);
1393 int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE);
1394
1395 /*
1396 * Fork a child which is an exact copy of this process, of course.
1397 * That means we can do all of our tests via ptrace() and then plain
1398 * memory access and ensure they work differently.
1399 */
1400 child_pid = fork_lazy_child();
1401 dprintf1("[%d] child pid: %d\n", getpid(), child_pid);
1402
1403 ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored);
1404 if (ret)
1405 perror("attach");
1406 dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__);
1407 pkey_assert(ret != -1);
1408 ret = waitpid(child_pid, &status, WUNTRACED);
1409 if ((ret != child_pid) || !(WIFSTOPPED(status))) {
1410 fprintf(stderr, "weird waitpid result %ld stat %x\n",
1411 ret, status);
1412 pkey_assert(0);
1413 }
1414 dprintf2("waitpid ret: %ld\n", ret);
1415 dprintf2("waitpid status: %d\n", status);
1416
1417 pkey_access_deny(pkey);
1418 pkey_write_deny(pkey);
1419
1420 /* Write access, untested for now:
1421 ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data);
1422 pkey_assert(ret != -1);
1423 dprintf1("poke at %p: %ld\n", peek_at, ret);
1424 */
1425
1426 /*
1427 * Try to access the pkey-protected "ptr" via ptrace:
1428 */
1429 ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored);
1430 /* expect it to work, without an error: */
1431 pkey_assert(ret != -1);
1432 /* Now access from the current task, and expect an exception: */
1433 peek_result = read_ptr(ptr);
1434 expected_pkey_fault(pkey);
1435
1436 /*
1437 * Try to access the NON-pkey-protected "plain_ptr" via ptrace:
1438 */
1439 ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored);
1440 /* expect it to work, without an error: */
1441 pkey_assert(ret != -1);
1442 /* Now access from the current task, and expect NO exception: */
1443 peek_result = read_ptr(plain_ptr);
1444 do_not_expect_pkey_fault("read plain pointer after ptrace");
1445
1446 ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0);
1447 pkey_assert(ret != -1);
1448
1449 ret = kill(child_pid, SIGKILL);
1450 pkey_assert(ret != -1);
1451
1452 wait(&status);
1453
1454 free(plain_ptr_unaligned);
1455 }
1456
get_pointer_to_instructions(void)1457 void *get_pointer_to_instructions(void)
1458 {
1459 void *p1;
1460
1461 p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE);
1462 dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write);
1463 /* lots_o_noops_around_write should be page-aligned already */
1464 assert(p1 == &lots_o_noops_around_write);
1465
1466 /* Point 'p1' at the *second* page of the function: */
1467 p1 += PAGE_SIZE;
1468
1469 /*
1470 * Try to ensure we fault this in on next touch to ensure
1471 * we get an instruction fault as opposed to a data one
1472 */
1473 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1474
1475 return p1;
1476 }
1477
test_executing_on_unreadable_memory(int * ptr,u16 pkey)1478 void test_executing_on_unreadable_memory(int *ptr, u16 pkey)
1479 {
1480 void *p1;
1481 int scratch;
1482 int ptr_contents;
1483 int ret;
1484
1485 p1 = get_pointer_to_instructions();
1486 lots_o_noops_around_write(&scratch);
1487 ptr_contents = read_ptr(p1);
1488 dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1489
1490 ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey);
1491 pkey_assert(!ret);
1492 pkey_access_deny(pkey);
1493
1494 dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1495
1496 /*
1497 * Make sure this is an *instruction* fault
1498 */
1499 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1500 lots_o_noops_around_write(&scratch);
1501 do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1502 expect_fault_on_read_execonly_key(p1, pkey);
1503 }
1504
test_implicit_mprotect_exec_only_memory(int * ptr,u16 pkey)1505 void test_implicit_mprotect_exec_only_memory(int *ptr, u16 pkey)
1506 {
1507 void *p1;
1508 int scratch;
1509 int ptr_contents;
1510 int ret;
1511
1512 dprintf1("%s() start\n", __func__);
1513
1514 p1 = get_pointer_to_instructions();
1515 lots_o_noops_around_write(&scratch);
1516 ptr_contents = read_ptr(p1);
1517 dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1518
1519 /* Use a *normal* mprotect(), not mprotect_pkey(): */
1520 ret = mprotect(p1, PAGE_SIZE, PROT_EXEC);
1521 pkey_assert(!ret);
1522
1523 /*
1524 * Reset the shadow, assuming that the above mprotect()
1525 * correctly changed PKRU, but to an unknown value since
1526 * the actual allocated pkey is unknown.
1527 */
1528 shadow_pkey_reg = __read_pkey_reg();
1529
1530 dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1531
1532 /* Make sure this is an *instruction* fault */
1533 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1534 lots_o_noops_around_write(&scratch);
1535 do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1536 expect_fault_on_read_execonly_key(p1, UNKNOWN_PKEY);
1537
1538 /*
1539 * Put the memory back to non-PROT_EXEC. Should clear the
1540 * exec-only pkey off the VMA and allow it to be readable
1541 * again. Go to PROT_NONE first to check for a kernel bug
1542 * that did not clear the pkey when doing PROT_NONE.
1543 */
1544 ret = mprotect(p1, PAGE_SIZE, PROT_NONE);
1545 pkey_assert(!ret);
1546
1547 ret = mprotect(p1, PAGE_SIZE, PROT_READ|PROT_EXEC);
1548 pkey_assert(!ret);
1549 ptr_contents = read_ptr(p1);
1550 do_not_expect_pkey_fault("plain read on recently PROT_EXEC area");
1551 }
1552
test_mprotect_pkey_on_unsupported_cpu(int * ptr,u16 pkey)1553 void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey)
1554 {
1555 int size = PAGE_SIZE;
1556 int sret;
1557
1558 if (cpu_has_pkeys()) {
1559 dprintf1("SKIP: %s: no CPU support\n", __func__);
1560 return;
1561 }
1562
1563 sret = syscall(SYS_mprotect_key, ptr, size, PROT_READ, pkey);
1564 pkey_assert(sret < 0);
1565 }
1566
1567 void (*pkey_tests[])(int *ptr, u16 pkey) = {
1568 test_read_of_write_disabled_region,
1569 test_read_of_access_disabled_region,
1570 test_read_of_access_disabled_region_with_page_already_mapped,
1571 test_write_of_write_disabled_region,
1572 test_write_of_write_disabled_region_with_page_already_mapped,
1573 test_write_of_access_disabled_region,
1574 test_write_of_access_disabled_region_with_page_already_mapped,
1575 test_kernel_write_of_access_disabled_region,
1576 test_kernel_write_of_write_disabled_region,
1577 test_kernel_gup_of_access_disabled_region,
1578 test_kernel_gup_write_to_write_disabled_region,
1579 test_executing_on_unreadable_memory,
1580 test_implicit_mprotect_exec_only_memory,
1581 test_mprotect_with_pkey_0,
1582 test_ptrace_of_child,
1583 test_pkey_init_state,
1584 test_pkey_syscalls_on_non_allocated_pkey,
1585 test_pkey_syscalls_bad_args,
1586 test_pkey_alloc_exhaust,
1587 test_pkey_alloc_free_attach_pkey0,
1588 };
1589
run_tests_once(void)1590 void run_tests_once(void)
1591 {
1592 int *ptr;
1593 int prot = PROT_READ|PROT_WRITE;
1594
1595 for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) {
1596 int pkey;
1597 int orig_pkey_faults = pkey_faults;
1598
1599 dprintf1("======================\n");
1600 dprintf1("test %d preparing...\n", test_nr);
1601
1602 tracing_on();
1603 pkey = alloc_random_pkey();
1604 dprintf1("test %d starting with pkey: %d\n", test_nr, pkey);
1605 ptr = malloc_pkey(PAGE_SIZE, prot, pkey);
1606 dprintf1("test %d starting...\n", test_nr);
1607 pkey_tests[test_nr](ptr, pkey);
1608 dprintf1("freeing test memory: %p\n", ptr);
1609 free_pkey_malloc(ptr);
1610 sys_pkey_free(pkey);
1611
1612 dprintf1("pkey_faults: %d\n", pkey_faults);
1613 dprintf1("orig_pkey_faults: %d\n", orig_pkey_faults);
1614
1615 tracing_off();
1616 close_test_fds();
1617
1618 printf("test %2d PASSED (iteration %d)\n", test_nr, iteration_nr);
1619 dprintf1("======================\n\n");
1620 }
1621 iteration_nr++;
1622 }
1623
pkey_setup_shadow(void)1624 void pkey_setup_shadow(void)
1625 {
1626 shadow_pkey_reg = __read_pkey_reg();
1627 }
1628
main(void)1629 int main(void)
1630 {
1631 int nr_iterations = 22;
1632 int pkeys_supported = is_pkeys_supported();
1633
1634 srand((unsigned int)time(NULL));
1635
1636 setup_handlers();
1637
1638 printf("has pkeys: %d\n", pkeys_supported);
1639
1640 if (!pkeys_supported) {
1641 int size = PAGE_SIZE;
1642 int *ptr;
1643
1644 printf("running PKEY tests for unsupported CPU/OS\n");
1645
1646 ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1647 assert(ptr != (void *)-1);
1648 test_mprotect_pkey_on_unsupported_cpu(ptr, 1);
1649 exit(0);
1650 }
1651
1652 pkey_setup_shadow();
1653 printf("startup pkey_reg: %016llx\n", read_pkey_reg());
1654 setup_hugetlbfs();
1655
1656 while (nr_iterations-- > 0)
1657 run_tests_once();
1658
1659 printf("done (all tests OK)\n");
1660 return 0;
1661 }
1662