1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * Handle hardware traps and faults.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/kmsan.h>
19 #include <linux/spinlock.h>
20 #include <linux/kprobes.h>
21 #include <linux/uaccess.h>
22 #include <linux/kdebug.h>
23 #include <linux/kgdb.h>
24 #include <linux/kernel.h>
25 #include <linux/export.h>
26 #include <linux/ptrace.h>
27 #include <linux/uprobes.h>
28 #include <linux/string.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/kexec.h>
32 #include <linux/sched.h>
33 #include <linux/sched/task_stack.h>
34 #include <linux/timer.h>
35 #include <linux/init.h>
36 #include <linux/bug.h>
37 #include <linux/nmi.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/io.h>
41 #include <linux/hardirq.h>
42 #include <linux/atomic.h>
43 #include <linux/ioasid.h>
44
45 #include <asm/stacktrace.h>
46 #include <asm/processor.h>
47 #include <asm/debugreg.h>
48 #include <asm/realmode.h>
49 #include <asm/text-patching.h>
50 #include <asm/ftrace.h>
51 #include <asm/traps.h>
52 #include <asm/desc.h>
53 #include <asm/fpu/api.h>
54 #include <asm/cpu.h>
55 #include <asm/cpu_entry_area.h>
56 #include <asm/mce.h>
57 #include <asm/fixmap.h>
58 #include <asm/mach_traps.h>
59 #include <asm/alternative.h>
60 #include <asm/fpu/xstate.h>
61 #include <asm/vm86.h>
62 #include <asm/umip.h>
63 #include <asm/insn.h>
64 #include <asm/insn-eval.h>
65 #include <asm/vdso.h>
66 #include <asm/tdx.h>
67 #include <asm/cfi.h>
68
69 #ifdef CONFIG_X86_64
70 #include <asm/x86_init.h>
71 #include <asm/proto.h>
72 #else
73 #include <asm/processor-flags.h>
74 #include <asm/setup.h>
75 #include <asm/proto.h>
76 #endif
77
78 DECLARE_BITMAP(system_vectors, NR_VECTORS);
79
cond_local_irq_enable(struct pt_regs * regs)80 static inline void cond_local_irq_enable(struct pt_regs *regs)
81 {
82 if (regs->flags & X86_EFLAGS_IF)
83 local_irq_enable();
84 }
85
cond_local_irq_disable(struct pt_regs * regs)86 static inline void cond_local_irq_disable(struct pt_regs *regs)
87 {
88 if (regs->flags & X86_EFLAGS_IF)
89 local_irq_disable();
90 }
91
is_valid_bugaddr(unsigned long addr)92 __always_inline int is_valid_bugaddr(unsigned long addr)
93 {
94 if (addr < TASK_SIZE_MAX)
95 return 0;
96
97 /*
98 * We got #UD, if the text isn't readable we'd have gotten
99 * a different exception.
100 */
101 return *(unsigned short *)addr == INSN_UD2;
102 }
103
104 static nokprobe_inline int
do_trap_no_signal(struct task_struct * tsk,int trapnr,const char * str,struct pt_regs * regs,long error_code)105 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
106 struct pt_regs *regs, long error_code)
107 {
108 if (v8086_mode(regs)) {
109 /*
110 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
111 * On nmi (interrupt 2), do_trap should not be called.
112 */
113 if (trapnr < X86_TRAP_UD) {
114 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
115 error_code, trapnr))
116 return 0;
117 }
118 } else if (!user_mode(regs)) {
119 if (fixup_exception(regs, trapnr, error_code, 0))
120 return 0;
121
122 tsk->thread.error_code = error_code;
123 tsk->thread.trap_nr = trapnr;
124 die(str, regs, error_code);
125 } else {
126 if (fixup_vdso_exception(regs, trapnr, error_code, 0))
127 return 0;
128 }
129
130 /*
131 * We want error_code and trap_nr set for userspace faults and
132 * kernelspace faults which result in die(), but not
133 * kernelspace faults which are fixed up. die() gives the
134 * process no chance to handle the signal and notice the
135 * kernel fault information, so that won't result in polluting
136 * the information about previously queued, but not yet
137 * delivered, faults. See also exc_general_protection below.
138 */
139 tsk->thread.error_code = error_code;
140 tsk->thread.trap_nr = trapnr;
141
142 return -1;
143 }
144
show_signal(struct task_struct * tsk,int signr,const char * type,const char * desc,struct pt_regs * regs,long error_code)145 static void show_signal(struct task_struct *tsk, int signr,
146 const char *type, const char *desc,
147 struct pt_regs *regs, long error_code)
148 {
149 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
150 printk_ratelimit()) {
151 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
152 tsk->comm, task_pid_nr(tsk), type, desc,
153 regs->ip, regs->sp, error_code);
154 print_vma_addr(KERN_CONT " in ", regs->ip);
155 pr_cont("\n");
156 }
157 }
158
159 static void
do_trap(int trapnr,int signr,char * str,struct pt_regs * regs,long error_code,int sicode,void __user * addr)160 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
161 long error_code, int sicode, void __user *addr)
162 {
163 struct task_struct *tsk = current;
164
165 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
166 return;
167
168 show_signal(tsk, signr, "trap ", str, regs, error_code);
169
170 if (!sicode)
171 force_sig(signr);
172 else
173 force_sig_fault(signr, sicode, addr);
174 }
175 NOKPROBE_SYMBOL(do_trap);
176
do_error_trap(struct pt_regs * regs,long error_code,char * str,unsigned long trapnr,int signr,int sicode,void __user * addr)177 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
178 unsigned long trapnr, int signr, int sicode, void __user *addr)
179 {
180 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
181
182 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
183 NOTIFY_STOP) {
184 cond_local_irq_enable(regs);
185 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
186 cond_local_irq_disable(regs);
187 }
188 }
189
190 /*
191 * Posix requires to provide the address of the faulting instruction for
192 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
193 *
194 * This address is usually regs->ip, but when an uprobe moved the code out
195 * of line then regs->ip points to the XOL code which would confuse
196 * anything which analyzes the fault address vs. the unmodified binary. If
197 * a trap happened in XOL code then uprobe maps regs->ip back to the
198 * original instruction address.
199 */
error_get_trap_addr(struct pt_regs * regs)200 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
201 {
202 return (void __user *)uprobe_get_trap_addr(regs);
203 }
204
DEFINE_IDTENTRY(exc_divide_error)205 DEFINE_IDTENTRY(exc_divide_error)
206 {
207 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
208 FPE_INTDIV, error_get_trap_addr(regs));
209 }
210
DEFINE_IDTENTRY(exc_overflow)211 DEFINE_IDTENTRY(exc_overflow)
212 {
213 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
214 }
215
216 #ifdef CONFIG_X86_KERNEL_IBT
217
218 static __ro_after_init bool ibt_fatal = true;
219
220 extern void ibt_selftest_ip(void); /* code label defined in asm below */
221
222 enum cp_error_code {
223 CP_EC = (1 << 15) - 1,
224
225 CP_RET = 1,
226 CP_IRET = 2,
227 CP_ENDBR = 3,
228 CP_RSTRORSSP = 4,
229 CP_SETSSBSY = 5,
230
231 CP_ENCL = 1 << 15,
232 };
233
DEFINE_IDTENTRY_ERRORCODE(exc_control_protection)234 DEFINE_IDTENTRY_ERRORCODE(exc_control_protection)
235 {
236 if (!cpu_feature_enabled(X86_FEATURE_IBT)) {
237 pr_err("Unexpected #CP\n");
238 BUG();
239 }
240
241 if (WARN_ON_ONCE(user_mode(regs) || (error_code & CP_EC) != CP_ENDBR))
242 return;
243
244 if (unlikely(regs->ip == (unsigned long)&ibt_selftest_ip)) {
245 regs->ax = 0;
246 return;
247 }
248
249 pr_err("Missing ENDBR: %pS\n", (void *)instruction_pointer(regs));
250 if (!ibt_fatal) {
251 printk(KERN_DEFAULT CUT_HERE);
252 __warn(__FILE__, __LINE__, (void *)regs->ip, TAINT_WARN, regs, NULL);
253 return;
254 }
255 BUG();
256 }
257
258 /* Must be noinline to ensure uniqueness of ibt_selftest_ip. */
ibt_selftest(void)259 noinline bool ibt_selftest(void)
260 {
261 unsigned long ret;
262
263 asm (" lea ibt_selftest_ip(%%rip), %%rax\n\t"
264 ANNOTATE_RETPOLINE_SAFE
265 " jmp *%%rax\n\t"
266 "ibt_selftest_ip:\n\t"
267 UNWIND_HINT_FUNC
268 ANNOTATE_NOENDBR
269 " nop\n\t"
270
271 : "=a" (ret) : : "memory");
272
273 return !ret;
274 }
275
ibt_setup(char * str)276 static int __init ibt_setup(char *str)
277 {
278 if (!strcmp(str, "off"))
279 setup_clear_cpu_cap(X86_FEATURE_IBT);
280
281 if (!strcmp(str, "warn"))
282 ibt_fatal = false;
283
284 return 1;
285 }
286
287 __setup("ibt=", ibt_setup);
288
289 #endif /* CONFIG_X86_KERNEL_IBT */
290
291 #ifdef CONFIG_X86_F00F_BUG
handle_invalid_op(struct pt_regs * regs)292 void handle_invalid_op(struct pt_regs *regs)
293 #else
294 static inline void handle_invalid_op(struct pt_regs *regs)
295 #endif
296 {
297 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
298 ILL_ILLOPN, error_get_trap_addr(regs));
299 }
300
handle_bug(struct pt_regs * regs)301 static noinstr bool handle_bug(struct pt_regs *regs)
302 {
303 bool handled = false;
304
305 /*
306 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
307 * is a rare case that uses @regs without passing them to
308 * irqentry_enter().
309 */
310 kmsan_unpoison_entry_regs(regs);
311 if (!is_valid_bugaddr(regs->ip))
312 return handled;
313
314 /*
315 * All lies, just get the WARN/BUG out.
316 */
317 instrumentation_begin();
318 /*
319 * Since we're emulating a CALL with exceptions, restore the interrupt
320 * state to what it was at the exception site.
321 */
322 if (regs->flags & X86_EFLAGS_IF)
323 raw_local_irq_enable();
324 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
325 handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
326 regs->ip += LEN_UD2;
327 handled = true;
328 }
329 if (regs->flags & X86_EFLAGS_IF)
330 raw_local_irq_disable();
331 instrumentation_end();
332
333 return handled;
334 }
335
DEFINE_IDTENTRY_RAW(exc_invalid_op)336 DEFINE_IDTENTRY_RAW(exc_invalid_op)
337 {
338 irqentry_state_t state;
339
340 /*
341 * We use UD2 as a short encoding for 'CALL __WARN', as such
342 * handle it before exception entry to avoid recursive WARN
343 * in case exception entry is the one triggering WARNs.
344 */
345 if (!user_mode(regs) && handle_bug(regs))
346 return;
347
348 state = irqentry_enter(regs);
349 instrumentation_begin();
350 handle_invalid_op(regs);
351 instrumentation_end();
352 irqentry_exit(regs, state);
353 }
354
DEFINE_IDTENTRY(exc_coproc_segment_overrun)355 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
356 {
357 do_error_trap(regs, 0, "coprocessor segment overrun",
358 X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
359 }
360
DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)361 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
362 {
363 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
364 0, NULL);
365 }
366
DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)367 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
368 {
369 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
370 SIGBUS, 0, NULL);
371 }
372
DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)373 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
374 {
375 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
376 0, NULL);
377 }
378
DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)379 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
380 {
381 char *str = "alignment check";
382
383 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
384 return;
385
386 if (!user_mode(regs))
387 die("Split lock detected\n", regs, error_code);
388
389 local_irq_enable();
390
391 if (handle_user_split_lock(regs, error_code))
392 goto out;
393
394 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
395 error_code, BUS_ADRALN, NULL);
396
397 out:
398 local_irq_disable();
399 }
400
401 #ifdef CONFIG_VMAP_STACK
handle_stack_overflow(struct pt_regs * regs,unsigned long fault_address,struct stack_info * info)402 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
403 unsigned long fault_address,
404 struct stack_info *info)
405 {
406 const char *name = stack_type_name(info->type);
407
408 printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
409 name, (void *)fault_address, info->begin, info->end);
410
411 die("stack guard page", regs, 0);
412
413 /* Be absolutely certain we don't return. */
414 panic("%s stack guard hit", name);
415 }
416 #endif
417
418 /*
419 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
420 *
421 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
422 * SDM's warnings about double faults being unrecoverable, returning works as
423 * expected. Presumably what the SDM actually means is that the CPU may get
424 * the register state wrong on entry, so returning could be a bad idea.
425 *
426 * Various CPU engineers have promised that double faults due to an IRET fault
427 * while the stack is read-only are, in fact, recoverable.
428 *
429 * On x86_32, this is entered through a task gate, and regs are synthesized
430 * from the TSS. Returning is, in principle, okay, but changes to regs will
431 * be lost. If, for some reason, we need to return to a context with modified
432 * regs, the shim code could be adjusted to synchronize the registers.
433 *
434 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
435 * to be read before doing anything else.
436 */
DEFINE_IDTENTRY_DF(exc_double_fault)437 DEFINE_IDTENTRY_DF(exc_double_fault)
438 {
439 static const char str[] = "double fault";
440 struct task_struct *tsk = current;
441
442 #ifdef CONFIG_VMAP_STACK
443 unsigned long address = read_cr2();
444 struct stack_info info;
445 #endif
446
447 #ifdef CONFIG_X86_ESPFIX64
448 extern unsigned char native_irq_return_iret[];
449
450 /*
451 * If IRET takes a non-IST fault on the espfix64 stack, then we
452 * end up promoting it to a doublefault. In that case, take
453 * advantage of the fact that we're not using the normal (TSS.sp0)
454 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
455 * and then modify our own IRET frame so that, when we return,
456 * we land directly at the #GP(0) vector with the stack already
457 * set up according to its expectations.
458 *
459 * The net result is that our #GP handler will think that we
460 * entered from usermode with the bad user context.
461 *
462 * No need for nmi_enter() here because we don't use RCU.
463 */
464 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
465 regs->cs == __KERNEL_CS &&
466 regs->ip == (unsigned long)native_irq_return_iret)
467 {
468 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
469 unsigned long *p = (unsigned long *)regs->sp;
470
471 /*
472 * regs->sp points to the failing IRET frame on the
473 * ESPFIX64 stack. Copy it to the entry stack. This fills
474 * in gpregs->ss through gpregs->ip.
475 *
476 */
477 gpregs->ip = p[0];
478 gpregs->cs = p[1];
479 gpregs->flags = p[2];
480 gpregs->sp = p[3];
481 gpregs->ss = p[4];
482 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
483
484 /*
485 * Adjust our frame so that we return straight to the #GP
486 * vector with the expected RSP value. This is safe because
487 * we won't enable interrupts or schedule before we invoke
488 * general_protection, so nothing will clobber the stack
489 * frame we just set up.
490 *
491 * We will enter general_protection with kernel GSBASE,
492 * which is what the stub expects, given that the faulting
493 * RIP will be the IRET instruction.
494 */
495 regs->ip = (unsigned long)asm_exc_general_protection;
496 regs->sp = (unsigned long)&gpregs->orig_ax;
497
498 return;
499 }
500 #endif
501
502 irqentry_nmi_enter(regs);
503 instrumentation_begin();
504 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
505
506 tsk->thread.error_code = error_code;
507 tsk->thread.trap_nr = X86_TRAP_DF;
508
509 #ifdef CONFIG_VMAP_STACK
510 /*
511 * If we overflow the stack into a guard page, the CPU will fail
512 * to deliver #PF and will send #DF instead. Similarly, if we
513 * take any non-IST exception while too close to the bottom of
514 * the stack, the processor will get a page fault while
515 * delivering the exception and will generate a double fault.
516 *
517 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
518 * Page-Fault Exception (#PF):
519 *
520 * Processors update CR2 whenever a page fault is detected. If a
521 * second page fault occurs while an earlier page fault is being
522 * delivered, the faulting linear address of the second fault will
523 * overwrite the contents of CR2 (replacing the previous
524 * address). These updates to CR2 occur even if the page fault
525 * results in a double fault or occurs during the delivery of a
526 * double fault.
527 *
528 * The logic below has a small possibility of incorrectly diagnosing
529 * some errors as stack overflows. For example, if the IDT or GDT
530 * gets corrupted such that #GP delivery fails due to a bad descriptor
531 * causing #GP and we hit this condition while CR2 coincidentally
532 * points to the stack guard page, we'll think we overflowed the
533 * stack. Given that we're going to panic one way or another
534 * if this happens, this isn't necessarily worth fixing.
535 *
536 * If necessary, we could improve the test by only diagnosing
537 * a stack overflow if the saved RSP points within 47 bytes of
538 * the bottom of the stack: if RSP == tsk_stack + 48 and we
539 * take an exception, the stack is already aligned and there
540 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
541 * possible error code, so a stack overflow would *not* double
542 * fault. With any less space left, exception delivery could
543 * fail, and, as a practical matter, we've overflowed the
544 * stack even if the actual trigger for the double fault was
545 * something else.
546 */
547 if (get_stack_guard_info((void *)address, &info))
548 handle_stack_overflow(regs, address, &info);
549 #endif
550
551 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
552 die("double fault", regs, error_code);
553 panic("Machine halted.");
554 instrumentation_end();
555 }
556
DEFINE_IDTENTRY(exc_bounds)557 DEFINE_IDTENTRY(exc_bounds)
558 {
559 if (notify_die(DIE_TRAP, "bounds", regs, 0,
560 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
561 return;
562 cond_local_irq_enable(regs);
563
564 if (!user_mode(regs))
565 die("bounds", regs, 0);
566
567 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
568
569 cond_local_irq_disable(regs);
570 }
571
572 enum kernel_gp_hint {
573 GP_NO_HINT,
574 GP_NON_CANONICAL,
575 GP_CANONICAL
576 };
577
578 /*
579 * When an uncaught #GP occurs, try to determine the memory address accessed by
580 * the instruction and return that address to the caller. Also, try to figure
581 * out whether any part of the access to that address was non-canonical.
582 */
get_kernel_gp_address(struct pt_regs * regs,unsigned long * addr)583 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
584 unsigned long *addr)
585 {
586 u8 insn_buf[MAX_INSN_SIZE];
587 struct insn insn;
588 int ret;
589
590 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
591 MAX_INSN_SIZE))
592 return GP_NO_HINT;
593
594 ret = insn_decode_kernel(&insn, insn_buf);
595 if (ret < 0)
596 return GP_NO_HINT;
597
598 *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
599 if (*addr == -1UL)
600 return GP_NO_HINT;
601
602 #ifdef CONFIG_X86_64
603 /*
604 * Check that:
605 * - the operand is not in the kernel half
606 * - the last byte of the operand is not in the user canonical half
607 */
608 if (*addr < ~__VIRTUAL_MASK &&
609 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
610 return GP_NON_CANONICAL;
611 #endif
612
613 return GP_CANONICAL;
614 }
615
616 #define GPFSTR "general protection fault"
617
fixup_iopl_exception(struct pt_regs * regs)618 static bool fixup_iopl_exception(struct pt_regs *regs)
619 {
620 struct thread_struct *t = ¤t->thread;
621 unsigned char byte;
622 unsigned long ip;
623
624 if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
625 return false;
626
627 if (insn_get_effective_ip(regs, &ip))
628 return false;
629
630 if (get_user(byte, (const char __user *)ip))
631 return false;
632
633 if (byte != 0xfa && byte != 0xfb)
634 return false;
635
636 if (!t->iopl_warn && printk_ratelimit()) {
637 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
638 current->comm, task_pid_nr(current), ip);
639 print_vma_addr(KERN_CONT " in ", ip);
640 pr_cont("\n");
641 t->iopl_warn = 1;
642 }
643
644 regs->ip += 1;
645 return true;
646 }
647
648 /*
649 * The unprivileged ENQCMD instruction generates #GPs if the
650 * IA32_PASID MSR has not been populated. If possible, populate
651 * the MSR from a PASID previously allocated to the mm.
652 */
try_fixup_enqcmd_gp(void)653 static bool try_fixup_enqcmd_gp(void)
654 {
655 #ifdef CONFIG_IOMMU_SVA
656 u32 pasid;
657
658 /*
659 * MSR_IA32_PASID is managed using XSAVE. Directly
660 * writing to the MSR is only possible when fpregs
661 * are valid and the fpstate is not. This is
662 * guaranteed when handling a userspace exception
663 * in *before* interrupts are re-enabled.
664 */
665 lockdep_assert_irqs_disabled();
666
667 /*
668 * Hardware without ENQCMD will not generate
669 * #GPs that can be fixed up here.
670 */
671 if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
672 return false;
673
674 pasid = current->mm->pasid;
675
676 /*
677 * If the mm has not been allocated a
678 * PASID, the #GP can not be fixed up.
679 */
680 if (!pasid_valid(pasid))
681 return false;
682
683 /*
684 * Did this thread already have its PASID activated?
685 * If so, the #GP must be from something else.
686 */
687 if (current->pasid_activated)
688 return false;
689
690 wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
691 current->pasid_activated = 1;
692
693 return true;
694 #else
695 return false;
696 #endif
697 }
698
gp_try_fixup_and_notify(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str)699 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
700 unsigned long error_code, const char *str)
701 {
702 if (fixup_exception(regs, trapnr, error_code, 0))
703 return true;
704
705 current->thread.error_code = error_code;
706 current->thread.trap_nr = trapnr;
707
708 /*
709 * To be potentially processing a kprobe fault and to trust the result
710 * from kprobe_running(), we have to be non-preemptible.
711 */
712 if (!preemptible() && kprobe_running() &&
713 kprobe_fault_handler(regs, trapnr))
714 return true;
715
716 return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
717 }
718
gp_user_force_sig_segv(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str)719 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
720 unsigned long error_code, const char *str)
721 {
722 current->thread.error_code = error_code;
723 current->thread.trap_nr = trapnr;
724 show_signal(current, SIGSEGV, "", str, regs, error_code);
725 force_sig(SIGSEGV);
726 }
727
DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)728 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
729 {
730 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
731 enum kernel_gp_hint hint = GP_NO_HINT;
732 unsigned long gp_addr;
733
734 if (user_mode(regs) && try_fixup_enqcmd_gp())
735 return;
736
737 cond_local_irq_enable(regs);
738
739 if (static_cpu_has(X86_FEATURE_UMIP)) {
740 if (user_mode(regs) && fixup_umip_exception(regs))
741 goto exit;
742 }
743
744 if (v8086_mode(regs)) {
745 local_irq_enable();
746 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
747 local_irq_disable();
748 return;
749 }
750
751 if (user_mode(regs)) {
752 if (fixup_iopl_exception(regs))
753 goto exit;
754
755 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
756 goto exit;
757
758 gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
759 goto exit;
760 }
761
762 if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc))
763 goto exit;
764
765 if (error_code)
766 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
767 else
768 hint = get_kernel_gp_address(regs, &gp_addr);
769
770 if (hint != GP_NO_HINT)
771 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
772 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
773 : "maybe for address",
774 gp_addr);
775
776 /*
777 * KASAN is interested only in the non-canonical case, clear it
778 * otherwise.
779 */
780 if (hint != GP_NON_CANONICAL)
781 gp_addr = 0;
782
783 die_addr(desc, regs, error_code, gp_addr);
784
785 exit:
786 cond_local_irq_disable(regs);
787 }
788
do_int3(struct pt_regs * regs)789 static bool do_int3(struct pt_regs *regs)
790 {
791 int res;
792
793 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
794 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
795 SIGTRAP) == NOTIFY_STOP)
796 return true;
797 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
798
799 #ifdef CONFIG_KPROBES
800 if (kprobe_int3_handler(regs))
801 return true;
802 #endif
803 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
804
805 return res == NOTIFY_STOP;
806 }
807 NOKPROBE_SYMBOL(do_int3);
808
do_int3_user(struct pt_regs * regs)809 static void do_int3_user(struct pt_regs *regs)
810 {
811 if (do_int3(regs))
812 return;
813
814 cond_local_irq_enable(regs);
815 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
816 cond_local_irq_disable(regs);
817 }
818
DEFINE_IDTENTRY_RAW(exc_int3)819 DEFINE_IDTENTRY_RAW(exc_int3)
820 {
821 /*
822 * poke_int3_handler() is completely self contained code; it does (and
823 * must) *NOT* call out to anything, lest it hits upon yet another
824 * INT3.
825 */
826 if (poke_int3_handler(regs))
827 return;
828
829 /*
830 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
831 * and therefore can trigger INT3, hence poke_int3_handler() must
832 * be done before. If the entry came from kernel mode, then use
833 * nmi_enter() because the INT3 could have been hit in any context
834 * including NMI.
835 */
836 if (user_mode(regs)) {
837 irqentry_enter_from_user_mode(regs);
838 instrumentation_begin();
839 do_int3_user(regs);
840 instrumentation_end();
841 irqentry_exit_to_user_mode(regs);
842 } else {
843 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
844
845 instrumentation_begin();
846 if (!do_int3(regs))
847 die("int3", regs, 0);
848 instrumentation_end();
849 irqentry_nmi_exit(regs, irq_state);
850 }
851 }
852
853 #ifdef CONFIG_X86_64
854 /*
855 * Help handler running on a per-cpu (IST or entry trampoline) stack
856 * to switch to the normal thread stack if the interrupted code was in
857 * user mode. The actual stack switch is done in entry_64.S
858 */
sync_regs(struct pt_regs * eregs)859 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
860 {
861 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
862 if (regs != eregs)
863 *regs = *eregs;
864 return regs;
865 }
866
867 #ifdef CONFIG_AMD_MEM_ENCRYPT
vc_switch_off_ist(struct pt_regs * regs)868 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
869 {
870 unsigned long sp, *stack;
871 struct stack_info info;
872 struct pt_regs *regs_ret;
873
874 /*
875 * In the SYSCALL entry path the RSP value comes from user-space - don't
876 * trust it and switch to the current kernel stack
877 */
878 if (ip_within_syscall_gap(regs)) {
879 sp = this_cpu_read(cpu_current_top_of_stack);
880 goto sync;
881 }
882
883 /*
884 * From here on the RSP value is trusted. Now check whether entry
885 * happened from a safe stack. Not safe are the entry or unknown stacks,
886 * use the fall-back stack instead in this case.
887 */
888 sp = regs->sp;
889 stack = (unsigned long *)sp;
890
891 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
892 info.type > STACK_TYPE_EXCEPTION_LAST)
893 sp = __this_cpu_ist_top_va(VC2);
894
895 sync:
896 /*
897 * Found a safe stack - switch to it as if the entry didn't happen via
898 * IST stack. The code below only copies pt_regs, the real switch happens
899 * in assembly code.
900 */
901 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
902
903 regs_ret = (struct pt_regs *)sp;
904 *regs_ret = *regs;
905
906 return regs_ret;
907 }
908 #endif
909
fixup_bad_iret(struct pt_regs * bad_regs)910 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
911 {
912 struct pt_regs tmp, *new_stack;
913
914 /*
915 * This is called from entry_64.S early in handling a fault
916 * caused by a bad iret to user mode. To handle the fault
917 * correctly, we want to move our stack frame to where it would
918 * be had we entered directly on the entry stack (rather than
919 * just below the IRET frame) and we want to pretend that the
920 * exception came from the IRET target.
921 */
922 new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
923
924 /* Copy the IRET target to the temporary storage. */
925 __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
926
927 /* Copy the remainder of the stack from the current stack. */
928 __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
929
930 /* Update the entry stack */
931 __memcpy(new_stack, &tmp, sizeof(tmp));
932
933 BUG_ON(!user_mode(new_stack));
934 return new_stack;
935 }
936 #endif
937
is_sysenter_singlestep(struct pt_regs * regs)938 static bool is_sysenter_singlestep(struct pt_regs *regs)
939 {
940 /*
941 * We don't try for precision here. If we're anywhere in the region of
942 * code that can be single-stepped in the SYSENTER entry path, then
943 * assume that this is a useless single-step trap due to SYSENTER
944 * being invoked with TF set. (We don't know in advance exactly
945 * which instructions will be hit because BTF could plausibly
946 * be set.)
947 */
948 #ifdef CONFIG_X86_32
949 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
950 (unsigned long)__end_SYSENTER_singlestep_region -
951 (unsigned long)__begin_SYSENTER_singlestep_region;
952 #elif defined(CONFIG_IA32_EMULATION)
953 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
954 (unsigned long)__end_entry_SYSENTER_compat -
955 (unsigned long)entry_SYSENTER_compat;
956 #else
957 return false;
958 #endif
959 }
960
debug_read_clear_dr6(void)961 static __always_inline unsigned long debug_read_clear_dr6(void)
962 {
963 unsigned long dr6;
964
965 /*
966 * The Intel SDM says:
967 *
968 * Certain debug exceptions may clear bits 0-3. The remaining
969 * contents of the DR6 register are never cleared by the
970 * processor. To avoid confusion in identifying debug
971 * exceptions, debug handlers should clear the register before
972 * returning to the interrupted task.
973 *
974 * Keep it simple: clear DR6 immediately.
975 */
976 get_debugreg(dr6, 6);
977 set_debugreg(DR6_RESERVED, 6);
978 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
979
980 return dr6;
981 }
982
983 /*
984 * Our handling of the processor debug registers is non-trivial.
985 * We do not clear them on entry and exit from the kernel. Therefore
986 * it is possible to get a watchpoint trap here from inside the kernel.
987 * However, the code in ./ptrace.c has ensured that the user can
988 * only set watchpoints on userspace addresses. Therefore the in-kernel
989 * watchpoint trap can only occur in code which is reading/writing
990 * from user space. Such code must not hold kernel locks (since it
991 * can equally take a page fault), therefore it is safe to call
992 * force_sig_info even though that claims and releases locks.
993 *
994 * Code in ./signal.c ensures that the debug control register
995 * is restored before we deliver any signal, and therefore that
996 * user code runs with the correct debug control register even though
997 * we clear it here.
998 *
999 * Being careful here means that we don't have to be as careful in a
1000 * lot of more complicated places (task switching can be a bit lazy
1001 * about restoring all the debug state, and ptrace doesn't have to
1002 * find every occurrence of the TF bit that could be saved away even
1003 * by user code)
1004 *
1005 * May run on IST stack.
1006 */
1007
notify_debug(struct pt_regs * regs,unsigned long * dr6)1008 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
1009 {
1010 /*
1011 * Notifiers will clear bits in @dr6 to indicate the event has been
1012 * consumed - hw_breakpoint_handler(), single_stop_cont().
1013 *
1014 * Notifiers will set bits in @virtual_dr6 to indicate the desire
1015 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
1016 */
1017 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
1018 return true;
1019
1020 return false;
1021 }
1022
exc_debug_kernel(struct pt_regs * regs,unsigned long dr6)1023 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
1024 unsigned long dr6)
1025 {
1026 /*
1027 * Disable breakpoints during exception handling; recursive exceptions
1028 * are exceedingly 'fun'.
1029 *
1030 * Since this function is NOKPROBE, and that also applies to
1031 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
1032 * HW_BREAKPOINT_W on our stack)
1033 *
1034 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
1035 * includes the entry stack is excluded for everything.
1036 */
1037 unsigned long dr7 = local_db_save();
1038 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
1039 instrumentation_begin();
1040
1041 /*
1042 * If something gets miswired and we end up here for a user mode
1043 * #DB, we will malfunction.
1044 */
1045 WARN_ON_ONCE(user_mode(regs));
1046
1047 if (test_thread_flag(TIF_BLOCKSTEP)) {
1048 /*
1049 * The SDM says "The processor clears the BTF flag when it
1050 * generates a debug exception." but PTRACE_BLOCKSTEP requested
1051 * it for userspace, but we just took a kernel #DB, so re-set
1052 * BTF.
1053 */
1054 unsigned long debugctl;
1055
1056 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1057 debugctl |= DEBUGCTLMSR_BTF;
1058 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1059 }
1060
1061 /*
1062 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
1063 * watchpoint at the same time then that will still be handled.
1064 */
1065 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
1066 dr6 &= ~DR_STEP;
1067
1068 /*
1069 * The kernel doesn't use INT1
1070 */
1071 if (!dr6)
1072 goto out;
1073
1074 if (notify_debug(regs, &dr6))
1075 goto out;
1076
1077 /*
1078 * The kernel doesn't use TF single-step outside of:
1079 *
1080 * - Kprobes, consumed through kprobe_debug_handler()
1081 * - KGDB, consumed through notify_debug()
1082 *
1083 * So if we get here with DR_STEP set, something is wonky.
1084 *
1085 * A known way to trigger this is through QEMU's GDB stub,
1086 * which leaks #DB into the guest and causes IST recursion.
1087 */
1088 if (WARN_ON_ONCE(dr6 & DR_STEP))
1089 regs->flags &= ~X86_EFLAGS_TF;
1090 out:
1091 instrumentation_end();
1092 irqentry_nmi_exit(regs, irq_state);
1093
1094 local_db_restore(dr7);
1095 }
1096
exc_debug_user(struct pt_regs * regs,unsigned long dr6)1097 static __always_inline void exc_debug_user(struct pt_regs *regs,
1098 unsigned long dr6)
1099 {
1100 bool icebp;
1101
1102 /*
1103 * If something gets miswired and we end up here for a kernel mode
1104 * #DB, we will malfunction.
1105 */
1106 WARN_ON_ONCE(!user_mode(regs));
1107
1108 /*
1109 * NB: We can't easily clear DR7 here because
1110 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1111 * user memory, etc. This means that a recursive #DB is possible. If
1112 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1113 * Since we're not on the IST stack right now, everything will be
1114 * fine.
1115 */
1116
1117 irqentry_enter_from_user_mode(regs);
1118 instrumentation_begin();
1119
1120 /*
1121 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1122 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1123 *
1124 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1125 * even if it is not the result of PTRACE_SINGLESTEP.
1126 */
1127 current->thread.virtual_dr6 = (dr6 & DR_STEP);
1128
1129 /*
1130 * The SDM says "The processor clears the BTF flag when it
1131 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
1132 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1133 */
1134 clear_thread_flag(TIF_BLOCKSTEP);
1135
1136 /*
1137 * If dr6 has no reason to give us about the origin of this trap,
1138 * then it's very likely the result of an icebp/int01 trap.
1139 * User wants a sigtrap for that.
1140 */
1141 icebp = !dr6;
1142
1143 if (notify_debug(regs, &dr6))
1144 goto out;
1145
1146 /* It's safe to allow irq's after DR6 has been saved */
1147 local_irq_enable();
1148
1149 if (v8086_mode(regs)) {
1150 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1151 goto out_irq;
1152 }
1153
1154 /* #DB for bus lock can only be triggered from userspace. */
1155 if (dr6 & DR_BUS_LOCK)
1156 handle_bus_lock(regs);
1157
1158 /* Add the virtual_dr6 bits for signals. */
1159 dr6 |= current->thread.virtual_dr6;
1160 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1161 send_sigtrap(regs, 0, get_si_code(dr6));
1162
1163 out_irq:
1164 local_irq_disable();
1165 out:
1166 instrumentation_end();
1167 irqentry_exit_to_user_mode(regs);
1168 }
1169
1170 #ifdef CONFIG_X86_64
1171 /* IST stack entry */
DEFINE_IDTENTRY_DEBUG(exc_debug)1172 DEFINE_IDTENTRY_DEBUG(exc_debug)
1173 {
1174 exc_debug_kernel(regs, debug_read_clear_dr6());
1175 }
1176
1177 /* User entry, runs on regular task stack */
DEFINE_IDTENTRY_DEBUG_USER(exc_debug)1178 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1179 {
1180 exc_debug_user(regs, debug_read_clear_dr6());
1181 }
1182 #else
1183 /* 32 bit does not have separate entry points. */
DEFINE_IDTENTRY_RAW(exc_debug)1184 DEFINE_IDTENTRY_RAW(exc_debug)
1185 {
1186 unsigned long dr6 = debug_read_clear_dr6();
1187
1188 if (user_mode(regs))
1189 exc_debug_user(regs, dr6);
1190 else
1191 exc_debug_kernel(regs, dr6);
1192 }
1193 #endif
1194
1195 /*
1196 * Note that we play around with the 'TS' bit in an attempt to get
1197 * the correct behaviour even in the presence of the asynchronous
1198 * IRQ13 behaviour
1199 */
math_error(struct pt_regs * regs,int trapnr)1200 static void math_error(struct pt_regs *regs, int trapnr)
1201 {
1202 struct task_struct *task = current;
1203 struct fpu *fpu = &task->thread.fpu;
1204 int si_code;
1205 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1206 "simd exception";
1207
1208 cond_local_irq_enable(regs);
1209
1210 if (!user_mode(regs)) {
1211 if (fixup_exception(regs, trapnr, 0, 0))
1212 goto exit;
1213
1214 task->thread.error_code = 0;
1215 task->thread.trap_nr = trapnr;
1216
1217 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1218 SIGFPE) != NOTIFY_STOP)
1219 die(str, regs, 0);
1220 goto exit;
1221 }
1222
1223 /*
1224 * Synchronize the FPU register state to the memory register state
1225 * if necessary. This allows the exception handler to inspect it.
1226 */
1227 fpu_sync_fpstate(fpu);
1228
1229 task->thread.trap_nr = trapnr;
1230 task->thread.error_code = 0;
1231
1232 si_code = fpu__exception_code(fpu, trapnr);
1233 /* Retry when we get spurious exceptions: */
1234 if (!si_code)
1235 goto exit;
1236
1237 if (fixup_vdso_exception(regs, trapnr, 0, 0))
1238 goto exit;
1239
1240 force_sig_fault(SIGFPE, si_code,
1241 (void __user *)uprobe_get_trap_addr(regs));
1242 exit:
1243 cond_local_irq_disable(regs);
1244 }
1245
DEFINE_IDTENTRY(exc_coprocessor_error)1246 DEFINE_IDTENTRY(exc_coprocessor_error)
1247 {
1248 math_error(regs, X86_TRAP_MF);
1249 }
1250
DEFINE_IDTENTRY(exc_simd_coprocessor_error)1251 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1252 {
1253 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1254 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1255 if (!static_cpu_has(X86_FEATURE_XMM)) {
1256 __exc_general_protection(regs, 0);
1257 return;
1258 }
1259 }
1260 math_error(regs, X86_TRAP_XF);
1261 }
1262
DEFINE_IDTENTRY(exc_spurious_interrupt_bug)1263 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1264 {
1265 /*
1266 * This addresses a Pentium Pro Erratum:
1267 *
1268 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1269 * Virtual Wire mode implemented through the local APIC, an
1270 * interrupt vector of 0Fh (Intel reserved encoding) may be
1271 * generated by the local APIC (Int 15). This vector may be
1272 * generated upon receipt of a spurious interrupt (an interrupt
1273 * which is removed before the system receives the INTA sequence)
1274 * instead of the programmed 8259 spurious interrupt vector.
1275 *
1276 * IMPLICATION: The spurious interrupt vector programmed in the
1277 * 8259 is normally handled by an operating system's spurious
1278 * interrupt handler. However, a vector of 0Fh is unknown to some
1279 * operating systems, which would crash if this erratum occurred.
1280 *
1281 * In theory this could be limited to 32bit, but the handler is not
1282 * hurting and who knows which other CPUs suffer from this.
1283 */
1284 }
1285
handle_xfd_event(struct pt_regs * regs)1286 static bool handle_xfd_event(struct pt_regs *regs)
1287 {
1288 u64 xfd_err;
1289 int err;
1290
1291 if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1292 return false;
1293
1294 rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1295 if (!xfd_err)
1296 return false;
1297
1298 wrmsrl(MSR_IA32_XFD_ERR, 0);
1299
1300 /* Die if that happens in kernel space */
1301 if (WARN_ON(!user_mode(regs)))
1302 return false;
1303
1304 local_irq_enable();
1305
1306 err = xfd_enable_feature(xfd_err);
1307
1308 switch (err) {
1309 case -EPERM:
1310 force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1311 break;
1312 case -EFAULT:
1313 force_sig(SIGSEGV);
1314 break;
1315 }
1316
1317 local_irq_disable();
1318 return true;
1319 }
1320
DEFINE_IDTENTRY(exc_device_not_available)1321 DEFINE_IDTENTRY(exc_device_not_available)
1322 {
1323 unsigned long cr0 = read_cr0();
1324
1325 if (handle_xfd_event(regs))
1326 return;
1327
1328 #ifdef CONFIG_MATH_EMULATION
1329 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1330 struct math_emu_info info = { };
1331
1332 cond_local_irq_enable(regs);
1333
1334 info.regs = regs;
1335 math_emulate(&info);
1336
1337 cond_local_irq_disable(regs);
1338 return;
1339 }
1340 #endif
1341
1342 /* This should not happen. */
1343 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1344 /* Try to fix it up and carry on. */
1345 write_cr0(cr0 & ~X86_CR0_TS);
1346 } else {
1347 /*
1348 * Something terrible happened, and we're better off trying
1349 * to kill the task than getting stuck in a never-ending
1350 * loop of #NM faults.
1351 */
1352 die("unexpected #NM exception", regs, 0);
1353 }
1354 }
1355
1356 #ifdef CONFIG_INTEL_TDX_GUEST
1357
1358 #define VE_FAULT_STR "VE fault"
1359
ve_raise_fault(struct pt_regs * regs,long error_code)1360 static void ve_raise_fault(struct pt_regs *regs, long error_code)
1361 {
1362 if (user_mode(regs)) {
1363 gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1364 return;
1365 }
1366
1367 if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code, VE_FAULT_STR))
1368 return;
1369
1370 die_addr(VE_FAULT_STR, regs, error_code, 0);
1371 }
1372
1373 /*
1374 * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1375 * specific guest actions which may happen in either user space or the
1376 * kernel:
1377 *
1378 * * Specific instructions (WBINVD, for example)
1379 * * Specific MSR accesses
1380 * * Specific CPUID leaf accesses
1381 * * Access to specific guest physical addresses
1382 *
1383 * In the settings that Linux will run in, virtualization exceptions are
1384 * never generated on accesses to normal, TD-private memory that has been
1385 * accepted (by BIOS or with tdx_enc_status_changed()).
1386 *
1387 * Syscall entry code has a critical window where the kernel stack is not
1388 * yet set up. Any exception in this window leads to hard to debug issues
1389 * and can be exploited for privilege escalation. Exceptions in the NMI
1390 * entry code also cause issues. Returning from the exception handler with
1391 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1392 *
1393 * For these reasons, the kernel avoids #VEs during the syscall gap and
1394 * the NMI entry code. Entry code paths do not access TD-shared memory,
1395 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1396 * that might generate #VE. VMM can remove memory from TD at any point,
1397 * but access to unaccepted (or missing) private memory leads to VM
1398 * termination, not to #VE.
1399 *
1400 * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1401 * handlers once the kernel is ready to deal with nested NMIs.
1402 *
1403 * During #VE delivery, all interrupts, including NMIs, are blocked until
1404 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1405 * the VE info.
1406 *
1407 * If a guest kernel action which would normally cause a #VE occurs in
1408 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1409 * exception) is delivered to the guest which will result in an oops.
1410 *
1411 * The entry code has been audited carefully for following these expectations.
1412 * Changes in the entry code have to be audited for correctness vs. this
1413 * aspect. Similarly to #PF, #VE in these places will expose kernel to
1414 * privilege escalation or may lead to random crashes.
1415 */
DEFINE_IDTENTRY(exc_virtualization_exception)1416 DEFINE_IDTENTRY(exc_virtualization_exception)
1417 {
1418 struct ve_info ve;
1419
1420 /*
1421 * NMIs/Machine-checks/Interrupts will be in a disabled state
1422 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1423 * info cannot be overwritten by a nested #VE.
1424 */
1425 tdx_get_ve_info(&ve);
1426
1427 cond_local_irq_enable(regs);
1428
1429 /*
1430 * If tdx_handle_virt_exception() could not process
1431 * it successfully, treat it as #GP(0) and handle it.
1432 */
1433 if (!tdx_handle_virt_exception(regs, &ve))
1434 ve_raise_fault(regs, 0);
1435
1436 cond_local_irq_disable(regs);
1437 }
1438
1439 #endif
1440
1441 #ifdef CONFIG_X86_32
DEFINE_IDTENTRY_SW(iret_error)1442 DEFINE_IDTENTRY_SW(iret_error)
1443 {
1444 local_irq_enable();
1445 if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1446 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1447 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1448 ILL_BADSTK, (void __user *)NULL);
1449 }
1450 local_irq_disable();
1451 }
1452 #endif
1453
trap_init(void)1454 void __init trap_init(void)
1455 {
1456 /* Init cpu_entry_area before IST entries are set up */
1457 setup_cpu_entry_areas();
1458
1459 /* Init GHCB memory pages when running as an SEV-ES guest */
1460 sev_es_init_vc_handling();
1461
1462 /* Initialize TSS before setting up traps so ISTs work */
1463 cpu_init_exception_handling();
1464 /* Setup traps as cpu_init() might #GP */
1465 idt_setup_traps();
1466 cpu_init();
1467 }
1468