1 /*
2  *  linux/arch/alpha/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
5  *
6  * This file contains the PC-specific time handling details:
7  * reading the RTC at bootup, etc..
8  * 1994-07-02    Alan Modra
9  *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1995-03-26    Markus Kuhn
11  *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12  *      precision CMOS clock update
13  * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
14  *		"A Kernel Model for Precision Timekeeping" by Dave Mills
15  * 1997-01-09    Adrian Sun
16  *      use interval timer if CONFIG_RTC=y
17  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
18  *      fixed tick loss calculation in timer_interrupt
19  *      (round system clock to nearest tick instead of truncating)
20  *      fixed algorithm in time_init for getting time from CMOS clock
21  * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
22  *	fixed algorithm in do_gettimeofday() for calculating the precise time
23  *	from processor cycle counter (now taking lost_ticks into account)
24  * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de>
25  * 	Fixed time_init to be aware of epoches != 1900. This prevents
26  * 	booting up in 2048 for me;) Code is stolen from rtc.c.
27  * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
28  *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29  */
30 #include <linux/errno.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/param.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/delay.h>
38 #include <linux/ioport.h>
39 #include <linux/irq.h>
40 #include <linux/interrupt.h>
41 #include <linux/init.h>
42 #include <linux/bcd.h>
43 #include <linux/profile.h>
44 #include <linux/irq_work.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <asm/hwrpb.h>
49 #include <asm/8253pit.h>
50 #include <asm/rtc.h>
51 
52 #include <linux/mc146818rtc.h>
53 #include <linux/time.h>
54 #include <linux/timex.h>
55 #include <linux/clocksource.h>
56 
57 #include "proto.h"
58 #include "irq_impl.h"
59 
60 static int set_rtc_mmss(unsigned long);
61 
62 DEFINE_SPINLOCK(rtc_lock);
63 EXPORT_SYMBOL(rtc_lock);
64 
65 #define TICK_SIZE (tick_nsec / 1000)
66 
67 /*
68  * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
69  * by 48 gives us 16 bits for HZ while keeping the accuracy good even
70  * for large CPU clock rates.
71  */
72 #define FIX_SHIFT	48
73 
74 /* lump static variables together for more efficient access: */
75 static struct {
76 	/* cycle counter last time it got invoked */
77 	__u32 last_time;
78 	/* ticks/cycle * 2^48 */
79 	unsigned long scaled_ticks_per_cycle;
80 	/* partial unused tick */
81 	unsigned long partial_tick;
82 } state;
83 
84 unsigned long est_cycle_freq;
85 
86 #ifdef CONFIG_IRQ_WORK
87 
88 DEFINE_PER_CPU(u8, irq_work_pending);
89 
90 #define set_irq_work_pending_flag()  __get_cpu_var(irq_work_pending) = 1
91 #define test_irq_work_pending()      __get_cpu_var(irq_work_pending)
92 #define clear_irq_work_pending()     __get_cpu_var(irq_work_pending) = 0
93 
set_irq_work_pending(void)94 void set_irq_work_pending(void)
95 {
96 	set_irq_work_pending_flag();
97 }
98 
99 #else  /* CONFIG_IRQ_WORK */
100 
101 #define test_irq_work_pending()      0
102 #define clear_irq_work_pending()
103 
104 #endif /* CONFIG_IRQ_WORK */
105 
106 
rpcc(void)107 static inline __u32 rpcc(void)
108 {
109     __u32 result;
110     asm volatile ("rpcc %0" : "=r"(result));
111     return result;
112 }
113 
update_persistent_clock(struct timespec now)114 int update_persistent_clock(struct timespec now)
115 {
116 	return set_rtc_mmss(now.tv_sec);
117 }
118 
read_persistent_clock(struct timespec * ts)119 void read_persistent_clock(struct timespec *ts)
120 {
121 	unsigned int year, mon, day, hour, min, sec, epoch;
122 
123 	sec = CMOS_READ(RTC_SECONDS);
124 	min = CMOS_READ(RTC_MINUTES);
125 	hour = CMOS_READ(RTC_HOURS);
126 	day = CMOS_READ(RTC_DAY_OF_MONTH);
127 	mon = CMOS_READ(RTC_MONTH);
128 	year = CMOS_READ(RTC_YEAR);
129 
130 	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
131 		sec = bcd2bin(sec);
132 		min = bcd2bin(min);
133 		hour = bcd2bin(hour);
134 		day = bcd2bin(day);
135 		mon = bcd2bin(mon);
136 		year = bcd2bin(year);
137 	}
138 
139 	/* PC-like is standard; used for year >= 70 */
140 	epoch = 1900;
141 	if (year < 20)
142 		epoch = 2000;
143 	else if (year >= 20 && year < 48)
144 		/* NT epoch */
145 		epoch = 1980;
146 	else if (year >= 48 && year < 70)
147 		/* Digital UNIX epoch */
148 		epoch = 1952;
149 
150 	printk(KERN_INFO "Using epoch = %d\n", epoch);
151 
152 	if ((year += epoch) < 1970)
153 		year += 100;
154 
155 	ts->tv_sec = mktime(year, mon, day, hour, min, sec);
156 	ts->tv_nsec = 0;
157 }
158 
159 
160 
161 /*
162  * timer_interrupt() needs to keep up the real-time clock,
163  * as well as call the "xtime_update()" routine every clocktick
164  */
timer_interrupt(int irq,void * dev)165 irqreturn_t timer_interrupt(int irq, void *dev)
166 {
167 	unsigned long delta;
168 	__u32 now;
169 	long nticks;
170 
171 #ifndef CONFIG_SMP
172 	/* Not SMP, do kernel PC profiling here.  */
173 	profile_tick(CPU_PROFILING);
174 #endif
175 
176 	/*
177 	 * Calculate how many ticks have passed since the last update,
178 	 * including any previous partial leftover.  Save any resulting
179 	 * fraction for the next pass.
180 	 */
181 	now = rpcc();
182 	delta = now - state.last_time;
183 	state.last_time = now;
184 	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
185 	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
186 	nticks = delta >> FIX_SHIFT;
187 
188 	if (nticks)
189 		xtime_update(nticks);
190 
191 	if (test_irq_work_pending()) {
192 		clear_irq_work_pending();
193 		irq_work_run();
194 	}
195 
196 #ifndef CONFIG_SMP
197 	while (nticks--)
198 		update_process_times(user_mode(get_irq_regs()));
199 #endif
200 
201 	return IRQ_HANDLED;
202 }
203 
204 void __init
common_init_rtc(void)205 common_init_rtc(void)
206 {
207 	unsigned char x;
208 
209 	/* Reset periodic interrupt frequency.  */
210 	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
211         /* Test includes known working values on various platforms
212            where 0x26 is wrong; we refuse to change those. */
213 	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
214 		printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
215 		CMOS_WRITE(0x26, RTC_FREQ_SELECT);
216 	}
217 
218 	/* Turn on periodic interrupts.  */
219 	x = CMOS_READ(RTC_CONTROL);
220 	if (!(x & RTC_PIE)) {
221 		printk("Turning on RTC interrupts.\n");
222 		x |= RTC_PIE;
223 		x &= ~(RTC_AIE | RTC_UIE);
224 		CMOS_WRITE(x, RTC_CONTROL);
225 	}
226 	(void) CMOS_READ(RTC_INTR_FLAGS);
227 
228 	outb(0x36, 0x43);	/* pit counter 0: system timer */
229 	outb(0x00, 0x40);
230 	outb(0x00, 0x40);
231 
232 	outb(0xb6, 0x43);	/* pit counter 2: speaker */
233 	outb(0x31, 0x42);
234 	outb(0x13, 0x42);
235 
236 	init_rtc_irq();
237 }
238 
common_get_rtc_time(struct rtc_time * time)239 unsigned int common_get_rtc_time(struct rtc_time *time)
240 {
241 	return __get_rtc_time(time);
242 }
243 
common_set_rtc_time(struct rtc_time * time)244 int common_set_rtc_time(struct rtc_time *time)
245 {
246 	return __set_rtc_time(time);
247 }
248 
249 /* Validate a computed cycle counter result against the known bounds for
250    the given processor core.  There's too much brokenness in the way of
251    timing hardware for any one method to work everywhere.  :-(
252 
253    Return 0 if the result cannot be trusted, otherwise return the argument.  */
254 
255 static unsigned long __init
validate_cc_value(unsigned long cc)256 validate_cc_value(unsigned long cc)
257 {
258 	static struct bounds {
259 		unsigned int min, max;
260 	} cpu_hz[] __initdata = {
261 		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
262 		[EV4_CPU]    = {  100000000,  300000000 },
263 		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
264 		[EV45_CPU]   = {  200000000,  300000000 },
265 		[EV5_CPU]    = {  250000000,  433000000 },
266 		[EV56_CPU]   = {  333000000,  667000000 },
267 		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
268 		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
269 		[EV6_CPU]    = {  466000000,  600000000 },
270 		[EV67_CPU]   = {  600000000,  750000000 },
271 		[EV68AL_CPU] = {  750000000,  940000000 },
272 		[EV68CB_CPU] = { 1000000000, 1333333333 },
273 		/* None of the following are shipping as of 2001-11-01.  */
274 		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
275 		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
276 		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
277 		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
278 	};
279 
280 	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
281 	const unsigned int deviation = 10000000;
282 
283 	struct percpu_struct *cpu;
284 	unsigned int index;
285 
286 	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
287 	index = cpu->type & 0xffffffff;
288 
289 	/* If index out of bounds, no way to validate.  */
290 	if (index >= ARRAY_SIZE(cpu_hz))
291 		return cc;
292 
293 	/* If index contains no data, no way to validate.  */
294 	if (cpu_hz[index].max == 0)
295 		return cc;
296 
297 	if (cc < cpu_hz[index].min - deviation
298 	    || cc > cpu_hz[index].max + deviation)
299 		return 0;
300 
301 	return cc;
302 }
303 
304 
305 /*
306  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
307  * arch/i386/time.c.
308  */
309 
310 #define CALIBRATE_LATCH	0xffff
311 #define TIMEOUT_COUNT	0x100000
312 
313 static unsigned long __init
calibrate_cc_with_pit(void)314 calibrate_cc_with_pit(void)
315 {
316 	int cc, count = 0;
317 
318 	/* Set the Gate high, disable speaker */
319 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
320 
321 	/*
322 	 * Now let's take care of CTC channel 2
323 	 *
324 	 * Set the Gate high, program CTC channel 2 for mode 0,
325 	 * (interrupt on terminal count mode), binary count,
326 	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
327 	 */
328 	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
329 	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
330 	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
331 
332 	cc = rpcc();
333 	do {
334 		count++;
335 	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
336 	cc = rpcc() - cc;
337 
338 	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
339 	if (count <= 1 || count == TIMEOUT_COUNT)
340 		return 0;
341 
342 	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
343 }
344 
345 /* The Linux interpretation of the CMOS clock register contents:
346    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
347    RTC registers show the second which has precisely just started.
348    Let's hope other operating systems interpret the RTC the same way.  */
349 
350 static unsigned long __init
rpcc_after_update_in_progress(void)351 rpcc_after_update_in_progress(void)
352 {
353 	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
354 	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
355 
356 	return rpcc();
357 }
358 
359 #ifndef CONFIG_SMP
360 /* Until and unless we figure out how to get cpu cycle counters
361    in sync and keep them there, we can't use the rpcc.  */
read_rpcc(struct clocksource * cs)362 static cycle_t read_rpcc(struct clocksource *cs)
363 {
364 	cycle_t ret = (cycle_t)rpcc();
365 	return ret;
366 }
367 
368 static struct clocksource clocksource_rpcc = {
369 	.name                   = "rpcc",
370 	.rating                 = 300,
371 	.read                   = read_rpcc,
372 	.mask                   = CLOCKSOURCE_MASK(32),
373 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS
374 };
375 
register_rpcc_clocksource(long cycle_freq)376 static inline void register_rpcc_clocksource(long cycle_freq)
377 {
378 	clocksource_register_hz(&clocksource_rpcc, cycle_freq);
379 }
380 #else /* !CONFIG_SMP */
register_rpcc_clocksource(long cycle_freq)381 static inline void register_rpcc_clocksource(long cycle_freq)
382 {
383 }
384 #endif /* !CONFIG_SMP */
385 
386 void __init
time_init(void)387 time_init(void)
388 {
389 	unsigned int cc1, cc2;
390 	unsigned long cycle_freq, tolerance;
391 	long diff;
392 
393 	/* Calibrate CPU clock -- attempt #1.  */
394 	if (!est_cycle_freq)
395 		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
396 
397 	cc1 = rpcc();
398 
399 	/* Calibrate CPU clock -- attempt #2.  */
400 	if (!est_cycle_freq) {
401 		cc1 = rpcc_after_update_in_progress();
402 		cc2 = rpcc_after_update_in_progress();
403 		est_cycle_freq = validate_cc_value(cc2 - cc1);
404 		cc1 = cc2;
405 	}
406 
407 	cycle_freq = hwrpb->cycle_freq;
408 	if (est_cycle_freq) {
409 		/* If the given value is within 250 PPM of what we calculated,
410 		   accept it.  Otherwise, use what we found.  */
411 		tolerance = cycle_freq / 4000;
412 		diff = cycle_freq - est_cycle_freq;
413 		if (diff < 0)
414 			diff = -diff;
415 		if ((unsigned long)diff > tolerance) {
416 			cycle_freq = est_cycle_freq;
417 			printk("HWRPB cycle frequency bogus.  "
418 			       "Estimated %lu Hz\n", cycle_freq);
419 		} else {
420 			est_cycle_freq = 0;
421 		}
422 	} else if (! validate_cc_value (cycle_freq)) {
423 		printk("HWRPB cycle frequency bogus, "
424 		       "and unable to estimate a proper value!\n");
425 	}
426 
427 	/* From John Bowman <bowman@math.ualberta.ca>: allow the values
428 	   to settle, as the Update-In-Progress bit going low isn't good
429 	   enough on some hardware.  2ms is our guess; we haven't found
430 	   bogomips yet, but this is close on a 500Mhz box.  */
431 	__delay(1000000);
432 
433 
434 	if (HZ > (1<<16)) {
435 		extern void __you_loose (void);
436 		__you_loose();
437 	}
438 
439 	register_rpcc_clocksource(cycle_freq);
440 
441 	state.last_time = cc1;
442 	state.scaled_ticks_per_cycle
443 		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
444 	state.partial_tick = 0L;
445 
446 	/* Startup the timer source. */
447 	alpha_mv.init_rtc();
448 }
449 
450 /*
451  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
452  * called 500 ms after the second nowtime has started, because when
453  * nowtime is written into the registers of the CMOS clock, it will
454  * jump to the next second precisely 500 ms later. Check the Motorola
455  * MC146818A or Dallas DS12887 data sheet for details.
456  *
457  * BUG: This routine does not handle hour overflow properly; it just
458  *      sets the minutes. Usually you won't notice until after reboot!
459  */
460 
461 
462 static int
set_rtc_mmss(unsigned long nowtime)463 set_rtc_mmss(unsigned long nowtime)
464 {
465 	int retval = 0;
466 	int real_seconds, real_minutes, cmos_minutes;
467 	unsigned char save_control, save_freq_select;
468 
469 	/* irq are locally disabled here */
470 	spin_lock(&rtc_lock);
471 	/* Tell the clock it's being set */
472 	save_control = CMOS_READ(RTC_CONTROL);
473 	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
474 
475 	/* Stop and reset prescaler */
476 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
477 	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
478 
479 	cmos_minutes = CMOS_READ(RTC_MINUTES);
480 	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
481 		cmos_minutes = bcd2bin(cmos_minutes);
482 
483 	/*
484 	 * since we're only adjusting minutes and seconds,
485 	 * don't interfere with hour overflow. This avoids
486 	 * messing with unknown time zones but requires your
487 	 * RTC not to be off by more than 15 minutes
488 	 */
489 	real_seconds = nowtime % 60;
490 	real_minutes = nowtime / 60;
491 	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
492 		/* correct for half hour time zone */
493 		real_minutes += 30;
494 	}
495 	real_minutes %= 60;
496 
497 	if (abs(real_minutes - cmos_minutes) < 30) {
498 		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
499 			real_seconds = bin2bcd(real_seconds);
500 			real_minutes = bin2bcd(real_minutes);
501 		}
502 		CMOS_WRITE(real_seconds,RTC_SECONDS);
503 		CMOS_WRITE(real_minutes,RTC_MINUTES);
504 	} else {
505 		printk_once(KERN_NOTICE
506 		       "set_rtc_mmss: can't update from %d to %d\n",
507 		       cmos_minutes, real_minutes);
508  		retval = -1;
509 	}
510 
511 	/* The following flags have to be released exactly in this order,
512 	 * otherwise the DS12887 (popular MC146818A clone with integrated
513 	 * battery and quartz) will not reset the oscillator and will not
514 	 * update precisely 500 ms later. You won't find this mentioned in
515 	 * the Dallas Semiconductor data sheets, but who believes data
516 	 * sheets anyway ...                           -- Markus Kuhn
517 	 */
518 	CMOS_WRITE(save_control, RTC_CONTROL);
519 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
520 	spin_unlock(&rtc_lock);
521 
522 	return retval;
523 }
524