1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41
42 /*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
46 * 1) epnested_mutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (rwlock)
49 *
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a rwlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * The epnested_mutex is acquired when inserting an epoll fd onto another
61 * epoll fd. We do this so that we walk the epoll tree and ensure that this
62 * insertion does not create a cycle of epoll file descriptors, which
63 * could lead to deadlock. We need a global mutex to prevent two
64 * simultaneous inserts (A into B and B into A) from racing and
65 * constructing a cycle without either insert observing that it is
66 * going to.
67 * It is necessary to acquire multiple "ep->mtx"es at once in the
68 * case when one epoll fd is added to another. In this case, we
69 * always acquire the locks in the order of nesting (i.e. after
70 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
71 * before e2->mtx). Since we disallow cycles of epoll file
72 * descriptors, this ensures that the mutexes are well-ordered. In
73 * order to communicate this nesting to lockdep, when walking a tree
74 * of epoll file descriptors, we use the current recursion depth as
75 * the lockdep subkey.
76 * It is possible to drop the "ep->mtx" and to use the global
77 * mutex "epnested_mutex" (together with "ep->lock") to have it working,
78 * but having "ep->mtx" will make the interface more scalable.
79 * Events that require holding "epnested_mutex" are very rare, while for
80 * normal operations the epoll private "ep->mtx" will guarantee
81 * a better scalability.
82 */
83
84 /* Epoll private bits inside the event mask */
85 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
86
87 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
88
89 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
90 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
91
92 /* Maximum number of nesting allowed inside epoll sets */
93 #define EP_MAX_NESTS 4
94
95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
96
97 #define EP_UNACTIVE_PTR ((void *) -1L)
98
99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
100
101 struct epoll_filefd {
102 struct file *file;
103 int fd;
104 } __packed;
105
106 /* Wait structure used by the poll hooks */
107 struct eppoll_entry {
108 /* List header used to link this structure to the "struct epitem" */
109 struct eppoll_entry *next;
110
111 /* The "base" pointer is set to the container "struct epitem" */
112 struct epitem *base;
113
114 /*
115 * Wait queue item that will be linked to the target file wait
116 * queue head.
117 */
118 wait_queue_entry_t wait;
119
120 /* The wait queue head that linked the "wait" wait queue item */
121 wait_queue_head_t *whead;
122 };
123
124 /*
125 * Each file descriptor added to the eventpoll interface will
126 * have an entry of this type linked to the "rbr" RB tree.
127 * Avoid increasing the size of this struct, there can be many thousands
128 * of these on a server and we do not want this to take another cache line.
129 */
130 struct epitem {
131 union {
132 /* RB tree node links this structure to the eventpoll RB tree */
133 struct rb_node rbn;
134 /* Used to free the struct epitem */
135 struct rcu_head rcu;
136 };
137
138 /* List header used to link this structure to the eventpoll ready list */
139 struct list_head rdllink;
140
141 /*
142 * Works together "struct eventpoll"->ovflist in keeping the
143 * single linked chain of items.
144 */
145 struct epitem *next;
146
147 /* The file descriptor information this item refers to */
148 struct epoll_filefd ffd;
149
150 /*
151 * Protected by file->f_lock, true for to-be-released epitem already
152 * removed from the "struct file" items list; together with
153 * eventpoll->refcount orchestrates "struct eventpoll" disposal
154 */
155 bool dying;
156
157 /* List containing poll wait queues */
158 struct eppoll_entry *pwqlist;
159
160 /* The "container" of this item */
161 struct eventpoll *ep;
162
163 /* List header used to link this item to the "struct file" items list */
164 struct hlist_node fllink;
165
166 /* wakeup_source used when EPOLLWAKEUP is set */
167 struct wakeup_source __rcu *ws;
168
169 /* The structure that describe the interested events and the source fd */
170 struct epoll_event event;
171 };
172
173 /*
174 * This structure is stored inside the "private_data" member of the file
175 * structure and represents the main data structure for the eventpoll
176 * interface.
177 */
178 struct eventpoll {
179 /*
180 * This mutex is used to ensure that files are not removed
181 * while epoll is using them. This is held during the event
182 * collection loop, the file cleanup path, the epoll file exit
183 * code and the ctl operations.
184 */
185 struct mutex mtx;
186
187 /* Wait queue used by sys_epoll_wait() */
188 wait_queue_head_t wq;
189
190 /* Wait queue used by file->poll() */
191 wait_queue_head_t poll_wait;
192
193 /* List of ready file descriptors */
194 struct list_head rdllist;
195
196 /* Lock which protects rdllist and ovflist */
197 rwlock_t lock;
198
199 /* RB tree root used to store monitored fd structs */
200 struct rb_root_cached rbr;
201
202 /*
203 * This is a single linked list that chains all the "struct epitem" that
204 * happened while transferring ready events to userspace w/out
205 * holding ->lock.
206 */
207 struct epitem *ovflist;
208
209 /* wakeup_source used when ep_scan_ready_list is running */
210 struct wakeup_source *ws;
211
212 /* The user that created the eventpoll descriptor */
213 struct user_struct *user;
214
215 struct file *file;
216
217 /* used to optimize loop detection check */
218 u64 gen;
219 struct hlist_head refs;
220
221 /*
222 * usage count, used together with epitem->dying to
223 * orchestrate the disposal of this struct
224 */
225 refcount_t refcount;
226
227 #ifdef CONFIG_NET_RX_BUSY_POLL
228 /* used to track busy poll napi_id */
229 unsigned int napi_id;
230 #endif
231
232 #ifdef CONFIG_DEBUG_LOCK_ALLOC
233 /* tracks wakeup nests for lockdep validation */
234 u8 nests;
235 #endif
236 };
237
238 /* Wrapper struct used by poll queueing */
239 struct ep_pqueue {
240 poll_table pt;
241 struct epitem *epi;
242 };
243
244 /*
245 * Configuration options available inside /proc/sys/fs/epoll/
246 */
247 /* Maximum number of epoll watched descriptors, per user */
248 static long max_user_watches __read_mostly;
249
250 /* Used for cycles detection */
251 static DEFINE_MUTEX(epnested_mutex);
252
253 static u64 loop_check_gen = 0;
254
255 /* Used to check for epoll file descriptor inclusion loops */
256 static struct eventpoll *inserting_into;
257
258 /* Slab cache used to allocate "struct epitem" */
259 static struct kmem_cache *epi_cache __read_mostly;
260
261 /* Slab cache used to allocate "struct eppoll_entry" */
262 static struct kmem_cache *pwq_cache __read_mostly;
263
264 /*
265 * List of files with newly added links, where we may need to limit the number
266 * of emanating paths. Protected by the epnested_mutex.
267 */
268 struct epitems_head {
269 struct hlist_head epitems;
270 struct epitems_head *next;
271 };
272 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
273
274 static struct kmem_cache *ephead_cache __read_mostly;
275
free_ephead(struct epitems_head * head)276 static inline void free_ephead(struct epitems_head *head)
277 {
278 if (head)
279 kmem_cache_free(ephead_cache, head);
280 }
281
list_file(struct file * file)282 static void list_file(struct file *file)
283 {
284 struct epitems_head *head;
285
286 head = container_of(file->f_ep, struct epitems_head, epitems);
287 if (!head->next) {
288 head->next = tfile_check_list;
289 tfile_check_list = head;
290 }
291 }
292
unlist_file(struct epitems_head * head)293 static void unlist_file(struct epitems_head *head)
294 {
295 struct epitems_head *to_free = head;
296 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
297 if (p) {
298 struct epitem *epi= container_of(p, struct epitem, fllink);
299 spin_lock(&epi->ffd.file->f_lock);
300 if (!hlist_empty(&head->epitems))
301 to_free = NULL;
302 head->next = NULL;
303 spin_unlock(&epi->ffd.file->f_lock);
304 }
305 free_ephead(to_free);
306 }
307
308 #ifdef CONFIG_SYSCTL
309
310 #include <linux/sysctl.h>
311
312 static long long_zero;
313 static long long_max = LONG_MAX;
314
315 static struct ctl_table epoll_table[] = {
316 {
317 .procname = "max_user_watches",
318 .data = &max_user_watches,
319 .maxlen = sizeof(max_user_watches),
320 .mode = 0644,
321 .proc_handler = proc_doulongvec_minmax,
322 .extra1 = &long_zero,
323 .extra2 = &long_max,
324 },
325 { }
326 };
327
epoll_sysctls_init(void)328 static void __init epoll_sysctls_init(void)
329 {
330 register_sysctl("fs/epoll", epoll_table);
331 }
332 #else
333 #define epoll_sysctls_init() do { } while (0)
334 #endif /* CONFIG_SYSCTL */
335
336 static const struct file_operations eventpoll_fops;
337
is_file_epoll(struct file * f)338 static inline int is_file_epoll(struct file *f)
339 {
340 return f->f_op == &eventpoll_fops;
341 }
342
343 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)344 static inline void ep_set_ffd(struct epoll_filefd *ffd,
345 struct file *file, int fd)
346 {
347 ffd->file = file;
348 ffd->fd = fd;
349 }
350
351 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)352 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
353 struct epoll_filefd *p2)
354 {
355 return (p1->file > p2->file ? +1:
356 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
357 }
358
359 /* Tells us if the item is currently linked */
ep_is_linked(struct epitem * epi)360 static inline int ep_is_linked(struct epitem *epi)
361 {
362 return !list_empty(&epi->rdllink);
363 }
364
ep_pwq_from_wait(wait_queue_entry_t * p)365 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
366 {
367 return container_of(p, struct eppoll_entry, wait);
368 }
369
370 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)371 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
372 {
373 return container_of(p, struct eppoll_entry, wait)->base;
374 }
375
376 /**
377 * ep_events_available - Checks if ready events might be available.
378 *
379 * @ep: Pointer to the eventpoll context.
380 *
381 * Return: a value different than %zero if ready events are available,
382 * or %zero otherwise.
383 */
ep_events_available(struct eventpoll * ep)384 static inline int ep_events_available(struct eventpoll *ep)
385 {
386 return !list_empty_careful(&ep->rdllist) ||
387 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
388 }
389
390 #ifdef CONFIG_NET_RX_BUSY_POLL
ep_busy_loop_end(void * p,unsigned long start_time)391 static bool ep_busy_loop_end(void *p, unsigned long start_time)
392 {
393 struct eventpoll *ep = p;
394
395 return ep_events_available(ep) || busy_loop_timeout(start_time);
396 }
397
398 /*
399 * Busy poll if globally on and supporting sockets found && no events,
400 * busy loop will return if need_resched or ep_events_available.
401 *
402 * we must do our busy polling with irqs enabled
403 */
ep_busy_loop(struct eventpoll * ep,int nonblock)404 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
405 {
406 unsigned int napi_id = READ_ONCE(ep->napi_id);
407
408 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
409 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
410 BUSY_POLL_BUDGET);
411 if (ep_events_available(ep))
412 return true;
413 /*
414 * Busy poll timed out. Drop NAPI ID for now, we can add
415 * it back in when we have moved a socket with a valid NAPI
416 * ID onto the ready list.
417 */
418 ep->napi_id = 0;
419 return false;
420 }
421 return false;
422 }
423
424 /*
425 * Set epoll busy poll NAPI ID from sk.
426 */
ep_set_busy_poll_napi_id(struct epitem * epi)427 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
428 {
429 struct eventpoll *ep;
430 unsigned int napi_id;
431 struct socket *sock;
432 struct sock *sk;
433
434 if (!net_busy_loop_on())
435 return;
436
437 sock = sock_from_file(epi->ffd.file);
438 if (!sock)
439 return;
440
441 sk = sock->sk;
442 if (!sk)
443 return;
444
445 napi_id = READ_ONCE(sk->sk_napi_id);
446 ep = epi->ep;
447
448 /* Non-NAPI IDs can be rejected
449 * or
450 * Nothing to do if we already have this ID
451 */
452 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
453 return;
454
455 /* record NAPI ID for use in next busy poll */
456 ep->napi_id = napi_id;
457 }
458
459 #else
460
ep_busy_loop(struct eventpoll * ep,int nonblock)461 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
462 {
463 return false;
464 }
465
ep_set_busy_poll_napi_id(struct epitem * epi)466 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
467 {
468 }
469
470 #endif /* CONFIG_NET_RX_BUSY_POLL */
471
472 /*
473 * As described in commit 0ccf831cb lockdep: annotate epoll
474 * the use of wait queues used by epoll is done in a very controlled
475 * manner. Wake ups can nest inside each other, but are never done
476 * with the same locking. For example:
477 *
478 * dfd = socket(...);
479 * efd1 = epoll_create();
480 * efd2 = epoll_create();
481 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
482 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
483 *
484 * When a packet arrives to the device underneath "dfd", the net code will
485 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
486 * callback wakeup entry on that queue, and the wake_up() performed by the
487 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
488 * (efd1) notices that it may have some event ready, so it needs to wake up
489 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
490 * that ends up in another wake_up(), after having checked about the
491 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
492 * stack blasting.
493 *
494 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
495 * this special case of epoll.
496 */
497 #ifdef CONFIG_DEBUG_LOCK_ALLOC
498
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,unsigned pollflags)499 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
500 unsigned pollflags)
501 {
502 struct eventpoll *ep_src;
503 unsigned long flags;
504 u8 nests = 0;
505
506 /*
507 * To set the subclass or nesting level for spin_lock_irqsave_nested()
508 * it might be natural to create a per-cpu nest count. However, since
509 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
510 * schedule() in the -rt kernel, the per-cpu variable are no longer
511 * protected. Thus, we are introducing a per eventpoll nest field.
512 * If we are not being call from ep_poll_callback(), epi is NULL and
513 * we are at the first level of nesting, 0. Otherwise, we are being
514 * called from ep_poll_callback() and if a previous wakeup source is
515 * not an epoll file itself, we are at depth 1 since the wakeup source
516 * is depth 0. If the wakeup source is a previous epoll file in the
517 * wakeup chain then we use its nests value and record ours as
518 * nests + 1. The previous epoll file nests value is stable since its
519 * already holding its own poll_wait.lock.
520 */
521 if (epi) {
522 if ((is_file_epoll(epi->ffd.file))) {
523 ep_src = epi->ffd.file->private_data;
524 nests = ep_src->nests;
525 } else {
526 nests = 1;
527 }
528 }
529 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
530 ep->nests = nests + 1;
531 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
532 ep->nests = 0;
533 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
534 }
535
536 #else
537
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,__poll_t pollflags)538 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
539 __poll_t pollflags)
540 {
541 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
542 }
543
544 #endif
545
ep_remove_wait_queue(struct eppoll_entry * pwq)546 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
547 {
548 wait_queue_head_t *whead;
549
550 rcu_read_lock();
551 /*
552 * If it is cleared by POLLFREE, it should be rcu-safe.
553 * If we read NULL we need a barrier paired with
554 * smp_store_release() in ep_poll_callback(), otherwise
555 * we rely on whead->lock.
556 */
557 whead = smp_load_acquire(&pwq->whead);
558 if (whead)
559 remove_wait_queue(whead, &pwq->wait);
560 rcu_read_unlock();
561 }
562
563 /*
564 * This function unregisters poll callbacks from the associated file
565 * descriptor. Must be called with "mtx" held.
566 */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)567 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
568 {
569 struct eppoll_entry **p = &epi->pwqlist;
570 struct eppoll_entry *pwq;
571
572 while ((pwq = *p) != NULL) {
573 *p = pwq->next;
574 ep_remove_wait_queue(pwq);
575 kmem_cache_free(pwq_cache, pwq);
576 }
577 }
578
579 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)580 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
581 {
582 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
583 }
584
585 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)586 static inline void ep_pm_stay_awake(struct epitem *epi)
587 {
588 struct wakeup_source *ws = ep_wakeup_source(epi);
589
590 if (ws)
591 __pm_stay_awake(ws);
592 }
593
ep_has_wakeup_source(struct epitem * epi)594 static inline bool ep_has_wakeup_source(struct epitem *epi)
595 {
596 return rcu_access_pointer(epi->ws) ? true : false;
597 }
598
599 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)600 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
601 {
602 struct wakeup_source *ws;
603
604 rcu_read_lock();
605 ws = rcu_dereference(epi->ws);
606 if (ws)
607 __pm_stay_awake(ws);
608 rcu_read_unlock();
609 }
610
611
612 /*
613 * ep->mutex needs to be held because we could be hit by
614 * eventpoll_release_file() and epoll_ctl().
615 */
ep_start_scan(struct eventpoll * ep,struct list_head * txlist)616 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
617 {
618 /*
619 * Steal the ready list, and re-init the original one to the
620 * empty list. Also, set ep->ovflist to NULL so that events
621 * happening while looping w/out locks, are not lost. We cannot
622 * have the poll callback to queue directly on ep->rdllist,
623 * because we want the "sproc" callback to be able to do it
624 * in a lockless way.
625 */
626 lockdep_assert_irqs_enabled();
627 write_lock_irq(&ep->lock);
628 list_splice_init(&ep->rdllist, txlist);
629 WRITE_ONCE(ep->ovflist, NULL);
630 write_unlock_irq(&ep->lock);
631 }
632
ep_done_scan(struct eventpoll * ep,struct list_head * txlist)633 static void ep_done_scan(struct eventpoll *ep,
634 struct list_head *txlist)
635 {
636 struct epitem *epi, *nepi;
637
638 write_lock_irq(&ep->lock);
639 /*
640 * During the time we spent inside the "sproc" callback, some
641 * other events might have been queued by the poll callback.
642 * We re-insert them inside the main ready-list here.
643 */
644 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
645 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
646 /*
647 * We need to check if the item is already in the list.
648 * During the "sproc" callback execution time, items are
649 * queued into ->ovflist but the "txlist" might already
650 * contain them, and the list_splice() below takes care of them.
651 */
652 if (!ep_is_linked(epi)) {
653 /*
654 * ->ovflist is LIFO, so we have to reverse it in order
655 * to keep in FIFO.
656 */
657 list_add(&epi->rdllink, &ep->rdllist);
658 ep_pm_stay_awake(epi);
659 }
660 }
661 /*
662 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
663 * releasing the lock, events will be queued in the normal way inside
664 * ep->rdllist.
665 */
666 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
667
668 /*
669 * Quickly re-inject items left on "txlist".
670 */
671 list_splice(txlist, &ep->rdllist);
672 __pm_relax(ep->ws);
673
674 if (!list_empty(&ep->rdllist)) {
675 if (waitqueue_active(&ep->wq))
676 wake_up(&ep->wq);
677 }
678
679 write_unlock_irq(&ep->lock);
680 }
681
epi_rcu_free(struct rcu_head * head)682 static void epi_rcu_free(struct rcu_head *head)
683 {
684 struct epitem *epi = container_of(head, struct epitem, rcu);
685 kmem_cache_free(epi_cache, epi);
686 }
687
ep_get(struct eventpoll * ep)688 static void ep_get(struct eventpoll *ep)
689 {
690 refcount_inc(&ep->refcount);
691 }
692
693 /*
694 * Returns true if the event poll can be disposed
695 */
ep_refcount_dec_and_test(struct eventpoll * ep)696 static bool ep_refcount_dec_and_test(struct eventpoll *ep)
697 {
698 if (!refcount_dec_and_test(&ep->refcount))
699 return false;
700
701 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
702 return true;
703 }
704
ep_free(struct eventpoll * ep)705 static void ep_free(struct eventpoll *ep)
706 {
707 mutex_destroy(&ep->mtx);
708 free_uid(ep->user);
709 wakeup_source_unregister(ep->ws);
710 kfree(ep);
711 }
712
713 /*
714 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
715 * all the associated resources. Must be called with "mtx" held.
716 * If the dying flag is set, do the removal only if force is true.
717 * This prevents ep_clear_and_put() from dropping all the ep references
718 * while running concurrently with eventpoll_release_file().
719 * Returns true if the eventpoll can be disposed.
720 */
__ep_remove(struct eventpoll * ep,struct epitem * epi,bool force)721 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
722 {
723 struct file *file = epi->ffd.file;
724 struct epitems_head *to_free;
725 struct hlist_head *head;
726
727 lockdep_assert_irqs_enabled();
728
729 /*
730 * Removes poll wait queue hooks.
731 */
732 ep_unregister_pollwait(ep, epi);
733
734 /* Remove the current item from the list of epoll hooks */
735 spin_lock(&file->f_lock);
736 if (epi->dying && !force) {
737 spin_unlock(&file->f_lock);
738 return false;
739 }
740
741 to_free = NULL;
742 head = file->f_ep;
743 if (head->first == &epi->fllink && !epi->fllink.next) {
744 file->f_ep = NULL;
745 if (!is_file_epoll(file)) {
746 struct epitems_head *v;
747 v = container_of(head, struct epitems_head, epitems);
748 if (!smp_load_acquire(&v->next))
749 to_free = v;
750 }
751 }
752 hlist_del_rcu(&epi->fllink);
753 spin_unlock(&file->f_lock);
754 free_ephead(to_free);
755
756 rb_erase_cached(&epi->rbn, &ep->rbr);
757
758 write_lock_irq(&ep->lock);
759 if (ep_is_linked(epi))
760 list_del_init(&epi->rdllink);
761 write_unlock_irq(&ep->lock);
762
763 wakeup_source_unregister(ep_wakeup_source(epi));
764 /*
765 * At this point it is safe to free the eventpoll item. Use the union
766 * field epi->rcu, since we are trying to minimize the size of
767 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
768 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
769 * use of the rbn field.
770 */
771 call_rcu(&epi->rcu, epi_rcu_free);
772
773 percpu_counter_dec(&ep->user->epoll_watches);
774 return ep_refcount_dec_and_test(ep);
775 }
776
777 /*
778 * ep_remove variant for callers owing an additional reference to the ep
779 */
ep_remove_safe(struct eventpoll * ep,struct epitem * epi)780 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
781 {
782 WARN_ON_ONCE(__ep_remove(ep, epi, false));
783 }
784
ep_clear_and_put(struct eventpoll * ep)785 static void ep_clear_and_put(struct eventpoll *ep)
786 {
787 struct rb_node *rbp, *next;
788 struct epitem *epi;
789 bool dispose;
790
791 /* We need to release all tasks waiting for these file */
792 if (waitqueue_active(&ep->poll_wait))
793 ep_poll_safewake(ep, NULL, 0);
794
795 mutex_lock(&ep->mtx);
796
797 /*
798 * Walks through the whole tree by unregistering poll callbacks.
799 */
800 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
801 epi = rb_entry(rbp, struct epitem, rbn);
802
803 ep_unregister_pollwait(ep, epi);
804 cond_resched();
805 }
806
807 /*
808 * Walks through the whole tree and try to free each "struct epitem".
809 * Note that ep_remove_safe() will not remove the epitem in case of a
810 * racing eventpoll_release_file(); the latter will do the removal.
811 * At this point we are sure no poll callbacks will be lingering around.
812 * Since we still own a reference to the eventpoll struct, the loop can't
813 * dispose it.
814 */
815 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
816 next = rb_next(rbp);
817 epi = rb_entry(rbp, struct epitem, rbn);
818 ep_remove_safe(ep, epi);
819 cond_resched();
820 }
821
822 dispose = ep_refcount_dec_and_test(ep);
823 mutex_unlock(&ep->mtx);
824
825 if (dispose)
826 ep_free(ep);
827 }
828
ep_eventpoll_release(struct inode * inode,struct file * file)829 static int ep_eventpoll_release(struct inode *inode, struct file *file)
830 {
831 struct eventpoll *ep = file->private_data;
832
833 if (ep)
834 ep_clear_and_put(ep);
835
836 return 0;
837 }
838
839 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
840
__ep_eventpoll_poll(struct file * file,poll_table * wait,int depth)841 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
842 {
843 struct eventpoll *ep = file->private_data;
844 LIST_HEAD(txlist);
845 struct epitem *epi, *tmp;
846 poll_table pt;
847 __poll_t res = 0;
848
849 init_poll_funcptr(&pt, NULL);
850
851 /* Insert inside our poll wait queue */
852 poll_wait(file, &ep->poll_wait, wait);
853
854 /*
855 * Proceed to find out if wanted events are really available inside
856 * the ready list.
857 */
858 mutex_lock_nested(&ep->mtx, depth);
859 ep_start_scan(ep, &txlist);
860 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
861 if (ep_item_poll(epi, &pt, depth + 1)) {
862 res = EPOLLIN | EPOLLRDNORM;
863 break;
864 } else {
865 /*
866 * Item has been dropped into the ready list by the poll
867 * callback, but it's not actually ready, as far as
868 * caller requested events goes. We can remove it here.
869 */
870 __pm_relax(ep_wakeup_source(epi));
871 list_del_init(&epi->rdllink);
872 }
873 }
874 ep_done_scan(ep, &txlist);
875 mutex_unlock(&ep->mtx);
876 return res;
877 }
878
879 /*
880 * Differs from ep_eventpoll_poll() in that internal callers already have
881 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
882 * is correctly annotated.
883 */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)884 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
885 int depth)
886 {
887 struct file *file = epi->ffd.file;
888 __poll_t res;
889
890 pt->_key = epi->event.events;
891 if (!is_file_epoll(file))
892 res = vfs_poll(file, pt);
893 else
894 res = __ep_eventpoll_poll(file, pt, depth);
895 return res & epi->event.events;
896 }
897
ep_eventpoll_poll(struct file * file,poll_table * wait)898 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
899 {
900 return __ep_eventpoll_poll(file, wait, 0);
901 }
902
903 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)904 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
905 {
906 struct eventpoll *ep = f->private_data;
907 struct rb_node *rbp;
908
909 mutex_lock(&ep->mtx);
910 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
911 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
912 struct inode *inode = file_inode(epi->ffd.file);
913
914 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
915 " pos:%lli ino:%lx sdev:%x\n",
916 epi->ffd.fd, epi->event.events,
917 (long long)epi->event.data,
918 (long long)epi->ffd.file->f_pos,
919 inode->i_ino, inode->i_sb->s_dev);
920 if (seq_has_overflowed(m))
921 break;
922 }
923 mutex_unlock(&ep->mtx);
924 }
925 #endif
926
927 /* File callbacks that implement the eventpoll file behaviour */
928 static const struct file_operations eventpoll_fops = {
929 #ifdef CONFIG_PROC_FS
930 .show_fdinfo = ep_show_fdinfo,
931 #endif
932 .release = ep_eventpoll_release,
933 .poll = ep_eventpoll_poll,
934 .llseek = noop_llseek,
935 };
936
937 /*
938 * This is called from eventpoll_release() to unlink files from the eventpoll
939 * interface. We need to have this facility to cleanup correctly files that are
940 * closed without being removed from the eventpoll interface.
941 */
eventpoll_release_file(struct file * file)942 void eventpoll_release_file(struct file *file)
943 {
944 struct eventpoll *ep;
945 struct epitem *epi;
946 bool dispose;
947
948 /*
949 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
950 * touching the epitems list before eventpoll_release_file() can access
951 * the ep->mtx.
952 */
953 again:
954 spin_lock(&file->f_lock);
955 if (file->f_ep && file->f_ep->first) {
956 epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
957 epi->dying = true;
958 spin_unlock(&file->f_lock);
959
960 /*
961 * ep access is safe as we still own a reference to the ep
962 * struct
963 */
964 ep = epi->ep;
965 mutex_lock(&ep->mtx);
966 dispose = __ep_remove(ep, epi, true);
967 mutex_unlock(&ep->mtx);
968
969 if (dispose)
970 ep_free(ep);
971 goto again;
972 }
973 spin_unlock(&file->f_lock);
974 }
975
ep_alloc(struct eventpoll ** pep)976 static int ep_alloc(struct eventpoll **pep)
977 {
978 struct eventpoll *ep;
979
980 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
981 if (unlikely(!ep))
982 return -ENOMEM;
983
984 mutex_init(&ep->mtx);
985 rwlock_init(&ep->lock);
986 init_waitqueue_head(&ep->wq);
987 init_waitqueue_head(&ep->poll_wait);
988 INIT_LIST_HEAD(&ep->rdllist);
989 ep->rbr = RB_ROOT_CACHED;
990 ep->ovflist = EP_UNACTIVE_PTR;
991 ep->user = get_current_user();
992 refcount_set(&ep->refcount, 1);
993
994 *pep = ep;
995
996 return 0;
997 }
998
999 /*
1000 * Search the file inside the eventpoll tree. The RB tree operations
1001 * are protected by the "mtx" mutex, and ep_find() must be called with
1002 * "mtx" held.
1003 */
ep_find(struct eventpoll * ep,struct file * file,int fd)1004 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1005 {
1006 int kcmp;
1007 struct rb_node *rbp;
1008 struct epitem *epi, *epir = NULL;
1009 struct epoll_filefd ffd;
1010
1011 ep_set_ffd(&ffd, file, fd);
1012 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1013 epi = rb_entry(rbp, struct epitem, rbn);
1014 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1015 if (kcmp > 0)
1016 rbp = rbp->rb_right;
1017 else if (kcmp < 0)
1018 rbp = rbp->rb_left;
1019 else {
1020 epir = epi;
1021 break;
1022 }
1023 }
1024
1025 return epir;
1026 }
1027
1028 #ifdef CONFIG_KCMP
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)1029 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1030 {
1031 struct rb_node *rbp;
1032 struct epitem *epi;
1033
1034 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1035 epi = rb_entry(rbp, struct epitem, rbn);
1036 if (epi->ffd.fd == tfd) {
1037 if (toff == 0)
1038 return epi;
1039 else
1040 toff--;
1041 }
1042 cond_resched();
1043 }
1044
1045 return NULL;
1046 }
1047
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1048 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1049 unsigned long toff)
1050 {
1051 struct file *file_raw;
1052 struct eventpoll *ep;
1053 struct epitem *epi;
1054
1055 if (!is_file_epoll(file))
1056 return ERR_PTR(-EINVAL);
1057
1058 ep = file->private_data;
1059
1060 mutex_lock(&ep->mtx);
1061 epi = ep_find_tfd(ep, tfd, toff);
1062 if (epi)
1063 file_raw = epi->ffd.file;
1064 else
1065 file_raw = ERR_PTR(-ENOENT);
1066 mutex_unlock(&ep->mtx);
1067
1068 return file_raw;
1069 }
1070 #endif /* CONFIG_KCMP */
1071
1072 /*
1073 * Adds a new entry to the tail of the list in a lockless way, i.e.
1074 * multiple CPUs are allowed to call this function concurrently.
1075 *
1076 * Beware: it is necessary to prevent any other modifications of the
1077 * existing list until all changes are completed, in other words
1078 * concurrent list_add_tail_lockless() calls should be protected
1079 * with a read lock, where write lock acts as a barrier which
1080 * makes sure all list_add_tail_lockless() calls are fully
1081 * completed.
1082 *
1083 * Also an element can be locklessly added to the list only in one
1084 * direction i.e. either to the tail or to the head, otherwise
1085 * concurrent access will corrupt the list.
1086 *
1087 * Return: %false if element has been already added to the list, %true
1088 * otherwise.
1089 */
list_add_tail_lockless(struct list_head * new,struct list_head * head)1090 static inline bool list_add_tail_lockless(struct list_head *new,
1091 struct list_head *head)
1092 {
1093 struct list_head *prev;
1094
1095 /*
1096 * This is simple 'new->next = head' operation, but cmpxchg()
1097 * is used in order to detect that same element has been just
1098 * added to the list from another CPU: the winner observes
1099 * new->next == new.
1100 */
1101 if (!try_cmpxchg(&new->next, &new, head))
1102 return false;
1103
1104 /*
1105 * Initially ->next of a new element must be updated with the head
1106 * (we are inserting to the tail) and only then pointers are atomically
1107 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1108 * updated before pointers are actually swapped and pointers are
1109 * swapped before prev->next is updated.
1110 */
1111
1112 prev = xchg(&head->prev, new);
1113
1114 /*
1115 * It is safe to modify prev->next and new->prev, because a new element
1116 * is added only to the tail and new->next is updated before XCHG.
1117 */
1118
1119 prev->next = new;
1120 new->prev = prev;
1121
1122 return true;
1123 }
1124
1125 /*
1126 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1127 * i.e. multiple CPUs are allowed to call this function concurrently.
1128 *
1129 * Return: %false if epi element has been already chained, %true otherwise.
1130 */
chain_epi_lockless(struct epitem * epi)1131 static inline bool chain_epi_lockless(struct epitem *epi)
1132 {
1133 struct eventpoll *ep = epi->ep;
1134
1135 /* Fast preliminary check */
1136 if (epi->next != EP_UNACTIVE_PTR)
1137 return false;
1138
1139 /* Check that the same epi has not been just chained from another CPU */
1140 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1141 return false;
1142
1143 /* Atomically exchange tail */
1144 epi->next = xchg(&ep->ovflist, epi);
1145
1146 return true;
1147 }
1148
1149 /*
1150 * This is the callback that is passed to the wait queue wakeup
1151 * mechanism. It is called by the stored file descriptors when they
1152 * have events to report.
1153 *
1154 * This callback takes a read lock in order not to contend with concurrent
1155 * events from another file descriptor, thus all modifications to ->rdllist
1156 * or ->ovflist are lockless. Read lock is paired with the write lock from
1157 * ep_scan_ready_list(), which stops all list modifications and guarantees
1158 * that lists state is seen correctly.
1159 *
1160 * Another thing worth to mention is that ep_poll_callback() can be called
1161 * concurrently for the same @epi from different CPUs if poll table was inited
1162 * with several wait queues entries. Plural wakeup from different CPUs of a
1163 * single wait queue is serialized by wq.lock, but the case when multiple wait
1164 * queues are used should be detected accordingly. This is detected using
1165 * cmpxchg() operation.
1166 */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1167 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1168 {
1169 int pwake = 0;
1170 struct epitem *epi = ep_item_from_wait(wait);
1171 struct eventpoll *ep = epi->ep;
1172 __poll_t pollflags = key_to_poll(key);
1173 unsigned long flags;
1174 int ewake = 0;
1175
1176 read_lock_irqsave(&ep->lock, flags);
1177
1178 ep_set_busy_poll_napi_id(epi);
1179
1180 /*
1181 * If the event mask does not contain any poll(2) event, we consider the
1182 * descriptor to be disabled. This condition is likely the effect of the
1183 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1184 * until the next EPOLL_CTL_MOD will be issued.
1185 */
1186 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1187 goto out_unlock;
1188
1189 /*
1190 * Check the events coming with the callback. At this stage, not
1191 * every device reports the events in the "key" parameter of the
1192 * callback. We need to be able to handle both cases here, hence the
1193 * test for "key" != NULL before the event match test.
1194 */
1195 if (pollflags && !(pollflags & epi->event.events))
1196 goto out_unlock;
1197
1198 /*
1199 * If we are transferring events to userspace, we can hold no locks
1200 * (because we're accessing user memory, and because of linux f_op->poll()
1201 * semantics). All the events that happen during that period of time are
1202 * chained in ep->ovflist and requeued later on.
1203 */
1204 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1205 if (chain_epi_lockless(epi))
1206 ep_pm_stay_awake_rcu(epi);
1207 } else if (!ep_is_linked(epi)) {
1208 /* In the usual case, add event to ready list. */
1209 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1210 ep_pm_stay_awake_rcu(epi);
1211 }
1212
1213 /*
1214 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1215 * wait list.
1216 */
1217 if (waitqueue_active(&ep->wq)) {
1218 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1219 !(pollflags & POLLFREE)) {
1220 switch (pollflags & EPOLLINOUT_BITS) {
1221 case EPOLLIN:
1222 if (epi->event.events & EPOLLIN)
1223 ewake = 1;
1224 break;
1225 case EPOLLOUT:
1226 if (epi->event.events & EPOLLOUT)
1227 ewake = 1;
1228 break;
1229 case 0:
1230 ewake = 1;
1231 break;
1232 }
1233 }
1234 wake_up(&ep->wq);
1235 }
1236 if (waitqueue_active(&ep->poll_wait))
1237 pwake++;
1238
1239 out_unlock:
1240 read_unlock_irqrestore(&ep->lock, flags);
1241
1242 /* We have to call this outside the lock */
1243 if (pwake)
1244 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1245
1246 if (!(epi->event.events & EPOLLEXCLUSIVE))
1247 ewake = 1;
1248
1249 if (pollflags & POLLFREE) {
1250 /*
1251 * If we race with ep_remove_wait_queue() it can miss
1252 * ->whead = NULL and do another remove_wait_queue() after
1253 * us, so we can't use __remove_wait_queue().
1254 */
1255 list_del_init(&wait->entry);
1256 /*
1257 * ->whead != NULL protects us from the race with
1258 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1259 * takes whead->lock held by the caller. Once we nullify it,
1260 * nothing protects ep/epi or even wait.
1261 */
1262 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1263 }
1264
1265 return ewake;
1266 }
1267
1268 /*
1269 * This is the callback that is used to add our wait queue to the
1270 * target file wakeup lists.
1271 */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1272 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1273 poll_table *pt)
1274 {
1275 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1276 struct epitem *epi = epq->epi;
1277 struct eppoll_entry *pwq;
1278
1279 if (unlikely(!epi)) // an earlier allocation has failed
1280 return;
1281
1282 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1283 if (unlikely(!pwq)) {
1284 epq->epi = NULL;
1285 return;
1286 }
1287
1288 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1289 pwq->whead = whead;
1290 pwq->base = epi;
1291 if (epi->event.events & EPOLLEXCLUSIVE)
1292 add_wait_queue_exclusive(whead, &pwq->wait);
1293 else
1294 add_wait_queue(whead, &pwq->wait);
1295 pwq->next = epi->pwqlist;
1296 epi->pwqlist = pwq;
1297 }
1298
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1299 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1300 {
1301 int kcmp;
1302 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1303 struct epitem *epic;
1304 bool leftmost = true;
1305
1306 while (*p) {
1307 parent = *p;
1308 epic = rb_entry(parent, struct epitem, rbn);
1309 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1310 if (kcmp > 0) {
1311 p = &parent->rb_right;
1312 leftmost = false;
1313 } else
1314 p = &parent->rb_left;
1315 }
1316 rb_link_node(&epi->rbn, parent, p);
1317 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1318 }
1319
1320
1321
1322 #define PATH_ARR_SIZE 5
1323 /*
1324 * These are the number paths of length 1 to 5, that we are allowing to emanate
1325 * from a single file of interest. For example, we allow 1000 paths of length
1326 * 1, to emanate from each file of interest. This essentially represents the
1327 * potential wakeup paths, which need to be limited in order to avoid massive
1328 * uncontrolled wakeup storms. The common use case should be a single ep which
1329 * is connected to n file sources. In this case each file source has 1 path
1330 * of length 1. Thus, the numbers below should be more than sufficient. These
1331 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1332 * and delete can't add additional paths. Protected by the epnested_mutex.
1333 */
1334 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1335 static int path_count[PATH_ARR_SIZE];
1336
path_count_inc(int nests)1337 static int path_count_inc(int nests)
1338 {
1339 /* Allow an arbitrary number of depth 1 paths */
1340 if (nests == 0)
1341 return 0;
1342
1343 if (++path_count[nests] > path_limits[nests])
1344 return -1;
1345 return 0;
1346 }
1347
path_count_init(void)1348 static void path_count_init(void)
1349 {
1350 int i;
1351
1352 for (i = 0; i < PATH_ARR_SIZE; i++)
1353 path_count[i] = 0;
1354 }
1355
reverse_path_check_proc(struct hlist_head * refs,int depth)1356 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1357 {
1358 int error = 0;
1359 struct epitem *epi;
1360
1361 if (depth > EP_MAX_NESTS) /* too deep nesting */
1362 return -1;
1363
1364 /* CTL_DEL can remove links here, but that can't increase our count */
1365 hlist_for_each_entry_rcu(epi, refs, fllink) {
1366 struct hlist_head *refs = &epi->ep->refs;
1367 if (hlist_empty(refs))
1368 error = path_count_inc(depth);
1369 else
1370 error = reverse_path_check_proc(refs, depth + 1);
1371 if (error != 0)
1372 break;
1373 }
1374 return error;
1375 }
1376
1377 /**
1378 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1379 * links that are proposed to be newly added. We need to
1380 * make sure that those added links don't add too many
1381 * paths such that we will spend all our time waking up
1382 * eventpoll objects.
1383 *
1384 * Return: %zero if the proposed links don't create too many paths,
1385 * %-1 otherwise.
1386 */
reverse_path_check(void)1387 static int reverse_path_check(void)
1388 {
1389 struct epitems_head *p;
1390
1391 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1392 int error;
1393 path_count_init();
1394 rcu_read_lock();
1395 error = reverse_path_check_proc(&p->epitems, 0);
1396 rcu_read_unlock();
1397 if (error)
1398 return error;
1399 }
1400 return 0;
1401 }
1402
ep_create_wakeup_source(struct epitem * epi)1403 static int ep_create_wakeup_source(struct epitem *epi)
1404 {
1405 struct name_snapshot n;
1406 struct wakeup_source *ws;
1407
1408 if (!epi->ep->ws) {
1409 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1410 if (!epi->ep->ws)
1411 return -ENOMEM;
1412 }
1413
1414 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1415 ws = wakeup_source_register(NULL, n.name.name);
1416 release_dentry_name_snapshot(&n);
1417
1418 if (!ws)
1419 return -ENOMEM;
1420 rcu_assign_pointer(epi->ws, ws);
1421
1422 return 0;
1423 }
1424
1425 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1426 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1427 {
1428 struct wakeup_source *ws = ep_wakeup_source(epi);
1429
1430 RCU_INIT_POINTER(epi->ws, NULL);
1431
1432 /*
1433 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1434 * used internally by wakeup_source_remove, too (called by
1435 * wakeup_source_unregister), so we cannot use call_rcu
1436 */
1437 synchronize_rcu();
1438 wakeup_source_unregister(ws);
1439 }
1440
attach_epitem(struct file * file,struct epitem * epi)1441 static int attach_epitem(struct file *file, struct epitem *epi)
1442 {
1443 struct epitems_head *to_free = NULL;
1444 struct hlist_head *head = NULL;
1445 struct eventpoll *ep = NULL;
1446
1447 if (is_file_epoll(file))
1448 ep = file->private_data;
1449
1450 if (ep) {
1451 head = &ep->refs;
1452 } else if (!READ_ONCE(file->f_ep)) {
1453 allocate:
1454 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1455 if (!to_free)
1456 return -ENOMEM;
1457 head = &to_free->epitems;
1458 }
1459 spin_lock(&file->f_lock);
1460 if (!file->f_ep) {
1461 if (unlikely(!head)) {
1462 spin_unlock(&file->f_lock);
1463 goto allocate;
1464 }
1465 file->f_ep = head;
1466 to_free = NULL;
1467 }
1468 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1469 spin_unlock(&file->f_lock);
1470 free_ephead(to_free);
1471 return 0;
1472 }
1473
1474 /*
1475 * Must be called with "mtx" held.
1476 */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1477 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1478 struct file *tfile, int fd, int full_check)
1479 {
1480 int error, pwake = 0;
1481 __poll_t revents;
1482 struct epitem *epi;
1483 struct ep_pqueue epq;
1484 struct eventpoll *tep = NULL;
1485
1486 if (is_file_epoll(tfile))
1487 tep = tfile->private_data;
1488
1489 lockdep_assert_irqs_enabled();
1490
1491 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1492 max_user_watches) >= 0))
1493 return -ENOSPC;
1494 percpu_counter_inc(&ep->user->epoll_watches);
1495
1496 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1497 percpu_counter_dec(&ep->user->epoll_watches);
1498 return -ENOMEM;
1499 }
1500
1501 /* Item initialization follow here ... */
1502 INIT_LIST_HEAD(&epi->rdllink);
1503 epi->ep = ep;
1504 ep_set_ffd(&epi->ffd, tfile, fd);
1505 epi->event = *event;
1506 epi->next = EP_UNACTIVE_PTR;
1507
1508 if (tep)
1509 mutex_lock_nested(&tep->mtx, 1);
1510 /* Add the current item to the list of active epoll hook for this file */
1511 if (unlikely(attach_epitem(tfile, epi) < 0)) {
1512 if (tep)
1513 mutex_unlock(&tep->mtx);
1514 kmem_cache_free(epi_cache, epi);
1515 percpu_counter_dec(&ep->user->epoll_watches);
1516 return -ENOMEM;
1517 }
1518
1519 if (full_check && !tep)
1520 list_file(tfile);
1521
1522 /*
1523 * Add the current item to the RB tree. All RB tree operations are
1524 * protected by "mtx", and ep_insert() is called with "mtx" held.
1525 */
1526 ep_rbtree_insert(ep, epi);
1527 if (tep)
1528 mutex_unlock(&tep->mtx);
1529
1530 /*
1531 * ep_remove_safe() calls in the later error paths can't lead to
1532 * ep_free() as the ep file itself still holds an ep reference.
1533 */
1534 ep_get(ep);
1535
1536 /* now check if we've created too many backpaths */
1537 if (unlikely(full_check && reverse_path_check())) {
1538 ep_remove_safe(ep, epi);
1539 return -EINVAL;
1540 }
1541
1542 if (epi->event.events & EPOLLWAKEUP) {
1543 error = ep_create_wakeup_source(epi);
1544 if (error) {
1545 ep_remove_safe(ep, epi);
1546 return error;
1547 }
1548 }
1549
1550 /* Initialize the poll table using the queue callback */
1551 epq.epi = epi;
1552 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1553
1554 /*
1555 * Attach the item to the poll hooks and get current event bits.
1556 * We can safely use the file* here because its usage count has
1557 * been increased by the caller of this function. Note that after
1558 * this operation completes, the poll callback can start hitting
1559 * the new item.
1560 */
1561 revents = ep_item_poll(epi, &epq.pt, 1);
1562
1563 /*
1564 * We have to check if something went wrong during the poll wait queue
1565 * install process. Namely an allocation for a wait queue failed due
1566 * high memory pressure.
1567 */
1568 if (unlikely(!epq.epi)) {
1569 ep_remove_safe(ep, epi);
1570 return -ENOMEM;
1571 }
1572
1573 /* We have to drop the new item inside our item list to keep track of it */
1574 write_lock_irq(&ep->lock);
1575
1576 /* record NAPI ID of new item if present */
1577 ep_set_busy_poll_napi_id(epi);
1578
1579 /* If the file is already "ready" we drop it inside the ready list */
1580 if (revents && !ep_is_linked(epi)) {
1581 list_add_tail(&epi->rdllink, &ep->rdllist);
1582 ep_pm_stay_awake(epi);
1583
1584 /* Notify waiting tasks that events are available */
1585 if (waitqueue_active(&ep->wq))
1586 wake_up(&ep->wq);
1587 if (waitqueue_active(&ep->poll_wait))
1588 pwake++;
1589 }
1590
1591 write_unlock_irq(&ep->lock);
1592
1593 /* We have to call this outside the lock */
1594 if (pwake)
1595 ep_poll_safewake(ep, NULL, 0);
1596
1597 return 0;
1598 }
1599
1600 /*
1601 * Modify the interest event mask by dropping an event if the new mask
1602 * has a match in the current file status. Must be called with "mtx" held.
1603 */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1604 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1605 const struct epoll_event *event)
1606 {
1607 int pwake = 0;
1608 poll_table pt;
1609
1610 lockdep_assert_irqs_enabled();
1611
1612 init_poll_funcptr(&pt, NULL);
1613
1614 /*
1615 * Set the new event interest mask before calling f_op->poll();
1616 * otherwise we might miss an event that happens between the
1617 * f_op->poll() call and the new event set registering.
1618 */
1619 epi->event.events = event->events; /* need barrier below */
1620 epi->event.data = event->data; /* protected by mtx */
1621 if (epi->event.events & EPOLLWAKEUP) {
1622 if (!ep_has_wakeup_source(epi))
1623 ep_create_wakeup_source(epi);
1624 } else if (ep_has_wakeup_source(epi)) {
1625 ep_destroy_wakeup_source(epi);
1626 }
1627
1628 /*
1629 * The following barrier has two effects:
1630 *
1631 * 1) Flush epi changes above to other CPUs. This ensures
1632 * we do not miss events from ep_poll_callback if an
1633 * event occurs immediately after we call f_op->poll().
1634 * We need this because we did not take ep->lock while
1635 * changing epi above (but ep_poll_callback does take
1636 * ep->lock).
1637 *
1638 * 2) We also need to ensure we do not miss _past_ events
1639 * when calling f_op->poll(). This barrier also
1640 * pairs with the barrier in wq_has_sleeper (see
1641 * comments for wq_has_sleeper).
1642 *
1643 * This barrier will now guarantee ep_poll_callback or f_op->poll
1644 * (or both) will notice the readiness of an item.
1645 */
1646 smp_mb();
1647
1648 /*
1649 * Get current event bits. We can safely use the file* here because
1650 * its usage count has been increased by the caller of this function.
1651 * If the item is "hot" and it is not registered inside the ready
1652 * list, push it inside.
1653 */
1654 if (ep_item_poll(epi, &pt, 1)) {
1655 write_lock_irq(&ep->lock);
1656 if (!ep_is_linked(epi)) {
1657 list_add_tail(&epi->rdllink, &ep->rdllist);
1658 ep_pm_stay_awake(epi);
1659
1660 /* Notify waiting tasks that events are available */
1661 if (waitqueue_active(&ep->wq))
1662 wake_up(&ep->wq);
1663 if (waitqueue_active(&ep->poll_wait))
1664 pwake++;
1665 }
1666 write_unlock_irq(&ep->lock);
1667 }
1668
1669 /* We have to call this outside the lock */
1670 if (pwake)
1671 ep_poll_safewake(ep, NULL, 0);
1672
1673 return 0;
1674 }
1675
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1676 static int ep_send_events(struct eventpoll *ep,
1677 struct epoll_event __user *events, int maxevents)
1678 {
1679 struct epitem *epi, *tmp;
1680 LIST_HEAD(txlist);
1681 poll_table pt;
1682 int res = 0;
1683
1684 /*
1685 * Always short-circuit for fatal signals to allow threads to make a
1686 * timely exit without the chance of finding more events available and
1687 * fetching repeatedly.
1688 */
1689 if (fatal_signal_pending(current))
1690 return -EINTR;
1691
1692 init_poll_funcptr(&pt, NULL);
1693
1694 mutex_lock(&ep->mtx);
1695 ep_start_scan(ep, &txlist);
1696
1697 /*
1698 * We can loop without lock because we are passed a task private list.
1699 * Items cannot vanish during the loop we are holding ep->mtx.
1700 */
1701 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1702 struct wakeup_source *ws;
1703 __poll_t revents;
1704
1705 if (res >= maxevents)
1706 break;
1707
1708 /*
1709 * Activate ep->ws before deactivating epi->ws to prevent
1710 * triggering auto-suspend here (in case we reactive epi->ws
1711 * below).
1712 *
1713 * This could be rearranged to delay the deactivation of epi->ws
1714 * instead, but then epi->ws would temporarily be out of sync
1715 * with ep_is_linked().
1716 */
1717 ws = ep_wakeup_source(epi);
1718 if (ws) {
1719 if (ws->active)
1720 __pm_stay_awake(ep->ws);
1721 __pm_relax(ws);
1722 }
1723
1724 list_del_init(&epi->rdllink);
1725
1726 /*
1727 * If the event mask intersect the caller-requested one,
1728 * deliver the event to userspace. Again, we are holding ep->mtx,
1729 * so no operations coming from userspace can change the item.
1730 */
1731 revents = ep_item_poll(epi, &pt, 1);
1732 if (!revents)
1733 continue;
1734
1735 events = epoll_put_uevent(revents, epi->event.data, events);
1736 if (!events) {
1737 list_add(&epi->rdllink, &txlist);
1738 ep_pm_stay_awake(epi);
1739 if (!res)
1740 res = -EFAULT;
1741 break;
1742 }
1743 res++;
1744 if (epi->event.events & EPOLLONESHOT)
1745 epi->event.events &= EP_PRIVATE_BITS;
1746 else if (!(epi->event.events & EPOLLET)) {
1747 /*
1748 * If this file has been added with Level
1749 * Trigger mode, we need to insert back inside
1750 * the ready list, so that the next call to
1751 * epoll_wait() will check again the events
1752 * availability. At this point, no one can insert
1753 * into ep->rdllist besides us. The epoll_ctl()
1754 * callers are locked out by
1755 * ep_scan_ready_list() holding "mtx" and the
1756 * poll callback will queue them in ep->ovflist.
1757 */
1758 list_add_tail(&epi->rdllink, &ep->rdllist);
1759 ep_pm_stay_awake(epi);
1760 }
1761 }
1762 ep_done_scan(ep, &txlist);
1763 mutex_unlock(&ep->mtx);
1764
1765 return res;
1766 }
1767
ep_timeout_to_timespec(struct timespec64 * to,long ms)1768 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1769 {
1770 struct timespec64 now;
1771
1772 if (ms < 0)
1773 return NULL;
1774
1775 if (!ms) {
1776 to->tv_sec = 0;
1777 to->tv_nsec = 0;
1778 return to;
1779 }
1780
1781 to->tv_sec = ms / MSEC_PER_SEC;
1782 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1783
1784 ktime_get_ts64(&now);
1785 *to = timespec64_add_safe(now, *to);
1786 return to;
1787 }
1788
1789 /*
1790 * autoremove_wake_function, but remove even on failure to wake up, because we
1791 * know that default_wake_function/ttwu will only fail if the thread is already
1792 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1793 * try to reuse it.
1794 */
ep_autoremove_wake_function(struct wait_queue_entry * wq_entry,unsigned int mode,int sync,void * key)1795 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1796 unsigned int mode, int sync, void *key)
1797 {
1798 int ret = default_wake_function(wq_entry, mode, sync, key);
1799
1800 /*
1801 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1802 * iterations see the cause of this wakeup.
1803 */
1804 list_del_init_careful(&wq_entry->entry);
1805 return ret;
1806 }
1807
1808 /**
1809 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1810 * event buffer.
1811 *
1812 * @ep: Pointer to the eventpoll context.
1813 * @events: Pointer to the userspace buffer where the ready events should be
1814 * stored.
1815 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1816 * @timeout: Maximum timeout for the ready events fetch operation, in
1817 * timespec. If the timeout is zero, the function will not block,
1818 * while if the @timeout ptr is NULL, the function will block
1819 * until at least one event has been retrieved (or an error
1820 * occurred).
1821 *
1822 * Return: the number of ready events which have been fetched, or an
1823 * error code, in case of error.
1824 */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout)1825 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1826 int maxevents, struct timespec64 *timeout)
1827 {
1828 int res, eavail, timed_out = 0;
1829 u64 slack = 0;
1830 wait_queue_entry_t wait;
1831 ktime_t expires, *to = NULL;
1832
1833 lockdep_assert_irqs_enabled();
1834
1835 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1836 slack = select_estimate_accuracy(timeout);
1837 to = &expires;
1838 *to = timespec64_to_ktime(*timeout);
1839 } else if (timeout) {
1840 /*
1841 * Avoid the unnecessary trip to the wait queue loop, if the
1842 * caller specified a non blocking operation.
1843 */
1844 timed_out = 1;
1845 }
1846
1847 /*
1848 * This call is racy: We may or may not see events that are being added
1849 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1850 * with a non-zero timeout, this thread will check the ready list under
1851 * lock and will add to the wait queue. For cases with a zero
1852 * timeout, the user by definition should not care and will have to
1853 * recheck again.
1854 */
1855 eavail = ep_events_available(ep);
1856
1857 while (1) {
1858 if (eavail) {
1859 /*
1860 * Try to transfer events to user space. In case we get
1861 * 0 events and there's still timeout left over, we go
1862 * trying again in search of more luck.
1863 */
1864 res = ep_send_events(ep, events, maxevents);
1865 if (res)
1866 return res;
1867 }
1868
1869 if (timed_out)
1870 return 0;
1871
1872 eavail = ep_busy_loop(ep, timed_out);
1873 if (eavail)
1874 continue;
1875
1876 if (signal_pending(current))
1877 return -EINTR;
1878
1879 /*
1880 * Internally init_wait() uses autoremove_wake_function(),
1881 * thus wait entry is removed from the wait queue on each
1882 * wakeup. Why it is important? In case of several waiters
1883 * each new wakeup will hit the next waiter, giving it the
1884 * chance to harvest new event. Otherwise wakeup can be
1885 * lost. This is also good performance-wise, because on
1886 * normal wakeup path no need to call __remove_wait_queue()
1887 * explicitly, thus ep->lock is not taken, which halts the
1888 * event delivery.
1889 *
1890 * In fact, we now use an even more aggressive function that
1891 * unconditionally removes, because we don't reuse the wait
1892 * entry between loop iterations. This lets us also avoid the
1893 * performance issue if a process is killed, causing all of its
1894 * threads to wake up without being removed normally.
1895 */
1896 init_wait(&wait);
1897 wait.func = ep_autoremove_wake_function;
1898
1899 write_lock_irq(&ep->lock);
1900 /*
1901 * Barrierless variant, waitqueue_active() is called under
1902 * the same lock on wakeup ep_poll_callback() side, so it
1903 * is safe to avoid an explicit barrier.
1904 */
1905 __set_current_state(TASK_INTERRUPTIBLE);
1906
1907 /*
1908 * Do the final check under the lock. ep_scan_ready_list()
1909 * plays with two lists (->rdllist and ->ovflist) and there
1910 * is always a race when both lists are empty for short
1911 * period of time although events are pending, so lock is
1912 * important.
1913 */
1914 eavail = ep_events_available(ep);
1915 if (!eavail)
1916 __add_wait_queue_exclusive(&ep->wq, &wait);
1917
1918 write_unlock_irq(&ep->lock);
1919
1920 if (!eavail)
1921 timed_out = !schedule_hrtimeout_range(to, slack,
1922 HRTIMER_MODE_ABS);
1923 __set_current_state(TASK_RUNNING);
1924
1925 /*
1926 * We were woken up, thus go and try to harvest some events.
1927 * If timed out and still on the wait queue, recheck eavail
1928 * carefully under lock, below.
1929 */
1930 eavail = 1;
1931
1932 if (!list_empty_careful(&wait.entry)) {
1933 write_lock_irq(&ep->lock);
1934 /*
1935 * If the thread timed out and is not on the wait queue,
1936 * it means that the thread was woken up after its
1937 * timeout expired before it could reacquire the lock.
1938 * Thus, when wait.entry is empty, it needs to harvest
1939 * events.
1940 */
1941 if (timed_out)
1942 eavail = list_empty(&wait.entry);
1943 __remove_wait_queue(&ep->wq, &wait);
1944 write_unlock_irq(&ep->lock);
1945 }
1946 }
1947 }
1948
1949 /**
1950 * ep_loop_check_proc - verify that adding an epoll file inside another
1951 * epoll structure does not violate the constraints, in
1952 * terms of closed loops, or too deep chains (which can
1953 * result in excessive stack usage).
1954 *
1955 * @ep: the &struct eventpoll to be currently checked.
1956 * @depth: Current depth of the path being checked.
1957 *
1958 * Return: %zero if adding the epoll @file inside current epoll
1959 * structure @ep does not violate the constraints, or %-1 otherwise.
1960 */
ep_loop_check_proc(struct eventpoll * ep,int depth)1961 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1962 {
1963 int error = 0;
1964 struct rb_node *rbp;
1965 struct epitem *epi;
1966
1967 mutex_lock_nested(&ep->mtx, depth + 1);
1968 ep->gen = loop_check_gen;
1969 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1970 epi = rb_entry(rbp, struct epitem, rbn);
1971 if (unlikely(is_file_epoll(epi->ffd.file))) {
1972 struct eventpoll *ep_tovisit;
1973 ep_tovisit = epi->ffd.file->private_data;
1974 if (ep_tovisit->gen == loop_check_gen)
1975 continue;
1976 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1977 error = -1;
1978 else
1979 error = ep_loop_check_proc(ep_tovisit, depth + 1);
1980 if (error != 0)
1981 break;
1982 } else {
1983 /*
1984 * If we've reached a file that is not associated with
1985 * an ep, then we need to check if the newly added
1986 * links are going to add too many wakeup paths. We do
1987 * this by adding it to the tfile_check_list, if it's
1988 * not already there, and calling reverse_path_check()
1989 * during ep_insert().
1990 */
1991 list_file(epi->ffd.file);
1992 }
1993 }
1994 mutex_unlock(&ep->mtx);
1995
1996 return error;
1997 }
1998
1999 /**
2000 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2001 * into another epoll file (represented by @ep) does not create
2002 * closed loops or too deep chains.
2003 *
2004 * @ep: Pointer to the epoll we are inserting into.
2005 * @to: Pointer to the epoll to be inserted.
2006 *
2007 * Return: %zero if adding the epoll @to inside the epoll @from
2008 * does not violate the constraints, or %-1 otherwise.
2009 */
ep_loop_check(struct eventpoll * ep,struct eventpoll * to)2010 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2011 {
2012 inserting_into = ep;
2013 return ep_loop_check_proc(to, 0);
2014 }
2015
clear_tfile_check_list(void)2016 static void clear_tfile_check_list(void)
2017 {
2018 rcu_read_lock();
2019 while (tfile_check_list != EP_UNACTIVE_PTR) {
2020 struct epitems_head *head = tfile_check_list;
2021 tfile_check_list = head->next;
2022 unlist_file(head);
2023 }
2024 rcu_read_unlock();
2025 }
2026
2027 /*
2028 * Open an eventpoll file descriptor.
2029 */
do_epoll_create(int flags)2030 static int do_epoll_create(int flags)
2031 {
2032 int error, fd;
2033 struct eventpoll *ep = NULL;
2034 struct file *file;
2035
2036 /* Check the EPOLL_* constant for consistency. */
2037 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2038
2039 if (flags & ~EPOLL_CLOEXEC)
2040 return -EINVAL;
2041 /*
2042 * Create the internal data structure ("struct eventpoll").
2043 */
2044 error = ep_alloc(&ep);
2045 if (error < 0)
2046 return error;
2047 /*
2048 * Creates all the items needed to setup an eventpoll file. That is,
2049 * a file structure and a free file descriptor.
2050 */
2051 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2052 if (fd < 0) {
2053 error = fd;
2054 goto out_free_ep;
2055 }
2056 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2057 O_RDWR | (flags & O_CLOEXEC));
2058 if (IS_ERR(file)) {
2059 error = PTR_ERR(file);
2060 goto out_free_fd;
2061 }
2062 ep->file = file;
2063 fd_install(fd, file);
2064 return fd;
2065
2066 out_free_fd:
2067 put_unused_fd(fd);
2068 out_free_ep:
2069 ep_clear_and_put(ep);
2070 return error;
2071 }
2072
SYSCALL_DEFINE1(epoll_create1,int,flags)2073 SYSCALL_DEFINE1(epoll_create1, int, flags)
2074 {
2075 return do_epoll_create(flags);
2076 }
2077
SYSCALL_DEFINE1(epoll_create,int,size)2078 SYSCALL_DEFINE1(epoll_create, int, size)
2079 {
2080 if (size <= 0)
2081 return -EINVAL;
2082
2083 return do_epoll_create(0);
2084 }
2085
2086 #ifdef CONFIG_PM_SLEEP
ep_take_care_of_epollwakeup(struct epoll_event * epev)2087 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2088 {
2089 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2090 epev->events &= ~EPOLLWAKEUP;
2091 }
2092 #else
ep_take_care_of_epollwakeup(struct epoll_event * epev)2093 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2094 {
2095 epev->events &= ~EPOLLWAKEUP;
2096 }
2097 #endif
2098
epoll_mutex_lock(struct mutex * mutex,int depth,bool nonblock)2099 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2100 bool nonblock)
2101 {
2102 if (!nonblock) {
2103 mutex_lock_nested(mutex, depth);
2104 return 0;
2105 }
2106 if (mutex_trylock(mutex))
2107 return 0;
2108 return -EAGAIN;
2109 }
2110
do_epoll_ctl(int epfd,int op,int fd,struct epoll_event * epds,bool nonblock)2111 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2112 bool nonblock)
2113 {
2114 int error;
2115 int full_check = 0;
2116 struct fd f, tf;
2117 struct eventpoll *ep;
2118 struct epitem *epi;
2119 struct eventpoll *tep = NULL;
2120
2121 error = -EBADF;
2122 f = fdget(epfd);
2123 if (!f.file)
2124 goto error_return;
2125
2126 /* Get the "struct file *" for the target file */
2127 tf = fdget(fd);
2128 if (!tf.file)
2129 goto error_fput;
2130
2131 /* The target file descriptor must support poll */
2132 error = -EPERM;
2133 if (!file_can_poll(tf.file))
2134 goto error_tgt_fput;
2135
2136 /* Check if EPOLLWAKEUP is allowed */
2137 if (ep_op_has_event(op))
2138 ep_take_care_of_epollwakeup(epds);
2139
2140 /*
2141 * We have to check that the file structure underneath the file descriptor
2142 * the user passed to us _is_ an eventpoll file. And also we do not permit
2143 * adding an epoll file descriptor inside itself.
2144 */
2145 error = -EINVAL;
2146 if (f.file == tf.file || !is_file_epoll(f.file))
2147 goto error_tgt_fput;
2148
2149 /*
2150 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2151 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2152 * Also, we do not currently supported nested exclusive wakeups.
2153 */
2154 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2155 if (op == EPOLL_CTL_MOD)
2156 goto error_tgt_fput;
2157 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2158 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2159 goto error_tgt_fput;
2160 }
2161
2162 /*
2163 * At this point it is safe to assume that the "private_data" contains
2164 * our own data structure.
2165 */
2166 ep = f.file->private_data;
2167
2168 /*
2169 * When we insert an epoll file descriptor inside another epoll file
2170 * descriptor, there is the chance of creating closed loops, which are
2171 * better be handled here, than in more critical paths. While we are
2172 * checking for loops we also determine the list of files reachable
2173 * and hang them on the tfile_check_list, so we can check that we
2174 * haven't created too many possible wakeup paths.
2175 *
2176 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2177 * the epoll file descriptor is attaching directly to a wakeup source,
2178 * unless the epoll file descriptor is nested. The purpose of taking the
2179 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2180 * deep wakeup paths from forming in parallel through multiple
2181 * EPOLL_CTL_ADD operations.
2182 */
2183 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2184 if (error)
2185 goto error_tgt_fput;
2186 if (op == EPOLL_CTL_ADD) {
2187 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2188 is_file_epoll(tf.file)) {
2189 mutex_unlock(&ep->mtx);
2190 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2191 if (error)
2192 goto error_tgt_fput;
2193 loop_check_gen++;
2194 full_check = 1;
2195 if (is_file_epoll(tf.file)) {
2196 tep = tf.file->private_data;
2197 error = -ELOOP;
2198 if (ep_loop_check(ep, tep) != 0)
2199 goto error_tgt_fput;
2200 }
2201 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2202 if (error)
2203 goto error_tgt_fput;
2204 }
2205 }
2206
2207 /*
2208 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2209 * above, we can be sure to be able to use the item looked up by
2210 * ep_find() till we release the mutex.
2211 */
2212 epi = ep_find(ep, tf.file, fd);
2213
2214 error = -EINVAL;
2215 switch (op) {
2216 case EPOLL_CTL_ADD:
2217 if (!epi) {
2218 epds->events |= EPOLLERR | EPOLLHUP;
2219 error = ep_insert(ep, epds, tf.file, fd, full_check);
2220 } else
2221 error = -EEXIST;
2222 break;
2223 case EPOLL_CTL_DEL:
2224 if (epi) {
2225 /*
2226 * The eventpoll itself is still alive: the refcount
2227 * can't go to zero here.
2228 */
2229 ep_remove_safe(ep, epi);
2230 error = 0;
2231 } else {
2232 error = -ENOENT;
2233 }
2234 break;
2235 case EPOLL_CTL_MOD:
2236 if (epi) {
2237 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2238 epds->events |= EPOLLERR | EPOLLHUP;
2239 error = ep_modify(ep, epi, epds);
2240 }
2241 } else
2242 error = -ENOENT;
2243 break;
2244 }
2245 mutex_unlock(&ep->mtx);
2246
2247 error_tgt_fput:
2248 if (full_check) {
2249 clear_tfile_check_list();
2250 loop_check_gen++;
2251 mutex_unlock(&epnested_mutex);
2252 }
2253
2254 fdput(tf);
2255 error_fput:
2256 fdput(f);
2257 error_return:
2258
2259 return error;
2260 }
2261
2262 /*
2263 * The following function implements the controller interface for
2264 * the eventpoll file that enables the insertion/removal/change of
2265 * file descriptors inside the interest set.
2266 */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)2267 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2268 struct epoll_event __user *, event)
2269 {
2270 struct epoll_event epds;
2271
2272 if (ep_op_has_event(op) &&
2273 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2274 return -EFAULT;
2275
2276 return do_epoll_ctl(epfd, op, fd, &epds, false);
2277 }
2278
2279 /*
2280 * Implement the event wait interface for the eventpoll file. It is the kernel
2281 * part of the user space epoll_wait(2).
2282 */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to)2283 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2284 int maxevents, struct timespec64 *to)
2285 {
2286 int error;
2287 struct fd f;
2288 struct eventpoll *ep;
2289
2290 /* The maximum number of event must be greater than zero */
2291 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2292 return -EINVAL;
2293
2294 /* Verify that the area passed by the user is writeable */
2295 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2296 return -EFAULT;
2297
2298 /* Get the "struct file *" for the eventpoll file */
2299 f = fdget(epfd);
2300 if (!f.file)
2301 return -EBADF;
2302
2303 /*
2304 * We have to check that the file structure underneath the fd
2305 * the user passed to us _is_ an eventpoll file.
2306 */
2307 error = -EINVAL;
2308 if (!is_file_epoll(f.file))
2309 goto error_fput;
2310
2311 /*
2312 * At this point it is safe to assume that the "private_data" contains
2313 * our own data structure.
2314 */
2315 ep = f.file->private_data;
2316
2317 /* Time to fish for events ... */
2318 error = ep_poll(ep, events, maxevents, to);
2319
2320 error_fput:
2321 fdput(f);
2322 return error;
2323 }
2324
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2325 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2326 int, maxevents, int, timeout)
2327 {
2328 struct timespec64 to;
2329
2330 return do_epoll_wait(epfd, events, maxevents,
2331 ep_timeout_to_timespec(&to, timeout));
2332 }
2333
2334 /*
2335 * Implement the event wait interface for the eventpoll file. It is the kernel
2336 * part of the user space epoll_pwait(2).
2337 */
do_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to,const sigset_t __user * sigmask,size_t sigsetsize)2338 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2339 int maxevents, struct timespec64 *to,
2340 const sigset_t __user *sigmask, size_t sigsetsize)
2341 {
2342 int error;
2343
2344 /*
2345 * If the caller wants a certain signal mask to be set during the wait,
2346 * we apply it here.
2347 */
2348 error = set_user_sigmask(sigmask, sigsetsize);
2349 if (error)
2350 return error;
2351
2352 error = do_epoll_wait(epfd, events, maxevents, to);
2353
2354 restore_saved_sigmask_unless(error == -EINTR);
2355
2356 return error;
2357 }
2358
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2359 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2360 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2361 size_t, sigsetsize)
2362 {
2363 struct timespec64 to;
2364
2365 return do_epoll_pwait(epfd, events, maxevents,
2366 ep_timeout_to_timespec(&to, timeout),
2367 sigmask, sigsetsize);
2368 }
2369
SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2370 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2371 int, maxevents, const struct __kernel_timespec __user *, timeout,
2372 const sigset_t __user *, sigmask, size_t, sigsetsize)
2373 {
2374 struct timespec64 ts, *to = NULL;
2375
2376 if (timeout) {
2377 if (get_timespec64(&ts, timeout))
2378 return -EFAULT;
2379 to = &ts;
2380 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2381 return -EINVAL;
2382 }
2383
2384 return do_epoll_pwait(epfd, events, maxevents, to,
2385 sigmask, sigsetsize);
2386 }
2387
2388 #ifdef CONFIG_COMPAT
do_compat_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout,const compat_sigset_t __user * sigmask,compat_size_t sigsetsize)2389 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2390 int maxevents, struct timespec64 *timeout,
2391 const compat_sigset_t __user *sigmask,
2392 compat_size_t sigsetsize)
2393 {
2394 long err;
2395
2396 /*
2397 * If the caller wants a certain signal mask to be set during the wait,
2398 * we apply it here.
2399 */
2400 err = set_compat_user_sigmask(sigmask, sigsetsize);
2401 if (err)
2402 return err;
2403
2404 err = do_epoll_wait(epfd, events, maxevents, timeout);
2405
2406 restore_saved_sigmask_unless(err == -EINTR);
2407
2408 return err;
2409 }
2410
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2411 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2412 struct epoll_event __user *, events,
2413 int, maxevents, int, timeout,
2414 const compat_sigset_t __user *, sigmask,
2415 compat_size_t, sigsetsize)
2416 {
2417 struct timespec64 to;
2418
2419 return do_compat_epoll_pwait(epfd, events, maxevents,
2420 ep_timeout_to_timespec(&to, timeout),
2421 sigmask, sigsetsize);
2422 }
2423
COMPAT_SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2424 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2425 struct epoll_event __user *, events,
2426 int, maxevents,
2427 const struct __kernel_timespec __user *, timeout,
2428 const compat_sigset_t __user *, sigmask,
2429 compat_size_t, sigsetsize)
2430 {
2431 struct timespec64 ts, *to = NULL;
2432
2433 if (timeout) {
2434 if (get_timespec64(&ts, timeout))
2435 return -EFAULT;
2436 to = &ts;
2437 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2438 return -EINVAL;
2439 }
2440
2441 return do_compat_epoll_pwait(epfd, events, maxevents, to,
2442 sigmask, sigsetsize);
2443 }
2444
2445 #endif
2446
eventpoll_init(void)2447 static int __init eventpoll_init(void)
2448 {
2449 struct sysinfo si;
2450
2451 si_meminfo(&si);
2452 /*
2453 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2454 */
2455 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2456 EP_ITEM_COST;
2457 BUG_ON(max_user_watches < 0);
2458
2459 /*
2460 * We can have many thousands of epitems, so prevent this from
2461 * using an extra cache line on 64-bit (and smaller) CPUs
2462 */
2463 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2464
2465 /* Allocates slab cache used to allocate "struct epitem" items */
2466 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2467 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2468
2469 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2470 pwq_cache = kmem_cache_create("eventpoll_pwq",
2471 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2472 epoll_sysctls_init();
2473
2474 ephead_cache = kmem_cache_create("ep_head",
2475 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2476
2477 return 0;
2478 }
2479 fs_initcall(eventpoll_init);
2480