1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
4 
5 #include <linux/kvm_host.h>
6 
7 #include <asm/kvm.h>
8 #include <asm/intel_pt.h>
9 
10 #include "capabilities.h"
11 #include "../kvm_cache_regs.h"
12 #include "posted_intr.h"
13 #include "vmcs.h"
14 #include "vmx_ops.h"
15 #include "../cpuid.h"
16 #include "run_flags.h"
17 
18 #define MSR_TYPE_R	1
19 #define MSR_TYPE_W	2
20 #define MSR_TYPE_RW	3
21 
22 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
23 
24 #ifdef CONFIG_X86_64
25 #define MAX_NR_USER_RETURN_MSRS	7
26 #else
27 #define MAX_NR_USER_RETURN_MSRS	4
28 #endif
29 
30 #define MAX_NR_LOADSTORE_MSRS	8
31 
32 struct vmx_msrs {
33 	unsigned int		nr;
34 	struct vmx_msr_entry	val[MAX_NR_LOADSTORE_MSRS];
35 };
36 
37 struct vmx_uret_msr {
38 	bool load_into_hardware;
39 	u64 data;
40 	u64 mask;
41 };
42 
43 enum segment_cache_field {
44 	SEG_FIELD_SEL = 0,
45 	SEG_FIELD_BASE = 1,
46 	SEG_FIELD_LIMIT = 2,
47 	SEG_FIELD_AR = 3,
48 
49 	SEG_FIELD_NR = 4
50 };
51 
52 #define RTIT_ADDR_RANGE		4
53 
54 struct pt_ctx {
55 	u64 ctl;
56 	u64 status;
57 	u64 output_base;
58 	u64 output_mask;
59 	u64 cr3_match;
60 	u64 addr_a[RTIT_ADDR_RANGE];
61 	u64 addr_b[RTIT_ADDR_RANGE];
62 };
63 
64 struct pt_desc {
65 	u64 ctl_bitmask;
66 	u32 num_address_ranges;
67 	u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
68 	struct pt_ctx host;
69 	struct pt_ctx guest;
70 };
71 
72 union vmx_exit_reason {
73 	struct {
74 		u32	basic			: 16;
75 		u32	reserved16		: 1;
76 		u32	reserved17		: 1;
77 		u32	reserved18		: 1;
78 		u32	reserved19		: 1;
79 		u32	reserved20		: 1;
80 		u32	reserved21		: 1;
81 		u32	reserved22		: 1;
82 		u32	reserved23		: 1;
83 		u32	reserved24		: 1;
84 		u32	reserved25		: 1;
85 		u32	bus_lock_detected	: 1;
86 		u32	enclave_mode		: 1;
87 		u32	smi_pending_mtf		: 1;
88 		u32	smi_from_vmx_root	: 1;
89 		u32	reserved30		: 1;
90 		u32	failed_vmentry		: 1;
91 	};
92 	u32 full;
93 };
94 
intel_pmu_has_perf_global_ctrl(struct kvm_pmu * pmu)95 static inline bool intel_pmu_has_perf_global_ctrl(struct kvm_pmu *pmu)
96 {
97 	/*
98 	 * Architecturally, Intel's SDM states that IA32_PERF_GLOBAL_CTRL is
99 	 * supported if "CPUID.0AH: EAX[7:0] > 0", i.e. if the PMU version is
100 	 * greater than zero.  However, KVM only exposes and emulates the MSR
101 	 * to/for the guest if the guest PMU supports at least "Architectural
102 	 * Performance Monitoring Version 2".
103 	 */
104 	return pmu->version > 1;
105 }
106 
107 #define vcpu_to_lbr_desc(vcpu) (&to_vmx(vcpu)->lbr_desc)
108 #define vcpu_to_lbr_records(vcpu) (&to_vmx(vcpu)->lbr_desc.records)
109 
110 bool intel_pmu_lbr_is_compatible(struct kvm_vcpu *vcpu);
111 bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu);
112 
113 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
114 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
115 
116 struct lbr_desc {
117 	/* Basic info about guest LBR records. */
118 	struct x86_pmu_lbr records;
119 
120 	/*
121 	 * Emulate LBR feature via passthrough LBR registers when the
122 	 * per-vcpu guest LBR event is scheduled on the current pcpu.
123 	 *
124 	 * The records may be inaccurate if the host reclaims the LBR.
125 	 */
126 	struct perf_event *event;
127 
128 	/* True if LBRs are marked as not intercepted in the MSR bitmap */
129 	bool msr_passthrough;
130 };
131 
132 /*
133  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
134  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
135  */
136 struct nested_vmx {
137 	/* Has the level1 guest done vmxon? */
138 	bool vmxon;
139 	gpa_t vmxon_ptr;
140 	bool pml_full;
141 
142 	/* The guest-physical address of the current VMCS L1 keeps for L2 */
143 	gpa_t current_vmptr;
144 	/*
145 	 * Cache of the guest's VMCS, existing outside of guest memory.
146 	 * Loaded from guest memory during VMPTRLD. Flushed to guest
147 	 * memory during VMCLEAR and VMPTRLD.
148 	 */
149 	struct vmcs12 *cached_vmcs12;
150 	/*
151 	 * Cache of the guest's shadow VMCS, existing outside of guest
152 	 * memory. Loaded from guest memory during VM entry. Flushed
153 	 * to guest memory during VM exit.
154 	 */
155 	struct vmcs12 *cached_shadow_vmcs12;
156 
157 	/*
158 	 * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
159 	 */
160 	struct gfn_to_hva_cache shadow_vmcs12_cache;
161 
162 	/*
163 	 * GPA to HVA cache for VMCS12
164 	 */
165 	struct gfn_to_hva_cache vmcs12_cache;
166 
167 	/*
168 	 * Indicates if the shadow vmcs or enlightened vmcs must be updated
169 	 * with the data held by struct vmcs12.
170 	 */
171 	bool need_vmcs12_to_shadow_sync;
172 	bool dirty_vmcs12;
173 
174 	/*
175 	 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
176 	 * changes in MSR bitmap for L1 or switching to a different L2. Note,
177 	 * this flag can only be used reliably in conjunction with a paravirt L1
178 	 * which informs L0 whether any changes to MSR bitmap for L2 were done
179 	 * on its side.
180 	 */
181 	bool force_msr_bitmap_recalc;
182 
183 	/*
184 	 * Indicates lazily loaded guest state has not yet been decached from
185 	 * vmcs02.
186 	 */
187 	bool need_sync_vmcs02_to_vmcs12_rare;
188 
189 	/*
190 	 * vmcs02 has been initialized, i.e. state that is constant for
191 	 * vmcs02 has been written to the backing VMCS.  Initialization
192 	 * is delayed until L1 actually attempts to run a nested VM.
193 	 */
194 	bool vmcs02_initialized;
195 
196 	bool change_vmcs01_virtual_apic_mode;
197 	bool reload_vmcs01_apic_access_page;
198 	bool update_vmcs01_cpu_dirty_logging;
199 	bool update_vmcs01_apicv_status;
200 
201 	/*
202 	 * Enlightened VMCS has been enabled. It does not mean that L1 has to
203 	 * use it. However, VMX features available to L1 will be limited based
204 	 * on what the enlightened VMCS supports.
205 	 */
206 	bool enlightened_vmcs_enabled;
207 
208 	/* L2 must run next, and mustn't decide to exit to L1. */
209 	bool nested_run_pending;
210 
211 	/* Pending MTF VM-exit into L1.  */
212 	bool mtf_pending;
213 
214 	struct loaded_vmcs vmcs02;
215 
216 	/*
217 	 * Guest pages referred to in the vmcs02 with host-physical
218 	 * pointers, so we must keep them pinned while L2 runs.
219 	 */
220 	struct page *apic_access_page;
221 	struct kvm_host_map virtual_apic_map;
222 	struct kvm_host_map pi_desc_map;
223 
224 	struct kvm_host_map msr_bitmap_map;
225 
226 	struct pi_desc *pi_desc;
227 	bool pi_pending;
228 	u16 posted_intr_nv;
229 
230 	struct hrtimer preemption_timer;
231 	u64 preemption_timer_deadline;
232 	bool has_preemption_timer_deadline;
233 	bool preemption_timer_expired;
234 
235 	/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
236 	u64 vmcs01_debugctl;
237 	u64 vmcs01_guest_bndcfgs;
238 
239 	/* to migrate it to L1 if L2 writes to L1's CR8 directly */
240 	int l1_tpr_threshold;
241 
242 	u16 vpid02;
243 	u16 last_vpid;
244 
245 	struct nested_vmx_msrs msrs;
246 
247 	/* SMM related state */
248 	struct {
249 		/* in VMX operation on SMM entry? */
250 		bool vmxon;
251 		/* in guest mode on SMM entry? */
252 		bool guest_mode;
253 	} smm;
254 
255 	gpa_t hv_evmcs_vmptr;
256 	struct kvm_host_map hv_evmcs_map;
257 	struct hv_enlightened_vmcs *hv_evmcs;
258 };
259 
260 struct vcpu_vmx {
261 	struct kvm_vcpu       vcpu;
262 	u8                    fail;
263 	u8		      x2apic_msr_bitmap_mode;
264 
265 	/*
266 	 * If true, host state has been stored in vmx->loaded_vmcs for
267 	 * the CPU registers that only need to be switched when transitioning
268 	 * to/from the kernel, and the registers have been loaded with guest
269 	 * values.  If false, host state is loaded in the CPU registers
270 	 * and vmx->loaded_vmcs->host_state is invalid.
271 	 */
272 	bool		      guest_state_loaded;
273 
274 	unsigned long         exit_qualification;
275 	u32                   exit_intr_info;
276 	u32                   idt_vectoring_info;
277 	ulong                 rflags;
278 
279 	/*
280 	 * User return MSRs are always emulated when enabled in the guest, but
281 	 * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
282 	 * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
283 	 * be loaded into hardware if those conditions aren't met.
284 	 */
285 	struct vmx_uret_msr   guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
286 	bool                  guest_uret_msrs_loaded;
287 #ifdef CONFIG_X86_64
288 	u64		      msr_host_kernel_gs_base;
289 	u64		      msr_guest_kernel_gs_base;
290 #endif
291 
292 	u64		      spec_ctrl;
293 	u32		      msr_ia32_umwait_control;
294 
295 	/*
296 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
297 	 * non-nested (L1) guest, it always points to vmcs01. For a nested
298 	 * guest (L2), it points to a different VMCS.
299 	 */
300 	struct loaded_vmcs    vmcs01;
301 	struct loaded_vmcs   *loaded_vmcs;
302 
303 	struct msr_autoload {
304 		struct vmx_msrs guest;
305 		struct vmx_msrs host;
306 	} msr_autoload;
307 
308 	struct msr_autostore {
309 		struct vmx_msrs guest;
310 	} msr_autostore;
311 
312 	struct {
313 		int vm86_active;
314 		ulong save_rflags;
315 		struct kvm_segment segs[8];
316 	} rmode;
317 	struct {
318 		u32 bitmask; /* 4 bits per segment (1 bit per field) */
319 		struct kvm_save_segment {
320 			u16 selector;
321 			unsigned long base;
322 			u32 limit;
323 			u32 ar;
324 		} seg[8];
325 	} segment_cache;
326 	int vpid;
327 	bool emulation_required;
328 
329 	union vmx_exit_reason exit_reason;
330 
331 	/* Posted interrupt descriptor */
332 	struct pi_desc pi_desc;
333 
334 	/* Used if this vCPU is waiting for PI notification wakeup. */
335 	struct list_head pi_wakeup_list;
336 
337 	/* Support for a guest hypervisor (nested VMX) */
338 	struct nested_vmx nested;
339 
340 	/* Dynamic PLE window. */
341 	unsigned int ple_window;
342 	bool ple_window_dirty;
343 
344 	bool req_immediate_exit;
345 
346 	/* Support for PML */
347 #define PML_ENTITY_NUM		512
348 	struct page *pml_pg;
349 
350 	/* apic deadline value in host tsc */
351 	u64 hv_deadline_tsc;
352 
353 	unsigned long host_debugctlmsr;
354 
355 	/*
356 	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
357 	 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
358 	 * in msr_ia32_feature_control_valid_bits.
359 	 */
360 	u64 msr_ia32_feature_control;
361 	u64 msr_ia32_feature_control_valid_bits;
362 	/* SGX Launch Control public key hash */
363 	u64 msr_ia32_sgxlepubkeyhash[4];
364 	u64 msr_ia32_mcu_opt_ctrl;
365 	bool disable_fb_clear;
366 
367 	struct pt_desc pt_desc;
368 	struct lbr_desc lbr_desc;
369 
370 	/* Save desired MSR intercept (read: pass-through) state */
371 #define MAX_POSSIBLE_PASSTHROUGH_MSRS	15
372 	struct {
373 		DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
374 		DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
375 	} shadow_msr_intercept;
376 };
377 
378 struct kvm_vmx {
379 	struct kvm kvm;
380 
381 	unsigned int tss_addr;
382 	bool ept_identity_pagetable_done;
383 	gpa_t ept_identity_map_addr;
384 };
385 
386 bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
387 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
388 			struct loaded_vmcs *buddy);
389 int allocate_vpid(void);
390 void free_vpid(int vpid);
391 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
392 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
393 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
394 			unsigned long fs_base, unsigned long gs_base);
395 int vmx_get_cpl(struct kvm_vcpu *vcpu);
396 bool vmx_emulation_required(struct kvm_vcpu *vcpu);
397 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
398 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
399 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
400 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
401 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
402 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
403 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
404 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
405 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
406 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
407 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
408 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
409 
410 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
411 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
412 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
413 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
414 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
415 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
416 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
417 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
418 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
419 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
420 void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
421 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
422 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
423 		    unsigned int flags);
424 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
425 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
426 
427 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
428 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
429 
430 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
431 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
432 
vmx_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool value)433 static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
434 					     int type, bool value)
435 {
436 	if (value)
437 		vmx_enable_intercept_for_msr(vcpu, msr, type);
438 	else
439 		vmx_disable_intercept_for_msr(vcpu, msr, type);
440 }
441 
442 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
443 
444 /*
445  * Note, early Intel manuals have the write-low and read-high bitmap offsets
446  * the wrong way round.  The bitmaps control MSRs 0x00000000-0x00001fff and
447  * 0xc0000000-0xc0001fff.  The former (low) uses bytes 0-0x3ff for reads and
448  * 0x800-0xbff for writes.  The latter (high) uses 0x400-0x7ff for reads and
449  * 0xc00-0xfff for writes.  MSRs not covered by either of the ranges always
450  * VM-Exit.
451  */
452 #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base)      \
453 static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap,  \
454 						       u32 msr)		       \
455 {									       \
456 	int f = sizeof(unsigned long);					       \
457 									       \
458 	if (msr <= 0x1fff)						       \
459 		return bitop##_bit(msr, bitmap + base / f);		       \
460 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))		       \
461 		return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
462 	return (rtype)true;						       \
463 }
464 #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop)		       \
465 	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read,  0x0)     \
466 	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
467 
BUILD_VMX_MSR_BITMAP_HELPERS(bool,test,test)468 BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
469 BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
470 BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
471 
472 static inline u8 vmx_get_rvi(void)
473 {
474 	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
475 }
476 
477 #define BUILD_CONTROLS_SHADOW(lname, uname)				    \
478 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u32 val)	    \
479 {									    \
480 	if (vmx->loaded_vmcs->controls_shadow.lname != val) {		    \
481 		vmcs_write32(uname, val);				    \
482 		vmx->loaded_vmcs->controls_shadow.lname = val;		    \
483 	}								    \
484 }									    \
485 static inline u32 __##lname##_controls_get(struct loaded_vmcs *vmcs)	    \
486 {									    \
487 	return vmcs->controls_shadow.lname;				    \
488 }									    \
489 static inline u32 lname##_controls_get(struct vcpu_vmx *vmx)		    \
490 {									    \
491 	return __##lname##_controls_get(vmx->loaded_vmcs);		    \
492 }									    \
493 static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u32 val)   \
494 {									    \
495 	lname##_controls_set(vmx, lname##_controls_get(vmx) | val);	    \
496 }									    \
497 static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u32 val) \
498 {									    \
499 	lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);	    \
500 }
BUILD_CONTROLS_SHADOW(vm_entry,VM_ENTRY_CONTROLS)501 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS)
502 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS)
503 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL)
504 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL)
505 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL)
506 
507 /*
508  * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
509  * cache on demand.  Other registers not listed here are synced to
510  * the cache immediately after VM-Exit.
511  */
512 #define VMX_REGS_LAZY_LOAD_SET	((1 << VCPU_REGS_RIP) |         \
513 				(1 << VCPU_REGS_RSP) |          \
514 				(1 << VCPU_EXREG_RFLAGS) |      \
515 				(1 << VCPU_EXREG_PDPTR) |       \
516 				(1 << VCPU_EXREG_SEGMENTS) |    \
517 				(1 << VCPU_EXREG_CR0) |         \
518 				(1 << VCPU_EXREG_CR3) |         \
519 				(1 << VCPU_EXREG_CR4) |         \
520 				(1 << VCPU_EXREG_EXIT_INFO_1) | \
521 				(1 << VCPU_EXREG_EXIT_INFO_2))
522 
523 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
524 {
525 	return container_of(kvm, struct kvm_vmx, kvm);
526 }
527 
to_vmx(struct kvm_vcpu * vcpu)528 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
529 {
530 	return container_of(vcpu, struct vcpu_vmx, vcpu);
531 }
532 
vmx_get_exit_qual(struct kvm_vcpu * vcpu)533 static inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
534 {
535 	struct vcpu_vmx *vmx = to_vmx(vcpu);
536 
537 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_1)) {
538 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
539 		vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
540 	}
541 	return vmx->exit_qualification;
542 }
543 
vmx_get_intr_info(struct kvm_vcpu * vcpu)544 static inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
545 {
546 	struct vcpu_vmx *vmx = to_vmx(vcpu);
547 
548 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_2)) {
549 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
550 		vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
551 	}
552 	return vmx->exit_intr_info;
553 }
554 
555 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
556 void free_vmcs(struct vmcs *vmcs);
557 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
558 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
559 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
560 
alloc_vmcs(bool shadow)561 static inline struct vmcs *alloc_vmcs(bool shadow)
562 {
563 	return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
564 			      GFP_KERNEL_ACCOUNT);
565 }
566 
vmx_has_waitpkg(struct vcpu_vmx * vmx)567 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
568 {
569 	return secondary_exec_controls_get(vmx) &
570 		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
571 }
572 
vmx_need_pf_intercept(struct kvm_vcpu * vcpu)573 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
574 {
575 	if (!enable_ept)
576 		return true;
577 
578 	return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits;
579 }
580 
is_unrestricted_guest(struct kvm_vcpu * vcpu)581 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
582 {
583 	return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
584 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
585 	    SECONDARY_EXEC_UNRESTRICTED_GUEST));
586 }
587 
588 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
vmx_guest_state_valid(struct kvm_vcpu * vcpu)589 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
590 {
591 	return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
592 }
593 
594 void dump_vmcs(struct kvm_vcpu *vcpu);
595 
vmx_get_instr_info_reg2(u32 vmx_instr_info)596 static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
597 {
598 	return (vmx_instr_info >> 28) & 0xf;
599 }
600 
601 #endif /* __KVM_X86_VMX_H */
602