1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5
6 #include "i915_drv.h"
7 #include "intel_context.h"
8 #include "intel_gpu_commands.h"
9 #include "intel_gt.h"
10 #include "intel_gtt.h"
11 #include "intel_migrate.h"
12 #include "intel_ring.h"
13
14 struct insert_pte_data {
15 u64 offset;
16 };
17
18 #define CHUNK_SZ SZ_8M /* ~1ms at 8GiB/s preemption delay */
19
20 #define GET_CCS_BYTES(i915, size) (HAS_FLAT_CCS(i915) ? \
21 DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE) : 0)
engine_supports_migration(struct intel_engine_cs * engine)22 static bool engine_supports_migration(struct intel_engine_cs *engine)
23 {
24 if (!engine)
25 return false;
26
27 /*
28 * We need the ability to prevent aribtration (MI_ARB_ON_OFF),
29 * the ability to write PTE using inline data (MI_STORE_DATA)
30 * and of course the ability to do the block transfer (blits).
31 */
32 GEM_BUG_ON(engine->class != COPY_ENGINE_CLASS);
33
34 return true;
35 }
36
xehpsdv_toggle_pdes(struct i915_address_space * vm,struct i915_page_table * pt,void * data)37 static void xehpsdv_toggle_pdes(struct i915_address_space *vm,
38 struct i915_page_table *pt,
39 void *data)
40 {
41 struct insert_pte_data *d = data;
42
43 /*
44 * Insert a dummy PTE into every PT that will map to LMEM to ensure
45 * we have a correctly setup PDE structure for later use.
46 */
47 vm->insert_page(vm, 0, d->offset, I915_CACHE_NONE, PTE_LM);
48 GEM_BUG_ON(!pt->is_compact);
49 d->offset += SZ_2M;
50 }
51
xehpsdv_insert_pte(struct i915_address_space * vm,struct i915_page_table * pt,void * data)52 static void xehpsdv_insert_pte(struct i915_address_space *vm,
53 struct i915_page_table *pt,
54 void *data)
55 {
56 struct insert_pte_data *d = data;
57
58 /*
59 * We are playing tricks here, since the actual pt, from the hw
60 * pov, is only 256bytes with 32 entries, or 4096bytes with 512
61 * entries, but we are still guaranteed that the physical
62 * alignment is 64K underneath for the pt, and we are careful
63 * not to access the space in the void.
64 */
65 vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE, PTE_LM);
66 d->offset += SZ_64K;
67 }
68
insert_pte(struct i915_address_space * vm,struct i915_page_table * pt,void * data)69 static void insert_pte(struct i915_address_space *vm,
70 struct i915_page_table *pt,
71 void *data)
72 {
73 struct insert_pte_data *d = data;
74
75 vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE,
76 i915_gem_object_is_lmem(pt->base) ? PTE_LM : 0);
77 d->offset += PAGE_SIZE;
78 }
79
migrate_vm(struct intel_gt * gt)80 static struct i915_address_space *migrate_vm(struct intel_gt *gt)
81 {
82 struct i915_vm_pt_stash stash = {};
83 struct i915_ppgtt *vm;
84 int err;
85 int i;
86
87 /*
88 * We construct a very special VM for use by all migration contexts,
89 * it is kept pinned so that it can be used at any time. As we need
90 * to pre-allocate the page directories for the migration VM, this
91 * limits us to only using a small number of prepared vma.
92 *
93 * To be able to pipeline and reschedule migration operations while
94 * avoiding unnecessary contention on the vm itself, the PTE updates
95 * are inline with the blits. All the blits use the same fixed
96 * addresses, with the backing store redirection being updated on the
97 * fly. Only 2 implicit vma are used for all migration operations.
98 *
99 * We lay the ppGTT out as:
100 *
101 * [0, CHUNK_SZ) -> first object
102 * [CHUNK_SZ, 2 * CHUNK_SZ) -> second object
103 * [2 * CHUNK_SZ, 2 * CHUNK_SZ + 2 * CHUNK_SZ >> 9] -> PTE
104 *
105 * By exposing the dma addresses of the page directories themselves
106 * within the ppGTT, we are then able to rewrite the PTE prior to use.
107 * But the PTE update and subsequent migration operation must be atomic,
108 * i.e. within the same non-preemptible window so that we do not switch
109 * to another migration context that overwrites the PTE.
110 *
111 * This changes quite a bit on platforms with HAS_64K_PAGES support,
112 * where we instead have three windows, each CHUNK_SIZE in size. The
113 * first is reserved for mapping system-memory, and that just uses the
114 * 512 entry layout using 4K GTT pages. The other two windows just map
115 * lmem pages and must use the new compact 32 entry layout using 64K GTT
116 * pages, which ensures we can address any lmem object that the user
117 * throws at us. We then also use the xehpsdv_toggle_pdes as a way of
118 * just toggling the PDE bit(GEN12_PDE_64K) for us, to enable the
119 * compact layout for each of these page-tables, that fall within the
120 * [CHUNK_SIZE, 3 * CHUNK_SIZE) range.
121 *
122 * We lay the ppGTT out as:
123 *
124 * [0, CHUNK_SZ) -> first window/object, maps smem
125 * [CHUNK_SZ, 2 * CHUNK_SZ) -> second window/object, maps lmem src
126 * [2 * CHUNK_SZ, 3 * CHUNK_SZ) -> third window/object, maps lmem dst
127 *
128 * For the PTE window it's also quite different, since each PTE must
129 * point to some 64K page, one for each PT(since it's in lmem), and yet
130 * each is only <= 4096bytes, but since the unused space within that PTE
131 * range is never touched, this should be fine.
132 *
133 * So basically each PT now needs 64K of virtual memory, instead of 4K,
134 * which looks like:
135 *
136 * [3 * CHUNK_SZ, 3 * CHUNK_SZ + ((3 * CHUNK_SZ / SZ_2M) * SZ_64K)] -> PTE
137 */
138
139 vm = i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY);
140 if (IS_ERR(vm))
141 return ERR_CAST(vm);
142
143 if (!vm->vm.allocate_va_range || !vm->vm.foreach) {
144 err = -ENODEV;
145 goto err_vm;
146 }
147
148 if (HAS_64K_PAGES(gt->i915))
149 stash.pt_sz = I915_GTT_PAGE_SIZE_64K;
150
151 /*
152 * Each engine instance is assigned its own chunk in the VM, so
153 * that we can run multiple instances concurrently
154 */
155 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
156 struct intel_engine_cs *engine;
157 u64 base = (u64)i << 32;
158 struct insert_pte_data d = {};
159 struct i915_gem_ww_ctx ww;
160 u64 sz;
161
162 engine = gt->engine_class[COPY_ENGINE_CLASS][i];
163 if (!engine_supports_migration(engine))
164 continue;
165
166 /*
167 * We copy in 8MiB chunks. Each PDE covers 2MiB, so we need
168 * 4x2 page directories for source/destination.
169 */
170 if (HAS_64K_PAGES(gt->i915))
171 sz = 3 * CHUNK_SZ;
172 else
173 sz = 2 * CHUNK_SZ;
174 d.offset = base + sz;
175
176 /*
177 * We need another page directory setup so that we can write
178 * the 8x512 PTE in each chunk.
179 */
180 if (HAS_64K_PAGES(gt->i915))
181 sz += (sz / SZ_2M) * SZ_64K;
182 else
183 sz += (sz >> 12) * sizeof(u64);
184
185 err = i915_vm_alloc_pt_stash(&vm->vm, &stash, sz);
186 if (err)
187 goto err_vm;
188
189 for_i915_gem_ww(&ww, err, true) {
190 err = i915_vm_lock_objects(&vm->vm, &ww);
191 if (err)
192 continue;
193 err = i915_vm_map_pt_stash(&vm->vm, &stash);
194 if (err)
195 continue;
196
197 vm->vm.allocate_va_range(&vm->vm, &stash, base, sz);
198 }
199 i915_vm_free_pt_stash(&vm->vm, &stash);
200 if (err)
201 goto err_vm;
202
203 /* Now allow the GPU to rewrite the PTE via its own ppGTT */
204 if (HAS_64K_PAGES(gt->i915)) {
205 vm->vm.foreach(&vm->vm, base, d.offset - base,
206 xehpsdv_insert_pte, &d);
207 d.offset = base + CHUNK_SZ;
208 vm->vm.foreach(&vm->vm,
209 d.offset,
210 2 * CHUNK_SZ,
211 xehpsdv_toggle_pdes, &d);
212 } else {
213 vm->vm.foreach(&vm->vm, base, d.offset - base,
214 insert_pte, &d);
215 }
216 }
217
218 return &vm->vm;
219
220 err_vm:
221 i915_vm_put(&vm->vm);
222 return ERR_PTR(err);
223 }
224
first_copy_engine(struct intel_gt * gt)225 static struct intel_engine_cs *first_copy_engine(struct intel_gt *gt)
226 {
227 struct intel_engine_cs *engine;
228 int i;
229
230 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
231 engine = gt->engine_class[COPY_ENGINE_CLASS][i];
232 if (engine_supports_migration(engine))
233 return engine;
234 }
235
236 return NULL;
237 }
238
pinned_context(struct intel_gt * gt)239 static struct intel_context *pinned_context(struct intel_gt *gt)
240 {
241 static struct lock_class_key key;
242 struct intel_engine_cs *engine;
243 struct i915_address_space *vm;
244 struct intel_context *ce;
245
246 engine = first_copy_engine(gt);
247 if (!engine)
248 return ERR_PTR(-ENODEV);
249
250 vm = migrate_vm(gt);
251 if (IS_ERR(vm))
252 return ERR_CAST(vm);
253
254 ce = intel_engine_create_pinned_context(engine, vm, SZ_512K,
255 I915_GEM_HWS_MIGRATE,
256 &key, "migrate");
257 i915_vm_put(vm);
258 return ce;
259 }
260
intel_migrate_init(struct intel_migrate * m,struct intel_gt * gt)261 int intel_migrate_init(struct intel_migrate *m, struct intel_gt *gt)
262 {
263 struct intel_context *ce;
264
265 memset(m, 0, sizeof(*m));
266
267 ce = pinned_context(gt);
268 if (IS_ERR(ce))
269 return PTR_ERR(ce);
270
271 m->context = ce;
272 return 0;
273 }
274
random_index(unsigned int max)275 static int random_index(unsigned int max)
276 {
277 return upper_32_bits(mul_u32_u32(get_random_u32(), max));
278 }
279
__migrate_engines(struct intel_gt * gt)280 static struct intel_context *__migrate_engines(struct intel_gt *gt)
281 {
282 struct intel_engine_cs *engines[MAX_ENGINE_INSTANCE];
283 struct intel_engine_cs *engine;
284 unsigned int count, i;
285
286 count = 0;
287 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
288 engine = gt->engine_class[COPY_ENGINE_CLASS][i];
289 if (engine_supports_migration(engine))
290 engines[count++] = engine;
291 }
292
293 return intel_context_create(engines[random_index(count)]);
294 }
295
intel_migrate_create_context(struct intel_migrate * m)296 struct intel_context *intel_migrate_create_context(struct intel_migrate *m)
297 {
298 struct intel_context *ce;
299
300 /*
301 * We randomly distribute contexts across the engines upon constrction,
302 * as they all share the same pinned vm, and so in order to allow
303 * multiple blits to run in parallel, we must construct each blit
304 * to use a different range of the vm for its GTT. This has to be
305 * known at construction, so we can not use the late greedy load
306 * balancing of the virtual-engine.
307 */
308 ce = __migrate_engines(m->context->engine->gt);
309 if (IS_ERR(ce))
310 return ce;
311
312 ce->ring = NULL;
313 ce->ring_size = SZ_256K;
314
315 i915_vm_put(ce->vm);
316 ce->vm = i915_vm_get(m->context->vm);
317
318 return ce;
319 }
320
sg_sgt(struct scatterlist * sg)321 static inline struct sgt_dma sg_sgt(struct scatterlist *sg)
322 {
323 dma_addr_t addr = sg_dma_address(sg);
324
325 return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) };
326 }
327
emit_no_arbitration(struct i915_request * rq)328 static int emit_no_arbitration(struct i915_request *rq)
329 {
330 u32 *cs;
331
332 cs = intel_ring_begin(rq, 2);
333 if (IS_ERR(cs))
334 return PTR_ERR(cs);
335
336 /* Explicitly disable preemption for this request. */
337 *cs++ = MI_ARB_ON_OFF;
338 *cs++ = MI_NOOP;
339 intel_ring_advance(rq, cs);
340
341 return 0;
342 }
343
emit_pte(struct i915_request * rq,struct sgt_dma * it,enum i915_cache_level cache_level,bool is_lmem,u64 offset,int length)344 static int emit_pte(struct i915_request *rq,
345 struct sgt_dma *it,
346 enum i915_cache_level cache_level,
347 bool is_lmem,
348 u64 offset,
349 int length)
350 {
351 bool has_64K_pages = HAS_64K_PAGES(rq->engine->i915);
352 const u64 encode = rq->context->vm->pte_encode(0, cache_level,
353 is_lmem ? PTE_LM : 0);
354 struct intel_ring *ring = rq->ring;
355 int pkt, dword_length;
356 u32 total = 0;
357 u32 page_size;
358 u32 *hdr, *cs;
359
360 GEM_BUG_ON(GRAPHICS_VER(rq->engine->i915) < 8);
361
362 page_size = I915_GTT_PAGE_SIZE;
363 dword_length = 0x400;
364
365 /* Compute the page directory offset for the target address range */
366 if (has_64K_pages) {
367 GEM_BUG_ON(!IS_ALIGNED(offset, SZ_2M));
368
369 offset /= SZ_2M;
370 offset *= SZ_64K;
371 offset += 3 * CHUNK_SZ;
372
373 if (is_lmem) {
374 page_size = I915_GTT_PAGE_SIZE_64K;
375 dword_length = 0x40;
376 }
377 } else {
378 offset >>= 12;
379 offset *= sizeof(u64);
380 offset += 2 * CHUNK_SZ;
381 }
382
383 offset += (u64)rq->engine->instance << 32;
384
385 cs = intel_ring_begin(rq, 6);
386 if (IS_ERR(cs))
387 return PTR_ERR(cs);
388
389 /* Pack as many PTE updates as possible into a single MI command */
390 pkt = min_t(int, dword_length, ring->space / sizeof(u32) + 5);
391 pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5);
392
393 hdr = cs;
394 *cs++ = MI_STORE_DATA_IMM | REG_BIT(21); /* as qword elements */
395 *cs++ = lower_32_bits(offset);
396 *cs++ = upper_32_bits(offset);
397
398 do {
399 if (cs - hdr >= pkt) {
400 int dword_rem;
401
402 *hdr += cs - hdr - 2;
403 *cs++ = MI_NOOP;
404
405 ring->emit = (void *)cs - ring->vaddr;
406 intel_ring_advance(rq, cs);
407 intel_ring_update_space(ring);
408
409 cs = intel_ring_begin(rq, 6);
410 if (IS_ERR(cs))
411 return PTR_ERR(cs);
412
413 dword_rem = dword_length;
414 if (has_64K_pages) {
415 if (IS_ALIGNED(total, SZ_2M)) {
416 offset = round_up(offset, SZ_64K);
417 } else {
418 dword_rem = SZ_2M - (total & (SZ_2M - 1));
419 dword_rem /= page_size;
420 dword_rem *= 2;
421 }
422 }
423
424 pkt = min_t(int, dword_rem, ring->space / sizeof(u32) + 5);
425 pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5);
426
427 hdr = cs;
428 *cs++ = MI_STORE_DATA_IMM | REG_BIT(21);
429 *cs++ = lower_32_bits(offset);
430 *cs++ = upper_32_bits(offset);
431 }
432
433 GEM_BUG_ON(!IS_ALIGNED(it->dma, page_size));
434
435 *cs++ = lower_32_bits(encode | it->dma);
436 *cs++ = upper_32_bits(encode | it->dma);
437
438 offset += 8;
439 total += page_size;
440
441 it->dma += page_size;
442 if (it->dma >= it->max) {
443 it->sg = __sg_next(it->sg);
444 if (!it->sg || sg_dma_len(it->sg) == 0)
445 break;
446
447 it->dma = sg_dma_address(it->sg);
448 it->max = it->dma + sg_dma_len(it->sg);
449 }
450 } while (total < length);
451
452 *hdr += cs - hdr - 2;
453 *cs++ = MI_NOOP;
454
455 ring->emit = (void *)cs - ring->vaddr;
456 intel_ring_advance(rq, cs);
457 intel_ring_update_space(ring);
458
459 return total;
460 }
461
wa_1209644611_applies(int ver,u32 size)462 static bool wa_1209644611_applies(int ver, u32 size)
463 {
464 u32 height = size >> PAGE_SHIFT;
465
466 if (ver != 11)
467 return false;
468
469 return height % 4 == 3 && height <= 8;
470 }
471
472 /**
473 * DOC: Flat-CCS - Memory compression for Local memory
474 *
475 * On Xe-HP and later devices, we use dedicated compression control state (CCS)
476 * stored in local memory for each surface, to support the 3D and media
477 * compression formats.
478 *
479 * The memory required for the CCS of the entire local memory is 1/256 of the
480 * local memory size. So before the kernel boot, the required memory is reserved
481 * for the CCS data and a secure register will be programmed with the CCS base
482 * address.
483 *
484 * Flat CCS data needs to be cleared when a lmem object is allocated.
485 * And CCS data can be copied in and out of CCS region through
486 * XY_CTRL_SURF_COPY_BLT. CPU can't access the CCS data directly.
487 *
488 * I915 supports Flat-CCS on lmem only objects. When an objects has smem in
489 * its preference list, on memory pressure, i915 needs to migrate the lmem
490 * content into smem. If the lmem object is Flat-CCS compressed by userspace,
491 * then i915 needs to decompress it. But I915 lack the required information
492 * for such decompression. Hence I915 supports Flat-CCS only on lmem only objects.
493 *
494 * When we exhaust the lmem, Flat-CCS capable objects' lmem backing memory can
495 * be temporarily evicted to smem, along with the auxiliary CCS state, where
496 * it can be potentially swapped-out at a later point, if required.
497 * If userspace later touches the evicted pages, then we always move
498 * the backing memory back to lmem, which includes restoring the saved CCS state,
499 * and potentially performing any required swap-in.
500 *
501 * For the migration of the lmem objects with smem in placement list, such as
502 * {lmem, smem}, objects are treated as non Flat-CCS capable objects.
503 */
504
i915_flush_dw(u32 * cmd,u32 flags)505 static inline u32 *i915_flush_dw(u32 *cmd, u32 flags)
506 {
507 *cmd++ = MI_FLUSH_DW | flags;
508 *cmd++ = 0;
509 *cmd++ = 0;
510
511 return cmd;
512 }
513
calc_ctrl_surf_instr_size(struct drm_i915_private * i915,int size)514 static u32 calc_ctrl_surf_instr_size(struct drm_i915_private *i915, int size)
515 {
516 u32 num_cmds, num_blks, total_size;
517
518 if (!GET_CCS_BYTES(i915, size))
519 return 0;
520
521 /*
522 * XY_CTRL_SURF_COPY_BLT transfers CCS in 256 byte
523 * blocks. one XY_CTRL_SURF_COPY_BLT command can
524 * transfer upto 1024 blocks.
525 */
526 num_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size),
527 NUM_CCS_BYTES_PER_BLOCK);
528 num_cmds = DIV_ROUND_UP(num_blks, NUM_CCS_BLKS_PER_XFER);
529 total_size = XY_CTRL_SURF_INSTR_SIZE * num_cmds;
530
531 /*
532 * Adding a flush before and after XY_CTRL_SURF_COPY_BLT
533 */
534 total_size += 2 * MI_FLUSH_DW_SIZE;
535
536 return total_size;
537 }
538
emit_copy_ccs(struct i915_request * rq,u32 dst_offset,u8 dst_access,u32 src_offset,u8 src_access,int size)539 static int emit_copy_ccs(struct i915_request *rq,
540 u32 dst_offset, u8 dst_access,
541 u32 src_offset, u8 src_access, int size)
542 {
543 struct drm_i915_private *i915 = rq->engine->i915;
544 int mocs = rq->engine->gt->mocs.uc_index << 1;
545 u32 num_ccs_blks, ccs_ring_size;
546 u32 *cs;
547
548 ccs_ring_size = calc_ctrl_surf_instr_size(i915, size);
549 WARN_ON(!ccs_ring_size);
550
551 cs = intel_ring_begin(rq, round_up(ccs_ring_size, 2));
552 if (IS_ERR(cs))
553 return PTR_ERR(cs);
554
555 num_ccs_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size),
556 NUM_CCS_BYTES_PER_BLOCK);
557 GEM_BUG_ON(num_ccs_blks > NUM_CCS_BLKS_PER_XFER);
558 cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);
559
560 /*
561 * The XY_CTRL_SURF_COPY_BLT instruction is used to copy the CCS
562 * data in and out of the CCS region.
563 *
564 * We can copy at most 1024 blocks of 256 bytes using one
565 * XY_CTRL_SURF_COPY_BLT instruction.
566 *
567 * In case we need to copy more than 1024 blocks, we need to add
568 * another instruction to the same batch buffer.
569 *
570 * 1024 blocks of 256 bytes of CCS represent a total 256KB of CCS.
571 *
572 * 256 KB of CCS represents 256 * 256 KB = 64 MB of LMEM.
573 */
574 *cs++ = XY_CTRL_SURF_COPY_BLT |
575 src_access << SRC_ACCESS_TYPE_SHIFT |
576 dst_access << DST_ACCESS_TYPE_SHIFT |
577 ((num_ccs_blks - 1) & CCS_SIZE_MASK) << CCS_SIZE_SHIFT;
578 *cs++ = src_offset;
579 *cs++ = rq->engine->instance |
580 FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);
581 *cs++ = dst_offset;
582 *cs++ = rq->engine->instance |
583 FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);
584
585 cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);
586 if (ccs_ring_size & 1)
587 *cs++ = MI_NOOP;
588
589 intel_ring_advance(rq, cs);
590
591 return 0;
592 }
593
emit_copy(struct i915_request * rq,u32 dst_offset,u32 src_offset,int size)594 static int emit_copy(struct i915_request *rq,
595 u32 dst_offset, u32 src_offset, int size)
596 {
597 const int ver = GRAPHICS_VER(rq->engine->i915);
598 u32 instance = rq->engine->instance;
599 u32 *cs;
600
601 cs = intel_ring_begin(rq, ver >= 8 ? 10 : 6);
602 if (IS_ERR(cs))
603 return PTR_ERR(cs);
604
605 if (ver >= 9 && !wa_1209644611_applies(ver, size)) {
606 *cs++ = GEN9_XY_FAST_COPY_BLT_CMD | (10 - 2);
607 *cs++ = BLT_DEPTH_32 | PAGE_SIZE;
608 *cs++ = 0;
609 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
610 *cs++ = dst_offset;
611 *cs++ = instance;
612 *cs++ = 0;
613 *cs++ = PAGE_SIZE;
614 *cs++ = src_offset;
615 *cs++ = instance;
616 } else if (ver >= 8) {
617 *cs++ = XY_SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (10 - 2);
618 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
619 *cs++ = 0;
620 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
621 *cs++ = dst_offset;
622 *cs++ = instance;
623 *cs++ = 0;
624 *cs++ = PAGE_SIZE;
625 *cs++ = src_offset;
626 *cs++ = instance;
627 } else {
628 GEM_BUG_ON(instance);
629 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
630 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
631 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE;
632 *cs++ = dst_offset;
633 *cs++ = PAGE_SIZE;
634 *cs++ = src_offset;
635 }
636
637 intel_ring_advance(rq, cs);
638 return 0;
639 }
640
scatter_list_length(struct scatterlist * sg)641 static u64 scatter_list_length(struct scatterlist *sg)
642 {
643 u64 len = 0;
644
645 while (sg && sg_dma_len(sg)) {
646 len += sg_dma_len(sg);
647 sg = sg_next(sg);
648 };
649
650 return len;
651 }
652
653 static int
calculate_chunk_sz(struct drm_i915_private * i915,bool src_is_lmem,u64 bytes_to_cpy,u64 ccs_bytes_to_cpy)654 calculate_chunk_sz(struct drm_i915_private *i915, bool src_is_lmem,
655 u64 bytes_to_cpy, u64 ccs_bytes_to_cpy)
656 {
657 if (ccs_bytes_to_cpy && !src_is_lmem)
658 /*
659 * When CHUNK_SZ is passed all the pages upto CHUNK_SZ
660 * will be taken for the blt. in Flat-ccs supported
661 * platform Smem obj will have more pages than required
662 * for main meory hence limit it to the required size
663 * for main memory
664 */
665 return min_t(u64, bytes_to_cpy, CHUNK_SZ);
666 else
667 return CHUNK_SZ;
668 }
669
get_ccs_sg_sgt(struct sgt_dma * it,u64 bytes_to_cpy)670 static void get_ccs_sg_sgt(struct sgt_dma *it, u64 bytes_to_cpy)
671 {
672 u64 len;
673
674 do {
675 GEM_BUG_ON(!it->sg || !sg_dma_len(it->sg));
676 len = it->max - it->dma;
677 if (len > bytes_to_cpy) {
678 it->dma += bytes_to_cpy;
679 break;
680 }
681
682 bytes_to_cpy -= len;
683
684 it->sg = __sg_next(it->sg);
685 it->dma = sg_dma_address(it->sg);
686 it->max = it->dma + sg_dma_len(it->sg);
687 } while (bytes_to_cpy);
688 }
689
690 int
intel_context_migrate_copy(struct intel_context * ce,const struct i915_deps * deps,struct scatterlist * src,enum i915_cache_level src_cache_level,bool src_is_lmem,struct scatterlist * dst,enum i915_cache_level dst_cache_level,bool dst_is_lmem,struct i915_request ** out)691 intel_context_migrate_copy(struct intel_context *ce,
692 const struct i915_deps *deps,
693 struct scatterlist *src,
694 enum i915_cache_level src_cache_level,
695 bool src_is_lmem,
696 struct scatterlist *dst,
697 enum i915_cache_level dst_cache_level,
698 bool dst_is_lmem,
699 struct i915_request **out)
700 {
701 struct sgt_dma it_src = sg_sgt(src), it_dst = sg_sgt(dst), it_ccs;
702 struct drm_i915_private *i915 = ce->engine->i915;
703 u64 ccs_bytes_to_cpy = 0, bytes_to_cpy;
704 enum i915_cache_level ccs_cache_level;
705 u32 src_offset, dst_offset;
706 u8 src_access, dst_access;
707 struct i915_request *rq;
708 u64 src_sz, dst_sz;
709 bool ccs_is_src, overwrite_ccs;
710 int err;
711
712 GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
713 GEM_BUG_ON(IS_DGFX(ce->engine->i915) && (!src_is_lmem && !dst_is_lmem));
714 *out = NULL;
715
716 GEM_BUG_ON(ce->ring->size < SZ_64K);
717
718 src_sz = scatter_list_length(src);
719 bytes_to_cpy = src_sz;
720
721 if (HAS_FLAT_CCS(i915) && src_is_lmem ^ dst_is_lmem) {
722 src_access = !src_is_lmem && dst_is_lmem;
723 dst_access = !src_access;
724
725 dst_sz = scatter_list_length(dst);
726 if (src_is_lmem) {
727 it_ccs = it_dst;
728 ccs_cache_level = dst_cache_level;
729 ccs_is_src = false;
730 } else if (dst_is_lmem) {
731 bytes_to_cpy = dst_sz;
732 it_ccs = it_src;
733 ccs_cache_level = src_cache_level;
734 ccs_is_src = true;
735 }
736
737 /*
738 * When there is a eviction of ccs needed smem will have the
739 * extra pages for the ccs data
740 *
741 * TO-DO: Want to move the size mismatch check to a WARN_ON,
742 * but still we have some requests of smem->lmem with same size.
743 * Need to fix it.
744 */
745 ccs_bytes_to_cpy = src_sz != dst_sz ? GET_CCS_BYTES(i915, bytes_to_cpy) : 0;
746 if (ccs_bytes_to_cpy)
747 get_ccs_sg_sgt(&it_ccs, bytes_to_cpy);
748 }
749
750 overwrite_ccs = HAS_FLAT_CCS(i915) && !ccs_bytes_to_cpy && dst_is_lmem;
751
752 src_offset = 0;
753 dst_offset = CHUNK_SZ;
754 if (HAS_64K_PAGES(ce->engine->i915)) {
755 src_offset = 0;
756 dst_offset = 0;
757 if (src_is_lmem)
758 src_offset = CHUNK_SZ;
759 if (dst_is_lmem)
760 dst_offset = 2 * CHUNK_SZ;
761 }
762
763 do {
764 int len;
765
766 rq = i915_request_create(ce);
767 if (IS_ERR(rq)) {
768 err = PTR_ERR(rq);
769 goto out_ce;
770 }
771
772 if (deps) {
773 err = i915_request_await_deps(rq, deps);
774 if (err)
775 goto out_rq;
776
777 if (rq->engine->emit_init_breadcrumb) {
778 err = rq->engine->emit_init_breadcrumb(rq);
779 if (err)
780 goto out_rq;
781 }
782
783 deps = NULL;
784 }
785
786 /* The PTE updates + copy must not be interrupted. */
787 err = emit_no_arbitration(rq);
788 if (err)
789 goto out_rq;
790
791 src_sz = calculate_chunk_sz(i915, src_is_lmem,
792 bytes_to_cpy, ccs_bytes_to_cpy);
793
794 len = emit_pte(rq, &it_src, src_cache_level, src_is_lmem,
795 src_offset, src_sz);
796 if (!len) {
797 err = -EINVAL;
798 goto out_rq;
799 }
800 if (len < 0) {
801 err = len;
802 goto out_rq;
803 }
804
805 err = emit_pte(rq, &it_dst, dst_cache_level, dst_is_lmem,
806 dst_offset, len);
807 if (err < 0)
808 goto out_rq;
809 if (err < len) {
810 err = -EINVAL;
811 goto out_rq;
812 }
813
814 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
815 if (err)
816 goto out_rq;
817
818 err = emit_copy(rq, dst_offset, src_offset, len);
819 if (err)
820 goto out_rq;
821
822 bytes_to_cpy -= len;
823
824 if (ccs_bytes_to_cpy) {
825 int ccs_sz;
826
827 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
828 if (err)
829 goto out_rq;
830
831 ccs_sz = GET_CCS_BYTES(i915, len);
832 err = emit_pte(rq, &it_ccs, ccs_cache_level, false,
833 ccs_is_src ? src_offset : dst_offset,
834 ccs_sz);
835 if (err < 0)
836 goto out_rq;
837 if (err < ccs_sz) {
838 err = -EINVAL;
839 goto out_rq;
840 }
841
842 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
843 if (err)
844 goto out_rq;
845
846 err = emit_copy_ccs(rq, dst_offset, dst_access,
847 src_offset, src_access, len);
848 if (err)
849 goto out_rq;
850
851 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
852 if (err)
853 goto out_rq;
854 ccs_bytes_to_cpy -= ccs_sz;
855 } else if (overwrite_ccs) {
856 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
857 if (err)
858 goto out_rq;
859
860 /*
861 * While we can't always restore/manage the CCS state,
862 * we still need to ensure we don't leak the CCS state
863 * from the previous user, so make sure we overwrite it
864 * with something.
865 */
866 err = emit_copy_ccs(rq, dst_offset, INDIRECT_ACCESS,
867 dst_offset, DIRECT_ACCESS, len);
868 if (err)
869 goto out_rq;
870
871 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
872 if (err)
873 goto out_rq;
874 }
875
876 /* Arbitration is re-enabled between requests. */
877 out_rq:
878 if (*out)
879 i915_request_put(*out);
880 *out = i915_request_get(rq);
881 i915_request_add(rq);
882
883 if (err)
884 break;
885
886 if (!bytes_to_cpy && !ccs_bytes_to_cpy) {
887 if (src_is_lmem)
888 WARN_ON(it_src.sg && sg_dma_len(it_src.sg));
889 else
890 WARN_ON(it_dst.sg && sg_dma_len(it_dst.sg));
891 break;
892 }
893
894 if (WARN_ON(!it_src.sg || !sg_dma_len(it_src.sg) ||
895 !it_dst.sg || !sg_dma_len(it_dst.sg) ||
896 (ccs_bytes_to_cpy && (!it_ccs.sg ||
897 !sg_dma_len(it_ccs.sg))))) {
898 err = -EINVAL;
899 break;
900 }
901
902 cond_resched();
903 } while (1);
904
905 out_ce:
906 return err;
907 }
908
emit_clear(struct i915_request * rq,u32 offset,int size,u32 value,bool is_lmem)909 static int emit_clear(struct i915_request *rq, u32 offset, int size,
910 u32 value, bool is_lmem)
911 {
912 struct drm_i915_private *i915 = rq->engine->i915;
913 int mocs = rq->engine->gt->mocs.uc_index << 1;
914 const int ver = GRAPHICS_VER(i915);
915 int ring_sz;
916 u32 *cs;
917
918 GEM_BUG_ON(size >> PAGE_SHIFT > S16_MAX);
919
920 if (HAS_FLAT_CCS(i915) && ver >= 12)
921 ring_sz = XY_FAST_COLOR_BLT_DW;
922 else if (ver >= 8)
923 ring_sz = 8;
924 else
925 ring_sz = 6;
926
927 cs = intel_ring_begin(rq, ring_sz);
928 if (IS_ERR(cs))
929 return PTR_ERR(cs);
930
931 if (HAS_FLAT_CCS(i915) && ver >= 12) {
932 *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
933 (XY_FAST_COLOR_BLT_DW - 2);
934 *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) |
935 (PAGE_SIZE - 1);
936 *cs++ = 0;
937 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
938 *cs++ = offset;
939 *cs++ = rq->engine->instance;
940 *cs++ = !is_lmem << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
941 /* BG7 */
942 *cs++ = value;
943 *cs++ = 0;
944 *cs++ = 0;
945 *cs++ = 0;
946 /* BG11 */
947 *cs++ = 0;
948 *cs++ = 0;
949 /* BG13 */
950 *cs++ = 0;
951 *cs++ = 0;
952 *cs++ = 0;
953 } else if (ver >= 8) {
954 *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (7 - 2);
955 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
956 *cs++ = 0;
957 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
958 *cs++ = offset;
959 *cs++ = rq->engine->instance;
960 *cs++ = value;
961 *cs++ = MI_NOOP;
962 } else {
963 *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
964 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
965 *cs++ = 0;
966 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
967 *cs++ = offset;
968 *cs++ = value;
969 }
970
971 intel_ring_advance(rq, cs);
972 return 0;
973 }
974
975 int
intel_context_migrate_clear(struct intel_context * ce,const struct i915_deps * deps,struct scatterlist * sg,enum i915_cache_level cache_level,bool is_lmem,u32 value,struct i915_request ** out)976 intel_context_migrate_clear(struct intel_context *ce,
977 const struct i915_deps *deps,
978 struct scatterlist *sg,
979 enum i915_cache_level cache_level,
980 bool is_lmem,
981 u32 value,
982 struct i915_request **out)
983 {
984 struct drm_i915_private *i915 = ce->engine->i915;
985 struct sgt_dma it = sg_sgt(sg);
986 struct i915_request *rq;
987 u32 offset;
988 int err;
989
990 GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
991 *out = NULL;
992
993 GEM_BUG_ON(ce->ring->size < SZ_64K);
994
995 offset = 0;
996 if (HAS_64K_PAGES(i915) && is_lmem)
997 offset = CHUNK_SZ;
998
999 do {
1000 int len;
1001
1002 rq = i915_request_create(ce);
1003 if (IS_ERR(rq)) {
1004 err = PTR_ERR(rq);
1005 goto out_ce;
1006 }
1007
1008 if (deps) {
1009 err = i915_request_await_deps(rq, deps);
1010 if (err)
1011 goto out_rq;
1012
1013 if (rq->engine->emit_init_breadcrumb) {
1014 err = rq->engine->emit_init_breadcrumb(rq);
1015 if (err)
1016 goto out_rq;
1017 }
1018
1019 deps = NULL;
1020 }
1021
1022 /* The PTE updates + clear must not be interrupted. */
1023 err = emit_no_arbitration(rq);
1024 if (err)
1025 goto out_rq;
1026
1027 len = emit_pte(rq, &it, cache_level, is_lmem, offset, CHUNK_SZ);
1028 if (len <= 0) {
1029 err = len;
1030 goto out_rq;
1031 }
1032
1033 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
1034 if (err)
1035 goto out_rq;
1036
1037 err = emit_clear(rq, offset, len, value, is_lmem);
1038 if (err)
1039 goto out_rq;
1040
1041 if (HAS_FLAT_CCS(i915) && is_lmem && !value) {
1042 /*
1043 * copy the content of memory into corresponding
1044 * ccs surface
1045 */
1046 err = emit_copy_ccs(rq, offset, INDIRECT_ACCESS, offset,
1047 DIRECT_ACCESS, len);
1048 if (err)
1049 goto out_rq;
1050 }
1051
1052 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
1053
1054 /* Arbitration is re-enabled between requests. */
1055 out_rq:
1056 if (*out)
1057 i915_request_put(*out);
1058 *out = i915_request_get(rq);
1059 i915_request_add(rq);
1060 if (err || !it.sg || !sg_dma_len(it.sg))
1061 break;
1062
1063 cond_resched();
1064 } while (1);
1065
1066 out_ce:
1067 return err;
1068 }
1069
intel_migrate_copy(struct intel_migrate * m,struct i915_gem_ww_ctx * ww,const struct i915_deps * deps,struct scatterlist * src,enum i915_cache_level src_cache_level,bool src_is_lmem,struct scatterlist * dst,enum i915_cache_level dst_cache_level,bool dst_is_lmem,struct i915_request ** out)1070 int intel_migrate_copy(struct intel_migrate *m,
1071 struct i915_gem_ww_ctx *ww,
1072 const struct i915_deps *deps,
1073 struct scatterlist *src,
1074 enum i915_cache_level src_cache_level,
1075 bool src_is_lmem,
1076 struct scatterlist *dst,
1077 enum i915_cache_level dst_cache_level,
1078 bool dst_is_lmem,
1079 struct i915_request **out)
1080 {
1081 struct intel_context *ce;
1082 int err;
1083
1084 *out = NULL;
1085 if (!m->context)
1086 return -ENODEV;
1087
1088 ce = intel_migrate_create_context(m);
1089 if (IS_ERR(ce))
1090 ce = intel_context_get(m->context);
1091 GEM_BUG_ON(IS_ERR(ce));
1092
1093 err = intel_context_pin_ww(ce, ww);
1094 if (err)
1095 goto out;
1096
1097 err = intel_context_migrate_copy(ce, deps,
1098 src, src_cache_level, src_is_lmem,
1099 dst, dst_cache_level, dst_is_lmem,
1100 out);
1101
1102 intel_context_unpin(ce);
1103 out:
1104 intel_context_put(ce);
1105 return err;
1106 }
1107
1108 int
intel_migrate_clear(struct intel_migrate * m,struct i915_gem_ww_ctx * ww,const struct i915_deps * deps,struct scatterlist * sg,enum i915_cache_level cache_level,bool is_lmem,u32 value,struct i915_request ** out)1109 intel_migrate_clear(struct intel_migrate *m,
1110 struct i915_gem_ww_ctx *ww,
1111 const struct i915_deps *deps,
1112 struct scatterlist *sg,
1113 enum i915_cache_level cache_level,
1114 bool is_lmem,
1115 u32 value,
1116 struct i915_request **out)
1117 {
1118 struct intel_context *ce;
1119 int err;
1120
1121 *out = NULL;
1122 if (!m->context)
1123 return -ENODEV;
1124
1125 ce = intel_migrate_create_context(m);
1126 if (IS_ERR(ce))
1127 ce = intel_context_get(m->context);
1128 GEM_BUG_ON(IS_ERR(ce));
1129
1130 err = intel_context_pin_ww(ce, ww);
1131 if (err)
1132 goto out;
1133
1134 err = intel_context_migrate_clear(ce, deps, sg, cache_level,
1135 is_lmem, value, out);
1136
1137 intel_context_unpin(ce);
1138 out:
1139 intel_context_put(ce);
1140 return err;
1141 }
1142
intel_migrate_fini(struct intel_migrate * m)1143 void intel_migrate_fini(struct intel_migrate *m)
1144 {
1145 struct intel_context *ce;
1146
1147 ce = fetch_and_zero(&m->context);
1148 if (!ce)
1149 return;
1150
1151 intel_engine_destroy_pinned_context(ce);
1152 }
1153
1154 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1155 #include "selftest_migrate.c"
1156 #endif
1157