1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Exception handling code
4  *
5  * Copyright (C) 2019 ARM Ltd.
6  */
7 
8 #include <linux/context_tracking.h>
9 #include <linux/kasan.h>
10 #include <linux/linkage.h>
11 #include <linux/lockdep.h>
12 #include <linux/ptrace.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/thread_info.h>
16 
17 #include <asm/cpufeature.h>
18 #include <asm/daifflags.h>
19 #include <asm/esr.h>
20 #include <asm/exception.h>
21 #include <asm/irq_regs.h>
22 #include <asm/kprobes.h>
23 #include <asm/mmu.h>
24 #include <asm/processor.h>
25 #include <asm/sdei.h>
26 #include <asm/stacktrace.h>
27 #include <asm/sysreg.h>
28 #include <asm/system_misc.h>
29 
30 /*
31  * Handle IRQ/context state management when entering from kernel mode.
32  * Before this function is called it is not safe to call regular kernel code,
33  * intrumentable code, or any code which may trigger an exception.
34  *
35  * This is intended to match the logic in irqentry_enter(), handling the kernel
36  * mode transitions only.
37  */
__enter_from_kernel_mode(struct pt_regs * regs)38 static __always_inline void __enter_from_kernel_mode(struct pt_regs *regs)
39 {
40 	regs->exit_rcu = false;
41 
42 	if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) {
43 		lockdep_hardirqs_off(CALLER_ADDR0);
44 		rcu_irq_enter();
45 		trace_hardirqs_off_finish();
46 
47 		regs->exit_rcu = true;
48 		return;
49 	}
50 
51 	lockdep_hardirqs_off(CALLER_ADDR0);
52 	rcu_irq_enter_check_tick();
53 	trace_hardirqs_off_finish();
54 }
55 
enter_from_kernel_mode(struct pt_regs * regs)56 static void noinstr enter_from_kernel_mode(struct pt_regs *regs)
57 {
58 	__enter_from_kernel_mode(regs);
59 	mte_check_tfsr_entry();
60 	mte_disable_tco_entry(current);
61 }
62 
63 /*
64  * Handle IRQ/context state management when exiting to kernel mode.
65  * After this function returns it is not safe to call regular kernel code,
66  * intrumentable code, or any code which may trigger an exception.
67  *
68  * This is intended to match the logic in irqentry_exit(), handling the kernel
69  * mode transitions only, and with preemption handled elsewhere.
70  */
__exit_to_kernel_mode(struct pt_regs * regs)71 static __always_inline void __exit_to_kernel_mode(struct pt_regs *regs)
72 {
73 	lockdep_assert_irqs_disabled();
74 
75 	if (interrupts_enabled(regs)) {
76 		if (regs->exit_rcu) {
77 			trace_hardirqs_on_prepare();
78 			lockdep_hardirqs_on_prepare();
79 			rcu_irq_exit();
80 			lockdep_hardirqs_on(CALLER_ADDR0);
81 			return;
82 		}
83 
84 		trace_hardirqs_on();
85 	} else {
86 		if (regs->exit_rcu)
87 			rcu_irq_exit();
88 	}
89 }
90 
exit_to_kernel_mode(struct pt_regs * regs)91 static void noinstr exit_to_kernel_mode(struct pt_regs *regs)
92 {
93 	mte_check_tfsr_exit();
94 	__exit_to_kernel_mode(regs);
95 }
96 
97 /*
98  * Handle IRQ/context state management when entering from user mode.
99  * Before this function is called it is not safe to call regular kernel code,
100  * intrumentable code, or any code which may trigger an exception.
101  */
__enter_from_user_mode(void)102 static __always_inline void __enter_from_user_mode(void)
103 {
104 	lockdep_hardirqs_off(CALLER_ADDR0);
105 	CT_WARN_ON(ct_state() != CONTEXT_USER);
106 	user_exit_irqoff();
107 	trace_hardirqs_off_finish();
108 	mte_disable_tco_entry(current);
109 }
110 
enter_from_user_mode(struct pt_regs * regs)111 static __always_inline void enter_from_user_mode(struct pt_regs *regs)
112 {
113 	__enter_from_user_mode();
114 }
115 
116 /*
117  * Handle IRQ/context state management when exiting to user mode.
118  * After this function returns it is not safe to call regular kernel code,
119  * intrumentable code, or any code which may trigger an exception.
120  */
__exit_to_user_mode(void)121 static __always_inline void __exit_to_user_mode(void)
122 {
123 	trace_hardirqs_on_prepare();
124 	lockdep_hardirqs_on_prepare();
125 	user_enter_irqoff();
126 	lockdep_hardirqs_on(CALLER_ADDR0);
127 }
128 
prepare_exit_to_user_mode(struct pt_regs * regs)129 static __always_inline void prepare_exit_to_user_mode(struct pt_regs *regs)
130 {
131 	unsigned long flags;
132 
133 	local_daif_mask();
134 
135 	flags = read_thread_flags();
136 	if (unlikely(flags & _TIF_WORK_MASK))
137 		do_notify_resume(regs, flags);
138 }
139 
exit_to_user_mode(struct pt_regs * regs)140 static __always_inline void exit_to_user_mode(struct pt_regs *regs)
141 {
142 	prepare_exit_to_user_mode(regs);
143 	mte_check_tfsr_exit();
144 	__exit_to_user_mode();
145 }
146 
asm_exit_to_user_mode(struct pt_regs * regs)147 asmlinkage void noinstr asm_exit_to_user_mode(struct pt_regs *regs)
148 {
149 	exit_to_user_mode(regs);
150 }
151 
152 /*
153  * Handle IRQ/context state management when entering an NMI from user/kernel
154  * mode. Before this function is called it is not safe to call regular kernel
155  * code, intrumentable code, or any code which may trigger an exception.
156  */
arm64_enter_nmi(struct pt_regs * regs)157 static void noinstr arm64_enter_nmi(struct pt_regs *regs)
158 {
159 	regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
160 
161 	__nmi_enter();
162 	lockdep_hardirqs_off(CALLER_ADDR0);
163 	lockdep_hardirq_enter();
164 	rcu_nmi_enter();
165 
166 	trace_hardirqs_off_finish();
167 	ftrace_nmi_enter();
168 }
169 
170 /*
171  * Handle IRQ/context state management when exiting an NMI from user/kernel
172  * mode. After this function returns it is not safe to call regular kernel
173  * code, intrumentable code, or any code which may trigger an exception.
174  */
arm64_exit_nmi(struct pt_regs * regs)175 static void noinstr arm64_exit_nmi(struct pt_regs *regs)
176 {
177 	bool restore = regs->lockdep_hardirqs;
178 
179 	ftrace_nmi_exit();
180 	if (restore) {
181 		trace_hardirqs_on_prepare();
182 		lockdep_hardirqs_on_prepare();
183 	}
184 
185 	rcu_nmi_exit();
186 	lockdep_hardirq_exit();
187 	if (restore)
188 		lockdep_hardirqs_on(CALLER_ADDR0);
189 	__nmi_exit();
190 }
191 
192 /*
193  * Handle IRQ/context state management when entering a debug exception from
194  * kernel mode. Before this function is called it is not safe to call regular
195  * kernel code, intrumentable code, or any code which may trigger an exception.
196  */
arm64_enter_el1_dbg(struct pt_regs * regs)197 static void noinstr arm64_enter_el1_dbg(struct pt_regs *regs)
198 {
199 	regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
200 
201 	lockdep_hardirqs_off(CALLER_ADDR0);
202 	rcu_nmi_enter();
203 
204 	trace_hardirqs_off_finish();
205 }
206 
207 /*
208  * Handle IRQ/context state management when exiting a debug exception from
209  * kernel mode. After this function returns it is not safe to call regular
210  * kernel code, intrumentable code, or any code which may trigger an exception.
211  */
arm64_exit_el1_dbg(struct pt_regs * regs)212 static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs)
213 {
214 	bool restore = regs->lockdep_hardirqs;
215 
216 	if (restore) {
217 		trace_hardirqs_on_prepare();
218 		lockdep_hardirqs_on_prepare();
219 	}
220 
221 	rcu_nmi_exit();
222 	if (restore)
223 		lockdep_hardirqs_on(CALLER_ADDR0);
224 }
225 
226 #ifdef CONFIG_PREEMPT_DYNAMIC
227 DEFINE_STATIC_KEY_TRUE(sk_dynamic_irqentry_exit_cond_resched);
228 #define need_irq_preemption() \
229 	(static_branch_unlikely(&sk_dynamic_irqentry_exit_cond_resched))
230 #else
231 #define need_irq_preemption()	(IS_ENABLED(CONFIG_PREEMPTION))
232 #endif
233 
arm64_preempt_schedule_irq(void)234 static void __sched arm64_preempt_schedule_irq(void)
235 {
236 	if (!need_irq_preemption())
237 		return;
238 
239 	/*
240 	 * Note: thread_info::preempt_count includes both thread_info::count
241 	 * and thread_info::need_resched, and is not equivalent to
242 	 * preempt_count().
243 	 */
244 	if (READ_ONCE(current_thread_info()->preempt_count) != 0)
245 		return;
246 
247 	/*
248 	 * DAIF.DA are cleared at the start of IRQ/FIQ handling, and when GIC
249 	 * priority masking is used the GIC irqchip driver will clear DAIF.IF
250 	 * using gic_arch_enable_irqs() for normal IRQs. If anything is set in
251 	 * DAIF we must have handled an NMI, so skip preemption.
252 	 */
253 	if (system_uses_irq_prio_masking() && read_sysreg(daif))
254 		return;
255 
256 	/*
257 	 * Preempting a task from an IRQ means we leave copies of PSTATE
258 	 * on the stack. cpufeature's enable calls may modify PSTATE, but
259 	 * resuming one of these preempted tasks would undo those changes.
260 	 *
261 	 * Only allow a task to be preempted once cpufeatures have been
262 	 * enabled.
263 	 */
264 	if (system_capabilities_finalized())
265 		preempt_schedule_irq();
266 }
267 
do_interrupt_handler(struct pt_regs * regs,void (* handler)(struct pt_regs *))268 static void do_interrupt_handler(struct pt_regs *regs,
269 				 void (*handler)(struct pt_regs *))
270 {
271 	struct pt_regs *old_regs = set_irq_regs(regs);
272 
273 	if (on_thread_stack())
274 		call_on_irq_stack(regs, handler);
275 	else
276 		handler(regs);
277 
278 	set_irq_regs(old_regs);
279 }
280 
281 extern void (*handle_arch_irq)(struct pt_regs *);
282 extern void (*handle_arch_fiq)(struct pt_regs *);
283 
__panic_unhandled(struct pt_regs * regs,const char * vector,unsigned long esr)284 static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector,
285 				      unsigned long esr)
286 {
287 	arm64_enter_nmi(regs);
288 
289 	console_verbose();
290 
291 	pr_crit("Unhandled %s exception on CPU%d, ESR 0x%016lx -- %s\n",
292 		vector, smp_processor_id(), esr,
293 		esr_get_class_string(esr));
294 
295 	__show_regs(regs);
296 	panic("Unhandled exception");
297 }
298 
299 #define UNHANDLED(el, regsize, vector)							\
300 asmlinkage void noinstr el##_##regsize##_##vector##_handler(struct pt_regs *regs)	\
301 {											\
302 	const char *desc = #regsize "-bit " #el " " #vector;				\
303 	__panic_unhandled(regs, desc, read_sysreg(esr_el1));				\
304 }
305 
306 #ifdef CONFIG_ARM64_ERRATUM_1463225
307 static DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
308 
cortex_a76_erratum_1463225_svc_handler(void)309 static void cortex_a76_erratum_1463225_svc_handler(void)
310 {
311 	u32 reg, val;
312 
313 	if (!unlikely(test_thread_flag(TIF_SINGLESTEP)))
314 		return;
315 
316 	if (!unlikely(this_cpu_has_cap(ARM64_WORKAROUND_1463225)))
317 		return;
318 
319 	__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 1);
320 	reg = read_sysreg(mdscr_el1);
321 	val = reg | DBG_MDSCR_SS | DBG_MDSCR_KDE;
322 	write_sysreg(val, mdscr_el1);
323 	asm volatile("msr daifclr, #8");
324 	isb();
325 
326 	/* We will have taken a single-step exception by this point */
327 
328 	write_sysreg(reg, mdscr_el1);
329 	__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 0);
330 }
331 
cortex_a76_erratum_1463225_debug_handler(struct pt_regs * regs)332 static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
333 {
334 	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
335 		return false;
336 
337 	/*
338 	 * We've taken a dummy step exception from the kernel to ensure
339 	 * that interrupts are re-enabled on the syscall path. Return back
340 	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
341 	 * masked so that we can safely restore the mdscr and get on with
342 	 * handling the syscall.
343 	 */
344 	regs->pstate |= PSR_D_BIT;
345 	return true;
346 }
347 #else /* CONFIG_ARM64_ERRATUM_1463225 */
cortex_a76_erratum_1463225_svc_handler(void)348 static void cortex_a76_erratum_1463225_svc_handler(void) { }
cortex_a76_erratum_1463225_debug_handler(struct pt_regs * regs)349 static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
350 {
351 	return false;
352 }
353 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
354 
355 UNHANDLED(el1t, 64, sync)
356 UNHANDLED(el1t, 64, irq)
357 UNHANDLED(el1t, 64, fiq)
358 UNHANDLED(el1t, 64, error)
359 
el1_abort(struct pt_regs * regs,unsigned long esr)360 static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr)
361 {
362 	unsigned long far = read_sysreg(far_el1);
363 
364 	enter_from_kernel_mode(regs);
365 	local_daif_inherit(regs);
366 	do_mem_abort(far, esr, regs);
367 	local_daif_mask();
368 	exit_to_kernel_mode(regs);
369 }
370 
el1_pc(struct pt_regs * regs,unsigned long esr)371 static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr)
372 {
373 	unsigned long far = read_sysreg(far_el1);
374 
375 	enter_from_kernel_mode(regs);
376 	local_daif_inherit(regs);
377 	do_sp_pc_abort(far, esr, regs);
378 	local_daif_mask();
379 	exit_to_kernel_mode(regs);
380 }
381 
el1_undef(struct pt_regs * regs)382 static void noinstr el1_undef(struct pt_regs *regs)
383 {
384 	enter_from_kernel_mode(regs);
385 	local_daif_inherit(regs);
386 	do_undefinstr(regs);
387 	local_daif_mask();
388 	exit_to_kernel_mode(regs);
389 }
390 
el1_dbg(struct pt_regs * regs,unsigned long esr)391 static void noinstr el1_dbg(struct pt_regs *regs, unsigned long esr)
392 {
393 	unsigned long far = read_sysreg(far_el1);
394 
395 	arm64_enter_el1_dbg(regs);
396 	if (!cortex_a76_erratum_1463225_debug_handler(regs))
397 		do_debug_exception(far, esr, regs);
398 	arm64_exit_el1_dbg(regs);
399 }
400 
el1_fpac(struct pt_regs * regs,unsigned long esr)401 static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr)
402 {
403 	enter_from_kernel_mode(regs);
404 	local_daif_inherit(regs);
405 	do_ptrauth_fault(regs, esr);
406 	local_daif_mask();
407 	exit_to_kernel_mode(regs);
408 }
409 
el1h_64_sync_handler(struct pt_regs * regs)410 asmlinkage void noinstr el1h_64_sync_handler(struct pt_regs *regs)
411 {
412 	unsigned long esr = read_sysreg(esr_el1);
413 
414 	switch (ESR_ELx_EC(esr)) {
415 	case ESR_ELx_EC_DABT_CUR:
416 	case ESR_ELx_EC_IABT_CUR:
417 		el1_abort(regs, esr);
418 		break;
419 	/*
420 	 * We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a
421 	 * recursive exception when trying to push the initial pt_regs.
422 	 */
423 	case ESR_ELx_EC_PC_ALIGN:
424 		el1_pc(regs, esr);
425 		break;
426 	case ESR_ELx_EC_SYS64:
427 	case ESR_ELx_EC_UNKNOWN:
428 		el1_undef(regs);
429 		break;
430 	case ESR_ELx_EC_BREAKPT_CUR:
431 	case ESR_ELx_EC_SOFTSTP_CUR:
432 	case ESR_ELx_EC_WATCHPT_CUR:
433 	case ESR_ELx_EC_BRK64:
434 		el1_dbg(regs, esr);
435 		break;
436 	case ESR_ELx_EC_FPAC:
437 		el1_fpac(regs, esr);
438 		break;
439 	default:
440 		__panic_unhandled(regs, "64-bit el1h sync", esr);
441 	}
442 }
443 
__el1_pnmi(struct pt_regs * regs,void (* handler)(struct pt_regs *))444 static __always_inline void __el1_pnmi(struct pt_regs *regs,
445 				       void (*handler)(struct pt_regs *))
446 {
447 	arm64_enter_nmi(regs);
448 	do_interrupt_handler(regs, handler);
449 	arm64_exit_nmi(regs);
450 }
451 
__el1_irq(struct pt_regs * regs,void (* handler)(struct pt_regs *))452 static __always_inline void __el1_irq(struct pt_regs *regs,
453 				      void (*handler)(struct pt_regs *))
454 {
455 	enter_from_kernel_mode(regs);
456 
457 	irq_enter_rcu();
458 	do_interrupt_handler(regs, handler);
459 	irq_exit_rcu();
460 
461 	arm64_preempt_schedule_irq();
462 
463 	exit_to_kernel_mode(regs);
464 }
el1_interrupt(struct pt_regs * regs,void (* handler)(struct pt_regs *))465 static void noinstr el1_interrupt(struct pt_regs *regs,
466 				  void (*handler)(struct pt_regs *))
467 {
468 	write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
469 
470 	if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs))
471 		__el1_pnmi(regs, handler);
472 	else
473 		__el1_irq(regs, handler);
474 }
475 
el1h_64_irq_handler(struct pt_regs * regs)476 asmlinkage void noinstr el1h_64_irq_handler(struct pt_regs *regs)
477 {
478 	el1_interrupt(regs, handle_arch_irq);
479 }
480 
el1h_64_fiq_handler(struct pt_regs * regs)481 asmlinkage void noinstr el1h_64_fiq_handler(struct pt_regs *regs)
482 {
483 	el1_interrupt(regs, handle_arch_fiq);
484 }
485 
el1h_64_error_handler(struct pt_regs * regs)486 asmlinkage void noinstr el1h_64_error_handler(struct pt_regs *regs)
487 {
488 	unsigned long esr = read_sysreg(esr_el1);
489 
490 	local_daif_restore(DAIF_ERRCTX);
491 	arm64_enter_nmi(regs);
492 	do_serror(regs, esr);
493 	arm64_exit_nmi(regs);
494 }
495 
el0_da(struct pt_regs * regs,unsigned long esr)496 static void noinstr el0_da(struct pt_regs *regs, unsigned long esr)
497 {
498 	unsigned long far = read_sysreg(far_el1);
499 
500 	enter_from_user_mode(regs);
501 	local_daif_restore(DAIF_PROCCTX);
502 	do_mem_abort(far, esr, regs);
503 	exit_to_user_mode(regs);
504 }
505 
el0_ia(struct pt_regs * regs,unsigned long esr)506 static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr)
507 {
508 	unsigned long far = read_sysreg(far_el1);
509 
510 	/*
511 	 * We've taken an instruction abort from userspace and not yet
512 	 * re-enabled IRQs. If the address is a kernel address, apply
513 	 * BP hardening prior to enabling IRQs and pre-emption.
514 	 */
515 	if (!is_ttbr0_addr(far))
516 		arm64_apply_bp_hardening();
517 
518 	enter_from_user_mode(regs);
519 	local_daif_restore(DAIF_PROCCTX);
520 	do_mem_abort(far, esr, regs);
521 	exit_to_user_mode(regs);
522 }
523 
el0_fpsimd_acc(struct pt_regs * regs,unsigned long esr)524 static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr)
525 {
526 	enter_from_user_mode(regs);
527 	local_daif_restore(DAIF_PROCCTX);
528 	do_fpsimd_acc(esr, regs);
529 	exit_to_user_mode(regs);
530 }
531 
el0_sve_acc(struct pt_regs * regs,unsigned long esr)532 static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr)
533 {
534 	enter_from_user_mode(regs);
535 	local_daif_restore(DAIF_PROCCTX);
536 	do_sve_acc(esr, regs);
537 	exit_to_user_mode(regs);
538 }
539 
el0_sme_acc(struct pt_regs * regs,unsigned long esr)540 static void noinstr el0_sme_acc(struct pt_regs *regs, unsigned long esr)
541 {
542 	enter_from_user_mode(regs);
543 	local_daif_restore(DAIF_PROCCTX);
544 	do_sme_acc(esr, regs);
545 	exit_to_user_mode(regs);
546 }
547 
el0_fpsimd_exc(struct pt_regs * regs,unsigned long esr)548 static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr)
549 {
550 	enter_from_user_mode(regs);
551 	local_daif_restore(DAIF_PROCCTX);
552 	do_fpsimd_exc(esr, regs);
553 	exit_to_user_mode(regs);
554 }
555 
el0_sys(struct pt_regs * regs,unsigned long esr)556 static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr)
557 {
558 	enter_from_user_mode(regs);
559 	local_daif_restore(DAIF_PROCCTX);
560 	do_sysinstr(esr, regs);
561 	exit_to_user_mode(regs);
562 }
563 
el0_pc(struct pt_regs * regs,unsigned long esr)564 static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr)
565 {
566 	unsigned long far = read_sysreg(far_el1);
567 
568 	if (!is_ttbr0_addr(instruction_pointer(regs)))
569 		arm64_apply_bp_hardening();
570 
571 	enter_from_user_mode(regs);
572 	local_daif_restore(DAIF_PROCCTX);
573 	do_sp_pc_abort(far, esr, regs);
574 	exit_to_user_mode(regs);
575 }
576 
el0_sp(struct pt_regs * regs,unsigned long esr)577 static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr)
578 {
579 	enter_from_user_mode(regs);
580 	local_daif_restore(DAIF_PROCCTX);
581 	do_sp_pc_abort(regs->sp, esr, regs);
582 	exit_to_user_mode(regs);
583 }
584 
el0_undef(struct pt_regs * regs)585 static void noinstr el0_undef(struct pt_regs *regs)
586 {
587 	enter_from_user_mode(regs);
588 	local_daif_restore(DAIF_PROCCTX);
589 	do_undefinstr(regs);
590 	exit_to_user_mode(regs);
591 }
592 
el0_bti(struct pt_regs * regs)593 static void noinstr el0_bti(struct pt_regs *regs)
594 {
595 	enter_from_user_mode(regs);
596 	local_daif_restore(DAIF_PROCCTX);
597 	do_bti(regs);
598 	exit_to_user_mode(regs);
599 }
600 
el0_inv(struct pt_regs * regs,unsigned long esr)601 static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr)
602 {
603 	enter_from_user_mode(regs);
604 	local_daif_restore(DAIF_PROCCTX);
605 	bad_el0_sync(regs, 0, esr);
606 	exit_to_user_mode(regs);
607 }
608 
el0_dbg(struct pt_regs * regs,unsigned long esr)609 static void noinstr el0_dbg(struct pt_regs *regs, unsigned long esr)
610 {
611 	/* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */
612 	unsigned long far = read_sysreg(far_el1);
613 
614 	enter_from_user_mode(regs);
615 	do_debug_exception(far, esr, regs);
616 	local_daif_restore(DAIF_PROCCTX);
617 	exit_to_user_mode(regs);
618 }
619 
el0_svc(struct pt_regs * regs)620 static void noinstr el0_svc(struct pt_regs *regs)
621 {
622 	enter_from_user_mode(regs);
623 	cortex_a76_erratum_1463225_svc_handler();
624 	do_el0_svc(regs);
625 	exit_to_user_mode(regs);
626 }
627 
el0_fpac(struct pt_regs * regs,unsigned long esr)628 static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr)
629 {
630 	enter_from_user_mode(regs);
631 	local_daif_restore(DAIF_PROCCTX);
632 	do_ptrauth_fault(regs, esr);
633 	exit_to_user_mode(regs);
634 }
635 
el0t_64_sync_handler(struct pt_regs * regs)636 asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs)
637 {
638 	unsigned long esr = read_sysreg(esr_el1);
639 
640 	switch (ESR_ELx_EC(esr)) {
641 	case ESR_ELx_EC_SVC64:
642 		el0_svc(regs);
643 		break;
644 	case ESR_ELx_EC_DABT_LOW:
645 		el0_da(regs, esr);
646 		break;
647 	case ESR_ELx_EC_IABT_LOW:
648 		el0_ia(regs, esr);
649 		break;
650 	case ESR_ELx_EC_FP_ASIMD:
651 		el0_fpsimd_acc(regs, esr);
652 		break;
653 	case ESR_ELx_EC_SVE:
654 		el0_sve_acc(regs, esr);
655 		break;
656 	case ESR_ELx_EC_SME:
657 		el0_sme_acc(regs, esr);
658 		break;
659 	case ESR_ELx_EC_FP_EXC64:
660 		el0_fpsimd_exc(regs, esr);
661 		break;
662 	case ESR_ELx_EC_SYS64:
663 	case ESR_ELx_EC_WFx:
664 		el0_sys(regs, esr);
665 		break;
666 	case ESR_ELx_EC_SP_ALIGN:
667 		el0_sp(regs, esr);
668 		break;
669 	case ESR_ELx_EC_PC_ALIGN:
670 		el0_pc(regs, esr);
671 		break;
672 	case ESR_ELx_EC_UNKNOWN:
673 		el0_undef(regs);
674 		break;
675 	case ESR_ELx_EC_BTI:
676 		el0_bti(regs);
677 		break;
678 	case ESR_ELx_EC_BREAKPT_LOW:
679 	case ESR_ELx_EC_SOFTSTP_LOW:
680 	case ESR_ELx_EC_WATCHPT_LOW:
681 	case ESR_ELx_EC_BRK64:
682 		el0_dbg(regs, esr);
683 		break;
684 	case ESR_ELx_EC_FPAC:
685 		el0_fpac(regs, esr);
686 		break;
687 	default:
688 		el0_inv(regs, esr);
689 	}
690 }
691 
el0_interrupt(struct pt_regs * regs,void (* handler)(struct pt_regs *))692 static void noinstr el0_interrupt(struct pt_regs *regs,
693 				  void (*handler)(struct pt_regs *))
694 {
695 	enter_from_user_mode(regs);
696 
697 	write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
698 
699 	if (regs->pc & BIT(55))
700 		arm64_apply_bp_hardening();
701 
702 	irq_enter_rcu();
703 	do_interrupt_handler(regs, handler);
704 	irq_exit_rcu();
705 
706 	exit_to_user_mode(regs);
707 }
708 
__el0_irq_handler_common(struct pt_regs * regs)709 static void noinstr __el0_irq_handler_common(struct pt_regs *regs)
710 {
711 	el0_interrupt(regs, handle_arch_irq);
712 }
713 
el0t_64_irq_handler(struct pt_regs * regs)714 asmlinkage void noinstr el0t_64_irq_handler(struct pt_regs *regs)
715 {
716 	__el0_irq_handler_common(regs);
717 }
718 
__el0_fiq_handler_common(struct pt_regs * regs)719 static void noinstr __el0_fiq_handler_common(struct pt_regs *regs)
720 {
721 	el0_interrupt(regs, handle_arch_fiq);
722 }
723 
el0t_64_fiq_handler(struct pt_regs * regs)724 asmlinkage void noinstr el0t_64_fiq_handler(struct pt_regs *regs)
725 {
726 	__el0_fiq_handler_common(regs);
727 }
728 
__el0_error_handler_common(struct pt_regs * regs)729 static void noinstr __el0_error_handler_common(struct pt_regs *regs)
730 {
731 	unsigned long esr = read_sysreg(esr_el1);
732 
733 	enter_from_user_mode(regs);
734 	local_daif_restore(DAIF_ERRCTX);
735 	arm64_enter_nmi(regs);
736 	do_serror(regs, esr);
737 	arm64_exit_nmi(regs);
738 	local_daif_restore(DAIF_PROCCTX);
739 	exit_to_user_mode(regs);
740 }
741 
el0t_64_error_handler(struct pt_regs * regs)742 asmlinkage void noinstr el0t_64_error_handler(struct pt_regs *regs)
743 {
744 	__el0_error_handler_common(regs);
745 }
746 
747 #ifdef CONFIG_COMPAT
el0_cp15(struct pt_regs * regs,unsigned long esr)748 static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr)
749 {
750 	enter_from_user_mode(regs);
751 	local_daif_restore(DAIF_PROCCTX);
752 	do_cp15instr(esr, regs);
753 	exit_to_user_mode(regs);
754 }
755 
el0_svc_compat(struct pt_regs * regs)756 static void noinstr el0_svc_compat(struct pt_regs *regs)
757 {
758 	enter_from_user_mode(regs);
759 	cortex_a76_erratum_1463225_svc_handler();
760 	do_el0_svc_compat(regs);
761 	exit_to_user_mode(regs);
762 }
763 
el0t_32_sync_handler(struct pt_regs * regs)764 asmlinkage void noinstr el0t_32_sync_handler(struct pt_regs *regs)
765 {
766 	unsigned long esr = read_sysreg(esr_el1);
767 
768 	switch (ESR_ELx_EC(esr)) {
769 	case ESR_ELx_EC_SVC32:
770 		el0_svc_compat(regs);
771 		break;
772 	case ESR_ELx_EC_DABT_LOW:
773 		el0_da(regs, esr);
774 		break;
775 	case ESR_ELx_EC_IABT_LOW:
776 		el0_ia(regs, esr);
777 		break;
778 	case ESR_ELx_EC_FP_ASIMD:
779 		el0_fpsimd_acc(regs, esr);
780 		break;
781 	case ESR_ELx_EC_FP_EXC32:
782 		el0_fpsimd_exc(regs, esr);
783 		break;
784 	case ESR_ELx_EC_PC_ALIGN:
785 		el0_pc(regs, esr);
786 		break;
787 	case ESR_ELx_EC_UNKNOWN:
788 	case ESR_ELx_EC_CP14_MR:
789 	case ESR_ELx_EC_CP14_LS:
790 	case ESR_ELx_EC_CP14_64:
791 		el0_undef(regs);
792 		break;
793 	case ESR_ELx_EC_CP15_32:
794 	case ESR_ELx_EC_CP15_64:
795 		el0_cp15(regs, esr);
796 		break;
797 	case ESR_ELx_EC_BREAKPT_LOW:
798 	case ESR_ELx_EC_SOFTSTP_LOW:
799 	case ESR_ELx_EC_WATCHPT_LOW:
800 	case ESR_ELx_EC_BKPT32:
801 		el0_dbg(regs, esr);
802 		break;
803 	default:
804 		el0_inv(regs, esr);
805 	}
806 }
807 
el0t_32_irq_handler(struct pt_regs * regs)808 asmlinkage void noinstr el0t_32_irq_handler(struct pt_regs *regs)
809 {
810 	__el0_irq_handler_common(regs);
811 }
812 
el0t_32_fiq_handler(struct pt_regs * regs)813 asmlinkage void noinstr el0t_32_fiq_handler(struct pt_regs *regs)
814 {
815 	__el0_fiq_handler_common(regs);
816 }
817 
el0t_32_error_handler(struct pt_regs * regs)818 asmlinkage void noinstr el0t_32_error_handler(struct pt_regs *regs)
819 {
820 	__el0_error_handler_common(regs);
821 }
822 #else /* CONFIG_COMPAT */
823 UNHANDLED(el0t, 32, sync)
824 UNHANDLED(el0t, 32, irq)
825 UNHANDLED(el0t, 32, fiq)
826 UNHANDLED(el0t, 32, error)
827 #endif /* CONFIG_COMPAT */
828 
829 #ifdef CONFIG_VMAP_STACK
handle_bad_stack(struct pt_regs * regs)830 asmlinkage void noinstr handle_bad_stack(struct pt_regs *regs)
831 {
832 	unsigned long esr = read_sysreg(esr_el1);
833 	unsigned long far = read_sysreg(far_el1);
834 
835 	arm64_enter_nmi(regs);
836 	panic_bad_stack(regs, esr, far);
837 }
838 #endif /* CONFIG_VMAP_STACK */
839 
840 #ifdef CONFIG_ARM_SDE_INTERFACE
841 asmlinkage noinstr unsigned long
__sdei_handler(struct pt_regs * regs,struct sdei_registered_event * arg)842 __sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
843 {
844 	unsigned long ret;
845 
846 	/*
847 	 * We didn't take an exception to get here, so the HW hasn't
848 	 * set/cleared bits in PSTATE that we may rely on.
849 	 *
850 	 * The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to
851 	 * whether PSTATE bits are inherited unchanged or generated from
852 	 * scratch, and the TF-A implementation always clears PAN and always
853 	 * clears UAO. There are no other known implementations.
854 	 *
855 	 * Subsequent revisions (ARM DEN 0054B) follow the usual rules for how
856 	 * PSTATE is modified upon architectural exceptions, and so PAN is
857 	 * either inherited or set per SCTLR_ELx.SPAN, and UAO is always
858 	 * cleared.
859 	 *
860 	 * We must explicitly reset PAN to the expected state, including
861 	 * clearing it when the host isn't using it, in case a VM had it set.
862 	 */
863 	if (system_uses_hw_pan())
864 		set_pstate_pan(1);
865 	else if (cpu_has_pan())
866 		set_pstate_pan(0);
867 
868 	arm64_enter_nmi(regs);
869 	ret = do_sdei_event(regs, arg);
870 	arm64_exit_nmi(regs);
871 
872 	return ret;
873 }
874 #endif /* CONFIG_ARM_SDE_INTERFACE */
875