1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2010-2011 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 #include <linux/pci.h>
10 #include <linux/module.h>
11 #include "net_driver.h"
12 #include "efx.h"
13 #include "nic.h"
14 #include "io.h"
15 #include "mcdi.h"
16 #include "filter.h"
17 #include "mcdi_pcol.h"
18 #include "regs.h"
19 #include "vfdi.h"
20 
21 /* Number of longs required to track all the VIs in a VF */
22 #define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
23 
24 /* Maximum number of RX queues supported */
25 #define VF_MAX_RX_QUEUES 63
26 
27 /**
28  * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
29  * @VF_TX_FILTER_OFF: Disabled
30  * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
31  *	2 TX queues allowed per VF.
32  * @VF_TX_FILTER_ON: Enabled
33  */
34 enum efx_vf_tx_filter_mode {
35 	VF_TX_FILTER_OFF,
36 	VF_TX_FILTER_AUTO,
37 	VF_TX_FILTER_ON,
38 };
39 
40 /**
41  * struct efx_vf - Back-end resource and protocol state for a PCI VF
42  * @efx: The Efx NIC owning this VF
43  * @pci_rid: The PCI requester ID for this VF
44  * @pci_name: The PCI name (formatted address) of this VF
45  * @index: Index of VF within its port and PF.
46  * @req: VFDI incoming request work item. Incoming USR_EV events are received
47  *	by the NAPI handler, but must be handled by executing MCDI requests
48  *	inside a work item.
49  * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
50  * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
51  * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
52  * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
53  *	@status_lock
54  * @busy: VFDI request queued to be processed or being processed. Receiving
55  *	a VFDI request when @busy is set is an error condition.
56  * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
57  * @buftbl_base: Buffer table entries for this VF start at this index.
58  * @rx_filtering: Receive filtering has been requested by the VF driver.
59  * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
60  * @rx_filter_qid: VF relative qid for RX filter requested by VF.
61  * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
62  * @tx_filter_mode: Transmit MAC filtering mode.
63  * @tx_filter_id: Transmit MAC filter ID.
64  * @addr: The MAC address and outer vlan tag of the VF.
65  * @status_addr: VF DMA address of page for &struct vfdi_status updates.
66  * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
67  *	@peer_page_addrs and @peer_page_count from simultaneous
68  *	updates by the VM and consumption by
69  *	efx_sriov_update_vf_addr()
70  * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
71  * @peer_page_count: Number of entries in @peer_page_count.
72  * @evq0_addrs: Array of guest pages backing evq0.
73  * @evq0_count: Number of entries in @evq0_addrs.
74  * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
75  *	to wait for flush completions.
76  * @txq_lock: Mutex for TX queue allocation.
77  * @txq_mask: Mask of initialized transmit queues.
78  * @txq_count: Number of initialized transmit queues.
79  * @rxq_mask: Mask of initialized receive queues.
80  * @rxq_count: Number of initialized receive queues.
81  * @rxq_retry_mask: Mask or receive queues that need to be flushed again
82  *	due to flush failure.
83  * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
84  * @reset_work: Work item to schedule a VF reset.
85  */
86 struct efx_vf {
87 	struct efx_nic *efx;
88 	unsigned int pci_rid;
89 	char pci_name[13]; /* dddd:bb:dd.f */
90 	unsigned int index;
91 	struct work_struct req;
92 	u64 req_addr;
93 	int req_type;
94 	unsigned req_seqno;
95 	unsigned msg_seqno;
96 	bool busy;
97 	struct efx_buffer buf;
98 	unsigned buftbl_base;
99 	bool rx_filtering;
100 	enum efx_filter_flags rx_filter_flags;
101 	unsigned rx_filter_qid;
102 	int rx_filter_id;
103 	enum efx_vf_tx_filter_mode tx_filter_mode;
104 	int tx_filter_id;
105 	struct vfdi_endpoint addr;
106 	u64 status_addr;
107 	struct mutex status_lock;
108 	u64 *peer_page_addrs;
109 	unsigned peer_page_count;
110 	u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
111 		       EFX_BUF_SIZE];
112 	unsigned evq0_count;
113 	wait_queue_head_t flush_waitq;
114 	struct mutex txq_lock;
115 	unsigned long txq_mask[VI_MASK_LENGTH];
116 	unsigned txq_count;
117 	unsigned long rxq_mask[VI_MASK_LENGTH];
118 	unsigned rxq_count;
119 	unsigned long rxq_retry_mask[VI_MASK_LENGTH];
120 	atomic_t rxq_retry_count;
121 	struct work_struct reset_work;
122 };
123 
124 struct efx_memcpy_req {
125 	unsigned int from_rid;
126 	void *from_buf;
127 	u64 from_addr;
128 	unsigned int to_rid;
129 	u64 to_addr;
130 	unsigned length;
131 };
132 
133 /**
134  * struct efx_local_addr - A MAC address on the vswitch without a VF.
135  *
136  * Siena does not have a switch, so VFs can't transmit data to each
137  * other. Instead the VFs must be made aware of the local addresses
138  * on the vswitch, so that they can arrange for an alternative
139  * software datapath to be used.
140  *
141  * @link: List head for insertion into efx->local_addr_list.
142  * @addr: Ethernet address
143  */
144 struct efx_local_addr {
145 	struct list_head link;
146 	u8 addr[ETH_ALEN];
147 };
148 
149 /**
150  * struct efx_endpoint_page - Page of vfdi_endpoint structures
151  *
152  * @link: List head for insertion into efx->local_page_list.
153  * @ptr: Pointer to page.
154  * @addr: DMA address of page.
155  */
156 struct efx_endpoint_page {
157 	struct list_head link;
158 	void *ptr;
159 	dma_addr_t addr;
160 };
161 
162 /* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
163 #define EFX_BUFTBL_TXQ_BASE(_vf, _qid)					\
164 	((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
165 #define EFX_BUFTBL_RXQ_BASE(_vf, _qid)					\
166 	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
167 	 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
168 #define EFX_BUFTBL_EVQ_BASE(_vf, _qid)					\
169 	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
170 	 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
171 
172 #define EFX_FIELD_MASK(_field)			\
173 	((1 << _field ## _WIDTH) - 1)
174 
175 /* VFs can only use this many transmit channels */
176 static unsigned int vf_max_tx_channels = 2;
177 module_param(vf_max_tx_channels, uint, 0444);
178 MODULE_PARM_DESC(vf_max_tx_channels,
179 		 "Limit the number of TX channels VFs can use");
180 
181 static int max_vfs = -1;
182 module_param(max_vfs, int, 0444);
183 MODULE_PARM_DESC(max_vfs,
184 		 "Reduce the number of VFs initialized by the driver");
185 
186 /* Workqueue used by VFDI communication.  We can't use the global
187  * workqueue because it may be running the VF driver's probe()
188  * routine, which will be blocked there waiting for a VFDI response.
189  */
190 static struct workqueue_struct *vfdi_workqueue;
191 
abs_index(struct efx_vf * vf,unsigned index)192 static unsigned abs_index(struct efx_vf *vf, unsigned index)
193 {
194 	return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
195 }
196 
efx_sriov_cmd(struct efx_nic * efx,bool enable,unsigned * vi_scale_out,unsigned * vf_total_out)197 static int efx_sriov_cmd(struct efx_nic *efx, bool enable,
198 			 unsigned *vi_scale_out, unsigned *vf_total_out)
199 {
200 	u8 inbuf[MC_CMD_SRIOV_IN_LEN];
201 	u8 outbuf[MC_CMD_SRIOV_OUT_LEN];
202 	unsigned vi_scale, vf_total;
203 	size_t outlen;
204 	int rc;
205 
206 	MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
207 	MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
208 	MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
209 
210 	rc = efx_mcdi_rpc(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN,
211 			  outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen);
212 	if (rc)
213 		return rc;
214 	if (outlen < MC_CMD_SRIOV_OUT_LEN)
215 		return -EIO;
216 
217 	vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
218 	vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
219 	if (vi_scale > EFX_VI_SCALE_MAX)
220 		return -EOPNOTSUPP;
221 
222 	if (vi_scale_out)
223 		*vi_scale_out = vi_scale;
224 	if (vf_total_out)
225 		*vf_total_out = vf_total;
226 
227 	return 0;
228 }
229 
efx_sriov_usrev(struct efx_nic * efx,bool enabled)230 static void efx_sriov_usrev(struct efx_nic *efx, bool enabled)
231 {
232 	efx_oword_t reg;
233 
234 	EFX_POPULATE_OWORD_2(reg,
235 			     FRF_CZ_USREV_DIS, enabled ? 0 : 1,
236 			     FRF_CZ_DFLT_EVQ, efx->vfdi_channel->channel);
237 	efx_writeo(efx, &reg, FR_CZ_USR_EV_CFG);
238 }
239 
efx_sriov_memcpy(struct efx_nic * efx,struct efx_memcpy_req * req,unsigned int count)240 static int efx_sriov_memcpy(struct efx_nic *efx, struct efx_memcpy_req *req,
241 			    unsigned int count)
242 {
243 	u8 *inbuf, *record;
244 	unsigned int used;
245 	u32 from_rid, from_hi, from_lo;
246 	int rc;
247 
248 	mb();	/* Finish writing source/reading dest before DMA starts */
249 
250 	used = MC_CMD_MEMCPY_IN_LEN(count);
251 	if (WARN_ON(used > MCDI_CTL_SDU_LEN_MAX))
252 		return -ENOBUFS;
253 
254 	/* Allocate room for the largest request */
255 	inbuf = kzalloc(MCDI_CTL_SDU_LEN_MAX, GFP_KERNEL);
256 	if (inbuf == NULL)
257 		return -ENOMEM;
258 
259 	record = inbuf;
260 	MCDI_SET_DWORD(record, MEMCPY_IN_RECORD, count);
261 	while (count-- > 0) {
262 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
263 			       req->to_rid);
264 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR_LO,
265 			       (u32)req->to_addr);
266 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR_HI,
267 			       (u32)(req->to_addr >> 32));
268 		if (req->from_buf == NULL) {
269 			from_rid = req->from_rid;
270 			from_lo = (u32)req->from_addr;
271 			from_hi = (u32)(req->from_addr >> 32);
272 		} else {
273 			if (WARN_ON(used + req->length > MCDI_CTL_SDU_LEN_MAX)) {
274 				rc = -ENOBUFS;
275 				goto out;
276 			}
277 
278 			from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
279 			from_lo = used;
280 			from_hi = 0;
281 			memcpy(inbuf + used, req->from_buf, req->length);
282 			used += req->length;
283 		}
284 
285 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
286 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_LO,
287 			       from_lo);
288 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_HI,
289 			       from_hi);
290 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
291 			       req->length);
292 
293 		++req;
294 		record += MC_CMD_MEMCPY_IN_RECORD_LEN;
295 	}
296 
297 	rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
298 out:
299 	kfree(inbuf);
300 
301 	mb();	/* Don't write source/read dest before DMA is complete */
302 
303 	return rc;
304 }
305 
306 /* The TX filter is entirely controlled by this driver, and is modified
307  * underneath the feet of the VF
308  */
efx_sriov_reset_tx_filter(struct efx_vf * vf)309 static void efx_sriov_reset_tx_filter(struct efx_vf *vf)
310 {
311 	struct efx_nic *efx = vf->efx;
312 	struct efx_filter_spec filter;
313 	u16 vlan;
314 	int rc;
315 
316 	if (vf->tx_filter_id != -1) {
317 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
318 					  vf->tx_filter_id);
319 		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
320 			  vf->pci_name, vf->tx_filter_id);
321 		vf->tx_filter_id = -1;
322 	}
323 
324 	if (is_zero_ether_addr(vf->addr.mac_addr))
325 		return;
326 
327 	/* Turn on TX filtering automatically if not explicitly
328 	 * enabled or disabled.
329 	 */
330 	if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
331 		vf->tx_filter_mode = VF_TX_FILTER_ON;
332 
333 	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
334 	efx_filter_init_tx(&filter, abs_index(vf, 0));
335 	rc = efx_filter_set_eth_local(&filter,
336 				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
337 				      vf->addr.mac_addr);
338 	BUG_ON(rc);
339 
340 	rc = efx_filter_insert_filter(efx, &filter, true);
341 	if (rc < 0) {
342 		netif_warn(efx, hw, efx->net_dev,
343 			   "Unable to migrate tx filter for vf %s\n",
344 			   vf->pci_name);
345 	} else {
346 		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
347 			  vf->pci_name, rc);
348 		vf->tx_filter_id = rc;
349 	}
350 }
351 
352 /* The RX filter is managed here on behalf of the VF driver */
efx_sriov_reset_rx_filter(struct efx_vf * vf)353 static void efx_sriov_reset_rx_filter(struct efx_vf *vf)
354 {
355 	struct efx_nic *efx = vf->efx;
356 	struct efx_filter_spec filter;
357 	u16 vlan;
358 	int rc;
359 
360 	if (vf->rx_filter_id != -1) {
361 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
362 					  vf->rx_filter_id);
363 		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
364 			  vf->pci_name, vf->rx_filter_id);
365 		vf->rx_filter_id = -1;
366 	}
367 
368 	if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
369 		return;
370 
371 	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
372 	efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
373 			   vf->rx_filter_flags,
374 			   abs_index(vf, vf->rx_filter_qid));
375 	rc = efx_filter_set_eth_local(&filter,
376 				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
377 				      vf->addr.mac_addr);
378 	BUG_ON(rc);
379 
380 	rc = efx_filter_insert_filter(efx, &filter, true);
381 	if (rc < 0) {
382 		netif_warn(efx, hw, efx->net_dev,
383 			   "Unable to insert rx filter for vf %s\n",
384 			   vf->pci_name);
385 	} else {
386 		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
387 			  vf->pci_name, rc);
388 		vf->rx_filter_id = rc;
389 	}
390 }
391 
__efx_sriov_update_vf_addr(struct efx_vf * vf)392 static void __efx_sriov_update_vf_addr(struct efx_vf *vf)
393 {
394 	efx_sriov_reset_tx_filter(vf);
395 	efx_sriov_reset_rx_filter(vf);
396 	queue_work(vfdi_workqueue, &vf->efx->peer_work);
397 }
398 
399 /* Push the peer list to this VF. The caller must hold status_lock to interlock
400  * with VFDI requests, and they must be serialised against manipulation of
401  * local_page_list, either by acquiring local_lock or by running from
402  * efx_sriov_peer_work()
403  */
__efx_sriov_push_vf_status(struct efx_vf * vf)404 static void __efx_sriov_push_vf_status(struct efx_vf *vf)
405 {
406 	struct efx_nic *efx = vf->efx;
407 	struct vfdi_status *status = efx->vfdi_status.addr;
408 	struct efx_memcpy_req copy[4];
409 	struct efx_endpoint_page *epp;
410 	unsigned int pos, count;
411 	unsigned data_offset;
412 	efx_qword_t event;
413 
414 	WARN_ON(!mutex_is_locked(&vf->status_lock));
415 	WARN_ON(!vf->status_addr);
416 
417 	status->local = vf->addr;
418 	status->generation_end = ++status->generation_start;
419 
420 	memset(copy, '\0', sizeof(copy));
421 	/* Write generation_start */
422 	copy[0].from_buf = &status->generation_start;
423 	copy[0].to_rid = vf->pci_rid;
424 	copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
425 						     generation_start);
426 	copy[0].length = sizeof(status->generation_start);
427 	/* DMA the rest of the structure (excluding the generations). This
428 	 * assumes that the non-generation portion of vfdi_status is in
429 	 * one chunk starting at the version member.
430 	 */
431 	data_offset = offsetof(struct vfdi_status, version);
432 	copy[1].from_rid = efx->pci_dev->devfn;
433 	copy[1].from_addr = efx->vfdi_status.dma_addr + data_offset;
434 	copy[1].to_rid = vf->pci_rid;
435 	copy[1].to_addr = vf->status_addr + data_offset;
436 	copy[1].length =  status->length - data_offset;
437 
438 	/* Copy the peer pages */
439 	pos = 2;
440 	count = 0;
441 	list_for_each_entry(epp, &efx->local_page_list, link) {
442 		if (count == vf->peer_page_count) {
443 			/* The VF driver will know they need to provide more
444 			 * pages because peer_addr_count is too large.
445 			 */
446 			break;
447 		}
448 		copy[pos].from_buf = NULL;
449 		copy[pos].from_rid = efx->pci_dev->devfn;
450 		copy[pos].from_addr = epp->addr;
451 		copy[pos].to_rid = vf->pci_rid;
452 		copy[pos].to_addr = vf->peer_page_addrs[count];
453 		copy[pos].length = EFX_PAGE_SIZE;
454 
455 		if (++pos == ARRAY_SIZE(copy)) {
456 			efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
457 			pos = 0;
458 		}
459 		++count;
460 	}
461 
462 	/* Write generation_end */
463 	copy[pos].from_buf = &status->generation_end;
464 	copy[pos].to_rid = vf->pci_rid;
465 	copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
466 						       generation_end);
467 	copy[pos].length = sizeof(status->generation_end);
468 	efx_sriov_memcpy(efx, copy, pos + 1);
469 
470 	/* Notify the guest */
471 	EFX_POPULATE_QWORD_3(event,
472 			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
473 			     VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
474 			     VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
475 	++vf->msg_seqno;
476 	efx_generate_event(efx, EFX_VI_BASE + vf->index * efx_vf_size(efx),
477 			      &event);
478 }
479 
efx_sriov_bufs(struct efx_nic * efx,unsigned offset,u64 * addr,unsigned count)480 static void efx_sriov_bufs(struct efx_nic *efx, unsigned offset,
481 			   u64 *addr, unsigned count)
482 {
483 	efx_qword_t buf;
484 	unsigned pos;
485 
486 	for (pos = 0; pos < count; ++pos) {
487 		EFX_POPULATE_QWORD_3(buf,
488 				     FRF_AZ_BUF_ADR_REGION, 0,
489 				     FRF_AZ_BUF_ADR_FBUF,
490 				     addr ? addr[pos] >> 12 : 0,
491 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
492 		efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
493 				&buf, offset + pos);
494 	}
495 }
496 
bad_vf_index(struct efx_nic * efx,unsigned index)497 static bool bad_vf_index(struct efx_nic *efx, unsigned index)
498 {
499 	return index >= efx_vf_size(efx);
500 }
501 
bad_buf_count(unsigned buf_count,unsigned max_entry_count)502 static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
503 {
504 	unsigned max_buf_count = max_entry_count *
505 		sizeof(efx_qword_t) / EFX_BUF_SIZE;
506 
507 	return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
508 }
509 
510 /* Check that VI specified by per-port index belongs to a VF.
511  * Optionally set VF index and VI index within the VF.
512  */
map_vi_index(struct efx_nic * efx,unsigned abs_index,struct efx_vf ** vf_out,unsigned * rel_index_out)513 static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
514 			 struct efx_vf **vf_out, unsigned *rel_index_out)
515 {
516 	unsigned vf_i;
517 
518 	if (abs_index < EFX_VI_BASE)
519 		return true;
520 	vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
521 	if (vf_i >= efx->vf_init_count)
522 		return true;
523 
524 	if (vf_out)
525 		*vf_out = efx->vf + vf_i;
526 	if (rel_index_out)
527 		*rel_index_out = abs_index % efx_vf_size(efx);
528 	return false;
529 }
530 
efx_vfdi_init_evq(struct efx_vf * vf)531 static int efx_vfdi_init_evq(struct efx_vf *vf)
532 {
533 	struct efx_nic *efx = vf->efx;
534 	struct vfdi_req *req = vf->buf.addr;
535 	unsigned vf_evq = req->u.init_evq.index;
536 	unsigned buf_count = req->u.init_evq.buf_count;
537 	unsigned abs_evq = abs_index(vf, vf_evq);
538 	unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
539 	efx_oword_t reg;
540 
541 	if (bad_vf_index(efx, vf_evq) ||
542 	    bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
543 		if (net_ratelimit())
544 			netif_err(efx, hw, efx->net_dev,
545 				  "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
546 				  vf->pci_name, vf_evq, buf_count);
547 		return VFDI_RC_EINVAL;
548 	}
549 
550 	efx_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
551 
552 	EFX_POPULATE_OWORD_3(reg,
553 			     FRF_CZ_TIMER_Q_EN, 1,
554 			     FRF_CZ_HOST_NOTIFY_MODE, 0,
555 			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
556 	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
557 	EFX_POPULATE_OWORD_3(reg,
558 			     FRF_AZ_EVQ_EN, 1,
559 			     FRF_AZ_EVQ_SIZE, __ffs(buf_count),
560 			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
561 	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
562 
563 	if (vf_evq == 0) {
564 		memcpy(vf->evq0_addrs, req->u.init_evq.addr,
565 		       buf_count * sizeof(u64));
566 		vf->evq0_count = buf_count;
567 	}
568 
569 	return VFDI_RC_SUCCESS;
570 }
571 
efx_vfdi_init_rxq(struct efx_vf * vf)572 static int efx_vfdi_init_rxq(struct efx_vf *vf)
573 {
574 	struct efx_nic *efx = vf->efx;
575 	struct vfdi_req *req = vf->buf.addr;
576 	unsigned vf_rxq = req->u.init_rxq.index;
577 	unsigned vf_evq = req->u.init_rxq.evq;
578 	unsigned buf_count = req->u.init_rxq.buf_count;
579 	unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
580 	unsigned label;
581 	efx_oword_t reg;
582 
583 	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
584 	    vf_rxq >= VF_MAX_RX_QUEUES ||
585 	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
586 		if (net_ratelimit())
587 			netif_err(efx, hw, efx->net_dev,
588 				  "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
589 				  "buf_count %d\n", vf->pci_name, vf_rxq,
590 				  vf_evq, buf_count);
591 		return VFDI_RC_EINVAL;
592 	}
593 	if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
594 		++vf->rxq_count;
595 	efx_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
596 
597 	label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
598 	EFX_POPULATE_OWORD_6(reg,
599 			     FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
600 			     FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
601 			     FRF_AZ_RX_DESCQ_LABEL, label,
602 			     FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
603 			     FRF_AZ_RX_DESCQ_JUMBO,
604 			     !!(req->u.init_rxq.flags &
605 				VFDI_RXQ_FLAG_SCATTER_EN),
606 			     FRF_AZ_RX_DESCQ_EN, 1);
607 	efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
608 			 abs_index(vf, vf_rxq));
609 
610 	return VFDI_RC_SUCCESS;
611 }
612 
efx_vfdi_init_txq(struct efx_vf * vf)613 static int efx_vfdi_init_txq(struct efx_vf *vf)
614 {
615 	struct efx_nic *efx = vf->efx;
616 	struct vfdi_req *req = vf->buf.addr;
617 	unsigned vf_txq = req->u.init_txq.index;
618 	unsigned vf_evq = req->u.init_txq.evq;
619 	unsigned buf_count = req->u.init_txq.buf_count;
620 	unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
621 	unsigned label, eth_filt_en;
622 	efx_oword_t reg;
623 
624 	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
625 	    vf_txq >= vf_max_tx_channels ||
626 	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
627 		if (net_ratelimit())
628 			netif_err(efx, hw, efx->net_dev,
629 				  "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
630 				  "buf_count %d\n", vf->pci_name, vf_txq,
631 				  vf_evq, buf_count);
632 		return VFDI_RC_EINVAL;
633 	}
634 
635 	mutex_lock(&vf->txq_lock);
636 	if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
637 		++vf->txq_count;
638 	mutex_unlock(&vf->txq_lock);
639 	efx_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
640 
641 	eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
642 
643 	label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
644 	EFX_POPULATE_OWORD_8(reg,
645 			     FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
646 			     FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
647 			     FRF_AZ_TX_DESCQ_EN, 1,
648 			     FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
649 			     FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
650 			     FRF_AZ_TX_DESCQ_LABEL, label,
651 			     FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
652 			     FRF_BZ_TX_NON_IP_DROP_DIS, 1);
653 	efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
654 			 abs_index(vf, vf_txq));
655 
656 	return VFDI_RC_SUCCESS;
657 }
658 
659 /* Returns true when efx_vfdi_fini_all_queues should wake */
efx_vfdi_flush_wake(struct efx_vf * vf)660 static bool efx_vfdi_flush_wake(struct efx_vf *vf)
661 {
662 	/* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
663 	smp_mb();
664 
665 	return (!vf->txq_count && !vf->rxq_count) ||
666 		atomic_read(&vf->rxq_retry_count);
667 }
668 
efx_vfdi_flush_clear(struct efx_vf * vf)669 static void efx_vfdi_flush_clear(struct efx_vf *vf)
670 {
671 	memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
672 	vf->txq_count = 0;
673 	memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
674 	vf->rxq_count = 0;
675 	memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
676 	atomic_set(&vf->rxq_retry_count, 0);
677 }
678 
efx_vfdi_fini_all_queues(struct efx_vf * vf)679 static int efx_vfdi_fini_all_queues(struct efx_vf *vf)
680 {
681 	struct efx_nic *efx = vf->efx;
682 	efx_oword_t reg;
683 	unsigned count = efx_vf_size(efx);
684 	unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
685 	unsigned timeout = HZ;
686 	unsigned index, rxqs_count;
687 	__le32 *rxqs;
688 	int rc;
689 
690 	BUILD_BUG_ON(VF_MAX_RX_QUEUES >
691 		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
692 
693 	rxqs = kmalloc(count * sizeof(*rxqs), GFP_KERNEL);
694 	if (rxqs == NULL)
695 		return VFDI_RC_ENOMEM;
696 
697 	rtnl_lock();
698 	siena_prepare_flush(efx);
699 	rtnl_unlock();
700 
701 	/* Flush all the initialized queues */
702 	rxqs_count = 0;
703 	for (index = 0; index < count; ++index) {
704 		if (test_bit(index, vf->txq_mask)) {
705 			EFX_POPULATE_OWORD_2(reg,
706 					     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
707 					     FRF_AZ_TX_FLUSH_DESCQ,
708 					     vf_offset + index);
709 			efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
710 		}
711 		if (test_bit(index, vf->rxq_mask))
712 			rxqs[rxqs_count++] = cpu_to_le32(vf_offset + index);
713 	}
714 
715 	atomic_set(&vf->rxq_retry_count, 0);
716 	while (timeout && (vf->rxq_count || vf->txq_count)) {
717 		rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, (u8 *)rxqs,
718 				  rxqs_count * sizeof(*rxqs), NULL, 0, NULL);
719 		WARN_ON(rc < 0);
720 
721 		timeout = wait_event_timeout(vf->flush_waitq,
722 					     efx_vfdi_flush_wake(vf),
723 					     timeout);
724 		rxqs_count = 0;
725 		for (index = 0; index < count; ++index) {
726 			if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
727 				atomic_dec(&vf->rxq_retry_count);
728 				rxqs[rxqs_count++] =
729 					cpu_to_le32(vf_offset + index);
730 			}
731 		}
732 	}
733 
734 	rtnl_lock();
735 	siena_finish_flush(efx);
736 	rtnl_unlock();
737 
738 	/* Irrespective of success/failure, fini the queues */
739 	EFX_ZERO_OWORD(reg);
740 	for (index = 0; index < count; ++index) {
741 		efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
742 				 vf_offset + index);
743 		efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
744 				 vf_offset + index);
745 		efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL,
746 				 vf_offset + index);
747 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL,
748 				 vf_offset + index);
749 	}
750 	efx_sriov_bufs(efx, vf->buftbl_base, NULL,
751 		       EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
752 	kfree(rxqs);
753 	efx_vfdi_flush_clear(vf);
754 
755 	vf->evq0_count = 0;
756 
757 	return timeout ? 0 : VFDI_RC_ETIMEDOUT;
758 }
759 
efx_vfdi_insert_filter(struct efx_vf * vf)760 static int efx_vfdi_insert_filter(struct efx_vf *vf)
761 {
762 	struct efx_nic *efx = vf->efx;
763 	struct vfdi_req *req = vf->buf.addr;
764 	unsigned vf_rxq = req->u.mac_filter.rxq;
765 	unsigned flags;
766 
767 	if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
768 		if (net_ratelimit())
769 			netif_err(efx, hw, efx->net_dev,
770 				  "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
771 				  "flags 0x%x\n", vf->pci_name, vf_rxq,
772 				  req->u.mac_filter.flags);
773 		return VFDI_RC_EINVAL;
774 	}
775 
776 	flags = 0;
777 	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
778 		flags |= EFX_FILTER_FLAG_RX_RSS;
779 	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
780 		flags |= EFX_FILTER_FLAG_RX_SCATTER;
781 	vf->rx_filter_flags = flags;
782 	vf->rx_filter_qid = vf_rxq;
783 	vf->rx_filtering = true;
784 
785 	efx_sriov_reset_rx_filter(vf);
786 	queue_work(vfdi_workqueue, &efx->peer_work);
787 
788 	return VFDI_RC_SUCCESS;
789 }
790 
efx_vfdi_remove_all_filters(struct efx_vf * vf)791 static int efx_vfdi_remove_all_filters(struct efx_vf *vf)
792 {
793 	vf->rx_filtering = false;
794 	efx_sriov_reset_rx_filter(vf);
795 	queue_work(vfdi_workqueue, &vf->efx->peer_work);
796 
797 	return VFDI_RC_SUCCESS;
798 }
799 
efx_vfdi_set_status_page(struct efx_vf * vf)800 static int efx_vfdi_set_status_page(struct efx_vf *vf)
801 {
802 	struct efx_nic *efx = vf->efx;
803 	struct vfdi_req *req = vf->buf.addr;
804 	u64 page_count = req->u.set_status_page.peer_page_count;
805 	u64 max_page_count =
806 		(EFX_PAGE_SIZE -
807 		 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
808 		/ sizeof(req->u.set_status_page.peer_page_addr[0]);
809 
810 	if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
811 		if (net_ratelimit())
812 			netif_err(efx, hw, efx->net_dev,
813 				  "ERROR: Invalid SET_STATUS_PAGE from %s\n",
814 				  vf->pci_name);
815 		return VFDI_RC_EINVAL;
816 	}
817 
818 	mutex_lock(&efx->local_lock);
819 	mutex_lock(&vf->status_lock);
820 	vf->status_addr = req->u.set_status_page.dma_addr;
821 
822 	kfree(vf->peer_page_addrs);
823 	vf->peer_page_addrs = NULL;
824 	vf->peer_page_count = 0;
825 
826 	if (page_count) {
827 		vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
828 					      GFP_KERNEL);
829 		if (vf->peer_page_addrs) {
830 			memcpy(vf->peer_page_addrs,
831 			       req->u.set_status_page.peer_page_addr,
832 			       page_count * sizeof(u64));
833 			vf->peer_page_count = page_count;
834 		}
835 	}
836 
837 	__efx_sriov_push_vf_status(vf);
838 	mutex_unlock(&vf->status_lock);
839 	mutex_unlock(&efx->local_lock);
840 
841 	return VFDI_RC_SUCCESS;
842 }
843 
efx_vfdi_clear_status_page(struct efx_vf * vf)844 static int efx_vfdi_clear_status_page(struct efx_vf *vf)
845 {
846 	mutex_lock(&vf->status_lock);
847 	vf->status_addr = 0;
848 	mutex_unlock(&vf->status_lock);
849 
850 	return VFDI_RC_SUCCESS;
851 }
852 
853 typedef int (*efx_vfdi_op_t)(struct efx_vf *vf);
854 
855 static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
856 	[VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
857 	[VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
858 	[VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
859 	[VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
860 	[VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
861 	[VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
862 	[VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
863 	[VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
864 };
865 
efx_sriov_vfdi(struct work_struct * work)866 static void efx_sriov_vfdi(struct work_struct *work)
867 {
868 	struct efx_vf *vf = container_of(work, struct efx_vf, req);
869 	struct efx_nic *efx = vf->efx;
870 	struct vfdi_req *req = vf->buf.addr;
871 	struct efx_memcpy_req copy[2];
872 	int rc;
873 
874 	/* Copy this page into the local address space */
875 	memset(copy, '\0', sizeof(copy));
876 	copy[0].from_rid = vf->pci_rid;
877 	copy[0].from_addr = vf->req_addr;
878 	copy[0].to_rid = efx->pci_dev->devfn;
879 	copy[0].to_addr = vf->buf.dma_addr;
880 	copy[0].length = EFX_PAGE_SIZE;
881 	rc = efx_sriov_memcpy(efx, copy, 1);
882 	if (rc) {
883 		/* If we can't get the request, we can't reply to the caller */
884 		if (net_ratelimit())
885 			netif_err(efx, hw, efx->net_dev,
886 				  "ERROR: Unable to fetch VFDI request from %s rc %d\n",
887 				  vf->pci_name, -rc);
888 		vf->busy = false;
889 		return;
890 	}
891 
892 	if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
893 		rc = vfdi_ops[req->op](vf);
894 		if (rc == 0) {
895 			netif_dbg(efx, hw, efx->net_dev,
896 				  "vfdi request %d from %s ok\n",
897 				  req->op, vf->pci_name);
898 		}
899 	} else {
900 		netif_dbg(efx, hw, efx->net_dev,
901 			  "ERROR: Unrecognised request %d from VF %s addr "
902 			  "%llx\n", req->op, vf->pci_name,
903 			  (unsigned long long)vf->req_addr);
904 		rc = VFDI_RC_EOPNOTSUPP;
905 	}
906 
907 	/* Allow subsequent VF requests */
908 	vf->busy = false;
909 	smp_wmb();
910 
911 	/* Respond to the request */
912 	req->rc = rc;
913 	req->op = VFDI_OP_RESPONSE;
914 
915 	memset(copy, '\0', sizeof(copy));
916 	copy[0].from_buf = &req->rc;
917 	copy[0].to_rid = vf->pci_rid;
918 	copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
919 	copy[0].length = sizeof(req->rc);
920 	copy[1].from_buf = &req->op;
921 	copy[1].to_rid = vf->pci_rid;
922 	copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
923 	copy[1].length = sizeof(req->op);
924 
925 	(void) efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
926 }
927 
928 
929 
930 /* After a reset the event queues inside the guests no longer exist. Fill the
931  * event ring in guest memory with VFDI reset events, then (re-initialise) the
932  * event queue to raise an interrupt. The guest driver will then recover.
933  */
efx_sriov_reset_vf(struct efx_vf * vf,struct efx_buffer * buffer)934 static void efx_sriov_reset_vf(struct efx_vf *vf, struct efx_buffer *buffer)
935 {
936 	struct efx_nic *efx = vf->efx;
937 	struct efx_memcpy_req copy_req[4];
938 	efx_qword_t event;
939 	unsigned int pos, count, k, buftbl, abs_evq;
940 	efx_oword_t reg;
941 	efx_dword_t ptr;
942 	int rc;
943 
944 	BUG_ON(buffer->len != EFX_PAGE_SIZE);
945 
946 	if (!vf->evq0_count)
947 		return;
948 	BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
949 
950 	mutex_lock(&vf->status_lock);
951 	EFX_POPULATE_QWORD_3(event,
952 			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
953 			     VFDI_EV_SEQ, vf->msg_seqno,
954 			     VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
955 	vf->msg_seqno++;
956 	for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
957 		memcpy(buffer->addr + pos, &event, sizeof(event));
958 
959 	for (pos = 0; pos < vf->evq0_count; pos += count) {
960 		count = min_t(unsigned, vf->evq0_count - pos,
961 			      ARRAY_SIZE(copy_req));
962 		for (k = 0; k < count; k++) {
963 			copy_req[k].from_buf = NULL;
964 			copy_req[k].from_rid = efx->pci_dev->devfn;
965 			copy_req[k].from_addr = buffer->dma_addr;
966 			copy_req[k].to_rid = vf->pci_rid;
967 			copy_req[k].to_addr = vf->evq0_addrs[pos + k];
968 			copy_req[k].length = EFX_PAGE_SIZE;
969 		}
970 		rc = efx_sriov_memcpy(efx, copy_req, count);
971 		if (rc) {
972 			if (net_ratelimit())
973 				netif_err(efx, hw, efx->net_dev,
974 					  "ERROR: Unable to notify %s of reset"
975 					  ": %d\n", vf->pci_name, -rc);
976 			break;
977 		}
978 	}
979 
980 	/* Reinitialise, arm and trigger evq0 */
981 	abs_evq = abs_index(vf, 0);
982 	buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
983 	efx_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
984 
985 	EFX_POPULATE_OWORD_3(reg,
986 			     FRF_CZ_TIMER_Q_EN, 1,
987 			     FRF_CZ_HOST_NOTIFY_MODE, 0,
988 			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
989 	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
990 	EFX_POPULATE_OWORD_3(reg,
991 			     FRF_AZ_EVQ_EN, 1,
992 			     FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
993 			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
994 	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
995 	EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
996 	efx_writed_table(efx, &ptr, FR_BZ_EVQ_RPTR, abs_evq);
997 
998 	mutex_unlock(&vf->status_lock);
999 }
1000 
efx_sriov_reset_vf_work(struct work_struct * work)1001 static void efx_sriov_reset_vf_work(struct work_struct *work)
1002 {
1003 	struct efx_vf *vf = container_of(work, struct efx_vf, req);
1004 	struct efx_nic *efx = vf->efx;
1005 	struct efx_buffer buf;
1006 
1007 	if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE)) {
1008 		efx_sriov_reset_vf(vf, &buf);
1009 		efx_nic_free_buffer(efx, &buf);
1010 	}
1011 }
1012 
efx_sriov_handle_no_channel(struct efx_nic * efx)1013 static void efx_sriov_handle_no_channel(struct efx_nic *efx)
1014 {
1015 	netif_err(efx, drv, efx->net_dev,
1016 		  "ERROR: IOV requires MSI-X and 1 additional interrupt"
1017 		  "vector. IOV disabled\n");
1018 	efx->vf_count = 0;
1019 }
1020 
efx_sriov_probe_channel(struct efx_channel * channel)1021 static int efx_sriov_probe_channel(struct efx_channel *channel)
1022 {
1023 	channel->efx->vfdi_channel = channel;
1024 	return 0;
1025 }
1026 
1027 static void
efx_sriov_get_channel_name(struct efx_channel * channel,char * buf,size_t len)1028 efx_sriov_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
1029 {
1030 	snprintf(buf, len, "%s-iov", channel->efx->name);
1031 }
1032 
1033 static const struct efx_channel_type efx_sriov_channel_type = {
1034 	.handle_no_channel	= efx_sriov_handle_no_channel,
1035 	.pre_probe		= efx_sriov_probe_channel,
1036 	.get_name		= efx_sriov_get_channel_name,
1037 	/* no copy operation; channel must not be reallocated */
1038 	.keep_eventq		= true,
1039 };
1040 
efx_sriov_probe(struct efx_nic * efx)1041 void efx_sriov_probe(struct efx_nic *efx)
1042 {
1043 	unsigned count;
1044 
1045 	if (!max_vfs)
1046 		return;
1047 
1048 	if (efx_sriov_cmd(efx, false, &efx->vi_scale, &count))
1049 		return;
1050 	if (count > 0 && count > max_vfs)
1051 		count = max_vfs;
1052 
1053 	/* efx_nic_dimension_resources() will reduce vf_count as appopriate */
1054 	efx->vf_count = count;
1055 
1056 	efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_sriov_channel_type;
1057 }
1058 
1059 /* Copy the list of individual addresses into the vfdi_status.peers
1060  * array and auxillary pages, protected by %local_lock. Drop that lock
1061  * and then broadcast the address list to every VF.
1062  */
efx_sriov_peer_work(struct work_struct * data)1063 static void efx_sriov_peer_work(struct work_struct *data)
1064 {
1065 	struct efx_nic *efx = container_of(data, struct efx_nic, peer_work);
1066 	struct vfdi_status *vfdi_status = efx->vfdi_status.addr;
1067 	struct efx_vf *vf;
1068 	struct efx_local_addr *local_addr;
1069 	struct vfdi_endpoint *peer;
1070 	struct efx_endpoint_page *epp;
1071 	struct list_head pages;
1072 	unsigned int peer_space;
1073 	unsigned int peer_count;
1074 	unsigned int pos;
1075 
1076 	mutex_lock(&efx->local_lock);
1077 
1078 	/* Move the existing peer pages off %local_page_list */
1079 	INIT_LIST_HEAD(&pages);
1080 	list_splice_tail_init(&efx->local_page_list, &pages);
1081 
1082 	/* Populate the VF addresses starting from entry 1 (entry 0 is
1083 	 * the PF address)
1084 	 */
1085 	peer = vfdi_status->peers + 1;
1086 	peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
1087 	peer_count = 1;
1088 	for (pos = 0; pos < efx->vf_count; ++pos) {
1089 		vf = efx->vf + pos;
1090 
1091 		mutex_lock(&vf->status_lock);
1092 		if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
1093 			*peer++ = vf->addr;
1094 			++peer_count;
1095 			--peer_space;
1096 			BUG_ON(peer_space == 0);
1097 		}
1098 		mutex_unlock(&vf->status_lock);
1099 	}
1100 
1101 	/* Fill the remaining addresses */
1102 	list_for_each_entry(local_addr, &efx->local_addr_list, link) {
1103 		memcpy(peer->mac_addr, local_addr->addr, ETH_ALEN);
1104 		peer->tci = 0;
1105 		++peer;
1106 		++peer_count;
1107 		if (--peer_space == 0) {
1108 			if (list_empty(&pages)) {
1109 				epp = kmalloc(sizeof(*epp), GFP_KERNEL);
1110 				if (!epp)
1111 					break;
1112 				epp->ptr = dma_alloc_coherent(
1113 					&efx->pci_dev->dev, EFX_PAGE_SIZE,
1114 					&epp->addr, GFP_KERNEL);
1115 				if (!epp->ptr) {
1116 					kfree(epp);
1117 					break;
1118 				}
1119 			} else {
1120 				epp = list_first_entry(
1121 					&pages, struct efx_endpoint_page, link);
1122 				list_del(&epp->link);
1123 			}
1124 
1125 			list_add_tail(&epp->link, &efx->local_page_list);
1126 			peer = (struct vfdi_endpoint *)epp->ptr;
1127 			peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
1128 		}
1129 	}
1130 	vfdi_status->peer_count = peer_count;
1131 	mutex_unlock(&efx->local_lock);
1132 
1133 	/* Free any now unused endpoint pages */
1134 	while (!list_empty(&pages)) {
1135 		epp = list_first_entry(
1136 			&pages, struct efx_endpoint_page, link);
1137 		list_del(&epp->link);
1138 		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1139 				  epp->ptr, epp->addr);
1140 		kfree(epp);
1141 	}
1142 
1143 	/* Finally, push the pages */
1144 	for (pos = 0; pos < efx->vf_count; ++pos) {
1145 		vf = efx->vf + pos;
1146 
1147 		mutex_lock(&vf->status_lock);
1148 		if (vf->status_addr)
1149 			__efx_sriov_push_vf_status(vf);
1150 		mutex_unlock(&vf->status_lock);
1151 	}
1152 }
1153 
efx_sriov_free_local(struct efx_nic * efx)1154 static void efx_sriov_free_local(struct efx_nic *efx)
1155 {
1156 	struct efx_local_addr *local_addr;
1157 	struct efx_endpoint_page *epp;
1158 
1159 	while (!list_empty(&efx->local_addr_list)) {
1160 		local_addr = list_first_entry(&efx->local_addr_list,
1161 					      struct efx_local_addr, link);
1162 		list_del(&local_addr->link);
1163 		kfree(local_addr);
1164 	}
1165 
1166 	while (!list_empty(&efx->local_page_list)) {
1167 		epp = list_first_entry(&efx->local_page_list,
1168 				       struct efx_endpoint_page, link);
1169 		list_del(&epp->link);
1170 		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1171 				  epp->ptr, epp->addr);
1172 		kfree(epp);
1173 	}
1174 }
1175 
efx_sriov_vf_alloc(struct efx_nic * efx)1176 static int efx_sriov_vf_alloc(struct efx_nic *efx)
1177 {
1178 	unsigned index;
1179 	struct efx_vf *vf;
1180 
1181 	efx->vf = kzalloc(sizeof(struct efx_vf) * efx->vf_count, GFP_KERNEL);
1182 	if (!efx->vf)
1183 		return -ENOMEM;
1184 
1185 	for (index = 0; index < efx->vf_count; ++index) {
1186 		vf = efx->vf + index;
1187 
1188 		vf->efx = efx;
1189 		vf->index = index;
1190 		vf->rx_filter_id = -1;
1191 		vf->tx_filter_mode = VF_TX_FILTER_AUTO;
1192 		vf->tx_filter_id = -1;
1193 		INIT_WORK(&vf->req, efx_sriov_vfdi);
1194 		INIT_WORK(&vf->reset_work, efx_sriov_reset_vf_work);
1195 		init_waitqueue_head(&vf->flush_waitq);
1196 		mutex_init(&vf->status_lock);
1197 		mutex_init(&vf->txq_lock);
1198 	}
1199 
1200 	return 0;
1201 }
1202 
efx_sriov_vfs_fini(struct efx_nic * efx)1203 static void efx_sriov_vfs_fini(struct efx_nic *efx)
1204 {
1205 	struct efx_vf *vf;
1206 	unsigned int pos;
1207 
1208 	for (pos = 0; pos < efx->vf_count; ++pos) {
1209 		vf = efx->vf + pos;
1210 
1211 		efx_nic_free_buffer(efx, &vf->buf);
1212 		kfree(vf->peer_page_addrs);
1213 		vf->peer_page_addrs = NULL;
1214 		vf->peer_page_count = 0;
1215 
1216 		vf->evq0_count = 0;
1217 	}
1218 }
1219 
efx_sriov_vfs_init(struct efx_nic * efx)1220 static int efx_sriov_vfs_init(struct efx_nic *efx)
1221 {
1222 	struct pci_dev *pci_dev = efx->pci_dev;
1223 	unsigned index, devfn, sriov, buftbl_base;
1224 	u16 offset, stride;
1225 	struct efx_vf *vf;
1226 	int rc;
1227 
1228 	sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
1229 	if (!sriov)
1230 		return -ENOENT;
1231 
1232 	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
1233 	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
1234 
1235 	buftbl_base = efx->vf_buftbl_base;
1236 	devfn = pci_dev->devfn + offset;
1237 	for (index = 0; index < efx->vf_count; ++index) {
1238 		vf = efx->vf + index;
1239 
1240 		/* Reserve buffer entries */
1241 		vf->buftbl_base = buftbl_base;
1242 		buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
1243 
1244 		vf->pci_rid = devfn;
1245 		snprintf(vf->pci_name, sizeof(vf->pci_name),
1246 			 "%04x:%02x:%02x.%d",
1247 			 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
1248 			 PCI_SLOT(devfn), PCI_FUNC(devfn));
1249 
1250 		rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE);
1251 		if (rc)
1252 			goto fail;
1253 
1254 		devfn += stride;
1255 	}
1256 
1257 	return 0;
1258 
1259 fail:
1260 	efx_sriov_vfs_fini(efx);
1261 	return rc;
1262 }
1263 
efx_sriov_init(struct efx_nic * efx)1264 int efx_sriov_init(struct efx_nic *efx)
1265 {
1266 	struct net_device *net_dev = efx->net_dev;
1267 	struct vfdi_status *vfdi_status;
1268 	int rc;
1269 
1270 	/* Ensure there's room for vf_channel */
1271 	BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
1272 	/* Ensure that VI_BASE is aligned on VI_SCALE */
1273 	BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
1274 
1275 	if (efx->vf_count == 0)
1276 		return 0;
1277 
1278 	rc = efx_sriov_cmd(efx, true, NULL, NULL);
1279 	if (rc)
1280 		goto fail_cmd;
1281 
1282 	rc = efx_nic_alloc_buffer(efx, &efx->vfdi_status, sizeof(*vfdi_status));
1283 	if (rc)
1284 		goto fail_status;
1285 	vfdi_status = efx->vfdi_status.addr;
1286 	memset(vfdi_status, 0, sizeof(*vfdi_status));
1287 	vfdi_status->version = 1;
1288 	vfdi_status->length = sizeof(*vfdi_status);
1289 	vfdi_status->max_tx_channels = vf_max_tx_channels;
1290 	vfdi_status->vi_scale = efx->vi_scale;
1291 	vfdi_status->rss_rxq_count = efx->rss_spread;
1292 	vfdi_status->peer_count = 1 + efx->vf_count;
1293 	vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
1294 
1295 	rc = efx_sriov_vf_alloc(efx);
1296 	if (rc)
1297 		goto fail_alloc;
1298 
1299 	mutex_init(&efx->local_lock);
1300 	INIT_WORK(&efx->peer_work, efx_sriov_peer_work);
1301 	INIT_LIST_HEAD(&efx->local_addr_list);
1302 	INIT_LIST_HEAD(&efx->local_page_list);
1303 
1304 	rc = efx_sriov_vfs_init(efx);
1305 	if (rc)
1306 		goto fail_vfs;
1307 
1308 	rtnl_lock();
1309 	memcpy(vfdi_status->peers[0].mac_addr,
1310 	       net_dev->dev_addr, ETH_ALEN);
1311 	efx->vf_init_count = efx->vf_count;
1312 	rtnl_unlock();
1313 
1314 	efx_sriov_usrev(efx, true);
1315 
1316 	/* At this point we must be ready to accept VFDI requests */
1317 
1318 	rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
1319 	if (rc)
1320 		goto fail_pci;
1321 
1322 	netif_info(efx, probe, net_dev,
1323 		   "enabled SR-IOV for %d VFs, %d VI per VF\n",
1324 		   efx->vf_count, efx_vf_size(efx));
1325 	return 0;
1326 
1327 fail_pci:
1328 	efx_sriov_usrev(efx, false);
1329 	rtnl_lock();
1330 	efx->vf_init_count = 0;
1331 	rtnl_unlock();
1332 	efx_sriov_vfs_fini(efx);
1333 fail_vfs:
1334 	cancel_work_sync(&efx->peer_work);
1335 	efx_sriov_free_local(efx);
1336 	kfree(efx->vf);
1337 fail_alloc:
1338 	efx_nic_free_buffer(efx, &efx->vfdi_status);
1339 fail_status:
1340 	efx_sriov_cmd(efx, false, NULL, NULL);
1341 fail_cmd:
1342 	return rc;
1343 }
1344 
efx_sriov_fini(struct efx_nic * efx)1345 void efx_sriov_fini(struct efx_nic *efx)
1346 {
1347 	struct efx_vf *vf;
1348 	unsigned int pos;
1349 
1350 	if (efx->vf_init_count == 0)
1351 		return;
1352 
1353 	/* Disable all interfaces to reconfiguration */
1354 	BUG_ON(efx->vfdi_channel->enabled);
1355 	efx_sriov_usrev(efx, false);
1356 	rtnl_lock();
1357 	efx->vf_init_count = 0;
1358 	rtnl_unlock();
1359 
1360 	/* Flush all reconfiguration work */
1361 	for (pos = 0; pos < efx->vf_count; ++pos) {
1362 		vf = efx->vf + pos;
1363 		cancel_work_sync(&vf->req);
1364 		cancel_work_sync(&vf->reset_work);
1365 	}
1366 	cancel_work_sync(&efx->peer_work);
1367 
1368 	pci_disable_sriov(efx->pci_dev);
1369 
1370 	/* Tear down back-end state */
1371 	efx_sriov_vfs_fini(efx);
1372 	efx_sriov_free_local(efx);
1373 	kfree(efx->vf);
1374 	efx_nic_free_buffer(efx, &efx->vfdi_status);
1375 	efx_sriov_cmd(efx, false, NULL, NULL);
1376 }
1377 
efx_sriov_event(struct efx_channel * channel,efx_qword_t * event)1378 void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event)
1379 {
1380 	struct efx_nic *efx = channel->efx;
1381 	struct efx_vf *vf;
1382 	unsigned qid, seq, type, data;
1383 
1384 	qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
1385 
1386 	/* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
1387 	BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
1388 	seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
1389 	type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
1390 	data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
1391 
1392 	netif_vdbg(efx, hw, efx->net_dev,
1393 		   "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
1394 		   qid, seq, type, data);
1395 
1396 	if (map_vi_index(efx, qid, &vf, NULL))
1397 		return;
1398 	if (vf->busy)
1399 		goto error;
1400 
1401 	if (type == VFDI_EV_TYPE_REQ_WORD0) {
1402 		/* Resynchronise */
1403 		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1404 		vf->req_seqno = seq + 1;
1405 		vf->req_addr = 0;
1406 	} else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
1407 		goto error;
1408 
1409 	switch (vf->req_type) {
1410 	case VFDI_EV_TYPE_REQ_WORD0:
1411 	case VFDI_EV_TYPE_REQ_WORD1:
1412 	case VFDI_EV_TYPE_REQ_WORD2:
1413 		vf->req_addr |= (u64)data << (vf->req_type << 4);
1414 		++vf->req_type;
1415 		return;
1416 
1417 	case VFDI_EV_TYPE_REQ_WORD3:
1418 		vf->req_addr |= (u64)data << 48;
1419 		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1420 		vf->busy = true;
1421 		queue_work(vfdi_workqueue, &vf->req);
1422 		return;
1423 	}
1424 
1425 error:
1426 	if (net_ratelimit())
1427 		netif_err(efx, hw, efx->net_dev,
1428 			  "ERROR: Screaming VFDI request from %s\n",
1429 			  vf->pci_name);
1430 	/* Reset the request and sequence number */
1431 	vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1432 	vf->req_seqno = seq + 1;
1433 }
1434 
efx_sriov_flr(struct efx_nic * efx,unsigned vf_i)1435 void efx_sriov_flr(struct efx_nic *efx, unsigned vf_i)
1436 {
1437 	struct efx_vf *vf;
1438 
1439 	if (vf_i > efx->vf_init_count)
1440 		return;
1441 	vf = efx->vf + vf_i;
1442 	netif_info(efx, hw, efx->net_dev,
1443 		   "FLR on VF %s\n", vf->pci_name);
1444 
1445 	vf->status_addr = 0;
1446 	efx_vfdi_remove_all_filters(vf);
1447 	efx_vfdi_flush_clear(vf);
1448 
1449 	vf->evq0_count = 0;
1450 }
1451 
efx_sriov_mac_address_changed(struct efx_nic * efx)1452 void efx_sriov_mac_address_changed(struct efx_nic *efx)
1453 {
1454 	struct vfdi_status *vfdi_status = efx->vfdi_status.addr;
1455 
1456 	if (!efx->vf_init_count)
1457 		return;
1458 	memcpy(vfdi_status->peers[0].mac_addr,
1459 	       efx->net_dev->dev_addr, ETH_ALEN);
1460 	queue_work(vfdi_workqueue, &efx->peer_work);
1461 }
1462 
efx_sriov_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)1463 void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1464 {
1465 	struct efx_vf *vf;
1466 	unsigned queue, qid;
1467 
1468 	queue = EFX_QWORD_FIELD(*event,  FSF_AZ_DRIVER_EV_SUBDATA);
1469 	if (map_vi_index(efx, queue, &vf, &qid))
1470 		return;
1471 	/* Ignore flush completions triggered by an FLR */
1472 	if (!test_bit(qid, vf->txq_mask))
1473 		return;
1474 
1475 	__clear_bit(qid, vf->txq_mask);
1476 	--vf->txq_count;
1477 
1478 	if (efx_vfdi_flush_wake(vf))
1479 		wake_up(&vf->flush_waitq);
1480 }
1481 
efx_sriov_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)1482 void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1483 {
1484 	struct efx_vf *vf;
1485 	unsigned ev_failed, queue, qid;
1486 
1487 	queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1488 	ev_failed = EFX_QWORD_FIELD(*event,
1489 				    FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1490 	if (map_vi_index(efx, queue, &vf, &qid))
1491 		return;
1492 	if (!test_bit(qid, vf->rxq_mask))
1493 		return;
1494 
1495 	if (ev_failed) {
1496 		set_bit(qid, vf->rxq_retry_mask);
1497 		atomic_inc(&vf->rxq_retry_count);
1498 	} else {
1499 		__clear_bit(qid, vf->rxq_mask);
1500 		--vf->rxq_count;
1501 	}
1502 	if (efx_vfdi_flush_wake(vf))
1503 		wake_up(&vf->flush_waitq);
1504 }
1505 
1506 /* Called from napi. Schedule the reset work item */
efx_sriov_desc_fetch_err(struct efx_nic * efx,unsigned dmaq)1507 void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
1508 {
1509 	struct efx_vf *vf;
1510 	unsigned int rel;
1511 
1512 	if (map_vi_index(efx, dmaq, &vf, &rel))
1513 		return;
1514 
1515 	if (net_ratelimit())
1516 		netif_err(efx, hw, efx->net_dev,
1517 			  "VF %d DMA Q %d reports descriptor fetch error.\n",
1518 			  vf->index, rel);
1519 	queue_work(vfdi_workqueue, &vf->reset_work);
1520 }
1521 
1522 /* Reset all VFs */
efx_sriov_reset(struct efx_nic * efx)1523 void efx_sriov_reset(struct efx_nic *efx)
1524 {
1525 	unsigned int vf_i;
1526 	struct efx_buffer buf;
1527 	struct efx_vf *vf;
1528 
1529 	ASSERT_RTNL();
1530 
1531 	if (efx->vf_init_count == 0)
1532 		return;
1533 
1534 	efx_sriov_usrev(efx, true);
1535 	(void)efx_sriov_cmd(efx, true, NULL, NULL);
1536 
1537 	if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE))
1538 		return;
1539 
1540 	for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
1541 		vf = efx->vf + vf_i;
1542 		efx_sriov_reset_vf(vf, &buf);
1543 	}
1544 
1545 	efx_nic_free_buffer(efx, &buf);
1546 }
1547 
efx_init_sriov(void)1548 int efx_init_sriov(void)
1549 {
1550 	/* A single threaded workqueue is sufficient. efx_sriov_vfdi() and
1551 	 * efx_sriov_peer_work() spend almost all their time sleeping for
1552 	 * MCDI to complete anyway
1553 	 */
1554 	vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
1555 	if (!vfdi_workqueue)
1556 		return -ENOMEM;
1557 
1558 	return 0;
1559 }
1560 
efx_fini_sriov(void)1561 void efx_fini_sriov(void)
1562 {
1563 	destroy_workqueue(vfdi_workqueue);
1564 }
1565 
efx_sriov_set_vf_mac(struct net_device * net_dev,int vf_i,u8 * mac)1566 int efx_sriov_set_vf_mac(struct net_device *net_dev, int vf_i, u8 *mac)
1567 {
1568 	struct efx_nic *efx = netdev_priv(net_dev);
1569 	struct efx_vf *vf;
1570 
1571 	if (vf_i >= efx->vf_init_count)
1572 		return -EINVAL;
1573 	vf = efx->vf + vf_i;
1574 
1575 	mutex_lock(&vf->status_lock);
1576 	memcpy(vf->addr.mac_addr, mac, ETH_ALEN);
1577 	__efx_sriov_update_vf_addr(vf);
1578 	mutex_unlock(&vf->status_lock);
1579 
1580 	return 0;
1581 }
1582 
efx_sriov_set_vf_vlan(struct net_device * net_dev,int vf_i,u16 vlan,u8 qos)1583 int efx_sriov_set_vf_vlan(struct net_device *net_dev, int vf_i,
1584 			  u16 vlan, u8 qos)
1585 {
1586 	struct efx_nic *efx = netdev_priv(net_dev);
1587 	struct efx_vf *vf;
1588 	u16 tci;
1589 
1590 	if (vf_i >= efx->vf_init_count)
1591 		return -EINVAL;
1592 	vf = efx->vf + vf_i;
1593 
1594 	mutex_lock(&vf->status_lock);
1595 	tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
1596 	vf->addr.tci = htons(tci);
1597 	__efx_sriov_update_vf_addr(vf);
1598 	mutex_unlock(&vf->status_lock);
1599 
1600 	return 0;
1601 }
1602 
efx_sriov_set_vf_spoofchk(struct net_device * net_dev,int vf_i,bool spoofchk)1603 int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf_i,
1604 			      bool spoofchk)
1605 {
1606 	struct efx_nic *efx = netdev_priv(net_dev);
1607 	struct efx_vf *vf;
1608 	int rc;
1609 
1610 	if (vf_i >= efx->vf_init_count)
1611 		return -EINVAL;
1612 	vf = efx->vf + vf_i;
1613 
1614 	mutex_lock(&vf->txq_lock);
1615 	if (vf->txq_count == 0) {
1616 		vf->tx_filter_mode =
1617 			spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
1618 		rc = 0;
1619 	} else {
1620 		/* This cannot be changed while TX queues are running */
1621 		rc = -EBUSY;
1622 	}
1623 	mutex_unlock(&vf->txq_lock);
1624 	return rc;
1625 }
1626 
efx_sriov_get_vf_config(struct net_device * net_dev,int vf_i,struct ifla_vf_info * ivi)1627 int efx_sriov_get_vf_config(struct net_device *net_dev, int vf_i,
1628 			    struct ifla_vf_info *ivi)
1629 {
1630 	struct efx_nic *efx = netdev_priv(net_dev);
1631 	struct efx_vf *vf;
1632 	u16 tci;
1633 
1634 	if (vf_i >= efx->vf_init_count)
1635 		return -EINVAL;
1636 	vf = efx->vf + vf_i;
1637 
1638 	ivi->vf = vf_i;
1639 	memcpy(ivi->mac, vf->addr.mac_addr, ETH_ALEN);
1640 	ivi->tx_rate = 0;
1641 	tci = ntohs(vf->addr.tci);
1642 	ivi->vlan = tci & VLAN_VID_MASK;
1643 	ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
1644 	ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
1645 
1646 	return 0;
1647 }
1648 
1649