1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include <linux/iommu.h>
14 #include "efx.h"
15 #include "nic.h"
16 #include "rx_common.h"
17
18 /* This is the percentage fill level below which new RX descriptors
19 * will be added to the RX descriptor ring.
20 */
21 static unsigned int rx_refill_threshold;
22 module_param(rx_refill_threshold, uint, 0444);
23 MODULE_PARM_DESC(rx_refill_threshold,
24 "RX descriptor ring refill threshold (%)");
25
26 /* RX maximum head room required.
27 *
28 * This must be at least 1 to prevent overflow, plus one packet-worth
29 * to allow pipelined receives.
30 */
31 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
32
33 /* Check the RX page recycle ring for a page that can be reused. */
efx_reuse_page(struct efx_rx_queue * rx_queue)34 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
35 {
36 struct efx_nic *efx = rx_queue->efx;
37 struct efx_rx_page_state *state;
38 unsigned int index;
39 struct page *page;
40
41 if (unlikely(!rx_queue->page_ring))
42 return NULL;
43 index = rx_queue->page_remove & rx_queue->page_ptr_mask;
44 page = rx_queue->page_ring[index];
45 if (page == NULL)
46 return NULL;
47
48 rx_queue->page_ring[index] = NULL;
49 /* page_remove cannot exceed page_add. */
50 if (rx_queue->page_remove != rx_queue->page_add)
51 ++rx_queue->page_remove;
52
53 /* If page_count is 1 then we hold the only reference to this page. */
54 if (page_count(page) == 1) {
55 ++rx_queue->page_recycle_count;
56 return page;
57 } else {
58 state = page_address(page);
59 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
60 PAGE_SIZE << efx->rx_buffer_order,
61 DMA_FROM_DEVICE);
62 put_page(page);
63 ++rx_queue->page_recycle_failed;
64 }
65
66 return NULL;
67 }
68
69 /* Attempt to recycle the page if there is an RX recycle ring; the page can
70 * only be added if this is the final RX buffer, to prevent pages being used in
71 * the descriptor ring and appearing in the recycle ring simultaneously.
72 */
efx_recycle_rx_page(struct efx_channel * channel,struct efx_rx_buffer * rx_buf)73 static void efx_recycle_rx_page(struct efx_channel *channel,
74 struct efx_rx_buffer *rx_buf)
75 {
76 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
77 struct efx_nic *efx = rx_queue->efx;
78 struct page *page = rx_buf->page;
79 unsigned int index;
80
81 /* Only recycle the page after processing the final buffer. */
82 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
83 return;
84
85 index = rx_queue->page_add & rx_queue->page_ptr_mask;
86 if (rx_queue->page_ring[index] == NULL) {
87 unsigned int read_index = rx_queue->page_remove &
88 rx_queue->page_ptr_mask;
89
90 /* The next slot in the recycle ring is available, but
91 * increment page_remove if the read pointer currently
92 * points here.
93 */
94 if (read_index == index)
95 ++rx_queue->page_remove;
96 rx_queue->page_ring[index] = page;
97 ++rx_queue->page_add;
98 return;
99 }
100 ++rx_queue->page_recycle_full;
101 efx_unmap_rx_buffer(efx, rx_buf);
102 put_page(rx_buf->page);
103 }
104
105 /* Recycle the pages that are used by buffers that have just been received. */
efx_recycle_rx_pages(struct efx_channel * channel,struct efx_rx_buffer * rx_buf,unsigned int n_frags)106 void efx_recycle_rx_pages(struct efx_channel *channel,
107 struct efx_rx_buffer *rx_buf,
108 unsigned int n_frags)
109 {
110 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
111
112 if (unlikely(!rx_queue->page_ring))
113 return;
114
115 do {
116 efx_recycle_rx_page(channel, rx_buf);
117 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
118 } while (--n_frags);
119 }
120
efx_discard_rx_packet(struct efx_channel * channel,struct efx_rx_buffer * rx_buf,unsigned int n_frags)121 void efx_discard_rx_packet(struct efx_channel *channel,
122 struct efx_rx_buffer *rx_buf,
123 unsigned int n_frags)
124 {
125 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
126
127 efx_recycle_rx_pages(channel, rx_buf, n_frags);
128
129 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
130 }
131
efx_init_rx_recycle_ring(struct efx_rx_queue * rx_queue)132 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue)
133 {
134 unsigned int bufs_in_recycle_ring, page_ring_size;
135 struct efx_nic *efx = rx_queue->efx;
136
137 bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx);
138 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
139 efx->rx_bufs_per_page);
140 rx_queue->page_ring = kcalloc(page_ring_size,
141 sizeof(*rx_queue->page_ring), GFP_KERNEL);
142 if (!rx_queue->page_ring)
143 rx_queue->page_ptr_mask = 0;
144 else
145 rx_queue->page_ptr_mask = page_ring_size - 1;
146 }
147
efx_fini_rx_recycle_ring(struct efx_rx_queue * rx_queue)148 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue)
149 {
150 struct efx_nic *efx = rx_queue->efx;
151 int i;
152
153 if (unlikely(!rx_queue->page_ring))
154 return;
155
156 /* Unmap and release the pages in the recycle ring. Remove the ring. */
157 for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
158 struct page *page = rx_queue->page_ring[i];
159 struct efx_rx_page_state *state;
160
161 if (page == NULL)
162 continue;
163
164 state = page_address(page);
165 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
166 PAGE_SIZE << efx->rx_buffer_order,
167 DMA_FROM_DEVICE);
168 put_page(page);
169 }
170 kfree(rx_queue->page_ring);
171 rx_queue->page_ring = NULL;
172 }
173
efx_fini_rx_buffer(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf)174 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
175 struct efx_rx_buffer *rx_buf)
176 {
177 /* Release the page reference we hold for the buffer. */
178 if (rx_buf->page)
179 put_page(rx_buf->page);
180
181 /* If this is the last buffer in a page, unmap and free it. */
182 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
183 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
184 efx_free_rx_buffers(rx_queue, rx_buf, 1);
185 }
186 rx_buf->page = NULL;
187 }
188
efx_probe_rx_queue(struct efx_rx_queue * rx_queue)189 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
190 {
191 struct efx_nic *efx = rx_queue->efx;
192 unsigned int entries;
193 int rc;
194
195 /* Create the smallest power-of-two aligned ring */
196 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
197 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
198 rx_queue->ptr_mask = entries - 1;
199
200 netif_dbg(efx, probe, efx->net_dev,
201 "creating RX queue %d size %#x mask %#x\n",
202 efx_rx_queue_index(rx_queue), efx->rxq_entries,
203 rx_queue->ptr_mask);
204
205 /* Allocate RX buffers */
206 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
207 GFP_KERNEL);
208 if (!rx_queue->buffer)
209 return -ENOMEM;
210
211 rc = efx_nic_probe_rx(rx_queue);
212 if (rc) {
213 kfree(rx_queue->buffer);
214 rx_queue->buffer = NULL;
215 }
216
217 return rc;
218 }
219
efx_init_rx_queue(struct efx_rx_queue * rx_queue)220 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
221 {
222 unsigned int max_fill, trigger, max_trigger;
223 struct efx_nic *efx = rx_queue->efx;
224 int rc = 0;
225
226 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
227 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
228
229 /* Initialise ptr fields */
230 rx_queue->added_count = 0;
231 rx_queue->notified_count = 0;
232 rx_queue->removed_count = 0;
233 rx_queue->min_fill = -1U;
234 efx_init_rx_recycle_ring(rx_queue);
235
236 rx_queue->page_remove = 0;
237 rx_queue->page_add = rx_queue->page_ptr_mask + 1;
238 rx_queue->page_recycle_count = 0;
239 rx_queue->page_recycle_failed = 0;
240 rx_queue->page_recycle_full = 0;
241
242 /* Initialise limit fields */
243 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
244 max_trigger =
245 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
246 if (rx_refill_threshold != 0) {
247 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
248 if (trigger > max_trigger)
249 trigger = max_trigger;
250 } else {
251 trigger = max_trigger;
252 }
253
254 rx_queue->max_fill = max_fill;
255 rx_queue->fast_fill_trigger = trigger;
256 rx_queue->refill_enabled = true;
257
258 /* Initialise XDP queue information */
259 rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
260 rx_queue->core_index, 0);
261
262 if (rc) {
263 netif_err(efx, rx_err, efx->net_dev,
264 "Failure to initialise XDP queue information rc=%d\n",
265 rc);
266 efx->xdp_rxq_info_failed = true;
267 } else {
268 rx_queue->xdp_rxq_info_valid = true;
269 }
270
271 /* Set up RX descriptor ring */
272 efx_nic_init_rx(rx_queue);
273 }
274
efx_fini_rx_queue(struct efx_rx_queue * rx_queue)275 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
276 {
277 struct efx_rx_buffer *rx_buf;
278 int i;
279
280 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
281 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
282
283 del_timer_sync(&rx_queue->slow_fill);
284
285 /* Release RX buffers from the current read ptr to the write ptr */
286 if (rx_queue->buffer) {
287 for (i = rx_queue->removed_count; i < rx_queue->added_count;
288 i++) {
289 unsigned int index = i & rx_queue->ptr_mask;
290
291 rx_buf = efx_rx_buffer(rx_queue, index);
292 efx_fini_rx_buffer(rx_queue, rx_buf);
293 }
294 }
295
296 efx_fini_rx_recycle_ring(rx_queue);
297
298 if (rx_queue->xdp_rxq_info_valid)
299 xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
300
301 rx_queue->xdp_rxq_info_valid = false;
302 }
303
efx_remove_rx_queue(struct efx_rx_queue * rx_queue)304 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
305 {
306 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
307 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
308
309 efx_nic_remove_rx(rx_queue);
310
311 kfree(rx_queue->buffer);
312 rx_queue->buffer = NULL;
313 }
314
315 /* Unmap a DMA-mapped page. This function is only called for the final RX
316 * buffer in a page.
317 */
efx_unmap_rx_buffer(struct efx_nic * efx,struct efx_rx_buffer * rx_buf)318 void efx_unmap_rx_buffer(struct efx_nic *efx,
319 struct efx_rx_buffer *rx_buf)
320 {
321 struct page *page = rx_buf->page;
322
323 if (page) {
324 struct efx_rx_page_state *state = page_address(page);
325
326 dma_unmap_page(&efx->pci_dev->dev,
327 state->dma_addr,
328 PAGE_SIZE << efx->rx_buffer_order,
329 DMA_FROM_DEVICE);
330 }
331 }
332
efx_free_rx_buffers(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf,unsigned int num_bufs)333 void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
334 struct efx_rx_buffer *rx_buf,
335 unsigned int num_bufs)
336 {
337 do {
338 if (rx_buf->page) {
339 put_page(rx_buf->page);
340 rx_buf->page = NULL;
341 }
342 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
343 } while (--num_bufs);
344 }
345
efx_rx_slow_fill(struct timer_list * t)346 void efx_rx_slow_fill(struct timer_list *t)
347 {
348 struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
349
350 /* Post an event to cause NAPI to run and refill the queue */
351 efx_nic_generate_fill_event(rx_queue);
352 ++rx_queue->slow_fill_count;
353 }
354
efx_schedule_slow_fill(struct efx_rx_queue * rx_queue)355 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
356 {
357 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
358 }
359
360 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
361 *
362 * @rx_queue: Efx RX queue
363 *
364 * This allocates a batch of pages, maps them for DMA, and populates
365 * struct efx_rx_buffers for each one. Return a negative error code or
366 * 0 on success. If a single page can be used for multiple buffers,
367 * then the page will either be inserted fully, or not at all.
368 */
efx_init_rx_buffers(struct efx_rx_queue * rx_queue,bool atomic)369 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
370 {
371 unsigned int page_offset, index, count;
372 struct efx_nic *efx = rx_queue->efx;
373 struct efx_rx_page_state *state;
374 struct efx_rx_buffer *rx_buf;
375 dma_addr_t dma_addr;
376 struct page *page;
377
378 count = 0;
379 do {
380 page = efx_reuse_page(rx_queue);
381 if (page == NULL) {
382 page = alloc_pages(__GFP_COMP |
383 (atomic ? GFP_ATOMIC : GFP_KERNEL),
384 efx->rx_buffer_order);
385 if (unlikely(page == NULL))
386 return -ENOMEM;
387 dma_addr =
388 dma_map_page(&efx->pci_dev->dev, page, 0,
389 PAGE_SIZE << efx->rx_buffer_order,
390 DMA_FROM_DEVICE);
391 if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
392 dma_addr))) {
393 __free_pages(page, efx->rx_buffer_order);
394 return -EIO;
395 }
396 state = page_address(page);
397 state->dma_addr = dma_addr;
398 } else {
399 state = page_address(page);
400 dma_addr = state->dma_addr;
401 }
402
403 dma_addr += sizeof(struct efx_rx_page_state);
404 page_offset = sizeof(struct efx_rx_page_state);
405
406 do {
407 index = rx_queue->added_count & rx_queue->ptr_mask;
408 rx_buf = efx_rx_buffer(rx_queue, index);
409 rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
410 EFX_XDP_HEADROOM;
411 rx_buf->page = page;
412 rx_buf->page_offset = page_offset + efx->rx_ip_align +
413 EFX_XDP_HEADROOM;
414 rx_buf->len = efx->rx_dma_len;
415 rx_buf->flags = 0;
416 ++rx_queue->added_count;
417 get_page(page);
418 dma_addr += efx->rx_page_buf_step;
419 page_offset += efx->rx_page_buf_step;
420 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
421
422 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
423 } while (++count < efx->rx_pages_per_batch);
424
425 return 0;
426 }
427
efx_rx_config_page_split(struct efx_nic * efx)428 void efx_rx_config_page_split(struct efx_nic *efx)
429 {
430 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
431 EFX_XDP_HEADROOM + EFX_XDP_TAILROOM,
432 EFX_RX_BUF_ALIGNMENT);
433 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
434 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
435 efx->rx_page_buf_step);
436 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
437 efx->rx_bufs_per_page;
438 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
439 efx->rx_bufs_per_page);
440 }
441
442 /* efx_fast_push_rx_descriptors - push new RX descriptors quickly
443 * @rx_queue: RX descriptor queue
444 *
445 * This will aim to fill the RX descriptor queue up to
446 * @rx_queue->@max_fill. If there is insufficient atomic
447 * memory to do so, a slow fill will be scheduled.
448 *
449 * The caller must provide serialisation (none is used here). In practise,
450 * this means this function must run from the NAPI handler, or be called
451 * when NAPI is disabled.
452 */
efx_fast_push_rx_descriptors(struct efx_rx_queue * rx_queue,bool atomic)453 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
454 {
455 struct efx_nic *efx = rx_queue->efx;
456 unsigned int fill_level, batch_size;
457 int space, rc = 0;
458
459 if (!rx_queue->refill_enabled)
460 return;
461
462 /* Calculate current fill level, and exit if we don't need to fill */
463 fill_level = (rx_queue->added_count - rx_queue->removed_count);
464 EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
465 if (fill_level >= rx_queue->fast_fill_trigger)
466 goto out;
467
468 /* Record minimum fill level */
469 if (unlikely(fill_level < rx_queue->min_fill)) {
470 if (fill_level)
471 rx_queue->min_fill = fill_level;
472 }
473
474 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
475 space = rx_queue->max_fill - fill_level;
476 EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
477
478 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
479 "RX queue %d fast-filling descriptor ring from"
480 " level %d to level %d\n",
481 efx_rx_queue_index(rx_queue), fill_level,
482 rx_queue->max_fill);
483
484 do {
485 rc = efx_init_rx_buffers(rx_queue, atomic);
486 if (unlikely(rc)) {
487 /* Ensure that we don't leave the rx queue empty */
488 efx_schedule_slow_fill(rx_queue);
489 goto out;
490 }
491 } while ((space -= batch_size) >= batch_size);
492
493 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
494 "RX queue %d fast-filled descriptor ring "
495 "to level %d\n", efx_rx_queue_index(rx_queue),
496 rx_queue->added_count - rx_queue->removed_count);
497
498 out:
499 if (rx_queue->notified_count != rx_queue->added_count)
500 efx_nic_notify_rx_desc(rx_queue);
501 }
502
503 /* Pass a received packet up through GRO. GRO can handle pages
504 * regardless of checksum state and skbs with a good checksum.
505 */
506 void
efx_rx_packet_gro(struct efx_channel * channel,struct efx_rx_buffer * rx_buf,unsigned int n_frags,u8 * eh,__wsum csum)507 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
508 unsigned int n_frags, u8 *eh, __wsum csum)
509 {
510 struct napi_struct *napi = &channel->napi_str;
511 struct efx_nic *efx = channel->efx;
512 struct sk_buff *skb;
513
514 skb = napi_get_frags(napi);
515 if (unlikely(!skb)) {
516 struct efx_rx_queue *rx_queue;
517
518 rx_queue = efx_channel_get_rx_queue(channel);
519 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
520 return;
521 }
522
523 if (efx->net_dev->features & NETIF_F_RXHASH &&
524 efx_rx_buf_hash_valid(efx, eh))
525 skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
526 PKT_HASH_TYPE_L3);
527 if (csum) {
528 skb->csum = csum;
529 skb->ip_summed = CHECKSUM_COMPLETE;
530 } else {
531 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
532 CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
533 }
534 skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
535
536 for (;;) {
537 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
538 rx_buf->page, rx_buf->page_offset,
539 rx_buf->len);
540 rx_buf->page = NULL;
541 skb->len += rx_buf->len;
542 if (skb_shinfo(skb)->nr_frags == n_frags)
543 break;
544
545 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
546 }
547
548 skb->data_len = skb->len;
549 skb->truesize += n_frags * efx->rx_buffer_truesize;
550
551 skb_record_rx_queue(skb, channel->rx_queue.core_index);
552
553 napi_gro_frags(napi);
554 }
555
556 /* RSS contexts. We're using linked lists and crappy O(n) algorithms, because
557 * (a) this is an infrequent control-plane operation and (b) n is small (max 64)
558 */
efx_alloc_rss_context_entry(struct efx_nic * efx)559 struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx)
560 {
561 struct list_head *head = &efx->rss_context.list;
562 struct efx_rss_context *ctx, *new;
563 u32 id = 1; /* Don't use zero, that refers to the master RSS context */
564
565 WARN_ON(!mutex_is_locked(&efx->rss_lock));
566
567 /* Search for first gap in the numbering */
568 list_for_each_entry(ctx, head, list) {
569 if (ctx->user_id != id)
570 break;
571 id++;
572 /* Check for wrap. If this happens, we have nearly 2^32
573 * allocated RSS contexts, which seems unlikely.
574 */
575 if (WARN_ON_ONCE(!id))
576 return NULL;
577 }
578
579 /* Create the new entry */
580 new = kmalloc(sizeof(*new), GFP_KERNEL);
581 if (!new)
582 return NULL;
583 new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
584 new->rx_hash_udp_4tuple = false;
585
586 /* Insert the new entry into the gap */
587 new->user_id = id;
588 list_add_tail(&new->list, &ctx->list);
589 return new;
590 }
591
efx_find_rss_context_entry(struct efx_nic * efx,u32 id)592 struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id)
593 {
594 struct list_head *head = &efx->rss_context.list;
595 struct efx_rss_context *ctx;
596
597 WARN_ON(!mutex_is_locked(&efx->rss_lock));
598
599 list_for_each_entry(ctx, head, list)
600 if (ctx->user_id == id)
601 return ctx;
602 return NULL;
603 }
604
efx_free_rss_context_entry(struct efx_rss_context * ctx)605 void efx_free_rss_context_entry(struct efx_rss_context *ctx)
606 {
607 list_del(&ctx->list);
608 kfree(ctx);
609 }
610
efx_set_default_rx_indir_table(struct efx_nic * efx,struct efx_rss_context * ctx)611 void efx_set_default_rx_indir_table(struct efx_nic *efx,
612 struct efx_rss_context *ctx)
613 {
614 size_t i;
615
616 for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
617 ctx->rx_indir_table[i] =
618 ethtool_rxfh_indir_default(i, efx->rss_spread);
619 }
620
621 /**
622 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
623 * @spec: Specification to test
624 *
625 * Return: %true if the specification is a non-drop RX filter that
626 * matches a local MAC address I/G bit value of 1 or matches a local
627 * IPv4 or IPv6 address value in the respective multicast address
628 * range. Otherwise %false.
629 */
efx_filter_is_mc_recipient(const struct efx_filter_spec * spec)630 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
631 {
632 if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
633 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
634 return false;
635
636 if (spec->match_flags &
637 (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
638 is_multicast_ether_addr(spec->loc_mac))
639 return true;
640
641 if ((spec->match_flags &
642 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
643 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
644 if (spec->ether_type == htons(ETH_P_IP) &&
645 ipv4_is_multicast(spec->loc_host[0]))
646 return true;
647 if (spec->ether_type == htons(ETH_P_IPV6) &&
648 ((const u8 *)spec->loc_host)[0] == 0xff)
649 return true;
650 }
651
652 return false;
653 }
654
efx_filter_spec_equal(const struct efx_filter_spec * left,const struct efx_filter_spec * right)655 bool efx_filter_spec_equal(const struct efx_filter_spec *left,
656 const struct efx_filter_spec *right)
657 {
658 if ((left->match_flags ^ right->match_flags) |
659 ((left->flags ^ right->flags) &
660 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
661 return false;
662
663 return memcmp(&left->vport_id, &right->vport_id,
664 sizeof(struct efx_filter_spec) -
665 offsetof(struct efx_filter_spec, vport_id)) == 0;
666 }
667
efx_filter_spec_hash(const struct efx_filter_spec * spec)668 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec)
669 {
670 BUILD_BUG_ON(offsetof(struct efx_filter_spec, vport_id) & 3);
671 return jhash2((const u32 *)&spec->vport_id,
672 (sizeof(struct efx_filter_spec) -
673 offsetof(struct efx_filter_spec, vport_id)) / 4,
674 0);
675 }
676
677 #ifdef CONFIG_RFS_ACCEL
efx_rps_check_rule(struct efx_arfs_rule * rule,unsigned int filter_idx,bool * force)678 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
679 bool *force)
680 {
681 if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
682 /* ARFS is currently updating this entry, leave it */
683 return false;
684 }
685 if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
686 /* ARFS tried and failed to update this, so it's probably out
687 * of date. Remove the filter and the ARFS rule entry.
688 */
689 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
690 *force = true;
691 return true;
692 } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
693 /* ARFS has moved on, so old filter is not needed. Since we did
694 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
695 * not be removed by efx_rps_hash_del() subsequently.
696 */
697 *force = true;
698 return true;
699 }
700 /* Remove it iff ARFS wants to. */
701 return true;
702 }
703
704 static
efx_rps_hash_bucket(struct efx_nic * efx,const struct efx_filter_spec * spec)705 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
706 const struct efx_filter_spec *spec)
707 {
708 u32 hash = efx_filter_spec_hash(spec);
709
710 lockdep_assert_held(&efx->rps_hash_lock);
711 if (!efx->rps_hash_table)
712 return NULL;
713 return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
714 }
715
efx_rps_hash_find(struct efx_nic * efx,const struct efx_filter_spec * spec)716 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
717 const struct efx_filter_spec *spec)
718 {
719 struct efx_arfs_rule *rule;
720 struct hlist_head *head;
721 struct hlist_node *node;
722
723 head = efx_rps_hash_bucket(efx, spec);
724 if (!head)
725 return NULL;
726 hlist_for_each(node, head) {
727 rule = container_of(node, struct efx_arfs_rule, node);
728 if (efx_filter_spec_equal(spec, &rule->spec))
729 return rule;
730 }
731 return NULL;
732 }
733
efx_rps_hash_add(struct efx_nic * efx,const struct efx_filter_spec * spec,bool * new)734 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
735 const struct efx_filter_spec *spec,
736 bool *new)
737 {
738 struct efx_arfs_rule *rule;
739 struct hlist_head *head;
740 struct hlist_node *node;
741
742 head = efx_rps_hash_bucket(efx, spec);
743 if (!head)
744 return NULL;
745 hlist_for_each(node, head) {
746 rule = container_of(node, struct efx_arfs_rule, node);
747 if (efx_filter_spec_equal(spec, &rule->spec)) {
748 *new = false;
749 return rule;
750 }
751 }
752 rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
753 *new = true;
754 if (rule) {
755 memcpy(&rule->spec, spec, sizeof(rule->spec));
756 hlist_add_head(&rule->node, head);
757 }
758 return rule;
759 }
760
efx_rps_hash_del(struct efx_nic * efx,const struct efx_filter_spec * spec)761 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec)
762 {
763 struct efx_arfs_rule *rule;
764 struct hlist_head *head;
765 struct hlist_node *node;
766
767 head = efx_rps_hash_bucket(efx, spec);
768 if (WARN_ON(!head))
769 return;
770 hlist_for_each(node, head) {
771 rule = container_of(node, struct efx_arfs_rule, node);
772 if (efx_filter_spec_equal(spec, &rule->spec)) {
773 /* Someone already reused the entry. We know that if
774 * this check doesn't fire (i.e. filter_id == REMOVING)
775 * then the REMOVING mark was put there by our caller,
776 * because caller is holding a lock on filter table and
777 * only holders of that lock set REMOVING.
778 */
779 if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
780 return;
781 hlist_del(node);
782 kfree(rule);
783 return;
784 }
785 }
786 /* We didn't find it. */
787 WARN_ON(1);
788 }
789 #endif
790
efx_probe_filters(struct efx_nic * efx)791 int efx_probe_filters(struct efx_nic *efx)
792 {
793 int rc;
794
795 mutex_lock(&efx->mac_lock);
796 rc = efx->type->filter_table_probe(efx);
797 if (rc)
798 goto out_unlock;
799
800 #ifdef CONFIG_RFS_ACCEL
801 if (efx->type->offload_features & NETIF_F_NTUPLE) {
802 struct efx_channel *channel;
803 int i, success = 1;
804
805 efx_for_each_channel(channel, efx) {
806 channel->rps_flow_id =
807 kcalloc(efx->type->max_rx_ip_filters,
808 sizeof(*channel->rps_flow_id),
809 GFP_KERNEL);
810 if (!channel->rps_flow_id)
811 success = 0;
812 else
813 for (i = 0;
814 i < efx->type->max_rx_ip_filters;
815 ++i)
816 channel->rps_flow_id[i] =
817 RPS_FLOW_ID_INVALID;
818 channel->rfs_expire_index = 0;
819 channel->rfs_filter_count = 0;
820 }
821
822 if (!success) {
823 efx_for_each_channel(channel, efx)
824 kfree(channel->rps_flow_id);
825 efx->type->filter_table_remove(efx);
826 rc = -ENOMEM;
827 goto out_unlock;
828 }
829 }
830 #endif
831 out_unlock:
832 mutex_unlock(&efx->mac_lock);
833 return rc;
834 }
835
efx_remove_filters(struct efx_nic * efx)836 void efx_remove_filters(struct efx_nic *efx)
837 {
838 #ifdef CONFIG_RFS_ACCEL
839 struct efx_channel *channel;
840
841 efx_for_each_channel(channel, efx) {
842 cancel_delayed_work_sync(&channel->filter_work);
843 kfree(channel->rps_flow_id);
844 channel->rps_flow_id = NULL;
845 }
846 #endif
847 efx->type->filter_table_remove(efx);
848 }
849
850 #ifdef CONFIG_RFS_ACCEL
851
efx_filter_rfs_work(struct work_struct * data)852 static void efx_filter_rfs_work(struct work_struct *data)
853 {
854 struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
855 work);
856 struct efx_nic *efx = efx_netdev_priv(req->net_dev);
857 struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
858 int slot_idx = req - efx->rps_slot;
859 struct efx_arfs_rule *rule;
860 u16 arfs_id = 0;
861 int rc;
862
863 rc = efx->type->filter_insert(efx, &req->spec, true);
864 if (rc >= 0)
865 /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */
866 rc %= efx->type->max_rx_ip_filters;
867 if (efx->rps_hash_table) {
868 spin_lock_bh(&efx->rps_hash_lock);
869 rule = efx_rps_hash_find(efx, &req->spec);
870 /* The rule might have already gone, if someone else's request
871 * for the same spec was already worked and then expired before
872 * we got around to our work. In that case we have nothing
873 * tying us to an arfs_id, meaning that as soon as the filter
874 * is considered for expiry it will be removed.
875 */
876 if (rule) {
877 if (rc < 0)
878 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
879 else
880 rule->filter_id = rc;
881 arfs_id = rule->arfs_id;
882 }
883 spin_unlock_bh(&efx->rps_hash_lock);
884 }
885 if (rc >= 0) {
886 /* Remember this so we can check whether to expire the filter
887 * later.
888 */
889 mutex_lock(&efx->rps_mutex);
890 if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID)
891 channel->rfs_filter_count++;
892 channel->rps_flow_id[rc] = req->flow_id;
893 mutex_unlock(&efx->rps_mutex);
894
895 if (req->spec.ether_type == htons(ETH_P_IP))
896 netif_info(efx, rx_status, efx->net_dev,
897 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
898 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
899 req->spec.rem_host, ntohs(req->spec.rem_port),
900 req->spec.loc_host, ntohs(req->spec.loc_port),
901 req->rxq_index, req->flow_id, rc, arfs_id);
902 else
903 netif_info(efx, rx_status, efx->net_dev,
904 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
905 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
906 req->spec.rem_host, ntohs(req->spec.rem_port),
907 req->spec.loc_host, ntohs(req->spec.loc_port),
908 req->rxq_index, req->flow_id, rc, arfs_id);
909 channel->n_rfs_succeeded++;
910 } else {
911 if (req->spec.ether_type == htons(ETH_P_IP))
912 netif_dbg(efx, rx_status, efx->net_dev,
913 "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n",
914 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
915 req->spec.rem_host, ntohs(req->spec.rem_port),
916 req->spec.loc_host, ntohs(req->spec.loc_port),
917 req->rxq_index, req->flow_id, rc, arfs_id);
918 else
919 netif_dbg(efx, rx_status, efx->net_dev,
920 "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n",
921 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
922 req->spec.rem_host, ntohs(req->spec.rem_port),
923 req->spec.loc_host, ntohs(req->spec.loc_port),
924 req->rxq_index, req->flow_id, rc, arfs_id);
925 channel->n_rfs_failed++;
926 /* We're overloading the NIC's filter tables, so let's do a
927 * chunk of extra expiry work.
928 */
929 __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count,
930 100u));
931 }
932
933 /* Release references */
934 clear_bit(slot_idx, &efx->rps_slot_map);
935 dev_put(req->net_dev);
936 }
937
efx_filter_rfs(struct net_device * net_dev,const struct sk_buff * skb,u16 rxq_index,u32 flow_id)938 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
939 u16 rxq_index, u32 flow_id)
940 {
941 struct efx_nic *efx = efx_netdev_priv(net_dev);
942 struct efx_async_filter_insertion *req;
943 struct efx_arfs_rule *rule;
944 struct flow_keys fk;
945 int slot_idx;
946 bool new;
947 int rc;
948
949 /* find a free slot */
950 for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
951 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
952 break;
953 if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
954 return -EBUSY;
955
956 if (flow_id == RPS_FLOW_ID_INVALID) {
957 rc = -EINVAL;
958 goto out_clear;
959 }
960
961 if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
962 rc = -EPROTONOSUPPORT;
963 goto out_clear;
964 }
965
966 if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
967 rc = -EPROTONOSUPPORT;
968 goto out_clear;
969 }
970 if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
971 rc = -EPROTONOSUPPORT;
972 goto out_clear;
973 }
974
975 req = efx->rps_slot + slot_idx;
976 efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
977 efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
978 rxq_index);
979 req->spec.match_flags =
980 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
981 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
982 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
983 req->spec.ether_type = fk.basic.n_proto;
984 req->spec.ip_proto = fk.basic.ip_proto;
985
986 if (fk.basic.n_proto == htons(ETH_P_IP)) {
987 req->spec.rem_host[0] = fk.addrs.v4addrs.src;
988 req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
989 } else {
990 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
991 sizeof(struct in6_addr));
992 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
993 sizeof(struct in6_addr));
994 }
995
996 req->spec.rem_port = fk.ports.src;
997 req->spec.loc_port = fk.ports.dst;
998
999 if (efx->rps_hash_table) {
1000 /* Add it to ARFS hash table */
1001 spin_lock(&efx->rps_hash_lock);
1002 rule = efx_rps_hash_add(efx, &req->spec, &new);
1003 if (!rule) {
1004 rc = -ENOMEM;
1005 goto out_unlock;
1006 }
1007 if (new)
1008 rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
1009 rc = rule->arfs_id;
1010 /* Skip if existing or pending filter already does the right thing */
1011 if (!new && rule->rxq_index == rxq_index &&
1012 rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
1013 goto out_unlock;
1014 rule->rxq_index = rxq_index;
1015 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
1016 spin_unlock(&efx->rps_hash_lock);
1017 } else {
1018 /* Without an ARFS hash table, we just use arfs_id 0 for all
1019 * filters. This means if multiple flows hash to the same
1020 * flow_id, all but the most recently touched will be eligible
1021 * for expiry.
1022 */
1023 rc = 0;
1024 }
1025
1026 /* Queue the request */
1027 dev_hold(req->net_dev = net_dev);
1028 INIT_WORK(&req->work, efx_filter_rfs_work);
1029 req->rxq_index = rxq_index;
1030 req->flow_id = flow_id;
1031 schedule_work(&req->work);
1032 return rc;
1033 out_unlock:
1034 spin_unlock(&efx->rps_hash_lock);
1035 out_clear:
1036 clear_bit(slot_idx, &efx->rps_slot_map);
1037 return rc;
1038 }
1039
__efx_filter_rfs_expire(struct efx_channel * channel,unsigned int quota)1040 bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota)
1041 {
1042 bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
1043 struct efx_nic *efx = channel->efx;
1044 unsigned int index, size, start;
1045 u32 flow_id;
1046
1047 if (!mutex_trylock(&efx->rps_mutex))
1048 return false;
1049 expire_one = efx->type->filter_rfs_expire_one;
1050 index = channel->rfs_expire_index;
1051 start = index;
1052 size = efx->type->max_rx_ip_filters;
1053 while (quota) {
1054 flow_id = channel->rps_flow_id[index];
1055
1056 if (flow_id != RPS_FLOW_ID_INVALID) {
1057 quota--;
1058 if (expire_one(efx, flow_id, index)) {
1059 netif_info(efx, rx_status, efx->net_dev,
1060 "expired filter %d [channel %u flow %u]\n",
1061 index, channel->channel, flow_id);
1062 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1063 channel->rfs_filter_count--;
1064 }
1065 }
1066 if (++index == size)
1067 index = 0;
1068 /* If we were called with a quota that exceeds the total number
1069 * of filters in the table (which shouldn't happen, but could
1070 * if two callers race), ensure that we don't loop forever -
1071 * stop when we've examined every row of the table.
1072 */
1073 if (index == start)
1074 break;
1075 }
1076
1077 channel->rfs_expire_index = index;
1078 mutex_unlock(&efx->rps_mutex);
1079 return true;
1080 }
1081
1082 #endif /* CONFIG_RFS_ACCEL */
1083