1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include <linux/gfp.h>
24 #include <linux/cpu_rmap.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 
29 #include "mcdi.h"
30 #include "workarounds.h"
31 
32 /**************************************************************************
33  *
34  * Type name strings
35  *
36  **************************************************************************
37  */
38 
39 /* Loopback mode names (see LOOPBACK_MODE()) */
40 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41 const char *efx_loopback_mode_names[] = {
42 	[LOOPBACK_NONE]		= "NONE",
43 	[LOOPBACK_DATA]		= "DATAPATH",
44 	[LOOPBACK_GMAC]		= "GMAC",
45 	[LOOPBACK_XGMII]	= "XGMII",
46 	[LOOPBACK_XGXS]		= "XGXS",
47 	[LOOPBACK_XAUI]  	= "XAUI",
48 	[LOOPBACK_GMII] 	= "GMII",
49 	[LOOPBACK_SGMII] 	= "SGMII",
50 	[LOOPBACK_XGBR]		= "XGBR",
51 	[LOOPBACK_XFI]		= "XFI",
52 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
53 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
54 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
55 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
56 	[LOOPBACK_GPHY]		= "GPHY",
57 	[LOOPBACK_PHYXS]	= "PHYXS",
58 	[LOOPBACK_PCS]	 	= "PCS",
59 	[LOOPBACK_PMAPMD] 	= "PMA/PMD",
60 	[LOOPBACK_XPORT]	= "XPORT",
61 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
62 	[LOOPBACK_XAUI_WS]  	= "XAUI_WS",
63 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
64 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 	[LOOPBACK_GMII_WS] 	= "GMII_WS",
66 	[LOOPBACK_XFI_WS]	= "XFI_WS",
67 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
68 	[LOOPBACK_PHYXS_WS]  	= "PHYXS_WS",
69 };
70 
71 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
72 const char *efx_reset_type_names[] = {
73 	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
74 	[RESET_TYPE_ALL]           = "ALL",
75 	[RESET_TYPE_WORLD]         = "WORLD",
76 	[RESET_TYPE_DISABLE]       = "DISABLE",
77 	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
78 	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
79 	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
80 	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
81 	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
82 	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
83 	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
84 };
85 
86 #define EFX_MAX_MTU (9 * 1024)
87 
88 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
89  * queued onto this work queue. This is not a per-nic work queue, because
90  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91  */
92 static struct workqueue_struct *reset_workqueue;
93 
94 /**************************************************************************
95  *
96  * Configurable values
97  *
98  *************************************************************************/
99 
100 /*
101  * Use separate channels for TX and RX events
102  *
103  * Set this to 1 to use separate channels for TX and RX. It allows us
104  * to control interrupt affinity separately for TX and RX.
105  *
106  * This is only used in MSI-X interrupt mode
107  */
108 static unsigned int separate_tx_channels;
109 module_param(separate_tx_channels, uint, 0444);
110 MODULE_PARM_DESC(separate_tx_channels,
111 		 "Use separate channels for TX and RX");
112 
113 /* This is the weight assigned to each of the (per-channel) virtual
114  * NAPI devices.
115  */
116 static int napi_weight = 64;
117 
118 /* This is the time (in jiffies) between invocations of the hardware
119  * monitor.  On Falcon-based NICs, this will:
120  * - Check the on-board hardware monitor;
121  * - Poll the link state and reconfigure the hardware as necessary.
122  */
123 static unsigned int efx_monitor_interval = 1 * HZ;
124 
125 /* This controls whether or not the driver will initialise devices
126  * with invalid MAC addresses stored in the EEPROM or flash.  If true,
127  * such devices will be initialised with a random locally-generated
128  * MAC address.  This allows for loading the sfc_mtd driver to
129  * reprogram the flash, even if the flash contents (including the MAC
130  * address) have previously been erased.
131  */
132 static unsigned int allow_bad_hwaddr;
133 
134 /* Initial interrupt moderation settings.  They can be modified after
135  * module load with ethtool.
136  *
137  * The default for RX should strike a balance between increasing the
138  * round-trip latency and reducing overhead.
139  */
140 static unsigned int rx_irq_mod_usec = 60;
141 
142 /* Initial interrupt moderation settings.  They can be modified after
143  * module load with ethtool.
144  *
145  * This default is chosen to ensure that a 10G link does not go idle
146  * while a TX queue is stopped after it has become full.  A queue is
147  * restarted when it drops below half full.  The time this takes (assuming
148  * worst case 3 descriptors per packet and 1024 descriptors) is
149  *   512 / 3 * 1.2 = 205 usec.
150  */
151 static unsigned int tx_irq_mod_usec = 150;
152 
153 /* This is the first interrupt mode to try out of:
154  * 0 => MSI-X
155  * 1 => MSI
156  * 2 => legacy
157  */
158 static unsigned int interrupt_mode;
159 
160 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
161  * i.e. the number of CPUs among which we may distribute simultaneous
162  * interrupt handling.
163  *
164  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
165  * The default (0) means to assign an interrupt to each package (level II cache)
166  */
167 static unsigned int rss_cpus;
168 module_param(rss_cpus, uint, 0444);
169 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
170 
171 static int phy_flash_cfg;
172 module_param(phy_flash_cfg, int, 0644);
173 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
174 
175 static unsigned irq_adapt_low_thresh = 10000;
176 module_param(irq_adapt_low_thresh, uint, 0644);
177 MODULE_PARM_DESC(irq_adapt_low_thresh,
178 		 "Threshold score for reducing IRQ moderation");
179 
180 static unsigned irq_adapt_high_thresh = 20000;
181 module_param(irq_adapt_high_thresh, uint, 0644);
182 MODULE_PARM_DESC(irq_adapt_high_thresh,
183 		 "Threshold score for increasing IRQ moderation");
184 
185 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
186 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
187 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
188 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
189 module_param(debug, uint, 0);
190 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
191 
192 /**************************************************************************
193  *
194  * Utility functions and prototypes
195  *
196  *************************************************************************/
197 
198 static void efx_remove_channels(struct efx_nic *efx);
199 static void efx_remove_port(struct efx_nic *efx);
200 static void efx_init_napi(struct efx_nic *efx);
201 static void efx_fini_napi(struct efx_nic *efx);
202 static void efx_fini_napi_channel(struct efx_channel *channel);
203 static void efx_fini_struct(struct efx_nic *efx);
204 static void efx_start_all(struct efx_nic *efx);
205 static void efx_stop_all(struct efx_nic *efx);
206 
207 #define EFX_ASSERT_RESET_SERIALISED(efx)		\
208 	do {						\
209 		if ((efx->state == STATE_RUNNING) ||	\
210 		    (efx->state == STATE_DISABLED))	\
211 			ASSERT_RTNL();			\
212 	} while (0)
213 
214 /**************************************************************************
215  *
216  * Event queue processing
217  *
218  *************************************************************************/
219 
220 /* Process channel's event queue
221  *
222  * This function is responsible for processing the event queue of a
223  * single channel.  The caller must guarantee that this function will
224  * never be concurrently called more than once on the same channel,
225  * though different channels may be being processed concurrently.
226  */
efx_process_channel(struct efx_channel * channel,int budget)227 static int efx_process_channel(struct efx_channel *channel, int budget)
228 {
229 	struct efx_nic *efx = channel->efx;
230 	int spent;
231 
232 	if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
233 		     !channel->enabled))
234 		return 0;
235 
236 	spent = efx_nic_process_eventq(channel, budget);
237 	if (spent == 0)
238 		return 0;
239 
240 	/* Deliver last RX packet. */
241 	if (channel->rx_pkt) {
242 		__efx_rx_packet(channel, channel->rx_pkt,
243 				channel->rx_pkt_csummed);
244 		channel->rx_pkt = NULL;
245 	}
246 
247 	efx_rx_strategy(channel);
248 
249 	efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
250 
251 	return spent;
252 }
253 
254 /* Mark channel as finished processing
255  *
256  * Note that since we will not receive further interrupts for this
257  * channel before we finish processing and call the eventq_read_ack()
258  * method, there is no need to use the interrupt hold-off timers.
259  */
efx_channel_processed(struct efx_channel * channel)260 static inline void efx_channel_processed(struct efx_channel *channel)
261 {
262 	/* The interrupt handler for this channel may set work_pending
263 	 * as soon as we acknowledge the events we've seen.  Make sure
264 	 * it's cleared before then. */
265 	channel->work_pending = false;
266 	smp_wmb();
267 
268 	efx_nic_eventq_read_ack(channel);
269 }
270 
271 /* NAPI poll handler
272  *
273  * NAPI guarantees serialisation of polls of the same device, which
274  * provides the guarantee required by efx_process_channel().
275  */
efx_poll(struct napi_struct * napi,int budget)276 static int efx_poll(struct napi_struct *napi, int budget)
277 {
278 	struct efx_channel *channel =
279 		container_of(napi, struct efx_channel, napi_str);
280 	struct efx_nic *efx = channel->efx;
281 	int spent;
282 
283 	netif_vdbg(efx, intr, efx->net_dev,
284 		   "channel %d NAPI poll executing on CPU %d\n",
285 		   channel->channel, raw_smp_processor_id());
286 
287 	spent = efx_process_channel(channel, budget);
288 
289 	if (spent < budget) {
290 		if (channel->channel < efx->n_rx_channels &&
291 		    efx->irq_rx_adaptive &&
292 		    unlikely(++channel->irq_count == 1000)) {
293 			if (unlikely(channel->irq_mod_score <
294 				     irq_adapt_low_thresh)) {
295 				if (channel->irq_moderation > 1) {
296 					channel->irq_moderation -= 1;
297 					efx->type->push_irq_moderation(channel);
298 				}
299 			} else if (unlikely(channel->irq_mod_score >
300 					    irq_adapt_high_thresh)) {
301 				if (channel->irq_moderation <
302 				    efx->irq_rx_moderation) {
303 					channel->irq_moderation += 1;
304 					efx->type->push_irq_moderation(channel);
305 				}
306 			}
307 			channel->irq_count = 0;
308 			channel->irq_mod_score = 0;
309 		}
310 
311 		efx_filter_rfs_expire(channel);
312 
313 		/* There is no race here; although napi_disable() will
314 		 * only wait for napi_complete(), this isn't a problem
315 		 * since efx_channel_processed() will have no effect if
316 		 * interrupts have already been disabled.
317 		 */
318 		napi_complete(napi);
319 		efx_channel_processed(channel);
320 	}
321 
322 	return spent;
323 }
324 
325 /* Process the eventq of the specified channel immediately on this CPU
326  *
327  * Disable hardware generated interrupts, wait for any existing
328  * processing to finish, then directly poll (and ack ) the eventq.
329  * Finally reenable NAPI and interrupts.
330  *
331  * This is for use only during a loopback self-test.  It must not
332  * deliver any packets up the stack as this can result in deadlock.
333  */
efx_process_channel_now(struct efx_channel * channel)334 void efx_process_channel_now(struct efx_channel *channel)
335 {
336 	struct efx_nic *efx = channel->efx;
337 
338 	BUG_ON(channel->channel >= efx->n_channels);
339 	BUG_ON(!channel->enabled);
340 	BUG_ON(!efx->loopback_selftest);
341 
342 	/* Disable interrupts and wait for ISRs to complete */
343 	efx_nic_disable_interrupts(efx);
344 	if (efx->legacy_irq) {
345 		synchronize_irq(efx->legacy_irq);
346 		efx->legacy_irq_enabled = false;
347 	}
348 	if (channel->irq)
349 		synchronize_irq(channel->irq);
350 
351 	/* Wait for any NAPI processing to complete */
352 	napi_disable(&channel->napi_str);
353 
354 	/* Poll the channel */
355 	efx_process_channel(channel, channel->eventq_mask + 1);
356 
357 	/* Ack the eventq. This may cause an interrupt to be generated
358 	 * when they are reenabled */
359 	efx_channel_processed(channel);
360 
361 	napi_enable(&channel->napi_str);
362 	if (efx->legacy_irq)
363 		efx->legacy_irq_enabled = true;
364 	efx_nic_enable_interrupts(efx);
365 }
366 
367 /* Create event queue
368  * Event queue memory allocations are done only once.  If the channel
369  * is reset, the memory buffer will be reused; this guards against
370  * errors during channel reset and also simplifies interrupt handling.
371  */
efx_probe_eventq(struct efx_channel * channel)372 static int efx_probe_eventq(struct efx_channel *channel)
373 {
374 	struct efx_nic *efx = channel->efx;
375 	unsigned long entries;
376 
377 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
378 		  "chan %d create event queue\n", channel->channel);
379 
380 	/* Build an event queue with room for one event per tx and rx buffer,
381 	 * plus some extra for link state events and MCDI completions. */
382 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
383 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
384 	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
385 
386 	return efx_nic_probe_eventq(channel);
387 }
388 
389 /* Prepare channel's event queue */
efx_init_eventq(struct efx_channel * channel)390 static void efx_init_eventq(struct efx_channel *channel)
391 {
392 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
393 		  "chan %d init event queue\n", channel->channel);
394 
395 	channel->eventq_read_ptr = 0;
396 
397 	efx_nic_init_eventq(channel);
398 }
399 
efx_fini_eventq(struct efx_channel * channel)400 static void efx_fini_eventq(struct efx_channel *channel)
401 {
402 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
403 		  "chan %d fini event queue\n", channel->channel);
404 
405 	efx_nic_fini_eventq(channel);
406 }
407 
efx_remove_eventq(struct efx_channel * channel)408 static void efx_remove_eventq(struct efx_channel *channel)
409 {
410 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
411 		  "chan %d remove event queue\n", channel->channel);
412 
413 	efx_nic_remove_eventq(channel);
414 }
415 
416 /**************************************************************************
417  *
418  * Channel handling
419  *
420  *************************************************************************/
421 
422 /* Allocate and initialise a channel structure, optionally copying
423  * parameters (but not resources) from an old channel structure. */
424 static struct efx_channel *
efx_alloc_channel(struct efx_nic * efx,int i,struct efx_channel * old_channel)425 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
426 {
427 	struct efx_channel *channel;
428 	struct efx_rx_queue *rx_queue;
429 	struct efx_tx_queue *tx_queue;
430 	int j;
431 
432 	if (old_channel) {
433 		channel = kmalloc(sizeof(*channel), GFP_KERNEL);
434 		if (!channel)
435 			return NULL;
436 
437 		*channel = *old_channel;
438 
439 		channel->napi_dev = NULL;
440 		memset(&channel->eventq, 0, sizeof(channel->eventq));
441 
442 		rx_queue = &channel->rx_queue;
443 		rx_queue->buffer = NULL;
444 		memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
445 
446 		for (j = 0; j < EFX_TXQ_TYPES; j++) {
447 			tx_queue = &channel->tx_queue[j];
448 			if (tx_queue->channel)
449 				tx_queue->channel = channel;
450 			tx_queue->buffer = NULL;
451 			memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
452 		}
453 	} else {
454 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
455 		if (!channel)
456 			return NULL;
457 
458 		channel->efx = efx;
459 		channel->channel = i;
460 
461 		for (j = 0; j < EFX_TXQ_TYPES; j++) {
462 			tx_queue = &channel->tx_queue[j];
463 			tx_queue->efx = efx;
464 			tx_queue->queue = i * EFX_TXQ_TYPES + j;
465 			tx_queue->channel = channel;
466 		}
467 	}
468 
469 	rx_queue = &channel->rx_queue;
470 	rx_queue->efx = efx;
471 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
472 		    (unsigned long)rx_queue);
473 
474 	return channel;
475 }
476 
efx_probe_channel(struct efx_channel * channel)477 static int efx_probe_channel(struct efx_channel *channel)
478 {
479 	struct efx_tx_queue *tx_queue;
480 	struct efx_rx_queue *rx_queue;
481 	int rc;
482 
483 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
484 		  "creating channel %d\n", channel->channel);
485 
486 	rc = efx_probe_eventq(channel);
487 	if (rc)
488 		goto fail1;
489 
490 	efx_for_each_channel_tx_queue(tx_queue, channel) {
491 		rc = efx_probe_tx_queue(tx_queue);
492 		if (rc)
493 			goto fail2;
494 	}
495 
496 	efx_for_each_channel_rx_queue(rx_queue, channel) {
497 		rc = efx_probe_rx_queue(rx_queue);
498 		if (rc)
499 			goto fail3;
500 	}
501 
502 	channel->n_rx_frm_trunc = 0;
503 
504 	return 0;
505 
506  fail3:
507 	efx_for_each_channel_rx_queue(rx_queue, channel)
508 		efx_remove_rx_queue(rx_queue);
509  fail2:
510 	efx_for_each_channel_tx_queue(tx_queue, channel)
511 		efx_remove_tx_queue(tx_queue);
512  fail1:
513 	return rc;
514 }
515 
516 
efx_set_channel_names(struct efx_nic * efx)517 static void efx_set_channel_names(struct efx_nic *efx)
518 {
519 	struct efx_channel *channel;
520 	const char *type = "";
521 	int number;
522 
523 	efx_for_each_channel(channel, efx) {
524 		number = channel->channel;
525 		if (efx->n_channels > efx->n_rx_channels) {
526 			if (channel->channel < efx->n_rx_channels) {
527 				type = "-rx";
528 			} else {
529 				type = "-tx";
530 				number -= efx->n_rx_channels;
531 			}
532 		}
533 		snprintf(efx->channel_name[channel->channel],
534 			 sizeof(efx->channel_name[0]),
535 			 "%s%s-%d", efx->name, type, number);
536 	}
537 }
538 
efx_probe_channels(struct efx_nic * efx)539 static int efx_probe_channels(struct efx_nic *efx)
540 {
541 	struct efx_channel *channel;
542 	int rc;
543 
544 	/* Restart special buffer allocation */
545 	efx->next_buffer_table = 0;
546 
547 	efx_for_each_channel(channel, efx) {
548 		rc = efx_probe_channel(channel);
549 		if (rc) {
550 			netif_err(efx, probe, efx->net_dev,
551 				  "failed to create channel %d\n",
552 				  channel->channel);
553 			goto fail;
554 		}
555 	}
556 	efx_set_channel_names(efx);
557 
558 	return 0;
559 
560 fail:
561 	efx_remove_channels(efx);
562 	return rc;
563 }
564 
565 /* Channels are shutdown and reinitialised whilst the NIC is running
566  * to propagate configuration changes (mtu, checksum offload), or
567  * to clear hardware error conditions
568  */
efx_init_channels(struct efx_nic * efx)569 static void efx_init_channels(struct efx_nic *efx)
570 {
571 	struct efx_tx_queue *tx_queue;
572 	struct efx_rx_queue *rx_queue;
573 	struct efx_channel *channel;
574 
575 	/* Calculate the rx buffer allocation parameters required to
576 	 * support the current MTU, including padding for header
577 	 * alignment and overruns.
578 	 */
579 	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
580 			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
581 			      efx->type->rx_buffer_hash_size +
582 			      efx->type->rx_buffer_padding);
583 	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
584 					 sizeof(struct efx_rx_page_state));
585 
586 	/* Initialise the channels */
587 	efx_for_each_channel(channel, efx) {
588 		netif_dbg(channel->efx, drv, channel->efx->net_dev,
589 			  "init chan %d\n", channel->channel);
590 
591 		efx_init_eventq(channel);
592 
593 		efx_for_each_channel_tx_queue(tx_queue, channel)
594 			efx_init_tx_queue(tx_queue);
595 
596 		/* The rx buffer allocation strategy is MTU dependent */
597 		efx_rx_strategy(channel);
598 
599 		efx_for_each_channel_rx_queue(rx_queue, channel)
600 			efx_init_rx_queue(rx_queue);
601 
602 		WARN_ON(channel->rx_pkt != NULL);
603 		efx_rx_strategy(channel);
604 	}
605 }
606 
607 /* This enables event queue processing and packet transmission.
608  *
609  * Note that this function is not allowed to fail, since that would
610  * introduce too much complexity into the suspend/resume path.
611  */
efx_start_channel(struct efx_channel * channel)612 static void efx_start_channel(struct efx_channel *channel)
613 {
614 	struct efx_rx_queue *rx_queue;
615 
616 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
617 		  "starting chan %d\n", channel->channel);
618 
619 	/* The interrupt handler for this channel may set work_pending
620 	 * as soon as we enable it.  Make sure it's cleared before
621 	 * then.  Similarly, make sure it sees the enabled flag set. */
622 	channel->work_pending = false;
623 	channel->enabled = true;
624 	smp_wmb();
625 
626 	/* Fill the queues before enabling NAPI */
627 	efx_for_each_channel_rx_queue(rx_queue, channel)
628 		efx_fast_push_rx_descriptors(rx_queue);
629 
630 	napi_enable(&channel->napi_str);
631 }
632 
633 /* This disables event queue processing and packet transmission.
634  * This function does not guarantee that all queue processing
635  * (e.g. RX refill) is complete.
636  */
efx_stop_channel(struct efx_channel * channel)637 static void efx_stop_channel(struct efx_channel *channel)
638 {
639 	if (!channel->enabled)
640 		return;
641 
642 	netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
643 		  "stop chan %d\n", channel->channel);
644 
645 	channel->enabled = false;
646 	napi_disable(&channel->napi_str);
647 }
648 
efx_fini_channels(struct efx_nic * efx)649 static void efx_fini_channels(struct efx_nic *efx)
650 {
651 	struct efx_channel *channel;
652 	struct efx_tx_queue *tx_queue;
653 	struct efx_rx_queue *rx_queue;
654 	int rc;
655 
656 	EFX_ASSERT_RESET_SERIALISED(efx);
657 	BUG_ON(efx->port_enabled);
658 
659 	rc = efx_nic_flush_queues(efx);
660 	if (rc && EFX_WORKAROUND_7803(efx)) {
661 		/* Schedule a reset to recover from the flush failure. The
662 		 * descriptor caches reference memory we're about to free,
663 		 * but falcon_reconfigure_mac_wrapper() won't reconnect
664 		 * the MACs because of the pending reset. */
665 		netif_err(efx, drv, efx->net_dev,
666 			  "Resetting to recover from flush failure\n");
667 		efx_schedule_reset(efx, RESET_TYPE_ALL);
668 	} else if (rc) {
669 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
670 	} else {
671 		netif_dbg(efx, drv, efx->net_dev,
672 			  "successfully flushed all queues\n");
673 	}
674 
675 	efx_for_each_channel(channel, efx) {
676 		netif_dbg(channel->efx, drv, channel->efx->net_dev,
677 			  "shut down chan %d\n", channel->channel);
678 
679 		efx_for_each_channel_rx_queue(rx_queue, channel)
680 			efx_fini_rx_queue(rx_queue);
681 		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
682 			efx_fini_tx_queue(tx_queue);
683 		efx_fini_eventq(channel);
684 	}
685 }
686 
efx_remove_channel(struct efx_channel * channel)687 static void efx_remove_channel(struct efx_channel *channel)
688 {
689 	struct efx_tx_queue *tx_queue;
690 	struct efx_rx_queue *rx_queue;
691 
692 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
693 		  "destroy chan %d\n", channel->channel);
694 
695 	efx_for_each_channel_rx_queue(rx_queue, channel)
696 		efx_remove_rx_queue(rx_queue);
697 	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
698 		efx_remove_tx_queue(tx_queue);
699 	efx_remove_eventq(channel);
700 }
701 
efx_remove_channels(struct efx_nic * efx)702 static void efx_remove_channels(struct efx_nic *efx)
703 {
704 	struct efx_channel *channel;
705 
706 	efx_for_each_channel(channel, efx)
707 		efx_remove_channel(channel);
708 }
709 
710 int
efx_realloc_channels(struct efx_nic * efx,u32 rxq_entries,u32 txq_entries)711 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
712 {
713 	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
714 	u32 old_rxq_entries, old_txq_entries;
715 	unsigned i;
716 	int rc;
717 
718 	efx_stop_all(efx);
719 	efx_fini_channels(efx);
720 
721 	/* Clone channels */
722 	memset(other_channel, 0, sizeof(other_channel));
723 	for (i = 0; i < efx->n_channels; i++) {
724 		channel = efx_alloc_channel(efx, i, efx->channel[i]);
725 		if (!channel) {
726 			rc = -ENOMEM;
727 			goto out;
728 		}
729 		other_channel[i] = channel;
730 	}
731 
732 	/* Swap entry counts and channel pointers */
733 	old_rxq_entries = efx->rxq_entries;
734 	old_txq_entries = efx->txq_entries;
735 	efx->rxq_entries = rxq_entries;
736 	efx->txq_entries = txq_entries;
737 	for (i = 0; i < efx->n_channels; i++) {
738 		channel = efx->channel[i];
739 		efx->channel[i] = other_channel[i];
740 		other_channel[i] = channel;
741 	}
742 
743 	rc = efx_probe_channels(efx);
744 	if (rc)
745 		goto rollback;
746 
747 	efx_init_napi(efx);
748 
749 	/* Destroy old channels */
750 	for (i = 0; i < efx->n_channels; i++) {
751 		efx_fini_napi_channel(other_channel[i]);
752 		efx_remove_channel(other_channel[i]);
753 	}
754 out:
755 	/* Free unused channel structures */
756 	for (i = 0; i < efx->n_channels; i++)
757 		kfree(other_channel[i]);
758 
759 	efx_init_channels(efx);
760 	efx_start_all(efx);
761 	return rc;
762 
763 rollback:
764 	/* Swap back */
765 	efx->rxq_entries = old_rxq_entries;
766 	efx->txq_entries = old_txq_entries;
767 	for (i = 0; i < efx->n_channels; i++) {
768 		channel = efx->channel[i];
769 		efx->channel[i] = other_channel[i];
770 		other_channel[i] = channel;
771 	}
772 	goto out;
773 }
774 
efx_schedule_slow_fill(struct efx_rx_queue * rx_queue)775 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
776 {
777 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
778 }
779 
780 /**************************************************************************
781  *
782  * Port handling
783  *
784  **************************************************************************/
785 
786 /* This ensures that the kernel is kept informed (via
787  * netif_carrier_on/off) of the link status, and also maintains the
788  * link status's stop on the port's TX queue.
789  */
efx_link_status_changed(struct efx_nic * efx)790 void efx_link_status_changed(struct efx_nic *efx)
791 {
792 	struct efx_link_state *link_state = &efx->link_state;
793 
794 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
795 	 * that no events are triggered between unregister_netdev() and the
796 	 * driver unloading. A more general condition is that NETDEV_CHANGE
797 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
798 	if (!netif_running(efx->net_dev))
799 		return;
800 
801 	if (efx->port_inhibited) {
802 		netif_carrier_off(efx->net_dev);
803 		return;
804 	}
805 
806 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
807 		efx->n_link_state_changes++;
808 
809 		if (link_state->up)
810 			netif_carrier_on(efx->net_dev);
811 		else
812 			netif_carrier_off(efx->net_dev);
813 	}
814 
815 	/* Status message for kernel log */
816 	if (link_state->up) {
817 		netif_info(efx, link, efx->net_dev,
818 			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
819 			   link_state->speed, link_state->fd ? "full" : "half",
820 			   efx->net_dev->mtu,
821 			   (efx->promiscuous ? " [PROMISC]" : ""));
822 	} else {
823 		netif_info(efx, link, efx->net_dev, "link down\n");
824 	}
825 
826 }
827 
efx_link_set_advertising(struct efx_nic * efx,u32 advertising)828 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
829 {
830 	efx->link_advertising = advertising;
831 	if (advertising) {
832 		if (advertising & ADVERTISED_Pause)
833 			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
834 		else
835 			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
836 		if (advertising & ADVERTISED_Asym_Pause)
837 			efx->wanted_fc ^= EFX_FC_TX;
838 	}
839 }
840 
efx_link_set_wanted_fc(struct efx_nic * efx,enum efx_fc_type wanted_fc)841 void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
842 {
843 	efx->wanted_fc = wanted_fc;
844 	if (efx->link_advertising) {
845 		if (wanted_fc & EFX_FC_RX)
846 			efx->link_advertising |= (ADVERTISED_Pause |
847 						  ADVERTISED_Asym_Pause);
848 		else
849 			efx->link_advertising &= ~(ADVERTISED_Pause |
850 						   ADVERTISED_Asym_Pause);
851 		if (wanted_fc & EFX_FC_TX)
852 			efx->link_advertising ^= ADVERTISED_Asym_Pause;
853 	}
854 }
855 
856 static void efx_fini_port(struct efx_nic *efx);
857 
858 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
859  * the MAC appropriately. All other PHY configuration changes are pushed
860  * through phy_op->set_settings(), and pushed asynchronously to the MAC
861  * through efx_monitor().
862  *
863  * Callers must hold the mac_lock
864  */
__efx_reconfigure_port(struct efx_nic * efx)865 int __efx_reconfigure_port(struct efx_nic *efx)
866 {
867 	enum efx_phy_mode phy_mode;
868 	int rc;
869 
870 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
871 
872 	/* Serialise the promiscuous flag with efx_set_multicast_list. */
873 	if (efx_dev_registered(efx)) {
874 		netif_addr_lock_bh(efx->net_dev);
875 		netif_addr_unlock_bh(efx->net_dev);
876 	}
877 
878 	/* Disable PHY transmit in mac level loopbacks */
879 	phy_mode = efx->phy_mode;
880 	if (LOOPBACK_INTERNAL(efx))
881 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
882 	else
883 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
884 
885 	rc = efx->type->reconfigure_port(efx);
886 
887 	if (rc)
888 		efx->phy_mode = phy_mode;
889 
890 	return rc;
891 }
892 
893 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
894  * disabled. */
efx_reconfigure_port(struct efx_nic * efx)895 int efx_reconfigure_port(struct efx_nic *efx)
896 {
897 	int rc;
898 
899 	EFX_ASSERT_RESET_SERIALISED(efx);
900 
901 	mutex_lock(&efx->mac_lock);
902 	rc = __efx_reconfigure_port(efx);
903 	mutex_unlock(&efx->mac_lock);
904 
905 	return rc;
906 }
907 
908 /* Asynchronous work item for changing MAC promiscuity and multicast
909  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
910  * MAC directly. */
efx_mac_work(struct work_struct * data)911 static void efx_mac_work(struct work_struct *data)
912 {
913 	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
914 
915 	mutex_lock(&efx->mac_lock);
916 	if (efx->port_enabled) {
917 		efx->type->push_multicast_hash(efx);
918 		efx->mac_op->reconfigure(efx);
919 	}
920 	mutex_unlock(&efx->mac_lock);
921 }
922 
efx_probe_port(struct efx_nic * efx)923 static int efx_probe_port(struct efx_nic *efx)
924 {
925 	unsigned char *perm_addr;
926 	int rc;
927 
928 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
929 
930 	if (phy_flash_cfg)
931 		efx->phy_mode = PHY_MODE_SPECIAL;
932 
933 	/* Connect up MAC/PHY operations table */
934 	rc = efx->type->probe_port(efx);
935 	if (rc)
936 		return rc;
937 
938 	/* Sanity check MAC address */
939 	perm_addr = efx->net_dev->perm_addr;
940 	if (is_valid_ether_addr(perm_addr)) {
941 		memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN);
942 	} else {
943 		netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
944 			  perm_addr);
945 		if (!allow_bad_hwaddr) {
946 			rc = -EINVAL;
947 			goto err;
948 		}
949 		random_ether_addr(efx->net_dev->dev_addr);
950 		netif_info(efx, probe, efx->net_dev,
951 			   "using locally-generated MAC %pM\n",
952 			   efx->net_dev->dev_addr);
953 	}
954 
955 	return 0;
956 
957  err:
958 	efx->type->remove_port(efx);
959 	return rc;
960 }
961 
efx_init_port(struct efx_nic * efx)962 static int efx_init_port(struct efx_nic *efx)
963 {
964 	int rc;
965 
966 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
967 
968 	mutex_lock(&efx->mac_lock);
969 
970 	rc = efx->phy_op->init(efx);
971 	if (rc)
972 		goto fail1;
973 
974 	efx->port_initialized = true;
975 
976 	/* Reconfigure the MAC before creating dma queues (required for
977 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
978 	efx->mac_op->reconfigure(efx);
979 
980 	/* Ensure the PHY advertises the correct flow control settings */
981 	rc = efx->phy_op->reconfigure(efx);
982 	if (rc)
983 		goto fail2;
984 
985 	mutex_unlock(&efx->mac_lock);
986 	return 0;
987 
988 fail2:
989 	efx->phy_op->fini(efx);
990 fail1:
991 	mutex_unlock(&efx->mac_lock);
992 	return rc;
993 }
994 
efx_start_port(struct efx_nic * efx)995 static void efx_start_port(struct efx_nic *efx)
996 {
997 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
998 	BUG_ON(efx->port_enabled);
999 
1000 	mutex_lock(&efx->mac_lock);
1001 	efx->port_enabled = true;
1002 
1003 	/* efx_mac_work() might have been scheduled after efx_stop_port(),
1004 	 * and then cancelled by efx_flush_all() */
1005 	efx->type->push_multicast_hash(efx);
1006 	efx->mac_op->reconfigure(efx);
1007 
1008 	mutex_unlock(&efx->mac_lock);
1009 }
1010 
1011 /* Prevent efx_mac_work() and efx_monitor() from working */
efx_stop_port(struct efx_nic * efx)1012 static void efx_stop_port(struct efx_nic *efx)
1013 {
1014 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1015 
1016 	mutex_lock(&efx->mac_lock);
1017 	efx->port_enabled = false;
1018 	mutex_unlock(&efx->mac_lock);
1019 
1020 	/* Serialise against efx_set_multicast_list() */
1021 	if (efx_dev_registered(efx)) {
1022 		netif_addr_lock_bh(efx->net_dev);
1023 		netif_addr_unlock_bh(efx->net_dev);
1024 	}
1025 }
1026 
efx_fini_port(struct efx_nic * efx)1027 static void efx_fini_port(struct efx_nic *efx)
1028 {
1029 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1030 
1031 	if (!efx->port_initialized)
1032 		return;
1033 
1034 	efx->phy_op->fini(efx);
1035 	efx->port_initialized = false;
1036 
1037 	efx->link_state.up = false;
1038 	efx_link_status_changed(efx);
1039 }
1040 
efx_remove_port(struct efx_nic * efx)1041 static void efx_remove_port(struct efx_nic *efx)
1042 {
1043 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1044 
1045 	efx->type->remove_port(efx);
1046 }
1047 
1048 /**************************************************************************
1049  *
1050  * NIC handling
1051  *
1052  **************************************************************************/
1053 
1054 /* This configures the PCI device to enable I/O and DMA. */
efx_init_io(struct efx_nic * efx)1055 static int efx_init_io(struct efx_nic *efx)
1056 {
1057 	struct pci_dev *pci_dev = efx->pci_dev;
1058 	dma_addr_t dma_mask = efx->type->max_dma_mask;
1059 	bool use_wc;
1060 	int rc;
1061 
1062 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1063 
1064 	rc = pci_enable_device(pci_dev);
1065 	if (rc) {
1066 		netif_err(efx, probe, efx->net_dev,
1067 			  "failed to enable PCI device\n");
1068 		goto fail1;
1069 	}
1070 
1071 	pci_set_master(pci_dev);
1072 
1073 	/* Set the PCI DMA mask.  Try all possibilities from our
1074 	 * genuine mask down to 32 bits, because some architectures
1075 	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1076 	 * masks event though they reject 46 bit masks.
1077 	 */
1078 	while (dma_mask > 0x7fffffffUL) {
1079 		if (pci_dma_supported(pci_dev, dma_mask) &&
1080 		    ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
1081 			break;
1082 		dma_mask >>= 1;
1083 	}
1084 	if (rc) {
1085 		netif_err(efx, probe, efx->net_dev,
1086 			  "could not find a suitable DMA mask\n");
1087 		goto fail2;
1088 	}
1089 	netif_dbg(efx, probe, efx->net_dev,
1090 		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1091 	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1092 	if (rc) {
1093 		/* pci_set_consistent_dma_mask() is not *allowed* to
1094 		 * fail with a mask that pci_set_dma_mask() accepted,
1095 		 * but just in case...
1096 		 */
1097 		netif_err(efx, probe, efx->net_dev,
1098 			  "failed to set consistent DMA mask\n");
1099 		goto fail2;
1100 	}
1101 
1102 	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1103 	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1104 	if (rc) {
1105 		netif_err(efx, probe, efx->net_dev,
1106 			  "request for memory BAR failed\n");
1107 		rc = -EIO;
1108 		goto fail3;
1109 	}
1110 
1111 	/* bug22643: If SR-IOV is enabled then tx push over a write combined
1112 	 * mapping is unsafe. We need to disable write combining in this case.
1113 	 * MSI is unsupported when SR-IOV is enabled, and the firmware will
1114 	 * have removed the MSI capability. So write combining is safe if
1115 	 * there is an MSI capability.
1116 	 */
1117 	use_wc = (!EFX_WORKAROUND_22643(efx) ||
1118 		  pci_find_capability(pci_dev, PCI_CAP_ID_MSI));
1119 	if (use_wc)
1120 		efx->membase = ioremap_wc(efx->membase_phys,
1121 					  efx->type->mem_map_size);
1122 	else
1123 		efx->membase = ioremap_nocache(efx->membase_phys,
1124 					       efx->type->mem_map_size);
1125 	if (!efx->membase) {
1126 		netif_err(efx, probe, efx->net_dev,
1127 			  "could not map memory BAR at %llx+%x\n",
1128 			  (unsigned long long)efx->membase_phys,
1129 			  efx->type->mem_map_size);
1130 		rc = -ENOMEM;
1131 		goto fail4;
1132 	}
1133 	netif_dbg(efx, probe, efx->net_dev,
1134 		  "memory BAR at %llx+%x (virtual %p)\n",
1135 		  (unsigned long long)efx->membase_phys,
1136 		  efx->type->mem_map_size, efx->membase);
1137 
1138 	return 0;
1139 
1140  fail4:
1141 	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1142  fail3:
1143 	efx->membase_phys = 0;
1144  fail2:
1145 	pci_disable_device(efx->pci_dev);
1146  fail1:
1147 	return rc;
1148 }
1149 
efx_fini_io(struct efx_nic * efx)1150 static void efx_fini_io(struct efx_nic *efx)
1151 {
1152 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1153 
1154 	if (efx->membase) {
1155 		iounmap(efx->membase);
1156 		efx->membase = NULL;
1157 	}
1158 
1159 	if (efx->membase_phys) {
1160 		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1161 		efx->membase_phys = 0;
1162 	}
1163 
1164 	pci_disable_device(efx->pci_dev);
1165 }
1166 
1167 /* Get number of channels wanted.  Each channel will have its own IRQ,
1168  * 1 RX queue and/or 2 TX queues. */
efx_wanted_channels(void)1169 static int efx_wanted_channels(void)
1170 {
1171 	cpumask_var_t core_mask;
1172 	int count;
1173 	int cpu;
1174 
1175 	if (rss_cpus)
1176 		return rss_cpus;
1177 
1178 	if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
1179 		printk(KERN_WARNING
1180 		       "sfc: RSS disabled due to allocation failure\n");
1181 		return 1;
1182 	}
1183 
1184 	count = 0;
1185 	for_each_online_cpu(cpu) {
1186 		if (!cpumask_test_cpu(cpu, core_mask)) {
1187 			++count;
1188 			cpumask_or(core_mask, core_mask,
1189 				   topology_core_cpumask(cpu));
1190 		}
1191 	}
1192 
1193 	free_cpumask_var(core_mask);
1194 	return count;
1195 }
1196 
1197 static int
efx_init_rx_cpu_rmap(struct efx_nic * efx,struct msix_entry * xentries)1198 efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1199 {
1200 #ifdef CONFIG_RFS_ACCEL
1201 	int i, rc;
1202 
1203 	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1204 	if (!efx->net_dev->rx_cpu_rmap)
1205 		return -ENOMEM;
1206 	for (i = 0; i < efx->n_rx_channels; i++) {
1207 		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1208 				      xentries[i].vector);
1209 		if (rc) {
1210 			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1211 			efx->net_dev->rx_cpu_rmap = NULL;
1212 			return rc;
1213 		}
1214 	}
1215 #endif
1216 	return 0;
1217 }
1218 
1219 /* Probe the number and type of interrupts we are able to obtain, and
1220  * the resulting numbers of channels and RX queues.
1221  */
efx_probe_interrupts(struct efx_nic * efx)1222 static int efx_probe_interrupts(struct efx_nic *efx)
1223 {
1224 	int max_channels =
1225 		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1226 	int rc, i;
1227 
1228 	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1229 		struct msix_entry xentries[EFX_MAX_CHANNELS];
1230 		int n_channels;
1231 
1232 		n_channels = efx_wanted_channels();
1233 		if (separate_tx_channels)
1234 			n_channels *= 2;
1235 		n_channels = min(n_channels, max_channels);
1236 
1237 		for (i = 0; i < n_channels; i++)
1238 			xentries[i].entry = i;
1239 		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1240 		if (rc > 0) {
1241 			netif_err(efx, drv, efx->net_dev,
1242 				  "WARNING: Insufficient MSI-X vectors"
1243 				  " available (%d < %d).\n", rc, n_channels);
1244 			netif_err(efx, drv, efx->net_dev,
1245 				  "WARNING: Performance may be reduced.\n");
1246 			EFX_BUG_ON_PARANOID(rc >= n_channels);
1247 			n_channels = rc;
1248 			rc = pci_enable_msix(efx->pci_dev, xentries,
1249 					     n_channels);
1250 		}
1251 
1252 		if (rc == 0) {
1253 			efx->n_channels = n_channels;
1254 			if (separate_tx_channels) {
1255 				efx->n_tx_channels =
1256 					max(efx->n_channels / 2, 1U);
1257 				efx->n_rx_channels =
1258 					max(efx->n_channels -
1259 					    efx->n_tx_channels, 1U);
1260 			} else {
1261 				efx->n_tx_channels = efx->n_channels;
1262 				efx->n_rx_channels = efx->n_channels;
1263 			}
1264 			rc = efx_init_rx_cpu_rmap(efx, xentries);
1265 			if (rc) {
1266 				pci_disable_msix(efx->pci_dev);
1267 				return rc;
1268 			}
1269 			for (i = 0; i < n_channels; i++)
1270 				efx_get_channel(efx, i)->irq =
1271 					xentries[i].vector;
1272 		} else {
1273 			/* Fall back to single channel MSI */
1274 			efx->interrupt_mode = EFX_INT_MODE_MSI;
1275 			netif_err(efx, drv, efx->net_dev,
1276 				  "could not enable MSI-X\n");
1277 		}
1278 	}
1279 
1280 	/* Try single interrupt MSI */
1281 	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1282 		efx->n_channels = 1;
1283 		efx->n_rx_channels = 1;
1284 		efx->n_tx_channels = 1;
1285 		rc = pci_enable_msi(efx->pci_dev);
1286 		if (rc == 0) {
1287 			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1288 		} else {
1289 			netif_err(efx, drv, efx->net_dev,
1290 				  "could not enable MSI\n");
1291 			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1292 		}
1293 	}
1294 
1295 	/* Assume legacy interrupts */
1296 	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1297 		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1298 		efx->n_rx_channels = 1;
1299 		efx->n_tx_channels = 1;
1300 		efx->legacy_irq = efx->pci_dev->irq;
1301 	}
1302 
1303 	return 0;
1304 }
1305 
efx_remove_interrupts(struct efx_nic * efx)1306 static void efx_remove_interrupts(struct efx_nic *efx)
1307 {
1308 	struct efx_channel *channel;
1309 
1310 	/* Remove MSI/MSI-X interrupts */
1311 	efx_for_each_channel(channel, efx)
1312 		channel->irq = 0;
1313 	pci_disable_msi(efx->pci_dev);
1314 	pci_disable_msix(efx->pci_dev);
1315 
1316 	/* Remove legacy interrupt */
1317 	efx->legacy_irq = 0;
1318 }
1319 
efx_set_channels(struct efx_nic * efx)1320 static void efx_set_channels(struct efx_nic *efx)
1321 {
1322 	efx->tx_channel_offset =
1323 		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1324 }
1325 
efx_probe_nic(struct efx_nic * efx)1326 static int efx_probe_nic(struct efx_nic *efx)
1327 {
1328 	size_t i;
1329 	int rc;
1330 
1331 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1332 
1333 	/* Carry out hardware-type specific initialisation */
1334 	rc = efx->type->probe(efx);
1335 	if (rc)
1336 		return rc;
1337 
1338 	/* Determine the number of channels and queues by trying to hook
1339 	 * in MSI-X interrupts. */
1340 	rc = efx_probe_interrupts(efx);
1341 	if (rc)
1342 		goto fail;
1343 
1344 	if (efx->n_channels > 1)
1345 		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1346 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1347 		efx->rx_indir_table[i] = i % efx->n_rx_channels;
1348 
1349 	efx_set_channels(efx);
1350 	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1351 	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1352 
1353 	/* Initialise the interrupt moderation settings */
1354 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1355 
1356 	return 0;
1357 
1358 fail:
1359 	efx->type->remove(efx);
1360 	return rc;
1361 }
1362 
efx_remove_nic(struct efx_nic * efx)1363 static void efx_remove_nic(struct efx_nic *efx)
1364 {
1365 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1366 
1367 	efx_remove_interrupts(efx);
1368 	efx->type->remove(efx);
1369 }
1370 
1371 /**************************************************************************
1372  *
1373  * NIC startup/shutdown
1374  *
1375  *************************************************************************/
1376 
efx_probe_all(struct efx_nic * efx)1377 static int efx_probe_all(struct efx_nic *efx)
1378 {
1379 	int rc;
1380 
1381 	rc = efx_probe_nic(efx);
1382 	if (rc) {
1383 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1384 		goto fail1;
1385 	}
1386 
1387 	rc = efx_probe_port(efx);
1388 	if (rc) {
1389 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1390 		goto fail2;
1391 	}
1392 
1393 	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1394 	rc = efx_probe_channels(efx);
1395 	if (rc)
1396 		goto fail3;
1397 
1398 	rc = efx_probe_filters(efx);
1399 	if (rc) {
1400 		netif_err(efx, probe, efx->net_dev,
1401 			  "failed to create filter tables\n");
1402 		goto fail4;
1403 	}
1404 
1405 	return 0;
1406 
1407  fail4:
1408 	efx_remove_channels(efx);
1409  fail3:
1410 	efx_remove_port(efx);
1411  fail2:
1412 	efx_remove_nic(efx);
1413  fail1:
1414 	return rc;
1415 }
1416 
1417 /* Called after previous invocation(s) of efx_stop_all, restarts the
1418  * port, kernel transmit queue, NAPI processing and hardware interrupts,
1419  * and ensures that the port is scheduled to be reconfigured.
1420  * This function is safe to call multiple times when the NIC is in any
1421  * state. */
efx_start_all(struct efx_nic * efx)1422 static void efx_start_all(struct efx_nic *efx)
1423 {
1424 	struct efx_channel *channel;
1425 
1426 	EFX_ASSERT_RESET_SERIALISED(efx);
1427 
1428 	/* Check that it is appropriate to restart the interface. All
1429 	 * of these flags are safe to read under just the rtnl lock */
1430 	if (efx->port_enabled)
1431 		return;
1432 	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1433 		return;
1434 	if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1435 		return;
1436 
1437 	/* Mark the port as enabled so port reconfigurations can start, then
1438 	 * restart the transmit interface early so the watchdog timer stops */
1439 	efx_start_port(efx);
1440 
1441 	if (efx_dev_registered(efx) && !efx->port_inhibited)
1442 		netif_tx_wake_all_queues(efx->net_dev);
1443 
1444 	efx_for_each_channel(channel, efx)
1445 		efx_start_channel(channel);
1446 
1447 	if (efx->legacy_irq)
1448 		efx->legacy_irq_enabled = true;
1449 	efx_nic_enable_interrupts(efx);
1450 
1451 	/* Switch to event based MCDI completions after enabling interrupts.
1452 	 * If a reset has been scheduled, then we need to stay in polled mode.
1453 	 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1454 	 * reset_pending [modified from an atomic context], we instead guarantee
1455 	 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1456 	efx_mcdi_mode_event(efx);
1457 	if (efx->reset_pending != RESET_TYPE_NONE)
1458 		efx_mcdi_mode_poll(efx);
1459 
1460 	/* Start the hardware monitor if there is one. Otherwise (we're link
1461 	 * event driven), we have to poll the PHY because after an event queue
1462 	 * flush, we could have a missed a link state change */
1463 	if (efx->type->monitor != NULL) {
1464 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1465 				   efx_monitor_interval);
1466 	} else {
1467 		mutex_lock(&efx->mac_lock);
1468 		if (efx->phy_op->poll(efx))
1469 			efx_link_status_changed(efx);
1470 		mutex_unlock(&efx->mac_lock);
1471 	}
1472 
1473 	efx->type->start_stats(efx);
1474 }
1475 
1476 /* Flush all delayed work. Should only be called when no more delayed work
1477  * will be scheduled. This doesn't flush pending online resets (efx_reset),
1478  * since we're holding the rtnl_lock at this point. */
efx_flush_all(struct efx_nic * efx)1479 static void efx_flush_all(struct efx_nic *efx)
1480 {
1481 	/* Make sure the hardware monitor is stopped */
1482 	cancel_delayed_work_sync(&efx->monitor_work);
1483 	/* Stop scheduled port reconfigurations */
1484 	cancel_work_sync(&efx->mac_work);
1485 }
1486 
1487 /* Quiesce hardware and software without bringing the link down.
1488  * Safe to call multiple times, when the nic and interface is in any
1489  * state. The caller is guaranteed to subsequently be in a position
1490  * to modify any hardware and software state they see fit without
1491  * taking locks. */
efx_stop_all(struct efx_nic * efx)1492 static void efx_stop_all(struct efx_nic *efx)
1493 {
1494 	struct efx_channel *channel;
1495 
1496 	EFX_ASSERT_RESET_SERIALISED(efx);
1497 
1498 	/* port_enabled can be read safely under the rtnl lock */
1499 	if (!efx->port_enabled)
1500 		return;
1501 
1502 	efx->type->stop_stats(efx);
1503 
1504 	/* Switch to MCDI polling on Siena before disabling interrupts */
1505 	efx_mcdi_mode_poll(efx);
1506 
1507 	/* Disable interrupts and wait for ISR to complete */
1508 	efx_nic_disable_interrupts(efx);
1509 	if (efx->legacy_irq) {
1510 		synchronize_irq(efx->legacy_irq);
1511 		efx->legacy_irq_enabled = false;
1512 	}
1513 	efx_for_each_channel(channel, efx) {
1514 		if (channel->irq)
1515 			synchronize_irq(channel->irq);
1516 	}
1517 
1518 	/* Stop all NAPI processing and synchronous rx refills */
1519 	efx_for_each_channel(channel, efx)
1520 		efx_stop_channel(channel);
1521 
1522 	/* Stop all asynchronous port reconfigurations. Since all
1523 	 * event processing has already been stopped, there is no
1524 	 * window to loose phy events */
1525 	efx_stop_port(efx);
1526 
1527 	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1528 	efx_flush_all(efx);
1529 
1530 	/* Stop the kernel transmit interface late, so the watchdog
1531 	 * timer isn't ticking over the flush */
1532 	if (efx_dev_registered(efx)) {
1533 		netif_tx_stop_all_queues(efx->net_dev);
1534 		netif_tx_lock_bh(efx->net_dev);
1535 		netif_tx_unlock_bh(efx->net_dev);
1536 	}
1537 }
1538 
efx_remove_all(struct efx_nic * efx)1539 static void efx_remove_all(struct efx_nic *efx)
1540 {
1541 	efx_remove_filters(efx);
1542 	efx_remove_channels(efx);
1543 	efx_remove_port(efx);
1544 	efx_remove_nic(efx);
1545 }
1546 
1547 /**************************************************************************
1548  *
1549  * Interrupt moderation
1550  *
1551  **************************************************************************/
1552 
irq_mod_ticks(int usecs,int resolution)1553 static unsigned irq_mod_ticks(int usecs, int resolution)
1554 {
1555 	if (usecs <= 0)
1556 		return 0; /* cannot receive interrupts ahead of time :-) */
1557 	if (usecs < resolution)
1558 		return 1; /* never round down to 0 */
1559 	return usecs / resolution;
1560 }
1561 
1562 /* Set interrupt moderation parameters */
efx_init_irq_moderation(struct efx_nic * efx,int tx_usecs,int rx_usecs,bool rx_adaptive)1563 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1564 			     bool rx_adaptive)
1565 {
1566 	struct efx_channel *channel;
1567 	unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1568 	unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
1569 
1570 	EFX_ASSERT_RESET_SERIALISED(efx);
1571 
1572 	efx->irq_rx_adaptive = rx_adaptive;
1573 	efx->irq_rx_moderation = rx_ticks;
1574 	efx_for_each_channel(channel, efx) {
1575 		if (efx_channel_has_rx_queue(channel))
1576 			channel->irq_moderation = rx_ticks;
1577 		else if (efx_channel_has_tx_queues(channel))
1578 			channel->irq_moderation = tx_ticks;
1579 	}
1580 }
1581 
1582 /**************************************************************************
1583  *
1584  * Hardware monitor
1585  *
1586  **************************************************************************/
1587 
1588 /* Run periodically off the general workqueue */
efx_monitor(struct work_struct * data)1589 static void efx_monitor(struct work_struct *data)
1590 {
1591 	struct efx_nic *efx = container_of(data, struct efx_nic,
1592 					   monitor_work.work);
1593 
1594 	netif_vdbg(efx, timer, efx->net_dev,
1595 		   "hardware monitor executing on CPU %d\n",
1596 		   raw_smp_processor_id());
1597 	BUG_ON(efx->type->monitor == NULL);
1598 
1599 	/* If the mac_lock is already held then it is likely a port
1600 	 * reconfiguration is already in place, which will likely do
1601 	 * most of the work of monitor() anyway. */
1602 	if (mutex_trylock(&efx->mac_lock)) {
1603 		if (efx->port_enabled)
1604 			efx->type->monitor(efx);
1605 		mutex_unlock(&efx->mac_lock);
1606 	}
1607 
1608 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1609 			   efx_monitor_interval);
1610 }
1611 
1612 /**************************************************************************
1613  *
1614  * ioctls
1615  *
1616  *************************************************************************/
1617 
1618 /* Net device ioctl
1619  * Context: process, rtnl_lock() held.
1620  */
efx_ioctl(struct net_device * net_dev,struct ifreq * ifr,int cmd)1621 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1622 {
1623 	struct efx_nic *efx = netdev_priv(net_dev);
1624 	struct mii_ioctl_data *data = if_mii(ifr);
1625 
1626 	EFX_ASSERT_RESET_SERIALISED(efx);
1627 
1628 	/* Convert phy_id from older PRTAD/DEVAD format */
1629 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1630 	    (data->phy_id & 0xfc00) == 0x0400)
1631 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1632 
1633 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1634 }
1635 
1636 /**************************************************************************
1637  *
1638  * NAPI interface
1639  *
1640  **************************************************************************/
1641 
efx_init_napi(struct efx_nic * efx)1642 static void efx_init_napi(struct efx_nic *efx)
1643 {
1644 	struct efx_channel *channel;
1645 
1646 	efx_for_each_channel(channel, efx) {
1647 		channel->napi_dev = efx->net_dev;
1648 		netif_napi_add(channel->napi_dev, &channel->napi_str,
1649 			       efx_poll, napi_weight);
1650 	}
1651 }
1652 
efx_fini_napi_channel(struct efx_channel * channel)1653 static void efx_fini_napi_channel(struct efx_channel *channel)
1654 {
1655 	if (channel->napi_dev)
1656 		netif_napi_del(&channel->napi_str);
1657 	channel->napi_dev = NULL;
1658 }
1659 
efx_fini_napi(struct efx_nic * efx)1660 static void efx_fini_napi(struct efx_nic *efx)
1661 {
1662 	struct efx_channel *channel;
1663 
1664 	efx_for_each_channel(channel, efx)
1665 		efx_fini_napi_channel(channel);
1666 }
1667 
1668 /**************************************************************************
1669  *
1670  * Kernel netpoll interface
1671  *
1672  *************************************************************************/
1673 
1674 #ifdef CONFIG_NET_POLL_CONTROLLER
1675 
1676 /* Although in the common case interrupts will be disabled, this is not
1677  * guaranteed. However, all our work happens inside the NAPI callback,
1678  * so no locking is required.
1679  */
efx_netpoll(struct net_device * net_dev)1680 static void efx_netpoll(struct net_device *net_dev)
1681 {
1682 	struct efx_nic *efx = netdev_priv(net_dev);
1683 	struct efx_channel *channel;
1684 
1685 	efx_for_each_channel(channel, efx)
1686 		efx_schedule_channel(channel);
1687 }
1688 
1689 #endif
1690 
1691 /**************************************************************************
1692  *
1693  * Kernel net device interface
1694  *
1695  *************************************************************************/
1696 
1697 /* Context: process, rtnl_lock() held. */
efx_net_open(struct net_device * net_dev)1698 static int efx_net_open(struct net_device *net_dev)
1699 {
1700 	struct efx_nic *efx = netdev_priv(net_dev);
1701 	EFX_ASSERT_RESET_SERIALISED(efx);
1702 
1703 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1704 		  raw_smp_processor_id());
1705 
1706 	if (efx->state == STATE_DISABLED)
1707 		return -EIO;
1708 	if (efx->phy_mode & PHY_MODE_SPECIAL)
1709 		return -EBUSY;
1710 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1711 		return -EIO;
1712 
1713 	/* Notify the kernel of the link state polled during driver load,
1714 	 * before the monitor starts running */
1715 	efx_link_status_changed(efx);
1716 
1717 	efx_start_all(efx);
1718 	return 0;
1719 }
1720 
1721 /* Context: process, rtnl_lock() held.
1722  * Note that the kernel will ignore our return code; this method
1723  * should really be a void.
1724  */
efx_net_stop(struct net_device * net_dev)1725 static int efx_net_stop(struct net_device *net_dev)
1726 {
1727 	struct efx_nic *efx = netdev_priv(net_dev);
1728 
1729 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1730 		  raw_smp_processor_id());
1731 
1732 	if (efx->state != STATE_DISABLED) {
1733 		/* Stop the device and flush all the channels */
1734 		efx_stop_all(efx);
1735 		efx_fini_channels(efx);
1736 		efx_init_channels(efx);
1737 	}
1738 
1739 	return 0;
1740 }
1741 
1742 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
efx_net_stats(struct net_device * net_dev,struct rtnl_link_stats64 * stats)1743 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
1744 {
1745 	struct efx_nic *efx = netdev_priv(net_dev);
1746 	struct efx_mac_stats *mac_stats = &efx->mac_stats;
1747 
1748 	spin_lock_bh(&efx->stats_lock);
1749 	efx->type->update_stats(efx);
1750 	spin_unlock_bh(&efx->stats_lock);
1751 
1752 	stats->rx_packets = mac_stats->rx_packets;
1753 	stats->tx_packets = mac_stats->tx_packets;
1754 	stats->rx_bytes = mac_stats->rx_bytes;
1755 	stats->tx_bytes = mac_stats->tx_bytes;
1756 	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1757 	stats->multicast = mac_stats->rx_multicast;
1758 	stats->collisions = mac_stats->tx_collision;
1759 	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1760 				   mac_stats->rx_length_error);
1761 	stats->rx_crc_errors = mac_stats->rx_bad;
1762 	stats->rx_frame_errors = mac_stats->rx_align_error;
1763 	stats->rx_fifo_errors = mac_stats->rx_overflow;
1764 	stats->rx_missed_errors = mac_stats->rx_missed;
1765 	stats->tx_window_errors = mac_stats->tx_late_collision;
1766 
1767 	stats->rx_errors = (stats->rx_length_errors +
1768 			    stats->rx_crc_errors +
1769 			    stats->rx_frame_errors +
1770 			    mac_stats->rx_symbol_error);
1771 	stats->tx_errors = (stats->tx_window_errors +
1772 			    mac_stats->tx_bad);
1773 
1774 	return stats;
1775 }
1776 
1777 /* Context: netif_tx_lock held, BHs disabled. */
efx_watchdog(struct net_device * net_dev)1778 static void efx_watchdog(struct net_device *net_dev)
1779 {
1780 	struct efx_nic *efx = netdev_priv(net_dev);
1781 
1782 	netif_err(efx, tx_err, efx->net_dev,
1783 		  "TX stuck with port_enabled=%d: resetting channels\n",
1784 		  efx->port_enabled);
1785 
1786 	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1787 }
1788 
1789 
1790 /* Context: process, rtnl_lock() held. */
efx_change_mtu(struct net_device * net_dev,int new_mtu)1791 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1792 {
1793 	struct efx_nic *efx = netdev_priv(net_dev);
1794 	int rc = 0;
1795 
1796 	EFX_ASSERT_RESET_SERIALISED(efx);
1797 
1798 	if (new_mtu > EFX_MAX_MTU)
1799 		return -EINVAL;
1800 
1801 	efx_stop_all(efx);
1802 
1803 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1804 
1805 	efx_fini_channels(efx);
1806 
1807 	mutex_lock(&efx->mac_lock);
1808 	/* Reconfigure the MAC before enabling the dma queues so that
1809 	 * the RX buffers don't overflow */
1810 	net_dev->mtu = new_mtu;
1811 	efx->mac_op->reconfigure(efx);
1812 	mutex_unlock(&efx->mac_lock);
1813 
1814 	efx_init_channels(efx);
1815 
1816 	efx_start_all(efx);
1817 	return rc;
1818 }
1819 
efx_set_mac_address(struct net_device * net_dev,void * data)1820 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1821 {
1822 	struct efx_nic *efx = netdev_priv(net_dev);
1823 	struct sockaddr *addr = data;
1824 	char *new_addr = addr->sa_data;
1825 
1826 	EFX_ASSERT_RESET_SERIALISED(efx);
1827 
1828 	if (!is_valid_ether_addr(new_addr)) {
1829 		netif_err(efx, drv, efx->net_dev,
1830 			  "invalid ethernet MAC address requested: %pM\n",
1831 			  new_addr);
1832 		return -EINVAL;
1833 	}
1834 
1835 	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1836 
1837 	/* Reconfigure the MAC */
1838 	mutex_lock(&efx->mac_lock);
1839 	efx->mac_op->reconfigure(efx);
1840 	mutex_unlock(&efx->mac_lock);
1841 
1842 	return 0;
1843 }
1844 
1845 /* Context: netif_addr_lock held, BHs disabled. */
efx_set_multicast_list(struct net_device * net_dev)1846 static void efx_set_multicast_list(struct net_device *net_dev)
1847 {
1848 	struct efx_nic *efx = netdev_priv(net_dev);
1849 	struct netdev_hw_addr *ha;
1850 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1851 	u32 crc;
1852 	int bit;
1853 
1854 	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1855 
1856 	/* Build multicast hash table */
1857 	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1858 		memset(mc_hash, 0xff, sizeof(*mc_hash));
1859 	} else {
1860 		memset(mc_hash, 0x00, sizeof(*mc_hash));
1861 		netdev_for_each_mc_addr(ha, net_dev) {
1862 			crc = ether_crc_le(ETH_ALEN, ha->addr);
1863 			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1864 			set_bit_le(bit, mc_hash->byte);
1865 		}
1866 
1867 		/* Broadcast packets go through the multicast hash filter.
1868 		 * ether_crc_le() of the broadcast address is 0xbe2612ff
1869 		 * so we always add bit 0xff to the mask.
1870 		 */
1871 		set_bit_le(0xff, mc_hash->byte);
1872 	}
1873 
1874 	if (efx->port_enabled)
1875 		queue_work(efx->workqueue, &efx->mac_work);
1876 	/* Otherwise efx_start_port() will do this */
1877 }
1878 
1879 static const struct net_device_ops efx_netdev_ops = {
1880 	.ndo_open		= efx_net_open,
1881 	.ndo_stop		= efx_net_stop,
1882 	.ndo_get_stats64	= efx_net_stats,
1883 	.ndo_tx_timeout		= efx_watchdog,
1884 	.ndo_start_xmit		= efx_hard_start_xmit,
1885 	.ndo_validate_addr	= eth_validate_addr,
1886 	.ndo_do_ioctl		= efx_ioctl,
1887 	.ndo_change_mtu		= efx_change_mtu,
1888 	.ndo_set_mac_address	= efx_set_mac_address,
1889 	.ndo_set_multicast_list = efx_set_multicast_list,
1890 #ifdef CONFIG_NET_POLL_CONTROLLER
1891 	.ndo_poll_controller = efx_netpoll,
1892 #endif
1893 	.ndo_setup_tc		= efx_setup_tc,
1894 #ifdef CONFIG_RFS_ACCEL
1895 	.ndo_rx_flow_steer	= efx_filter_rfs,
1896 #endif
1897 };
1898 
efx_update_name(struct efx_nic * efx)1899 static void efx_update_name(struct efx_nic *efx)
1900 {
1901 	strcpy(efx->name, efx->net_dev->name);
1902 	efx_mtd_rename(efx);
1903 	efx_set_channel_names(efx);
1904 }
1905 
efx_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)1906 static int efx_netdev_event(struct notifier_block *this,
1907 			    unsigned long event, void *ptr)
1908 {
1909 	struct net_device *net_dev = ptr;
1910 
1911 	if (net_dev->netdev_ops == &efx_netdev_ops &&
1912 	    event == NETDEV_CHANGENAME)
1913 		efx_update_name(netdev_priv(net_dev));
1914 
1915 	return NOTIFY_DONE;
1916 }
1917 
1918 static struct notifier_block efx_netdev_notifier = {
1919 	.notifier_call = efx_netdev_event,
1920 };
1921 
1922 static ssize_t
show_phy_type(struct device * dev,struct device_attribute * attr,char * buf)1923 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1924 {
1925 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1926 	return sprintf(buf, "%d\n", efx->phy_type);
1927 }
1928 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1929 
efx_register_netdev(struct efx_nic * efx)1930 static int efx_register_netdev(struct efx_nic *efx)
1931 {
1932 	struct net_device *net_dev = efx->net_dev;
1933 	struct efx_channel *channel;
1934 	int rc;
1935 
1936 	net_dev->watchdog_timeo = 5 * HZ;
1937 	net_dev->irq = efx->pci_dev->irq;
1938 	net_dev->netdev_ops = &efx_netdev_ops;
1939 	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1940 
1941 	/* Clear MAC statistics */
1942 	efx->mac_op->update_stats(efx);
1943 	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1944 
1945 	rtnl_lock();
1946 
1947 	rc = dev_alloc_name(net_dev, net_dev->name);
1948 	if (rc < 0)
1949 		goto fail_locked;
1950 	efx_update_name(efx);
1951 
1952 	rc = register_netdevice(net_dev);
1953 	if (rc)
1954 		goto fail_locked;
1955 
1956 	efx_for_each_channel(channel, efx) {
1957 		struct efx_tx_queue *tx_queue;
1958 		efx_for_each_channel_tx_queue(tx_queue, channel)
1959 			efx_init_tx_queue_core_txq(tx_queue);
1960 	}
1961 
1962 	/* Always start with carrier off; PHY events will detect the link */
1963 	netif_carrier_off(efx->net_dev);
1964 
1965 	rtnl_unlock();
1966 
1967 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1968 	if (rc) {
1969 		netif_err(efx, drv, efx->net_dev,
1970 			  "failed to init net dev attributes\n");
1971 		goto fail_registered;
1972 	}
1973 
1974 	return 0;
1975 
1976 fail_locked:
1977 	rtnl_unlock();
1978 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
1979 	return rc;
1980 
1981 fail_registered:
1982 	unregister_netdev(net_dev);
1983 	return rc;
1984 }
1985 
efx_unregister_netdev(struct efx_nic * efx)1986 static void efx_unregister_netdev(struct efx_nic *efx)
1987 {
1988 	struct efx_channel *channel;
1989 	struct efx_tx_queue *tx_queue;
1990 
1991 	if (!efx->net_dev)
1992 		return;
1993 
1994 	BUG_ON(netdev_priv(efx->net_dev) != efx);
1995 
1996 	/* Free up any skbs still remaining. This has to happen before
1997 	 * we try to unregister the netdev as running their destructors
1998 	 * may be needed to get the device ref. count to 0. */
1999 	efx_for_each_channel(channel, efx) {
2000 		efx_for_each_channel_tx_queue(tx_queue, channel)
2001 			efx_release_tx_buffers(tx_queue);
2002 	}
2003 
2004 	if (efx_dev_registered(efx)) {
2005 		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2006 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2007 		unregister_netdev(efx->net_dev);
2008 	}
2009 }
2010 
2011 /**************************************************************************
2012  *
2013  * Device reset and suspend
2014  *
2015  **************************************************************************/
2016 
2017 /* Tears down the entire software state and most of the hardware state
2018  * before reset.  */
efx_reset_down(struct efx_nic * efx,enum reset_type method)2019 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2020 {
2021 	EFX_ASSERT_RESET_SERIALISED(efx);
2022 
2023 	efx_stop_all(efx);
2024 	mutex_lock(&efx->mac_lock);
2025 
2026 	efx_fini_channels(efx);
2027 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2028 		efx->phy_op->fini(efx);
2029 	efx->type->fini(efx);
2030 }
2031 
2032 /* This function will always ensure that the locks acquired in
2033  * efx_reset_down() are released. A failure return code indicates
2034  * that we were unable to reinitialise the hardware, and the
2035  * driver should be disabled. If ok is false, then the rx and tx
2036  * engines are not restarted, pending a RESET_DISABLE. */
efx_reset_up(struct efx_nic * efx,enum reset_type method,bool ok)2037 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2038 {
2039 	int rc;
2040 
2041 	EFX_ASSERT_RESET_SERIALISED(efx);
2042 
2043 	rc = efx->type->init(efx);
2044 	if (rc) {
2045 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2046 		goto fail;
2047 	}
2048 
2049 	if (!ok)
2050 		goto fail;
2051 
2052 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2053 		rc = efx->phy_op->init(efx);
2054 		if (rc)
2055 			goto fail;
2056 		if (efx->phy_op->reconfigure(efx))
2057 			netif_err(efx, drv, efx->net_dev,
2058 				  "could not restore PHY settings\n");
2059 	}
2060 
2061 	efx->mac_op->reconfigure(efx);
2062 
2063 	efx_init_channels(efx);
2064 	efx_restore_filters(efx);
2065 
2066 	mutex_unlock(&efx->mac_lock);
2067 
2068 	efx_start_all(efx);
2069 
2070 	return 0;
2071 
2072 fail:
2073 	efx->port_initialized = false;
2074 
2075 	mutex_unlock(&efx->mac_lock);
2076 
2077 	return rc;
2078 }
2079 
2080 /* Reset the NIC using the specified method.  Note that the reset may
2081  * fail, in which case the card will be left in an unusable state.
2082  *
2083  * Caller must hold the rtnl_lock.
2084  */
efx_reset(struct efx_nic * efx,enum reset_type method)2085 int efx_reset(struct efx_nic *efx, enum reset_type method)
2086 {
2087 	int rc, rc2;
2088 	bool disabled;
2089 
2090 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2091 		   RESET_TYPE(method));
2092 
2093 	efx_reset_down(efx, method);
2094 
2095 	rc = efx->type->reset(efx, method);
2096 	if (rc) {
2097 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2098 		goto out;
2099 	}
2100 
2101 	/* Allow resets to be rescheduled. */
2102 	efx->reset_pending = RESET_TYPE_NONE;
2103 
2104 	/* Reinitialise bus-mastering, which may have been turned off before
2105 	 * the reset was scheduled. This is still appropriate, even in the
2106 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2107 	 * can respond to requests. */
2108 	pci_set_master(efx->pci_dev);
2109 
2110 out:
2111 	/* Leave device stopped if necessary */
2112 	disabled = rc || method == RESET_TYPE_DISABLE;
2113 	rc2 = efx_reset_up(efx, method, !disabled);
2114 	if (rc2) {
2115 		disabled = true;
2116 		if (!rc)
2117 			rc = rc2;
2118 	}
2119 
2120 	if (disabled) {
2121 		dev_close(efx->net_dev);
2122 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2123 		efx->state = STATE_DISABLED;
2124 	} else {
2125 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2126 	}
2127 	return rc;
2128 }
2129 
2130 /* The worker thread exists so that code that cannot sleep can
2131  * schedule a reset for later.
2132  */
efx_reset_work(struct work_struct * data)2133 static void efx_reset_work(struct work_struct *data)
2134 {
2135 	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2136 
2137 	if (efx->reset_pending == RESET_TYPE_NONE)
2138 		return;
2139 
2140 	/* If we're not RUNNING then don't reset. Leave the reset_pending
2141 	 * flag set so that efx_pci_probe_main will be retried */
2142 	if (efx->state != STATE_RUNNING) {
2143 		netif_info(efx, drv, efx->net_dev,
2144 			   "scheduled reset quenched. NIC not RUNNING\n");
2145 		return;
2146 	}
2147 
2148 	rtnl_lock();
2149 	(void)efx_reset(efx, efx->reset_pending);
2150 	rtnl_unlock();
2151 }
2152 
efx_schedule_reset(struct efx_nic * efx,enum reset_type type)2153 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2154 {
2155 	enum reset_type method;
2156 
2157 	if (efx->reset_pending != RESET_TYPE_NONE) {
2158 		netif_info(efx, drv, efx->net_dev,
2159 			   "quenching already scheduled reset\n");
2160 		return;
2161 	}
2162 
2163 	switch (type) {
2164 	case RESET_TYPE_INVISIBLE:
2165 	case RESET_TYPE_ALL:
2166 	case RESET_TYPE_WORLD:
2167 	case RESET_TYPE_DISABLE:
2168 		method = type;
2169 		break;
2170 	case RESET_TYPE_RX_RECOVERY:
2171 	case RESET_TYPE_RX_DESC_FETCH:
2172 	case RESET_TYPE_TX_DESC_FETCH:
2173 	case RESET_TYPE_TX_SKIP:
2174 		method = RESET_TYPE_INVISIBLE;
2175 		break;
2176 	case RESET_TYPE_MC_FAILURE:
2177 	default:
2178 		method = RESET_TYPE_ALL;
2179 		break;
2180 	}
2181 
2182 	if (method != type)
2183 		netif_dbg(efx, drv, efx->net_dev,
2184 			  "scheduling %s reset for %s\n",
2185 			  RESET_TYPE(method), RESET_TYPE(type));
2186 	else
2187 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2188 			  RESET_TYPE(method));
2189 
2190 	efx->reset_pending = method;
2191 
2192 	/* efx_process_channel() will no longer read events once a
2193 	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2194 	efx_mcdi_mode_poll(efx);
2195 
2196 	queue_work(reset_workqueue, &efx->reset_work);
2197 }
2198 
2199 /**************************************************************************
2200  *
2201  * List of NICs we support
2202  *
2203  **************************************************************************/
2204 
2205 /* PCI device ID table */
2206 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2207 	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
2208 	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2209 	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
2210 	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2211 	{PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
2212 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2213 	{PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
2214 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2215 	{0}			/* end of list */
2216 };
2217 
2218 /**************************************************************************
2219  *
2220  * Dummy PHY/MAC operations
2221  *
2222  * Can be used for some unimplemented operations
2223  * Needed so all function pointers are valid and do not have to be tested
2224  * before use
2225  *
2226  **************************************************************************/
efx_port_dummy_op_int(struct efx_nic * efx)2227 int efx_port_dummy_op_int(struct efx_nic *efx)
2228 {
2229 	return 0;
2230 }
efx_port_dummy_op_void(struct efx_nic * efx)2231 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2232 
efx_port_dummy_op_poll(struct efx_nic * efx)2233 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2234 {
2235 	return false;
2236 }
2237 
2238 static struct efx_phy_operations efx_dummy_phy_operations = {
2239 	.init		 = efx_port_dummy_op_int,
2240 	.reconfigure	 = efx_port_dummy_op_int,
2241 	.poll		 = efx_port_dummy_op_poll,
2242 	.fini		 = efx_port_dummy_op_void,
2243 };
2244 
2245 /**************************************************************************
2246  *
2247  * Data housekeeping
2248  *
2249  **************************************************************************/
2250 
2251 /* This zeroes out and then fills in the invariants in a struct
2252  * efx_nic (including all sub-structures).
2253  */
efx_init_struct(struct efx_nic * efx,struct efx_nic_type * type,struct pci_dev * pci_dev,struct net_device * net_dev)2254 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
2255 			   struct pci_dev *pci_dev, struct net_device *net_dev)
2256 {
2257 	int i;
2258 
2259 	/* Initialise common structures */
2260 	memset(efx, 0, sizeof(*efx));
2261 	spin_lock_init(&efx->biu_lock);
2262 #ifdef CONFIG_SFC_MTD
2263 	INIT_LIST_HEAD(&efx->mtd_list);
2264 #endif
2265 	INIT_WORK(&efx->reset_work, efx_reset_work);
2266 	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2267 	efx->pci_dev = pci_dev;
2268 	efx->msg_enable = debug;
2269 	efx->state = STATE_INIT;
2270 	efx->reset_pending = RESET_TYPE_NONE;
2271 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2272 
2273 	efx->net_dev = net_dev;
2274 	efx->rx_checksum_enabled = true;
2275 	spin_lock_init(&efx->stats_lock);
2276 	mutex_init(&efx->mac_lock);
2277 	efx->mac_op = type->default_mac_ops;
2278 	efx->phy_op = &efx_dummy_phy_operations;
2279 	efx->mdio.dev = net_dev;
2280 	INIT_WORK(&efx->mac_work, efx_mac_work);
2281 
2282 	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2283 		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2284 		if (!efx->channel[i])
2285 			goto fail;
2286 	}
2287 
2288 	efx->type = type;
2289 
2290 	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2291 
2292 	/* Higher numbered interrupt modes are less capable! */
2293 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2294 				  interrupt_mode);
2295 
2296 	/* Would be good to use the net_dev name, but we're too early */
2297 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2298 		 pci_name(pci_dev));
2299 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2300 	if (!efx->workqueue)
2301 		goto fail;
2302 
2303 	return 0;
2304 
2305 fail:
2306 	efx_fini_struct(efx);
2307 	return -ENOMEM;
2308 }
2309 
efx_fini_struct(struct efx_nic * efx)2310 static void efx_fini_struct(struct efx_nic *efx)
2311 {
2312 	int i;
2313 
2314 	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2315 		kfree(efx->channel[i]);
2316 
2317 	if (efx->workqueue) {
2318 		destroy_workqueue(efx->workqueue);
2319 		efx->workqueue = NULL;
2320 	}
2321 }
2322 
2323 /**************************************************************************
2324  *
2325  * PCI interface
2326  *
2327  **************************************************************************/
2328 
2329 /* Main body of final NIC shutdown code
2330  * This is called only at module unload (or hotplug removal).
2331  */
efx_pci_remove_main(struct efx_nic * efx)2332 static void efx_pci_remove_main(struct efx_nic *efx)
2333 {
2334 #ifdef CONFIG_RFS_ACCEL
2335 	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2336 	efx->net_dev->rx_cpu_rmap = NULL;
2337 #endif
2338 	efx_nic_fini_interrupt(efx);
2339 	efx_fini_channels(efx);
2340 	efx_fini_port(efx);
2341 	efx->type->fini(efx);
2342 	efx_fini_napi(efx);
2343 	efx_remove_all(efx);
2344 }
2345 
2346 /* Final NIC shutdown
2347  * This is called only at module unload (or hotplug removal).
2348  */
efx_pci_remove(struct pci_dev * pci_dev)2349 static void efx_pci_remove(struct pci_dev *pci_dev)
2350 {
2351 	struct efx_nic *efx;
2352 
2353 	efx = pci_get_drvdata(pci_dev);
2354 	if (!efx)
2355 		return;
2356 
2357 	/* Mark the NIC as fini, then stop the interface */
2358 	rtnl_lock();
2359 	efx->state = STATE_FINI;
2360 	dev_close(efx->net_dev);
2361 
2362 	/* Allow any queued efx_resets() to complete */
2363 	rtnl_unlock();
2364 
2365 	efx_unregister_netdev(efx);
2366 
2367 	efx_mtd_remove(efx);
2368 
2369 	/* Wait for any scheduled resets to complete. No more will be
2370 	 * scheduled from this point because efx_stop_all() has been
2371 	 * called, we are no longer registered with driverlink, and
2372 	 * the net_device's have been removed. */
2373 	cancel_work_sync(&efx->reset_work);
2374 
2375 	efx_pci_remove_main(efx);
2376 
2377 	efx_fini_io(efx);
2378 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2379 
2380 	pci_set_drvdata(pci_dev, NULL);
2381 	efx_fini_struct(efx);
2382 	free_netdev(efx->net_dev);
2383 };
2384 
2385 /* Main body of NIC initialisation
2386  * This is called at module load (or hotplug insertion, theoretically).
2387  */
efx_pci_probe_main(struct efx_nic * efx)2388 static int efx_pci_probe_main(struct efx_nic *efx)
2389 {
2390 	int rc;
2391 
2392 	/* Do start-of-day initialisation */
2393 	rc = efx_probe_all(efx);
2394 	if (rc)
2395 		goto fail1;
2396 
2397 	efx_init_napi(efx);
2398 
2399 	rc = efx->type->init(efx);
2400 	if (rc) {
2401 		netif_err(efx, probe, efx->net_dev,
2402 			  "failed to initialise NIC\n");
2403 		goto fail3;
2404 	}
2405 
2406 	rc = efx_init_port(efx);
2407 	if (rc) {
2408 		netif_err(efx, probe, efx->net_dev,
2409 			  "failed to initialise port\n");
2410 		goto fail4;
2411 	}
2412 
2413 	efx_init_channels(efx);
2414 
2415 	rc = efx_nic_init_interrupt(efx);
2416 	if (rc)
2417 		goto fail5;
2418 
2419 	return 0;
2420 
2421  fail5:
2422 	efx_fini_channels(efx);
2423 	efx_fini_port(efx);
2424  fail4:
2425 	efx->type->fini(efx);
2426  fail3:
2427 	efx_fini_napi(efx);
2428 	efx_remove_all(efx);
2429  fail1:
2430 	return rc;
2431 }
2432 
2433 /* NIC initialisation
2434  *
2435  * This is called at module load (or hotplug insertion,
2436  * theoretically).  It sets up PCI mappings, tests and resets the NIC,
2437  * sets up and registers the network devices with the kernel and hooks
2438  * the interrupt service routine.  It does not prepare the device for
2439  * transmission; this is left to the first time one of the network
2440  * interfaces is brought up (i.e. efx_net_open).
2441  */
efx_pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * entry)2442 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2443 				   const struct pci_device_id *entry)
2444 {
2445 	struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2446 	struct net_device *net_dev;
2447 	struct efx_nic *efx;
2448 	int i, rc;
2449 
2450 	/* Allocate and initialise a struct net_device and struct efx_nic */
2451 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2452 				     EFX_MAX_RX_QUEUES);
2453 	if (!net_dev)
2454 		return -ENOMEM;
2455 	net_dev->features |= (type->offload_features | NETIF_F_SG |
2456 			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2457 			      NETIF_F_GRO);
2458 	if (type->offload_features & NETIF_F_V6_CSUM)
2459 		net_dev->features |= NETIF_F_TSO6;
2460 	/* Mask for features that also apply to VLAN devices */
2461 	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2462 				   NETIF_F_HIGHDMA | NETIF_F_TSO);
2463 	efx = netdev_priv(net_dev);
2464 	pci_set_drvdata(pci_dev, efx);
2465 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2466 	rc = efx_init_struct(efx, type, pci_dev, net_dev);
2467 	if (rc)
2468 		goto fail1;
2469 
2470 	netif_info(efx, probe, efx->net_dev,
2471 		   "Solarflare Communications NIC detected\n");
2472 
2473 	/* Set up basic I/O (BAR mappings etc) */
2474 	rc = efx_init_io(efx);
2475 	if (rc)
2476 		goto fail2;
2477 
2478 	/* No serialisation is required with the reset path because
2479 	 * we're in STATE_INIT. */
2480 	for (i = 0; i < 5; i++) {
2481 		rc = efx_pci_probe_main(efx);
2482 
2483 		/* Serialise against efx_reset(). No more resets will be
2484 		 * scheduled since efx_stop_all() has been called, and we
2485 		 * have not and never have been registered with either
2486 		 * the rtnetlink or driverlink layers. */
2487 		cancel_work_sync(&efx->reset_work);
2488 
2489 		if (rc == 0) {
2490 			if (efx->reset_pending != RESET_TYPE_NONE) {
2491 				/* If there was a scheduled reset during
2492 				 * probe, the NIC is probably hosed anyway */
2493 				efx_pci_remove_main(efx);
2494 				rc = -EIO;
2495 			} else {
2496 				break;
2497 			}
2498 		}
2499 
2500 		/* Retry if a recoverably reset event has been scheduled */
2501 		if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2502 		    (efx->reset_pending != RESET_TYPE_ALL))
2503 			goto fail3;
2504 
2505 		efx->reset_pending = RESET_TYPE_NONE;
2506 	}
2507 
2508 	if (rc) {
2509 		netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
2510 		goto fail4;
2511 	}
2512 
2513 	/* Switch to the running state before we expose the device to the OS,
2514 	 * so that dev_open()|efx_start_all() will actually start the device */
2515 	efx->state = STATE_RUNNING;
2516 
2517 	rc = efx_register_netdev(efx);
2518 	if (rc)
2519 		goto fail5;
2520 
2521 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2522 
2523 	rtnl_lock();
2524 	efx_mtd_probe(efx); /* allowed to fail */
2525 	rtnl_unlock();
2526 	return 0;
2527 
2528  fail5:
2529 	efx_pci_remove_main(efx);
2530  fail4:
2531  fail3:
2532 	efx_fini_io(efx);
2533  fail2:
2534 	efx_fini_struct(efx);
2535  fail1:
2536 	WARN_ON(rc > 0);
2537 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2538 	free_netdev(net_dev);
2539 	return rc;
2540 }
2541 
efx_pm_freeze(struct device * dev)2542 static int efx_pm_freeze(struct device *dev)
2543 {
2544 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2545 
2546 	efx->state = STATE_FINI;
2547 
2548 	netif_device_detach(efx->net_dev);
2549 
2550 	efx_stop_all(efx);
2551 	efx_fini_channels(efx);
2552 
2553 	return 0;
2554 }
2555 
efx_pm_thaw(struct device * dev)2556 static int efx_pm_thaw(struct device *dev)
2557 {
2558 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2559 
2560 	efx->state = STATE_INIT;
2561 
2562 	efx_init_channels(efx);
2563 
2564 	mutex_lock(&efx->mac_lock);
2565 	efx->phy_op->reconfigure(efx);
2566 	mutex_unlock(&efx->mac_lock);
2567 
2568 	efx_start_all(efx);
2569 
2570 	netif_device_attach(efx->net_dev);
2571 
2572 	efx->state = STATE_RUNNING;
2573 
2574 	efx->type->resume_wol(efx);
2575 
2576 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2577 	queue_work(reset_workqueue, &efx->reset_work);
2578 
2579 	return 0;
2580 }
2581 
efx_pm_poweroff(struct device * dev)2582 static int efx_pm_poweroff(struct device *dev)
2583 {
2584 	struct pci_dev *pci_dev = to_pci_dev(dev);
2585 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2586 
2587 	efx->type->fini(efx);
2588 
2589 	efx->reset_pending = RESET_TYPE_NONE;
2590 
2591 	pci_save_state(pci_dev);
2592 	return pci_set_power_state(pci_dev, PCI_D3hot);
2593 }
2594 
2595 /* Used for both resume and restore */
efx_pm_resume(struct device * dev)2596 static int efx_pm_resume(struct device *dev)
2597 {
2598 	struct pci_dev *pci_dev = to_pci_dev(dev);
2599 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2600 	int rc;
2601 
2602 	rc = pci_set_power_state(pci_dev, PCI_D0);
2603 	if (rc)
2604 		return rc;
2605 	pci_restore_state(pci_dev);
2606 	rc = pci_enable_device(pci_dev);
2607 	if (rc)
2608 		return rc;
2609 	pci_set_master(efx->pci_dev);
2610 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
2611 	if (rc)
2612 		return rc;
2613 	rc = efx->type->init(efx);
2614 	if (rc)
2615 		return rc;
2616 	efx_pm_thaw(dev);
2617 	return 0;
2618 }
2619 
efx_pm_suspend(struct device * dev)2620 static int efx_pm_suspend(struct device *dev)
2621 {
2622 	int rc;
2623 
2624 	efx_pm_freeze(dev);
2625 	rc = efx_pm_poweroff(dev);
2626 	if (rc)
2627 		efx_pm_resume(dev);
2628 	return rc;
2629 }
2630 
2631 static struct dev_pm_ops efx_pm_ops = {
2632 	.suspend	= efx_pm_suspend,
2633 	.resume		= efx_pm_resume,
2634 	.freeze		= efx_pm_freeze,
2635 	.thaw		= efx_pm_thaw,
2636 	.poweroff	= efx_pm_poweroff,
2637 	.restore	= efx_pm_resume,
2638 };
2639 
2640 static struct pci_driver efx_pci_driver = {
2641 	.name		= KBUILD_MODNAME,
2642 	.id_table	= efx_pci_table,
2643 	.probe		= efx_pci_probe,
2644 	.remove		= efx_pci_remove,
2645 	.driver.pm	= &efx_pm_ops,
2646 };
2647 
2648 /**************************************************************************
2649  *
2650  * Kernel module interface
2651  *
2652  *************************************************************************/
2653 
2654 module_param(interrupt_mode, uint, 0444);
2655 MODULE_PARM_DESC(interrupt_mode,
2656 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2657 
efx_init_module(void)2658 static int __init efx_init_module(void)
2659 {
2660 	int rc;
2661 
2662 	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2663 
2664 	rc = register_netdevice_notifier(&efx_netdev_notifier);
2665 	if (rc)
2666 		goto err_notifier;
2667 
2668 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
2669 	if (!reset_workqueue) {
2670 		rc = -ENOMEM;
2671 		goto err_reset;
2672 	}
2673 
2674 	rc = pci_register_driver(&efx_pci_driver);
2675 	if (rc < 0)
2676 		goto err_pci;
2677 
2678 	return 0;
2679 
2680  err_pci:
2681 	destroy_workqueue(reset_workqueue);
2682  err_reset:
2683 	unregister_netdevice_notifier(&efx_netdev_notifier);
2684  err_notifier:
2685 	return rc;
2686 }
2687 
efx_exit_module(void)2688 static void __exit efx_exit_module(void)
2689 {
2690 	printk(KERN_INFO "Solarflare NET driver unloading\n");
2691 
2692 	pci_unregister_driver(&efx_pci_driver);
2693 	destroy_workqueue(reset_workqueue);
2694 	unregister_netdevice_notifier(&efx_netdev_notifier);
2695 
2696 }
2697 
2698 module_init(efx_init_module);
2699 module_exit(efx_exit_module);
2700 
2701 MODULE_AUTHOR("Solarflare Communications and "
2702 	      "Michael Brown <mbrown@fensystems.co.uk>");
2703 MODULE_DESCRIPTION("Solarflare Communications network driver");
2704 MODULE_LICENSE("GPL");
2705 MODULE_DEVICE_TABLE(pci, efx_pci_table);
2706