1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2010 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24 
25 /*
26  * TX descriptor ring full threshold
27  *
28  * The tx_queue descriptor ring fill-level must fall below this value
29  * before we restart the netif queue
30  */
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
32 
efx_dequeue_buffer(struct efx_tx_queue * tx_queue,struct efx_tx_buffer * buffer,unsigned int * pkts_compl,unsigned int * bytes_compl)33 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
34 			       struct efx_tx_buffer *buffer,
35 			       unsigned int *pkts_compl,
36 			       unsigned int *bytes_compl)
37 {
38 	if (buffer->unmap_len) {
39 		struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
40 		dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
41 					 buffer->unmap_len);
42 		if (buffer->unmap_single)
43 			pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
44 					 PCI_DMA_TODEVICE);
45 		else
46 			pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
47 				       PCI_DMA_TODEVICE);
48 		buffer->unmap_len = 0;
49 		buffer->unmap_single = false;
50 	}
51 
52 	if (buffer->skb) {
53 		(*pkts_compl)++;
54 		(*bytes_compl) += buffer->skb->len;
55 		dev_kfree_skb_any((struct sk_buff *) buffer->skb);
56 		buffer->skb = NULL;
57 		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
58 			   "TX queue %d transmission id %x complete\n",
59 			   tx_queue->queue, tx_queue->read_count);
60 	}
61 }
62 
63 /**
64  * struct efx_tso_header - a DMA mapped buffer for packet headers
65  * @next: Linked list of free ones.
66  *	The list is protected by the TX queue lock.
67  * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
68  * @dma_addr: The DMA address of the header below.
69  *
70  * This controls the memory used for a TSO header.  Use TSOH_DATA()
71  * to find the packet header data.  Use TSOH_SIZE() to calculate the
72  * total size required for a given packet header length.  TSO headers
73  * in the free list are exactly %TSOH_STD_SIZE bytes in size.
74  */
75 struct efx_tso_header {
76 	union {
77 		struct efx_tso_header *next;
78 		size_t unmap_len;
79 	};
80 	dma_addr_t dma_addr;
81 };
82 
83 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
84 			       struct sk_buff *skb);
85 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
86 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
87 			       struct efx_tso_header *tsoh);
88 
efx_tsoh_free(struct efx_tx_queue * tx_queue,struct efx_tx_buffer * buffer)89 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
90 			  struct efx_tx_buffer *buffer)
91 {
92 	if (buffer->tsoh) {
93 		if (likely(!buffer->tsoh->unmap_len)) {
94 			buffer->tsoh->next = tx_queue->tso_headers_free;
95 			tx_queue->tso_headers_free = buffer->tsoh;
96 		} else {
97 			efx_tsoh_heap_free(tx_queue, buffer->tsoh);
98 		}
99 		buffer->tsoh = NULL;
100 	}
101 }
102 
103 
104 static inline unsigned
efx_max_tx_len(struct efx_nic * efx,dma_addr_t dma_addr)105 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
106 {
107 	/* Depending on the NIC revision, we can use descriptor
108 	 * lengths up to 8K or 8K-1.  However, since PCI Express
109 	 * devices must split read requests at 4K boundaries, there is
110 	 * little benefit from using descriptors that cross those
111 	 * boundaries and we keep things simple by not doing so.
112 	 */
113 	unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
114 
115 	/* Work around hardware bug for unaligned buffers. */
116 	if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
117 		len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
118 
119 	return len;
120 }
121 
efx_tx_max_skb_descs(struct efx_nic * efx)122 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
123 {
124 	/* Header and payload descriptor for each output segment, plus
125 	 * one for every input fragment boundary within a segment
126 	 */
127 	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
128 
129 	/* Possibly one more per segment for the alignment workaround */
130 	if (EFX_WORKAROUND_5391(efx))
131 		max_descs += EFX_TSO_MAX_SEGS;
132 
133 	/* Possibly more for PCIe page boundaries within input fragments */
134 	if (PAGE_SIZE > EFX_PAGE_SIZE)
135 		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
136 				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
137 
138 	return max_descs;
139 }
140 
141 /*
142  * Add a socket buffer to a TX queue
143  *
144  * This maps all fragments of a socket buffer for DMA and adds them to
145  * the TX queue.  The queue's insert pointer will be incremented by
146  * the number of fragments in the socket buffer.
147  *
148  * If any DMA mapping fails, any mapped fragments will be unmapped,
149  * the queue's insert pointer will be restored to its original value.
150  *
151  * This function is split out from efx_hard_start_xmit to allow the
152  * loopback test to direct packets via specific TX queues.
153  *
154  * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
155  * You must hold netif_tx_lock() to call this function.
156  */
efx_enqueue_skb(struct efx_tx_queue * tx_queue,struct sk_buff * skb)157 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
158 {
159 	struct efx_nic *efx = tx_queue->efx;
160 	struct pci_dev *pci_dev = efx->pci_dev;
161 	struct efx_tx_buffer *buffer;
162 	skb_frag_t *fragment;
163 	unsigned int len, unmap_len = 0, fill_level, insert_ptr;
164 	dma_addr_t dma_addr, unmap_addr = 0;
165 	unsigned int dma_len;
166 	bool unmap_single;
167 	int q_space, i = 0;
168 	netdev_tx_t rc = NETDEV_TX_OK;
169 
170 	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
171 
172 	if (skb_shinfo(skb)->gso_size)
173 		return efx_enqueue_skb_tso(tx_queue, skb);
174 
175 	/* Get size of the initial fragment */
176 	len = skb_headlen(skb);
177 
178 	/* Pad if necessary */
179 	if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
180 		EFX_BUG_ON_PARANOID(skb->data_len);
181 		len = 32 + 1;
182 		if (skb_pad(skb, len - skb->len))
183 			return NETDEV_TX_OK;
184 	}
185 
186 	fill_level = tx_queue->insert_count - tx_queue->old_read_count;
187 	q_space = efx->txq_entries - 1 - fill_level;
188 
189 	/* Map for DMA.  Use pci_map_single rather than pci_map_page
190 	 * since this is more efficient on machines with sparse
191 	 * memory.
192 	 */
193 	unmap_single = true;
194 	dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
195 
196 	/* Process all fragments */
197 	while (1) {
198 		if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
199 			goto pci_err;
200 
201 		/* Store fields for marking in the per-fragment final
202 		 * descriptor */
203 		unmap_len = len;
204 		unmap_addr = dma_addr;
205 
206 		/* Add to TX queue, splitting across DMA boundaries */
207 		do {
208 			if (unlikely(q_space-- <= 0)) {
209 				/* It might be that completions have
210 				 * happened since the xmit path last
211 				 * checked.  Update the xmit path's
212 				 * copy of read_count.
213 				 */
214 				netif_tx_stop_queue(tx_queue->core_txq);
215 				/* This memory barrier protects the
216 				 * change of queue state from the access
217 				 * of read_count. */
218 				smp_mb();
219 				tx_queue->old_read_count =
220 					ACCESS_ONCE(tx_queue->read_count);
221 				fill_level = (tx_queue->insert_count
222 					      - tx_queue->old_read_count);
223 				q_space = efx->txq_entries - 1 - fill_level;
224 				if (unlikely(q_space-- <= 0)) {
225 					rc = NETDEV_TX_BUSY;
226 					goto unwind;
227 				}
228 				smp_mb();
229 				if (likely(!efx->loopback_selftest))
230 					netif_tx_start_queue(
231 						tx_queue->core_txq);
232 			}
233 
234 			insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
235 			buffer = &tx_queue->buffer[insert_ptr];
236 			efx_tsoh_free(tx_queue, buffer);
237 			EFX_BUG_ON_PARANOID(buffer->tsoh);
238 			EFX_BUG_ON_PARANOID(buffer->skb);
239 			EFX_BUG_ON_PARANOID(buffer->len);
240 			EFX_BUG_ON_PARANOID(!buffer->continuation);
241 			EFX_BUG_ON_PARANOID(buffer->unmap_len);
242 
243 			dma_len = efx_max_tx_len(efx, dma_addr);
244 			if (likely(dma_len >= len))
245 				dma_len = len;
246 
247 			/* Fill out per descriptor fields */
248 			buffer->len = dma_len;
249 			buffer->dma_addr = dma_addr;
250 			len -= dma_len;
251 			dma_addr += dma_len;
252 			++tx_queue->insert_count;
253 		} while (len);
254 
255 		/* Transfer ownership of the unmapping to the final buffer */
256 		buffer->unmap_single = unmap_single;
257 		buffer->unmap_len = unmap_len;
258 		unmap_len = 0;
259 
260 		/* Get address and size of next fragment */
261 		if (i >= skb_shinfo(skb)->nr_frags)
262 			break;
263 		fragment = &skb_shinfo(skb)->frags[i];
264 		len = skb_frag_size(fragment);
265 		i++;
266 		/* Map for DMA */
267 		unmap_single = false;
268 		dma_addr = skb_frag_dma_map(&pci_dev->dev, fragment, 0, len,
269 					    DMA_TO_DEVICE);
270 	}
271 
272 	/* Transfer ownership of the skb to the final buffer */
273 	buffer->skb = skb;
274 	buffer->continuation = false;
275 
276 	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
277 
278 	/* Pass off to hardware */
279 	efx_nic_push_buffers(tx_queue);
280 
281 	return NETDEV_TX_OK;
282 
283  pci_err:
284 	netif_err(efx, tx_err, efx->net_dev,
285 		  " TX queue %d could not map skb with %d bytes %d "
286 		  "fragments for DMA\n", tx_queue->queue, skb->len,
287 		  skb_shinfo(skb)->nr_frags + 1);
288 
289 	/* Mark the packet as transmitted, and free the SKB ourselves */
290 	dev_kfree_skb_any(skb);
291 
292  unwind:
293 	/* Work backwards until we hit the original insert pointer value */
294 	while (tx_queue->insert_count != tx_queue->write_count) {
295 		unsigned int pkts_compl = 0, bytes_compl = 0;
296 		--tx_queue->insert_count;
297 		insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
298 		buffer = &tx_queue->buffer[insert_ptr];
299 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
300 		buffer->len = 0;
301 	}
302 
303 	/* Free the fragment we were mid-way through pushing */
304 	if (unmap_len) {
305 		if (unmap_single)
306 			pci_unmap_single(pci_dev, unmap_addr, unmap_len,
307 					 PCI_DMA_TODEVICE);
308 		else
309 			pci_unmap_page(pci_dev, unmap_addr, unmap_len,
310 				       PCI_DMA_TODEVICE);
311 	}
312 
313 	return rc;
314 }
315 
316 /* Remove packets from the TX queue
317  *
318  * This removes packets from the TX queue, up to and including the
319  * specified index.
320  */
efx_dequeue_buffers(struct efx_tx_queue * tx_queue,unsigned int index,unsigned int * pkts_compl,unsigned int * bytes_compl)321 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
322 				unsigned int index,
323 				unsigned int *pkts_compl,
324 				unsigned int *bytes_compl)
325 {
326 	struct efx_nic *efx = tx_queue->efx;
327 	unsigned int stop_index, read_ptr;
328 
329 	stop_index = (index + 1) & tx_queue->ptr_mask;
330 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
331 
332 	while (read_ptr != stop_index) {
333 		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
334 		if (unlikely(buffer->len == 0)) {
335 			netif_err(efx, tx_err, efx->net_dev,
336 				  "TX queue %d spurious TX completion id %x\n",
337 				  tx_queue->queue, read_ptr);
338 			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
339 			return;
340 		}
341 
342 		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
343 		buffer->continuation = true;
344 		buffer->len = 0;
345 
346 		++tx_queue->read_count;
347 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
348 	}
349 }
350 
351 /* Initiate a packet transmission.  We use one channel per CPU
352  * (sharing when we have more CPUs than channels).  On Falcon, the TX
353  * completion events will be directed back to the CPU that transmitted
354  * the packet, which should be cache-efficient.
355  *
356  * Context: non-blocking.
357  * Note that returning anything other than NETDEV_TX_OK will cause the
358  * OS to free the skb.
359  */
efx_hard_start_xmit(struct sk_buff * skb,struct net_device * net_dev)360 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
361 				struct net_device *net_dev)
362 {
363 	struct efx_nic *efx = netdev_priv(net_dev);
364 	struct efx_tx_queue *tx_queue;
365 	unsigned index, type;
366 
367 	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
368 
369 	index = skb_get_queue_mapping(skb);
370 	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
371 	if (index >= efx->n_tx_channels) {
372 		index -= efx->n_tx_channels;
373 		type |= EFX_TXQ_TYPE_HIGHPRI;
374 	}
375 	tx_queue = efx_get_tx_queue(efx, index, type);
376 
377 	return efx_enqueue_skb(tx_queue, skb);
378 }
379 
efx_init_tx_queue_core_txq(struct efx_tx_queue * tx_queue)380 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
381 {
382 	struct efx_nic *efx = tx_queue->efx;
383 
384 	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
385 	tx_queue->core_txq =
386 		netdev_get_tx_queue(efx->net_dev,
387 				    tx_queue->queue / EFX_TXQ_TYPES +
388 				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
389 				     efx->n_tx_channels : 0));
390 }
391 
efx_setup_tc(struct net_device * net_dev,u8 num_tc)392 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
393 {
394 	struct efx_nic *efx = netdev_priv(net_dev);
395 	struct efx_channel *channel;
396 	struct efx_tx_queue *tx_queue;
397 	unsigned tc;
398 	int rc;
399 
400 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
401 		return -EINVAL;
402 
403 	if (num_tc == net_dev->num_tc)
404 		return 0;
405 
406 	for (tc = 0; tc < num_tc; tc++) {
407 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
408 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
409 	}
410 
411 	if (num_tc > net_dev->num_tc) {
412 		/* Initialise high-priority queues as necessary */
413 		efx_for_each_channel(channel, efx) {
414 			efx_for_each_possible_channel_tx_queue(tx_queue,
415 							       channel) {
416 				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
417 					continue;
418 				if (!tx_queue->buffer) {
419 					rc = efx_probe_tx_queue(tx_queue);
420 					if (rc)
421 						return rc;
422 				}
423 				if (!tx_queue->initialised)
424 					efx_init_tx_queue(tx_queue);
425 				efx_init_tx_queue_core_txq(tx_queue);
426 			}
427 		}
428 	} else {
429 		/* Reduce number of classes before number of queues */
430 		net_dev->num_tc = num_tc;
431 	}
432 
433 	rc = netif_set_real_num_tx_queues(net_dev,
434 					  max_t(int, num_tc, 1) *
435 					  efx->n_tx_channels);
436 	if (rc)
437 		return rc;
438 
439 	/* Do not destroy high-priority queues when they become
440 	 * unused.  We would have to flush them first, and it is
441 	 * fairly difficult to flush a subset of TX queues.  Leave
442 	 * it to efx_fini_channels().
443 	 */
444 
445 	net_dev->num_tc = num_tc;
446 	return 0;
447 }
448 
efx_xmit_done(struct efx_tx_queue * tx_queue,unsigned int index)449 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
450 {
451 	unsigned fill_level;
452 	struct efx_nic *efx = tx_queue->efx;
453 	unsigned int pkts_compl = 0, bytes_compl = 0;
454 
455 	EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
456 
457 	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
458 	netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
459 
460 	/* See if we need to restart the netif queue.  This barrier
461 	 * separates the update of read_count from the test of the
462 	 * queue state. */
463 	smp_mb();
464 	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
465 	    likely(efx->port_enabled) &&
466 	    likely(netif_device_present(efx->net_dev))) {
467 		fill_level = tx_queue->insert_count - tx_queue->read_count;
468 		if (fill_level < EFX_TXQ_THRESHOLD(efx))
469 			netif_tx_wake_queue(tx_queue->core_txq);
470 	}
471 
472 	/* Check whether the hardware queue is now empty */
473 	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
474 		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
475 		if (tx_queue->read_count == tx_queue->old_write_count) {
476 			smp_mb();
477 			tx_queue->empty_read_count =
478 				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
479 		}
480 	}
481 }
482 
efx_probe_tx_queue(struct efx_tx_queue * tx_queue)483 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
484 {
485 	struct efx_nic *efx = tx_queue->efx;
486 	unsigned int entries;
487 	int i, rc;
488 
489 	/* Create the smallest power-of-two aligned ring */
490 	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
491 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
492 	tx_queue->ptr_mask = entries - 1;
493 
494 	netif_dbg(efx, probe, efx->net_dev,
495 		  "creating TX queue %d size %#x mask %#x\n",
496 		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
497 
498 	/* Allocate software ring */
499 	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
500 				   GFP_KERNEL);
501 	if (!tx_queue->buffer)
502 		return -ENOMEM;
503 	for (i = 0; i <= tx_queue->ptr_mask; ++i)
504 		tx_queue->buffer[i].continuation = true;
505 
506 	/* Allocate hardware ring */
507 	rc = efx_nic_probe_tx(tx_queue);
508 	if (rc)
509 		goto fail;
510 
511 	return 0;
512 
513  fail:
514 	kfree(tx_queue->buffer);
515 	tx_queue->buffer = NULL;
516 	return rc;
517 }
518 
efx_init_tx_queue(struct efx_tx_queue * tx_queue)519 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
520 {
521 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
522 		  "initialising TX queue %d\n", tx_queue->queue);
523 
524 	tx_queue->insert_count = 0;
525 	tx_queue->write_count = 0;
526 	tx_queue->old_write_count = 0;
527 	tx_queue->read_count = 0;
528 	tx_queue->old_read_count = 0;
529 	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
530 
531 	/* Set up TX descriptor ring */
532 	efx_nic_init_tx(tx_queue);
533 
534 	tx_queue->initialised = true;
535 }
536 
efx_release_tx_buffers(struct efx_tx_queue * tx_queue)537 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
538 {
539 	struct efx_tx_buffer *buffer;
540 
541 	if (!tx_queue->buffer)
542 		return;
543 
544 	/* Free any buffers left in the ring */
545 	while (tx_queue->read_count != tx_queue->write_count) {
546 		unsigned int pkts_compl = 0, bytes_compl = 0;
547 		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
548 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
549 		buffer->continuation = true;
550 		buffer->len = 0;
551 
552 		++tx_queue->read_count;
553 	}
554 	netdev_tx_reset_queue(tx_queue->core_txq);
555 }
556 
efx_fini_tx_queue(struct efx_tx_queue * tx_queue)557 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
558 {
559 	if (!tx_queue->initialised)
560 		return;
561 
562 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
563 		  "shutting down TX queue %d\n", tx_queue->queue);
564 
565 	tx_queue->initialised = false;
566 
567 	/* Flush TX queue, remove descriptor ring */
568 	efx_nic_fini_tx(tx_queue);
569 
570 	efx_release_tx_buffers(tx_queue);
571 
572 	/* Free up TSO header cache */
573 	efx_fini_tso(tx_queue);
574 }
575 
efx_remove_tx_queue(struct efx_tx_queue * tx_queue)576 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
577 {
578 	if (!tx_queue->buffer)
579 		return;
580 
581 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
582 		  "destroying TX queue %d\n", tx_queue->queue);
583 	efx_nic_remove_tx(tx_queue);
584 
585 	kfree(tx_queue->buffer);
586 	tx_queue->buffer = NULL;
587 }
588 
589 
590 /* Efx TCP segmentation acceleration.
591  *
592  * Why?  Because by doing it here in the driver we can go significantly
593  * faster than the GSO.
594  *
595  * Requires TX checksum offload support.
596  */
597 
598 /* Number of bytes inserted at the start of a TSO header buffer,
599  * similar to NET_IP_ALIGN.
600  */
601 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
602 #define TSOH_OFFSET	0
603 #else
604 #define TSOH_OFFSET	NET_IP_ALIGN
605 #endif
606 
607 #define TSOH_BUFFER(tsoh)	((u8 *)(tsoh + 1) + TSOH_OFFSET)
608 
609 /* Total size of struct efx_tso_header, buffer and padding */
610 #define TSOH_SIZE(hdr_len)					\
611 	(sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
612 
613 /* Size of blocks on free list.  Larger blocks must be allocated from
614  * the heap.
615  */
616 #define TSOH_STD_SIZE		128
617 
618 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
619 #define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
620 #define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
621 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
622 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
623 
624 /**
625  * struct tso_state - TSO state for an SKB
626  * @out_len: Remaining length in current segment
627  * @seqnum: Current sequence number
628  * @ipv4_id: Current IPv4 ID, host endian
629  * @packet_space: Remaining space in current packet
630  * @dma_addr: DMA address of current position
631  * @in_len: Remaining length in current SKB fragment
632  * @unmap_len: Length of SKB fragment
633  * @unmap_addr: DMA address of SKB fragment
634  * @unmap_single: DMA single vs page mapping flag
635  * @protocol: Network protocol (after any VLAN header)
636  * @header_len: Number of bytes of header
637  * @full_packet_size: Number of bytes to put in each outgoing segment
638  *
639  * The state used during segmentation.  It is put into this data structure
640  * just to make it easy to pass into inline functions.
641  */
642 struct tso_state {
643 	/* Output position */
644 	unsigned out_len;
645 	unsigned seqnum;
646 	unsigned ipv4_id;
647 	unsigned packet_space;
648 
649 	/* Input position */
650 	dma_addr_t dma_addr;
651 	unsigned in_len;
652 	unsigned unmap_len;
653 	dma_addr_t unmap_addr;
654 	bool unmap_single;
655 
656 	__be16 protocol;
657 	unsigned header_len;
658 	int full_packet_size;
659 };
660 
661 
662 /*
663  * Verify that our various assumptions about sk_buffs and the conditions
664  * under which TSO will be attempted hold true.  Return the protocol number.
665  */
efx_tso_check_protocol(struct sk_buff * skb)666 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
667 {
668 	__be16 protocol = skb->protocol;
669 
670 	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
671 			    protocol);
672 	if (protocol == htons(ETH_P_8021Q)) {
673 		/* Find the encapsulated protocol; reset network header
674 		 * and transport header based on that. */
675 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
676 		protocol = veh->h_vlan_encapsulated_proto;
677 		skb_set_network_header(skb, sizeof(*veh));
678 		if (protocol == htons(ETH_P_IP))
679 			skb_set_transport_header(skb, sizeof(*veh) +
680 						 4 * ip_hdr(skb)->ihl);
681 		else if (protocol == htons(ETH_P_IPV6))
682 			skb_set_transport_header(skb, sizeof(*veh) +
683 						 sizeof(struct ipv6hdr));
684 	}
685 
686 	if (protocol == htons(ETH_P_IP)) {
687 		EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
688 	} else {
689 		EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
690 		EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
691 	}
692 	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
693 			     + (tcp_hdr(skb)->doff << 2u)) >
694 			    skb_headlen(skb));
695 
696 	return protocol;
697 }
698 
699 
700 /*
701  * Allocate a page worth of efx_tso_header structures, and string them
702  * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
703  */
efx_tsoh_block_alloc(struct efx_tx_queue * tx_queue)704 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
705 {
706 
707 	struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
708 	struct efx_tso_header *tsoh;
709 	dma_addr_t dma_addr;
710 	u8 *base_kva, *kva;
711 
712 	base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
713 	if (base_kva == NULL) {
714 		netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
715 			  "Unable to allocate page for TSO headers\n");
716 		return -ENOMEM;
717 	}
718 
719 	/* pci_alloc_consistent() allocates pages. */
720 	EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
721 
722 	for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
723 		tsoh = (struct efx_tso_header *)kva;
724 		tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
725 		tsoh->next = tx_queue->tso_headers_free;
726 		tx_queue->tso_headers_free = tsoh;
727 	}
728 
729 	return 0;
730 }
731 
732 
733 /* Free up a TSO header, and all others in the same page. */
efx_tsoh_block_free(struct efx_tx_queue * tx_queue,struct efx_tso_header * tsoh,struct pci_dev * pci_dev)734 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
735 				struct efx_tso_header *tsoh,
736 				struct pci_dev *pci_dev)
737 {
738 	struct efx_tso_header **p;
739 	unsigned long base_kva;
740 	dma_addr_t base_dma;
741 
742 	base_kva = (unsigned long)tsoh & PAGE_MASK;
743 	base_dma = tsoh->dma_addr & PAGE_MASK;
744 
745 	p = &tx_queue->tso_headers_free;
746 	while (*p != NULL) {
747 		if (((unsigned long)*p & PAGE_MASK) == base_kva)
748 			*p = (*p)->next;
749 		else
750 			p = &(*p)->next;
751 	}
752 
753 	pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
754 }
755 
756 static struct efx_tso_header *
efx_tsoh_heap_alloc(struct efx_tx_queue * tx_queue,size_t header_len)757 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
758 {
759 	struct efx_tso_header *tsoh;
760 
761 	tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
762 	if (unlikely(!tsoh))
763 		return NULL;
764 
765 	tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
766 					TSOH_BUFFER(tsoh), header_len,
767 					PCI_DMA_TODEVICE);
768 	if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
769 					   tsoh->dma_addr))) {
770 		kfree(tsoh);
771 		return NULL;
772 	}
773 
774 	tsoh->unmap_len = header_len;
775 	return tsoh;
776 }
777 
778 static void
efx_tsoh_heap_free(struct efx_tx_queue * tx_queue,struct efx_tso_header * tsoh)779 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
780 {
781 	pci_unmap_single(tx_queue->efx->pci_dev,
782 			 tsoh->dma_addr, tsoh->unmap_len,
783 			 PCI_DMA_TODEVICE);
784 	kfree(tsoh);
785 }
786 
787 /**
788  * efx_tx_queue_insert - push descriptors onto the TX queue
789  * @tx_queue:		Efx TX queue
790  * @dma_addr:		DMA address of fragment
791  * @len:		Length of fragment
792  * @final_buffer:	The final buffer inserted into the queue
793  *
794  * Push descriptors onto the TX queue.  Return 0 on success or 1 if
795  * @tx_queue full.
796  */
efx_tx_queue_insert(struct efx_tx_queue * tx_queue,dma_addr_t dma_addr,unsigned len,struct efx_tx_buffer ** final_buffer)797 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
798 			       dma_addr_t dma_addr, unsigned len,
799 			       struct efx_tx_buffer **final_buffer)
800 {
801 	struct efx_tx_buffer *buffer;
802 	struct efx_nic *efx = tx_queue->efx;
803 	unsigned dma_len, fill_level, insert_ptr;
804 	int q_space;
805 
806 	EFX_BUG_ON_PARANOID(len <= 0);
807 
808 	fill_level = tx_queue->insert_count - tx_queue->old_read_count;
809 	/* -1 as there is no way to represent all descriptors used */
810 	q_space = efx->txq_entries - 1 - fill_level;
811 
812 	while (1) {
813 		if (unlikely(q_space-- <= 0)) {
814 			/* It might be that completions have happened
815 			 * since the xmit path last checked.  Update
816 			 * the xmit path's copy of read_count.
817 			 */
818 			netif_tx_stop_queue(tx_queue->core_txq);
819 			/* This memory barrier protects the change of
820 			 * queue state from the access of read_count. */
821 			smp_mb();
822 			tx_queue->old_read_count =
823 				ACCESS_ONCE(tx_queue->read_count);
824 			fill_level = (tx_queue->insert_count
825 				      - tx_queue->old_read_count);
826 			q_space = efx->txq_entries - 1 - fill_level;
827 			if (unlikely(q_space-- <= 0)) {
828 				*final_buffer = NULL;
829 				return 1;
830 			}
831 			smp_mb();
832 			netif_tx_start_queue(tx_queue->core_txq);
833 		}
834 
835 		insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
836 		buffer = &tx_queue->buffer[insert_ptr];
837 		++tx_queue->insert_count;
838 
839 		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
840 				    tx_queue->read_count >=
841 				    efx->txq_entries);
842 
843 		efx_tsoh_free(tx_queue, buffer);
844 		EFX_BUG_ON_PARANOID(buffer->len);
845 		EFX_BUG_ON_PARANOID(buffer->unmap_len);
846 		EFX_BUG_ON_PARANOID(buffer->skb);
847 		EFX_BUG_ON_PARANOID(!buffer->continuation);
848 		EFX_BUG_ON_PARANOID(buffer->tsoh);
849 
850 		buffer->dma_addr = dma_addr;
851 
852 		dma_len = efx_max_tx_len(efx, dma_addr);
853 
854 		/* If there is enough space to send then do so */
855 		if (dma_len >= len)
856 			break;
857 
858 		buffer->len = dma_len; /* Don't set the other members */
859 		dma_addr += dma_len;
860 		len -= dma_len;
861 	}
862 
863 	EFX_BUG_ON_PARANOID(!len);
864 	buffer->len = len;
865 	*final_buffer = buffer;
866 	return 0;
867 }
868 
869 
870 /*
871  * Put a TSO header into the TX queue.
872  *
873  * This is special-cased because we know that it is small enough to fit in
874  * a single fragment, and we know it doesn't cross a page boundary.  It
875  * also allows us to not worry about end-of-packet etc.
876  */
efx_tso_put_header(struct efx_tx_queue * tx_queue,struct efx_tso_header * tsoh,unsigned len)877 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
878 			       struct efx_tso_header *tsoh, unsigned len)
879 {
880 	struct efx_tx_buffer *buffer;
881 
882 	buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
883 	efx_tsoh_free(tx_queue, buffer);
884 	EFX_BUG_ON_PARANOID(buffer->len);
885 	EFX_BUG_ON_PARANOID(buffer->unmap_len);
886 	EFX_BUG_ON_PARANOID(buffer->skb);
887 	EFX_BUG_ON_PARANOID(!buffer->continuation);
888 	EFX_BUG_ON_PARANOID(buffer->tsoh);
889 	buffer->len = len;
890 	buffer->dma_addr = tsoh->dma_addr;
891 	buffer->tsoh = tsoh;
892 
893 	++tx_queue->insert_count;
894 }
895 
896 
897 /* Remove descriptors put into a tx_queue. */
efx_enqueue_unwind(struct efx_tx_queue * tx_queue)898 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
899 {
900 	struct efx_tx_buffer *buffer;
901 	dma_addr_t unmap_addr;
902 
903 	/* Work backwards until we hit the original insert pointer value */
904 	while (tx_queue->insert_count != tx_queue->write_count) {
905 		--tx_queue->insert_count;
906 		buffer = &tx_queue->buffer[tx_queue->insert_count &
907 					   tx_queue->ptr_mask];
908 		efx_tsoh_free(tx_queue, buffer);
909 		EFX_BUG_ON_PARANOID(buffer->skb);
910 		if (buffer->unmap_len) {
911 			unmap_addr = (buffer->dma_addr + buffer->len -
912 				      buffer->unmap_len);
913 			if (buffer->unmap_single)
914 				pci_unmap_single(tx_queue->efx->pci_dev,
915 						 unmap_addr, buffer->unmap_len,
916 						 PCI_DMA_TODEVICE);
917 			else
918 				pci_unmap_page(tx_queue->efx->pci_dev,
919 					       unmap_addr, buffer->unmap_len,
920 					       PCI_DMA_TODEVICE);
921 			buffer->unmap_len = 0;
922 		}
923 		buffer->len = 0;
924 		buffer->continuation = true;
925 	}
926 }
927 
928 
929 /* Parse the SKB header and initialise state. */
tso_start(struct tso_state * st,const struct sk_buff * skb)930 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
931 {
932 	/* All ethernet/IP/TCP headers combined size is TCP header size
933 	 * plus offset of TCP header relative to start of packet.
934 	 */
935 	st->header_len = ((tcp_hdr(skb)->doff << 2u)
936 			  + PTR_DIFF(tcp_hdr(skb), skb->data));
937 	st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
938 
939 	if (st->protocol == htons(ETH_P_IP))
940 		st->ipv4_id = ntohs(ip_hdr(skb)->id);
941 	else
942 		st->ipv4_id = 0;
943 	st->seqnum = ntohl(tcp_hdr(skb)->seq);
944 
945 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
946 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
947 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
948 
949 	st->packet_space = st->full_packet_size;
950 	st->out_len = skb->len - st->header_len;
951 	st->unmap_len = 0;
952 	st->unmap_single = false;
953 }
954 
tso_get_fragment(struct tso_state * st,struct efx_nic * efx,skb_frag_t * frag)955 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
956 			    skb_frag_t *frag)
957 {
958 	st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
959 					  skb_frag_size(frag), DMA_TO_DEVICE);
960 	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
961 		st->unmap_single = false;
962 		st->unmap_len = skb_frag_size(frag);
963 		st->in_len = skb_frag_size(frag);
964 		st->dma_addr = st->unmap_addr;
965 		return 0;
966 	}
967 	return -ENOMEM;
968 }
969 
tso_get_head_fragment(struct tso_state * st,struct efx_nic * efx,const struct sk_buff * skb)970 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
971 				 const struct sk_buff *skb)
972 {
973 	int hl = st->header_len;
974 	int len = skb_headlen(skb) - hl;
975 
976 	st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
977 					len, PCI_DMA_TODEVICE);
978 	if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
979 		st->unmap_single = true;
980 		st->unmap_len = len;
981 		st->in_len = len;
982 		st->dma_addr = st->unmap_addr;
983 		return 0;
984 	}
985 	return -ENOMEM;
986 }
987 
988 
989 /**
990  * tso_fill_packet_with_fragment - form descriptors for the current fragment
991  * @tx_queue:		Efx TX queue
992  * @skb:		Socket buffer
993  * @st:			TSO state
994  *
995  * Form descriptors for the current fragment, until we reach the end
996  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
997  * space in @tx_queue.
998  */
tso_fill_packet_with_fragment(struct efx_tx_queue * tx_queue,const struct sk_buff * skb,struct tso_state * st)999 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1000 					 const struct sk_buff *skb,
1001 					 struct tso_state *st)
1002 {
1003 	struct efx_tx_buffer *buffer;
1004 	int n, end_of_packet, rc;
1005 
1006 	if (st->in_len == 0)
1007 		return 0;
1008 	if (st->packet_space == 0)
1009 		return 0;
1010 
1011 	EFX_BUG_ON_PARANOID(st->in_len <= 0);
1012 	EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1013 
1014 	n = min(st->in_len, st->packet_space);
1015 
1016 	st->packet_space -= n;
1017 	st->out_len -= n;
1018 	st->in_len -= n;
1019 
1020 	rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1021 	if (likely(rc == 0)) {
1022 		if (st->out_len == 0)
1023 			/* Transfer ownership of the skb */
1024 			buffer->skb = skb;
1025 
1026 		end_of_packet = st->out_len == 0 || st->packet_space == 0;
1027 		buffer->continuation = !end_of_packet;
1028 
1029 		if (st->in_len == 0) {
1030 			/* Transfer ownership of the pci mapping */
1031 			buffer->unmap_len = st->unmap_len;
1032 			buffer->unmap_single = st->unmap_single;
1033 			st->unmap_len = 0;
1034 		}
1035 	}
1036 
1037 	st->dma_addr += n;
1038 	return rc;
1039 }
1040 
1041 
1042 /**
1043  * tso_start_new_packet - generate a new header and prepare for the new packet
1044  * @tx_queue:		Efx TX queue
1045  * @skb:		Socket buffer
1046  * @st:			TSO state
1047  *
1048  * Generate a new header and prepare for the new packet.  Return 0 on
1049  * success, or -1 if failed to alloc header.
1050  */
tso_start_new_packet(struct efx_tx_queue * tx_queue,const struct sk_buff * skb,struct tso_state * st)1051 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1052 				const struct sk_buff *skb,
1053 				struct tso_state *st)
1054 {
1055 	struct efx_tso_header *tsoh;
1056 	struct tcphdr *tsoh_th;
1057 	unsigned ip_length;
1058 	u8 *header;
1059 
1060 	/* Allocate a DMA-mapped header buffer. */
1061 	if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1062 		if (tx_queue->tso_headers_free == NULL) {
1063 			if (efx_tsoh_block_alloc(tx_queue))
1064 				return -1;
1065 		}
1066 		EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
1067 		tsoh = tx_queue->tso_headers_free;
1068 		tx_queue->tso_headers_free = tsoh->next;
1069 		tsoh->unmap_len = 0;
1070 	} else {
1071 		tx_queue->tso_long_headers++;
1072 		tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
1073 		if (unlikely(!tsoh))
1074 			return -1;
1075 	}
1076 
1077 	header = TSOH_BUFFER(tsoh);
1078 	tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
1079 
1080 	/* Copy and update the headers. */
1081 	memcpy(header, skb->data, st->header_len);
1082 
1083 	tsoh_th->seq = htonl(st->seqnum);
1084 	st->seqnum += skb_shinfo(skb)->gso_size;
1085 	if (st->out_len > skb_shinfo(skb)->gso_size) {
1086 		/* This packet will not finish the TSO burst. */
1087 		ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1088 		tsoh_th->fin = 0;
1089 		tsoh_th->psh = 0;
1090 	} else {
1091 		/* This packet will be the last in the TSO burst. */
1092 		ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1093 		tsoh_th->fin = tcp_hdr(skb)->fin;
1094 		tsoh_th->psh = tcp_hdr(skb)->psh;
1095 	}
1096 
1097 	if (st->protocol == htons(ETH_P_IP)) {
1098 		struct iphdr *tsoh_iph =
1099 			(struct iphdr *)(header + SKB_IPV4_OFF(skb));
1100 
1101 		tsoh_iph->tot_len = htons(ip_length);
1102 
1103 		/* Linux leaves suitable gaps in the IP ID space for us to fill. */
1104 		tsoh_iph->id = htons(st->ipv4_id);
1105 		st->ipv4_id++;
1106 	} else {
1107 		struct ipv6hdr *tsoh_iph =
1108 			(struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1109 
1110 		tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1111 	}
1112 
1113 	st->packet_space = skb_shinfo(skb)->gso_size;
1114 	++tx_queue->tso_packets;
1115 
1116 	/* Form a descriptor for this header. */
1117 	efx_tso_put_header(tx_queue, tsoh, st->header_len);
1118 
1119 	return 0;
1120 }
1121 
1122 
1123 /**
1124  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1125  * @tx_queue:		Efx TX queue
1126  * @skb:		Socket buffer
1127  *
1128  * Context: You must hold netif_tx_lock() to call this function.
1129  *
1130  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1131  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1132  * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1133  */
efx_enqueue_skb_tso(struct efx_tx_queue * tx_queue,struct sk_buff * skb)1134 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1135 			       struct sk_buff *skb)
1136 {
1137 	struct efx_nic *efx = tx_queue->efx;
1138 	int frag_i, rc, rc2 = NETDEV_TX_OK;
1139 	struct tso_state state;
1140 
1141 	/* Find the packet protocol and sanity-check it */
1142 	state.protocol = efx_tso_check_protocol(skb);
1143 
1144 	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1145 
1146 	tso_start(&state, skb);
1147 
1148 	/* Assume that skb header area contains exactly the headers, and
1149 	 * all payload is in the frag list.
1150 	 */
1151 	if (skb_headlen(skb) == state.header_len) {
1152 		/* Grab the first payload fragment. */
1153 		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1154 		frag_i = 0;
1155 		rc = tso_get_fragment(&state, efx,
1156 				      skb_shinfo(skb)->frags + frag_i);
1157 		if (rc)
1158 			goto mem_err;
1159 	} else {
1160 		rc = tso_get_head_fragment(&state, efx, skb);
1161 		if (rc)
1162 			goto mem_err;
1163 		frag_i = -1;
1164 	}
1165 
1166 	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1167 		goto mem_err;
1168 
1169 	while (1) {
1170 		rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1171 		if (unlikely(rc)) {
1172 			rc2 = NETDEV_TX_BUSY;
1173 			goto unwind;
1174 		}
1175 
1176 		/* Move onto the next fragment? */
1177 		if (state.in_len == 0) {
1178 			if (++frag_i >= skb_shinfo(skb)->nr_frags)
1179 				/* End of payload reached. */
1180 				break;
1181 			rc = tso_get_fragment(&state, efx,
1182 					      skb_shinfo(skb)->frags + frag_i);
1183 			if (rc)
1184 				goto mem_err;
1185 		}
1186 
1187 		/* Start at new packet? */
1188 		if (state.packet_space == 0 &&
1189 		    tso_start_new_packet(tx_queue, skb, &state) < 0)
1190 			goto mem_err;
1191 	}
1192 
1193 	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1194 
1195 	/* Pass off to hardware */
1196 	efx_nic_push_buffers(tx_queue);
1197 
1198 	tx_queue->tso_bursts++;
1199 	return NETDEV_TX_OK;
1200 
1201  mem_err:
1202 	netif_err(efx, tx_err, efx->net_dev,
1203 		  "Out of memory for TSO headers, or PCI mapping error\n");
1204 	dev_kfree_skb_any(skb);
1205 
1206  unwind:
1207 	/* Free the DMA mapping we were in the process of writing out */
1208 	if (state.unmap_len) {
1209 		if (state.unmap_single)
1210 			pci_unmap_single(efx->pci_dev, state.unmap_addr,
1211 					 state.unmap_len, PCI_DMA_TODEVICE);
1212 		else
1213 			pci_unmap_page(efx->pci_dev, state.unmap_addr,
1214 				       state.unmap_len, PCI_DMA_TODEVICE);
1215 	}
1216 
1217 	efx_enqueue_unwind(tx_queue);
1218 	return rc2;
1219 }
1220 
1221 
1222 /*
1223  * Free up all TSO datastructures associated with tx_queue. This
1224  * routine should be called only once the tx_queue is both empty and
1225  * will no longer be used.
1226  */
efx_fini_tso(struct efx_tx_queue * tx_queue)1227 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1228 {
1229 	unsigned i;
1230 
1231 	if (tx_queue->buffer) {
1232 		for (i = 0; i <= tx_queue->ptr_mask; ++i)
1233 			efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1234 	}
1235 
1236 	while (tx_queue->tso_headers_free != NULL)
1237 		efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1238 				    tx_queue->efx->pci_dev);
1239 }
1240