1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2011-2013 Solarflare Communications Inc.
5 */
6
7 /* Theory of operation:
8 *
9 * PTP support is assisted by firmware running on the MC, which provides
10 * the hardware timestamping capabilities. Both transmitted and received
11 * PTP event packets are queued onto internal queues for subsequent processing;
12 * this is because the MC operations are relatively long and would block
13 * block NAPI/interrupt operation.
14 *
15 * Receive event processing:
16 * The event contains the packet's UUID and sequence number, together
17 * with the hardware timestamp. The PTP receive packet queue is searched
18 * for this UUID/sequence number and, if found, put on a pending queue.
19 * Packets not matching are delivered without timestamps (MCDI events will
20 * always arrive after the actual packet).
21 * It is important for the operation of the PTP protocol that the ordering
22 * of packets between the event and general port is maintained.
23 *
24 * Work queue processing:
25 * If work waiting, synchronise host/hardware time
26 *
27 * Transmit: send packet through MC, which returns the transmission time
28 * that is converted to an appropriate timestamp.
29 *
30 * Receive: the packet's reception time is converted to an appropriate
31 * timestamp.
32 */
33 #include <linux/ip.h>
34 #include <linux/udp.h>
35 #include <linux/time.h>
36 #include <linux/errno.h>
37 #include <linux/ktime.h>
38 #include <linux/module.h>
39 #include <linux/pps_kernel.h>
40 #include <linux/ptp_clock_kernel.h>
41 #include "net_driver.h"
42 #include "efx.h"
43 #include "mcdi.h"
44 #include "mcdi_pcol.h"
45 #include "io.h"
46 #include "tx.h"
47 #include "nic.h" /* indirectly includes ptp.h */
48 #include "efx_channels.h"
49
50 /* Maximum number of events expected to make up a PTP event */
51 #define MAX_EVENT_FRAGS 3
52
53 /* Maximum delay, ms, to begin synchronisation */
54 #define MAX_SYNCHRONISE_WAIT_MS 2
55
56 /* How long, at most, to spend synchronising */
57 #define SYNCHRONISE_PERIOD_NS 250000
58
59 /* How often to update the shared memory time */
60 #define SYNCHRONISATION_GRANULARITY_NS 200
61
62 /* Minimum permitted length of a (corrected) synchronisation time */
63 #define DEFAULT_MIN_SYNCHRONISATION_NS 120
64
65 /* Maximum permitted length of a (corrected) synchronisation time */
66 #define MAX_SYNCHRONISATION_NS 1000
67
68 /* How many (MC) receive events that can be queued */
69 #define MAX_RECEIVE_EVENTS 8
70
71 /* Length of (modified) moving average. */
72 #define AVERAGE_LENGTH 16
73
74 /* How long an unmatched event or packet can be held */
75 #define PKT_EVENT_LIFETIME_MS 10
76
77 /* How long unused unicast filters can be held */
78 #define UCAST_FILTER_EXPIRY_JIFFIES msecs_to_jiffies(30000)
79
80 /* Offsets into PTP packet for identification. These offsets are from the
81 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
82 * PTP V2 permit the use of IPV4 options.
83 */
84 #define PTP_DPORT_OFFSET 22
85
86 #define PTP_V1_VERSION_LENGTH 2
87 #define PTP_V1_VERSION_OFFSET 28
88
89 #define PTP_V1_SEQUENCE_LENGTH 2
90 #define PTP_V1_SEQUENCE_OFFSET 58
91
92 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
93 * includes IP header.
94 */
95 #define PTP_V1_MIN_LENGTH 64
96
97 #define PTP_V2_VERSION_LENGTH 1
98 #define PTP_V2_VERSION_OFFSET 29
99
100 #define PTP_V2_SEQUENCE_LENGTH 2
101 #define PTP_V2_SEQUENCE_OFFSET 58
102
103 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
104 * includes IP header.
105 */
106 #define PTP_V2_MIN_LENGTH 63
107
108 #define PTP_MIN_LENGTH 63
109
110 #define PTP_ADDR_IPV4 0xe0000181 /* 224.0.1.129 */
111 #define PTP_ADDR_IPV6 {0xff, 0x0e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
112 0, 0x01, 0x81} /* ff0e::181 */
113 #define PTP_EVENT_PORT 319
114 #define PTP_GENERAL_PORT 320
115 #define PTP_ADDR_ETHER {0x01, 0x1b, 0x19, 0, 0, 0} /* 01-1B-19-00-00-00 */
116
117 /* Annoyingly the format of the version numbers are different between
118 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
119 */
120 #define PTP_VERSION_V1 1
121
122 #define PTP_VERSION_V2 2
123 #define PTP_VERSION_V2_MASK 0x0f
124
125 enum ptp_packet_state {
126 PTP_PACKET_STATE_UNMATCHED = 0,
127 PTP_PACKET_STATE_MATCHED,
128 PTP_PACKET_STATE_TIMED_OUT,
129 PTP_PACKET_STATE_MATCH_UNWANTED
130 };
131
132 /* NIC synchronised with single word of time only comprising
133 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
134 */
135 #define MC_NANOSECOND_BITS 30
136 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
137 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
138
139 /* Maximum parts-per-billion adjustment that is acceptable */
140 #define MAX_PPB 1000000
141
142 /* Precalculate scale word to avoid long long division at runtime */
143 /* This is equivalent to 2^66 / 10^9. */
144 #define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL)
145
146 /* How much to shift down after scaling to convert to FP40 */
147 #define PPB_SHIFT_FP40 26
148 /* ... and FP44. */
149 #define PPB_SHIFT_FP44 22
150
151 #define PTP_SYNC_ATTEMPTS 4
152
153 /**
154 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
155 * @expiry: Time after which the packet should be delivered irrespective of
156 * event arrival.
157 * @state: The state of the packet - whether it is ready for processing or
158 * whether that is of no interest.
159 */
160 struct efx_ptp_match {
161 unsigned long expiry;
162 enum ptp_packet_state state;
163 };
164
165 /**
166 * struct efx_ptp_event_rx - A PTP receive event (from MC)
167 * @link: list of events
168 * @seq0: First part of (PTP) UUID
169 * @seq1: Second part of (PTP) UUID and sequence number
170 * @hwtimestamp: Event timestamp
171 * @expiry: Time which the packet arrived
172 */
173 struct efx_ptp_event_rx {
174 struct list_head link;
175 u32 seq0;
176 u32 seq1;
177 ktime_t hwtimestamp;
178 unsigned long expiry;
179 };
180
181 /**
182 * struct efx_ptp_timeset - Synchronisation between host and MC
183 * @host_start: Host time immediately before hardware timestamp taken
184 * @major: Hardware timestamp, major
185 * @minor: Hardware timestamp, minor
186 * @host_end: Host time immediately after hardware timestamp taken
187 * @wait: Number of NIC clock ticks between hardware timestamp being read and
188 * host end time being seen
189 * @window: Difference of host_end and host_start
190 * @valid: Whether this timeset is valid
191 */
192 struct efx_ptp_timeset {
193 u32 host_start;
194 u32 major;
195 u32 minor;
196 u32 host_end;
197 u32 wait;
198 u32 window; /* Derived: end - start, allowing for wrap */
199 };
200
201 /**
202 * struct efx_ptp_rxfilter - Filter for PTP packets
203 * @list: Node of the list where the filter is added
204 * @ether_type: Network protocol of the filter (ETHER_P_IP / ETHER_P_IPV6)
205 * @loc_port: UDP port of the filter (PTP_EVENT_PORT / PTP_GENERAL_PORT)
206 * @loc_host: IPv4/v6 address of the filter
207 * @expiry: time when the filter expires, in jiffies
208 * @handle: Handle ID for the MCDI filters table
209 */
210 struct efx_ptp_rxfilter {
211 struct list_head list;
212 __be16 ether_type;
213 __be16 loc_port;
214 __be32 loc_host[4];
215 unsigned long expiry;
216 int handle;
217 };
218
219 /**
220 * struct efx_ptp_data - Precision Time Protocol (PTP) state
221 * @efx: The NIC context
222 * @channel: The PTP channel (for Medford and Medford2)
223 * @rxq: Receive SKB queue (awaiting timestamps)
224 * @txq: Transmit SKB queue
225 * @workwq: Work queue for processing pending PTP operations
226 * @work: Work task
227 * @cleanup_work: Work task for periodic cleanup
228 * @reset_required: A serious error has occurred and the PTP task needs to be
229 * reset (disable, enable).
230 * @rxfilters_mcast: Receive filters for multicast PTP packets
231 * @rxfilters_ucast: Receive filters for unicast PTP packets
232 * @config: Current timestamp configuration
233 * @enabled: PTP operation enabled
234 * @mode: Mode in which PTP operating (PTP version)
235 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
236 * @nic_to_kernel_time: Function to convert from NIC to kernel time
237 * @nic_time: contains time details
238 * @nic_time.minor_max: Wrap point for NIC minor times
239 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
240 * in packet prefix and last MCDI time sync event i.e. how much earlier than
241 * the last sync event time a packet timestamp can be.
242 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
243 * in packet prefix and last MCDI time sync event i.e. how much later than
244 * the last sync event time a packet timestamp can be.
245 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
246 * field in MCDI time sync event.
247 * @min_synchronisation_ns: Minimum acceptable corrected sync window
248 * @capabilities: Capabilities flags from the NIC
249 * @ts_corrections: contains corrections details
250 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
251 * timestamps
252 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
253 * timestamps
254 * @ts_corrections.pps_out: PPS output error (information only)
255 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
256 * @ts_corrections.general_tx: Required driver correction of general packet
257 * transmit timestamps
258 * @ts_corrections.general_rx: Required driver correction of general packet
259 * receive timestamps
260 * @evt_frags: Partly assembled PTP events
261 * @evt_frag_idx: Current fragment number
262 * @evt_code: Last event code
263 * @start: Address at which MC indicates ready for synchronisation
264 * @host_time_pps: Host time at last PPS
265 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
266 * frequency adjustment into a fixed point fractional nanosecond format.
267 * @current_adjfreq: Current ppb adjustment.
268 * @phc_clock: Pointer to registered phc device (if primary function)
269 * @phc_clock_info: Registration structure for phc device
270 * @pps_work: pps work task for handling pps events
271 * @pps_workwq: pps work queue
272 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
273 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
274 * allocations in main data path).
275 * @good_syncs: Number of successful synchronisations.
276 * @fast_syncs: Number of synchronisations requiring short delay
277 * @bad_syncs: Number of failed synchronisations.
278 * @sync_timeouts: Number of synchronisation timeouts
279 * @no_time_syncs: Number of synchronisations with no good times.
280 * @invalid_sync_windows: Number of sync windows with bad durations.
281 * @undersize_sync_windows: Number of corrected sync windows that are too small
282 * @oversize_sync_windows: Number of corrected sync windows that are too large
283 * @rx_no_timestamp: Number of packets received without a timestamp.
284 * @timeset: Last set of synchronisation statistics.
285 * @xmit_skb: Transmit SKB function.
286 */
287 struct efx_ptp_data {
288 struct efx_nic *efx;
289 struct efx_channel *channel;
290 struct sk_buff_head rxq;
291 struct sk_buff_head txq;
292 struct workqueue_struct *workwq;
293 struct work_struct work;
294 struct delayed_work cleanup_work;
295 bool reset_required;
296 struct list_head rxfilters_mcast;
297 struct list_head rxfilters_ucast;
298 struct hwtstamp_config config;
299 bool enabled;
300 unsigned int mode;
301 void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
302 ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
303 s32 correction);
304 struct {
305 u32 minor_max;
306 u32 sync_event_diff_min;
307 u32 sync_event_diff_max;
308 unsigned int sync_event_minor_shift;
309 } nic_time;
310 unsigned int min_synchronisation_ns;
311 unsigned int capabilities;
312 struct {
313 s32 ptp_tx;
314 s32 ptp_rx;
315 s32 pps_out;
316 s32 pps_in;
317 s32 general_tx;
318 s32 general_rx;
319 } ts_corrections;
320 efx_qword_t evt_frags[MAX_EVENT_FRAGS];
321 int evt_frag_idx;
322 int evt_code;
323 struct efx_buffer start;
324 struct pps_event_time host_time_pps;
325 unsigned int adjfreq_ppb_shift;
326 s64 current_adjfreq;
327 struct ptp_clock *phc_clock;
328 struct ptp_clock_info phc_clock_info;
329 struct work_struct pps_work;
330 struct workqueue_struct *pps_workwq;
331 bool nic_ts_enabled;
332 efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)];
333
334 unsigned int good_syncs;
335 unsigned int fast_syncs;
336 unsigned int bad_syncs;
337 unsigned int sync_timeouts;
338 unsigned int no_time_syncs;
339 unsigned int invalid_sync_windows;
340 unsigned int undersize_sync_windows;
341 unsigned int oversize_sync_windows;
342 unsigned int rx_no_timestamp;
343 struct efx_ptp_timeset
344 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
345 void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
346 };
347
348 static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm);
349 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
350 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
351 static int efx_phc_settime(struct ptp_clock_info *ptp,
352 const struct timespec64 *e_ts);
353 static int efx_phc_enable(struct ptp_clock_info *ptp,
354 struct ptp_clock_request *request, int on);
355 static int efx_ptp_insert_unicast_filter(struct efx_nic *efx,
356 struct sk_buff *skb);
357
efx_ptp_use_mac_tx_timestamps(struct efx_nic * efx)358 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
359 {
360 return efx_has_cap(efx, TX_MAC_TIMESTAMPING);
361 }
362
363 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues
364 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
365 */
efx_ptp_want_txqs(struct efx_channel * channel)366 static bool efx_ptp_want_txqs(struct efx_channel *channel)
367 {
368 return efx_ptp_use_mac_tx_timestamps(channel->efx);
369 }
370
371 #define PTP_SW_STAT(ext_name, field_name) \
372 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
373 #define PTP_MC_STAT(ext_name, mcdi_name) \
374 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
375 static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
376 PTP_SW_STAT(ptp_good_syncs, good_syncs),
377 PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
378 PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
379 PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
380 PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
381 PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
382 PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
383 PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
384 PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
385 PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
386 PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
387 PTP_MC_STAT(ptp_timestamp_packets, TS),
388 PTP_MC_STAT(ptp_filter_matches, FM),
389 PTP_MC_STAT(ptp_non_filter_matches, NFM),
390 };
391 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
392 static const unsigned long efx_ptp_stat_mask[] = {
393 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
394 };
395
efx_ptp_describe_stats(struct efx_nic * efx,u8 * strings)396 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
397 {
398 if (!efx->ptp_data)
399 return 0;
400
401 return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
402 efx_ptp_stat_mask, strings);
403 }
404
efx_ptp_update_stats(struct efx_nic * efx,u64 * stats)405 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
406 {
407 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
408 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
409 size_t i;
410 int rc;
411
412 if (!efx->ptp_data)
413 return 0;
414
415 /* Copy software statistics */
416 for (i = 0; i < PTP_STAT_COUNT; i++) {
417 if (efx_ptp_stat_desc[i].dma_width)
418 continue;
419 stats[i] = *(unsigned int *)((char *)efx->ptp_data +
420 efx_ptp_stat_desc[i].offset);
421 }
422
423 /* Fetch MC statistics. We *must* fill in all statistics or
424 * risk leaking kernel memory to userland, so if the MCDI
425 * request fails we pretend we got zeroes.
426 */
427 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
428 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
429 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
430 outbuf, sizeof(outbuf), NULL);
431 if (rc)
432 memset(outbuf, 0, sizeof(outbuf));
433 efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
434 efx_ptp_stat_mask,
435 stats, _MCDI_PTR(outbuf, 0), false);
436
437 return PTP_STAT_COUNT;
438 }
439
440 /* To convert from s27 format to ns we multiply then divide by a power of 2.
441 * For the conversion from ns to s27, the operation is also converted to a
442 * multiply and shift.
443 */
444 #define S27_TO_NS_SHIFT (27)
445 #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
446 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
447 #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT)
448
449 /* For Huntington platforms NIC time is in seconds and fractions of a second
450 * where the minor register only uses 27 bits in units of 2^-27s.
451 */
efx_ptp_ns_to_s27(s64 ns,u32 * nic_major,u32 * nic_minor)452 static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
453 {
454 struct timespec64 ts = ns_to_timespec64(ns);
455 u32 maj = (u32)ts.tv_sec;
456 u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
457 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
458
459 /* The conversion can result in the minor value exceeding the maximum.
460 * In this case, round up to the next second.
461 */
462 if (min >= S27_MINOR_MAX) {
463 min -= S27_MINOR_MAX;
464 maj++;
465 }
466
467 *nic_major = maj;
468 *nic_minor = min;
469 }
470
efx_ptp_s27_to_ktime(u32 nic_major,u32 nic_minor)471 static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
472 {
473 u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
474 (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
475 return ktime_set(nic_major, ns);
476 }
477
efx_ptp_s27_to_ktime_correction(u32 nic_major,u32 nic_minor,s32 correction)478 static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
479 s32 correction)
480 {
481 /* Apply the correction and deal with carry */
482 nic_minor += correction;
483 if ((s32)nic_minor < 0) {
484 nic_minor += S27_MINOR_MAX;
485 nic_major--;
486 } else if (nic_minor >= S27_MINOR_MAX) {
487 nic_minor -= S27_MINOR_MAX;
488 nic_major++;
489 }
490
491 return efx_ptp_s27_to_ktime(nic_major, nic_minor);
492 }
493
494 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
efx_ptp_ns_to_s_qns(s64 ns,u32 * nic_major,u32 * nic_minor)495 static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
496 {
497 struct timespec64 ts = ns_to_timespec64(ns);
498
499 *nic_major = (u32)ts.tv_sec;
500 *nic_minor = ts.tv_nsec * 4;
501 }
502
efx_ptp_s_qns_to_ktime_correction(u32 nic_major,u32 nic_minor,s32 correction)503 static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
504 s32 correction)
505 {
506 ktime_t kt;
507
508 nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
509 correction = DIV_ROUND_CLOSEST(correction, 4);
510
511 kt = ktime_set(nic_major, nic_minor);
512
513 if (correction >= 0)
514 kt = ktime_add_ns(kt, (u64)correction);
515 else
516 kt = ktime_sub_ns(kt, (u64)-correction);
517 return kt;
518 }
519
efx_ptp_channel(struct efx_nic * efx)520 struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
521 {
522 return efx->ptp_data ? efx->ptp_data->channel : NULL;
523 }
524
efx_ptp_update_channel(struct efx_nic * efx,struct efx_channel * channel)525 void efx_ptp_update_channel(struct efx_nic *efx, struct efx_channel *channel)
526 {
527 if (efx->ptp_data)
528 efx->ptp_data->channel = channel;
529 }
530
last_sync_timestamp_major(struct efx_nic * efx)531 static u32 last_sync_timestamp_major(struct efx_nic *efx)
532 {
533 struct efx_channel *channel = efx_ptp_channel(efx);
534 u32 major = 0;
535
536 if (channel)
537 major = channel->sync_timestamp_major;
538 return major;
539 }
540
541 /* The 8000 series and later can provide the time from the MAC, which is only
542 * 48 bits long and provides meta-information in the top 2 bits.
543 */
544 static ktime_t
efx_ptp_mac_nic_to_ktime_correction(struct efx_nic * efx,struct efx_ptp_data * ptp,u32 nic_major,u32 nic_minor,s32 correction)545 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
546 struct efx_ptp_data *ptp,
547 u32 nic_major, u32 nic_minor,
548 s32 correction)
549 {
550 u32 sync_timestamp;
551 ktime_t kt = { 0 };
552 s16 delta;
553
554 if (!(nic_major & 0x80000000)) {
555 WARN_ON_ONCE(nic_major >> 16);
556
557 /* Medford provides 48 bits of timestamp, so we must get the top
558 * 16 bits from the timesync event state.
559 *
560 * We only have the lower 16 bits of the time now, but we do
561 * have a full resolution timestamp at some point in past. As
562 * long as the difference between the (real) now and the sync
563 * is less than 2^15, then we can reconstruct the difference
564 * between those two numbers using only the lower 16 bits of
565 * each.
566 *
567 * Put another way
568 *
569 * a - b = ((a mod k) - b) mod k
570 *
571 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
572 * (a mod k) and b, so can calculate the delta, a - b.
573 *
574 */
575 sync_timestamp = last_sync_timestamp_major(efx);
576
577 /* Because delta is s16 this does an implicit mask down to
578 * 16 bits which is what we need, assuming
579 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
580 * we can deal with the (unlikely) case of sync timestamps
581 * arriving from the future.
582 */
583 delta = nic_major - sync_timestamp;
584
585 /* Recover the fully specified time now, by applying the offset
586 * to the (fully specified) sync time.
587 */
588 nic_major = sync_timestamp + delta;
589
590 kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
591 correction);
592 }
593 return kt;
594 }
595
efx_ptp_nic_to_kernel_time(struct efx_tx_queue * tx_queue)596 ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
597 {
598 struct efx_nic *efx = tx_queue->efx;
599 struct efx_ptp_data *ptp = efx->ptp_data;
600 ktime_t kt;
601
602 if (efx_ptp_use_mac_tx_timestamps(efx))
603 kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
604 tx_queue->completed_timestamp_major,
605 tx_queue->completed_timestamp_minor,
606 ptp->ts_corrections.general_tx);
607 else
608 kt = ptp->nic_to_kernel_time(
609 tx_queue->completed_timestamp_major,
610 tx_queue->completed_timestamp_minor,
611 ptp->ts_corrections.general_tx);
612 return kt;
613 }
614
615 /* Get PTP attributes and set up time conversions */
efx_ptp_get_attributes(struct efx_nic * efx)616 static int efx_ptp_get_attributes(struct efx_nic *efx)
617 {
618 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
619 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
620 struct efx_ptp_data *ptp = efx->ptp_data;
621 int rc;
622 u32 fmt;
623 size_t out_len;
624
625 /* Get the PTP attributes. If the NIC doesn't support the operation we
626 * use the default format for compatibility with older NICs i.e.
627 * seconds and nanoseconds.
628 */
629 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
630 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
631 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
632 outbuf, sizeof(outbuf), &out_len);
633 if (rc == 0) {
634 fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
635 } else if (rc == -EINVAL) {
636 fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
637 } else if (rc == -EPERM) {
638 pci_info(efx->pci_dev, "no PTP support\n");
639 return rc;
640 } else {
641 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
642 outbuf, sizeof(outbuf), rc);
643 return rc;
644 }
645
646 switch (fmt) {
647 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
648 ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
649 ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
650 ptp->nic_time.minor_max = 1 << 27;
651 ptp->nic_time.sync_event_minor_shift = 19;
652 break;
653 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
654 ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
655 ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
656 ptp->nic_time.minor_max = 4000000000UL;
657 ptp->nic_time.sync_event_minor_shift = 24;
658 break;
659 default:
660 return -ERANGE;
661 }
662
663 /* Precalculate acceptable difference between the minor time in the
664 * packet prefix and the last MCDI time sync event. We expect the
665 * packet prefix timestamp to be after of sync event by up to one
666 * sync event interval (0.25s) but we allow it to exceed this by a
667 * fuzz factor of (0.1s)
668 */
669 ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
670 - (ptp->nic_time.minor_max / 10);
671 ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
672 + (ptp->nic_time.minor_max / 10);
673
674 /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
675 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
676 * a value to use for the minimum acceptable corrected synchronization
677 * window and may return further capabilities.
678 * If we have the extra information store it. For older firmware that
679 * does not implement the extended command use the default value.
680 */
681 if (rc == 0 &&
682 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
683 ptp->min_synchronisation_ns =
684 MCDI_DWORD(outbuf,
685 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
686 else
687 ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
688
689 if (rc == 0 &&
690 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
691 ptp->capabilities = MCDI_DWORD(outbuf,
692 PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
693 else
694 ptp->capabilities = 0;
695
696 /* Set up the shift for conversion between frequency
697 * adjustments in parts-per-billion and the fixed-point
698 * fractional ns format that the adapter uses.
699 */
700 if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
701 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
702 else
703 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
704
705 return 0;
706 }
707
708 /* Get PTP timestamp corrections */
efx_ptp_get_timestamp_corrections(struct efx_nic * efx)709 static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
710 {
711 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
712 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
713 int rc;
714 size_t out_len;
715
716 /* Get the timestamp corrections from the NIC. If this operation is
717 * not supported (older NICs) then no correction is required.
718 */
719 MCDI_SET_DWORD(inbuf, PTP_IN_OP,
720 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
721 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
722
723 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
724 outbuf, sizeof(outbuf), &out_len);
725 if (rc == 0) {
726 efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
727 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
728 efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
729 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
730 efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
731 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
732 efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
733 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
734
735 if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
736 efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
737 outbuf,
738 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
739 efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
740 outbuf,
741 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
742 } else {
743 efx->ptp_data->ts_corrections.general_tx =
744 efx->ptp_data->ts_corrections.ptp_tx;
745 efx->ptp_data->ts_corrections.general_rx =
746 efx->ptp_data->ts_corrections.ptp_rx;
747 }
748 } else if (rc == -EINVAL) {
749 efx->ptp_data->ts_corrections.ptp_tx = 0;
750 efx->ptp_data->ts_corrections.ptp_rx = 0;
751 efx->ptp_data->ts_corrections.pps_out = 0;
752 efx->ptp_data->ts_corrections.pps_in = 0;
753 efx->ptp_data->ts_corrections.general_tx = 0;
754 efx->ptp_data->ts_corrections.general_rx = 0;
755 } else {
756 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
757 sizeof(outbuf), rc);
758 return rc;
759 }
760
761 return 0;
762 }
763
764 /* Enable MCDI PTP support. */
efx_ptp_enable(struct efx_nic * efx)765 static int efx_ptp_enable(struct efx_nic *efx)
766 {
767 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
768 MCDI_DECLARE_BUF_ERR(outbuf);
769 int rc;
770
771 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
772 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
773 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
774 efx->ptp_data->channel ?
775 efx->ptp_data->channel->channel : 0);
776 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
777
778 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
779 outbuf, sizeof(outbuf), NULL);
780 rc = (rc == -EALREADY) ? 0 : rc;
781 if (rc)
782 efx_mcdi_display_error(efx, MC_CMD_PTP,
783 MC_CMD_PTP_IN_ENABLE_LEN,
784 outbuf, sizeof(outbuf), rc);
785 return rc;
786 }
787
788 /* Disable MCDI PTP support.
789 *
790 * Note that this function should never rely on the presence of ptp_data -
791 * may be called before that exists.
792 */
efx_ptp_disable(struct efx_nic * efx)793 static int efx_ptp_disable(struct efx_nic *efx)
794 {
795 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
796 MCDI_DECLARE_BUF_ERR(outbuf);
797 int rc;
798
799 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
800 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
801 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
802 outbuf, sizeof(outbuf), NULL);
803 rc = (rc == -EALREADY) ? 0 : rc;
804 /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
805 * should only have been called during probe.
806 */
807 if (rc == -ENOSYS || rc == -EPERM)
808 pci_info(efx->pci_dev, "no PTP support\n");
809 else if (rc)
810 efx_mcdi_display_error(efx, MC_CMD_PTP,
811 MC_CMD_PTP_IN_DISABLE_LEN,
812 outbuf, sizeof(outbuf), rc);
813 return rc;
814 }
815
efx_ptp_deliver_rx_queue(struct sk_buff_head * q)816 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
817 {
818 struct sk_buff *skb;
819
820 while ((skb = skb_dequeue(q))) {
821 local_bh_disable();
822 netif_receive_skb(skb);
823 local_bh_enable();
824 }
825 }
826
efx_ptp_handle_no_channel(struct efx_nic * efx)827 static void efx_ptp_handle_no_channel(struct efx_nic *efx)
828 {
829 netif_err(efx, drv, efx->net_dev,
830 "ERROR: PTP requires MSI-X and 1 additional interrupt"
831 "vector. PTP disabled\n");
832 }
833
834 /* Repeatedly send the host time to the MC which will capture the hardware
835 * time.
836 */
efx_ptp_send_times(struct efx_nic * efx,struct pps_event_time * last_time)837 static void efx_ptp_send_times(struct efx_nic *efx,
838 struct pps_event_time *last_time)
839 {
840 struct pps_event_time now;
841 struct timespec64 limit;
842 struct efx_ptp_data *ptp = efx->ptp_data;
843 int *mc_running = ptp->start.addr;
844
845 pps_get_ts(&now);
846 limit = now.ts_real;
847 timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
848
849 /* Write host time for specified period or until MC is done */
850 while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
851 READ_ONCE(*mc_running)) {
852 struct timespec64 update_time;
853 unsigned int host_time;
854
855 /* Don't update continuously to avoid saturating the PCIe bus */
856 update_time = now.ts_real;
857 timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
858 do {
859 pps_get_ts(&now);
860 } while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
861 READ_ONCE(*mc_running));
862
863 /* Synchronise NIC with single word of time only */
864 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
865 now.ts_real.tv_nsec);
866 /* Update host time in NIC memory */
867 efx->type->ptp_write_host_time(efx, host_time);
868 }
869 *last_time = now;
870 }
871
872 /* Read a timeset from the MC's results and partial process. */
efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR (data),struct efx_ptp_timeset * timeset)873 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
874 struct efx_ptp_timeset *timeset)
875 {
876 unsigned start_ns, end_ns;
877
878 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
879 timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
880 timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
881 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
882 timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
883
884 /* Ignore seconds */
885 start_ns = timeset->host_start & MC_NANOSECOND_MASK;
886 end_ns = timeset->host_end & MC_NANOSECOND_MASK;
887 /* Allow for rollover */
888 if (end_ns < start_ns)
889 end_ns += NSEC_PER_SEC;
890 /* Determine duration of operation */
891 timeset->window = end_ns - start_ns;
892 }
893
894 /* Process times received from MC.
895 *
896 * Extract times from returned results, and establish the minimum value
897 * seen. The minimum value represents the "best" possible time and events
898 * too much greater than this are rejected - the machine is, perhaps, too
899 * busy. A number of readings are taken so that, hopefully, at least one good
900 * synchronisation will be seen in the results.
901 */
902 static int
efx_ptp_process_times(struct efx_nic * efx,MCDI_DECLARE_STRUCT_PTR (synch_buf),size_t response_length,const struct pps_event_time * last_time)903 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
904 size_t response_length,
905 const struct pps_event_time *last_time)
906 {
907 unsigned number_readings =
908 MCDI_VAR_ARRAY_LEN(response_length,
909 PTP_OUT_SYNCHRONIZE_TIMESET);
910 unsigned i;
911 unsigned ngood = 0;
912 unsigned last_good = 0;
913 struct efx_ptp_data *ptp = efx->ptp_data;
914 u32 last_sec;
915 u32 start_sec;
916 struct timespec64 delta;
917 ktime_t mc_time;
918
919 if (number_readings == 0)
920 return -EAGAIN;
921
922 /* Read the set of results and find the last good host-MC
923 * synchronization result. The MC times when it finishes reading the
924 * host time so the corrected window time should be fairly constant
925 * for a given platform. Increment stats for any results that appear
926 * to be erroneous.
927 */
928 for (i = 0; i < number_readings; i++) {
929 s32 window, corrected;
930 struct timespec64 wait;
931
932 efx_ptp_read_timeset(
933 MCDI_ARRAY_STRUCT_PTR(synch_buf,
934 PTP_OUT_SYNCHRONIZE_TIMESET, i),
935 &ptp->timeset[i]);
936
937 wait = ktime_to_timespec64(
938 ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
939 window = ptp->timeset[i].window;
940 corrected = window - wait.tv_nsec;
941
942 /* We expect the uncorrected synchronization window to be at
943 * least as large as the interval between host start and end
944 * times. If it is smaller than this then this is mostly likely
945 * to be a consequence of the host's time being adjusted.
946 * Check that the corrected sync window is in a reasonable
947 * range. If it is out of range it is likely to be because an
948 * interrupt or other delay occurred between reading the system
949 * time and writing it to MC memory.
950 */
951 if (window < SYNCHRONISATION_GRANULARITY_NS) {
952 ++ptp->invalid_sync_windows;
953 } else if (corrected >= MAX_SYNCHRONISATION_NS) {
954 ++ptp->oversize_sync_windows;
955 } else if (corrected < ptp->min_synchronisation_ns) {
956 ++ptp->undersize_sync_windows;
957 } else {
958 ngood++;
959 last_good = i;
960 }
961 }
962
963 if (ngood == 0) {
964 netif_warn(efx, drv, efx->net_dev,
965 "PTP no suitable synchronisations\n");
966 return -EAGAIN;
967 }
968
969 /* Calculate delay from last good sync (host time) to last_time.
970 * It is possible that the seconds rolled over between taking
971 * the start reading and the last value written by the host. The
972 * timescales are such that a gap of more than one second is never
973 * expected. delta is *not* normalised.
974 */
975 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
976 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
977 if (start_sec != last_sec &&
978 ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
979 netif_warn(efx, hw, efx->net_dev,
980 "PTP bad synchronisation seconds\n");
981 return -EAGAIN;
982 }
983 delta.tv_sec = (last_sec - start_sec) & 1;
984 delta.tv_nsec =
985 last_time->ts_real.tv_nsec -
986 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
987
988 /* Convert the NIC time at last good sync into kernel time.
989 * No correction is required - this time is the output of a
990 * firmware process.
991 */
992 mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
993 ptp->timeset[last_good].minor, 0);
994
995 /* Calculate delay from NIC top of second to last_time */
996 delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
997
998 /* Set PPS timestamp to match NIC top of second */
999 ptp->host_time_pps = *last_time;
1000 pps_sub_ts(&ptp->host_time_pps, delta);
1001
1002 return 0;
1003 }
1004
1005 /* Synchronize times between the host and the MC */
efx_ptp_synchronize(struct efx_nic * efx,unsigned int num_readings)1006 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
1007 {
1008 struct efx_ptp_data *ptp = efx->ptp_data;
1009 MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
1010 size_t response_length;
1011 int rc;
1012 unsigned long timeout;
1013 struct pps_event_time last_time = {};
1014 unsigned int loops = 0;
1015 int *start = ptp->start.addr;
1016
1017 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1018 MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1019 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1020 num_readings);
1021 MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1022 ptp->start.dma_addr);
1023
1024 /* Clear flag that signals MC ready */
1025 WRITE_ONCE(*start, 0);
1026 rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1027 MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1028 EFX_WARN_ON_ONCE_PARANOID(rc);
1029
1030 /* Wait for start from MCDI (or timeout) */
1031 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1032 while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1033 udelay(20); /* Usually start MCDI execution quickly */
1034 loops++;
1035 }
1036
1037 if (loops <= 1)
1038 ++ptp->fast_syncs;
1039 if (!time_before(jiffies, timeout))
1040 ++ptp->sync_timeouts;
1041
1042 if (READ_ONCE(*start))
1043 efx_ptp_send_times(efx, &last_time);
1044
1045 /* Collect results */
1046 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1047 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1048 synch_buf, sizeof(synch_buf),
1049 &response_length);
1050 if (rc == 0) {
1051 rc = efx_ptp_process_times(efx, synch_buf, response_length,
1052 &last_time);
1053 if (rc == 0)
1054 ++ptp->good_syncs;
1055 else
1056 ++ptp->no_time_syncs;
1057 }
1058
1059 /* Increment the bad syncs counter if the synchronize fails, whatever
1060 * the reason.
1061 */
1062 if (rc != 0)
1063 ++ptp->bad_syncs;
1064
1065 return rc;
1066 }
1067
1068 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */
efx_ptp_xmit_skb_queue(struct efx_nic * efx,struct sk_buff * skb)1069 static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1070 {
1071 struct efx_ptp_data *ptp_data = efx->ptp_data;
1072 u8 type = efx_tx_csum_type_skb(skb);
1073 struct efx_tx_queue *tx_queue;
1074
1075 tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type);
1076 if (tx_queue && tx_queue->timestamping) {
1077 skb_get(skb);
1078
1079 /* This code invokes normal driver TX code which is always
1080 * protected from softirqs when called from generic TX code,
1081 * which in turn disables preemption. Look at __dev_queue_xmit
1082 * which uses rcu_read_lock_bh disabling preemption for RCU
1083 * plus disabling softirqs. We do not need RCU reader
1084 * protection here.
1085 *
1086 * Although it is theoretically safe for current PTP TX/RX code
1087 * running without disabling softirqs, there are three good
1088 * reasond for doing so:
1089 *
1090 * 1) The code invoked is mainly implemented for non-PTP
1091 * packets and it is always executed with softirqs
1092 * disabled.
1093 * 2) This being a single PTP packet, better to not
1094 * interrupt its processing by softirqs which can lead
1095 * to high latencies.
1096 * 3) netdev_xmit_more checks preemption is disabled and
1097 * triggers a BUG_ON if not.
1098 */
1099 local_bh_disable();
1100 efx_enqueue_skb(tx_queue, skb);
1101 local_bh_enable();
1102
1103 /* We need to add the filters after enqueuing the packet.
1104 * Otherwise, there's high latency in sending back the
1105 * timestamp, causing ptp4l timeouts
1106 */
1107 efx_ptp_insert_unicast_filter(efx, skb);
1108 dev_consume_skb_any(skb);
1109 } else {
1110 WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1111 dev_kfree_skb_any(skb);
1112 }
1113 }
1114
1115 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
efx_ptp_xmit_skb_mc(struct efx_nic * efx,struct sk_buff * skb)1116 static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1117 {
1118 MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1119 struct efx_ptp_data *ptp_data = efx->ptp_data;
1120 struct skb_shared_hwtstamps timestamps;
1121 size_t len;
1122 int rc;
1123
1124 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1125 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1126 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1127 if (skb_shinfo(skb)->nr_frags != 0) {
1128 rc = skb_linearize(skb);
1129 if (rc != 0)
1130 goto fail;
1131 }
1132
1133 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1134 rc = skb_checksum_help(skb);
1135 if (rc != 0)
1136 goto fail;
1137 }
1138 skb_copy_from_linear_data(skb,
1139 MCDI_PTR(ptp_data->txbuf,
1140 PTP_IN_TRANSMIT_PACKET),
1141 skb->len);
1142 rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1143 ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1144 txtime, sizeof(txtime), &len);
1145 if (rc != 0)
1146 goto fail;
1147
1148 memset(×tamps, 0, sizeof(timestamps));
1149 timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1150 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1151 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1152 ptp_data->ts_corrections.ptp_tx);
1153
1154 skb_tstamp_tx(skb, ×tamps);
1155
1156 /* Add the filters after sending back the timestamp to avoid delaying it
1157 * or ptp4l may timeout.
1158 */
1159 efx_ptp_insert_unicast_filter(efx, skb);
1160
1161 fail:
1162 dev_kfree_skb_any(skb);
1163
1164 return;
1165 }
1166
1167 /* Process any queued receive events and corresponding packets
1168 *
1169 * q is returned with all the packets that are ready for delivery.
1170 */
efx_ptp_process_events(struct efx_nic * efx,struct sk_buff_head * q)1171 static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1172 {
1173 struct efx_ptp_data *ptp = efx->ptp_data;
1174 struct sk_buff *skb;
1175
1176 while ((skb = skb_dequeue(&ptp->rxq))) {
1177 struct efx_ptp_match *match;
1178
1179 match = (struct efx_ptp_match *)skb->cb;
1180 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1181 __skb_queue_tail(q, skb);
1182 } else if (time_after(jiffies, match->expiry)) {
1183 match->state = PTP_PACKET_STATE_TIMED_OUT;
1184 ++ptp->rx_no_timestamp;
1185 __skb_queue_tail(q, skb);
1186 } else {
1187 /* Replace unprocessed entry and stop */
1188 skb_queue_head(&ptp->rxq, skb);
1189 break;
1190 }
1191 }
1192 }
1193
1194 /* Complete processing of a received packet */
efx_ptp_process_rx(struct efx_nic * efx,struct sk_buff * skb)1195 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1196 {
1197 local_bh_disable();
1198 netif_receive_skb(skb);
1199 local_bh_enable();
1200 }
1201
1202 static struct efx_ptp_rxfilter *
efx_ptp_find_filter(struct list_head * filter_list,struct efx_filter_spec * spec)1203 efx_ptp_find_filter(struct list_head *filter_list, struct efx_filter_spec *spec)
1204 {
1205 struct efx_ptp_rxfilter *rxfilter;
1206
1207 list_for_each_entry(rxfilter, filter_list, list) {
1208 if (rxfilter->ether_type == spec->ether_type &&
1209 rxfilter->loc_port == spec->loc_port &&
1210 !memcmp(rxfilter->loc_host, spec->loc_host, sizeof(spec->loc_host)))
1211 return rxfilter;
1212 }
1213
1214 return NULL;
1215 }
1216
efx_ptp_remove_one_filter(struct efx_nic * efx,struct efx_ptp_rxfilter * rxfilter)1217 static void efx_ptp_remove_one_filter(struct efx_nic *efx,
1218 struct efx_ptp_rxfilter *rxfilter)
1219 {
1220 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1221 rxfilter->handle);
1222 list_del(&rxfilter->list);
1223 kfree(rxfilter);
1224 }
1225
efx_ptp_remove_filters(struct efx_nic * efx,struct list_head * filter_list)1226 static void efx_ptp_remove_filters(struct efx_nic *efx,
1227 struct list_head *filter_list)
1228 {
1229 struct efx_ptp_rxfilter *rxfilter, *tmp;
1230
1231 list_for_each_entry_safe(rxfilter, tmp, filter_list, list)
1232 efx_ptp_remove_one_filter(efx, rxfilter);
1233 }
1234
efx_ptp_init_filter(struct efx_nic * efx,struct efx_filter_spec * rxfilter)1235 static void efx_ptp_init_filter(struct efx_nic *efx,
1236 struct efx_filter_spec *rxfilter)
1237 {
1238 struct efx_channel *channel = efx->ptp_data->channel;
1239 struct efx_rx_queue *queue = efx_channel_get_rx_queue(channel);
1240
1241 efx_filter_init_rx(rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1242 efx_rx_queue_index(queue));
1243 }
1244
efx_ptp_insert_filter(struct efx_nic * efx,struct list_head * filter_list,struct efx_filter_spec * spec,unsigned long expiry)1245 static int efx_ptp_insert_filter(struct efx_nic *efx,
1246 struct list_head *filter_list,
1247 struct efx_filter_spec *spec,
1248 unsigned long expiry)
1249 {
1250 struct efx_ptp_data *ptp = efx->ptp_data;
1251 struct efx_ptp_rxfilter *rxfilter;
1252 int rc;
1253
1254 rxfilter = efx_ptp_find_filter(filter_list, spec);
1255 if (rxfilter) {
1256 rxfilter->expiry = expiry;
1257 return 0;
1258 }
1259
1260 rxfilter = kzalloc(sizeof(*rxfilter), GFP_KERNEL);
1261 if (!rxfilter)
1262 return -ENOMEM;
1263
1264 rc = efx_filter_insert_filter(efx, spec, true);
1265 if (rc < 0)
1266 goto fail;
1267
1268 rxfilter->handle = rc;
1269 rxfilter->ether_type = spec->ether_type;
1270 rxfilter->loc_port = spec->loc_port;
1271 memcpy(rxfilter->loc_host, spec->loc_host, sizeof(spec->loc_host));
1272 rxfilter->expiry = expiry;
1273 list_add(&rxfilter->list, filter_list);
1274
1275 queue_delayed_work(ptp->workwq, &ptp->cleanup_work,
1276 UCAST_FILTER_EXPIRY_JIFFIES + 1);
1277
1278 return 0;
1279
1280 fail:
1281 kfree(rxfilter);
1282 return rc;
1283 }
1284
efx_ptp_insert_ipv4_filter(struct efx_nic * efx,struct list_head * filter_list,__be32 addr,u16 port,unsigned long expiry)1285 static int efx_ptp_insert_ipv4_filter(struct efx_nic *efx,
1286 struct list_head *filter_list,
1287 __be32 addr, u16 port,
1288 unsigned long expiry)
1289 {
1290 struct efx_filter_spec spec;
1291
1292 efx_ptp_init_filter(efx, &spec);
1293 efx_filter_set_ipv4_local(&spec, IPPROTO_UDP, addr, htons(port));
1294 return efx_ptp_insert_filter(efx, filter_list, &spec, expiry);
1295 }
1296
efx_ptp_insert_ipv6_filter(struct efx_nic * efx,struct list_head * filter_list,struct in6_addr * addr,u16 port,unsigned long expiry)1297 static int efx_ptp_insert_ipv6_filter(struct efx_nic *efx,
1298 struct list_head *filter_list,
1299 struct in6_addr *addr, u16 port,
1300 unsigned long expiry)
1301 {
1302 struct efx_filter_spec spec;
1303
1304 efx_ptp_init_filter(efx, &spec);
1305 efx_filter_set_ipv6_local(&spec, IPPROTO_UDP, addr, htons(port));
1306 return efx_ptp_insert_filter(efx, filter_list, &spec, expiry);
1307 }
1308
efx_ptp_insert_eth_multicast_filter(struct efx_nic * efx)1309 static int efx_ptp_insert_eth_multicast_filter(struct efx_nic *efx)
1310 {
1311 struct efx_ptp_data *ptp = efx->ptp_data;
1312 const u8 addr[ETH_ALEN] = PTP_ADDR_ETHER;
1313 struct efx_filter_spec spec;
1314
1315 efx_ptp_init_filter(efx, &spec);
1316 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC, addr);
1317 spec.match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
1318 spec.ether_type = htons(ETH_P_1588);
1319 return efx_ptp_insert_filter(efx, &ptp->rxfilters_mcast, &spec, 0);
1320 }
1321
efx_ptp_insert_multicast_filters(struct efx_nic * efx)1322 static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1323 {
1324 struct efx_ptp_data *ptp = efx->ptp_data;
1325 int rc;
1326
1327 if (!ptp->channel || !list_empty(&ptp->rxfilters_mcast))
1328 return 0;
1329
1330 /* Must filter on both event and general ports to ensure
1331 * that there is no packet re-ordering.
1332 */
1333 rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_mcast,
1334 htonl(PTP_ADDR_IPV4), PTP_EVENT_PORT,
1335 0);
1336 if (rc < 0)
1337 goto fail;
1338
1339 rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_mcast,
1340 htonl(PTP_ADDR_IPV4), PTP_GENERAL_PORT,
1341 0);
1342 if (rc < 0)
1343 goto fail;
1344
1345 /* if the NIC supports hw timestamps by the MAC, we can support
1346 * PTP over IPv6 and Ethernet
1347 */
1348 if (efx_ptp_use_mac_tx_timestamps(efx)) {
1349 struct in6_addr ipv6_addr = {{PTP_ADDR_IPV6}};
1350
1351 rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_mcast,
1352 &ipv6_addr, PTP_EVENT_PORT, 0);
1353 if (rc < 0)
1354 goto fail;
1355
1356 rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_mcast,
1357 &ipv6_addr, PTP_GENERAL_PORT, 0);
1358 if (rc < 0)
1359 goto fail;
1360
1361 rc = efx_ptp_insert_eth_multicast_filter(efx);
1362
1363 /* Not all firmware variants support this filter */
1364 if (rc < 0 && rc != -EPROTONOSUPPORT)
1365 goto fail;
1366 }
1367
1368 return 0;
1369
1370 fail:
1371 efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast);
1372 return rc;
1373 }
1374
efx_ptp_valid_unicast_event_pkt(struct sk_buff * skb)1375 static bool efx_ptp_valid_unicast_event_pkt(struct sk_buff *skb)
1376 {
1377 if (skb->protocol == htons(ETH_P_IP)) {
1378 return ip_hdr(skb)->daddr != htonl(PTP_ADDR_IPV4) &&
1379 ip_hdr(skb)->protocol == IPPROTO_UDP &&
1380 udp_hdr(skb)->source == htons(PTP_EVENT_PORT);
1381 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1382 struct in6_addr mcast_addr = {{PTP_ADDR_IPV6}};
1383
1384 return !ipv6_addr_equal(&ipv6_hdr(skb)->daddr, &mcast_addr) &&
1385 ipv6_hdr(skb)->nexthdr == IPPROTO_UDP &&
1386 udp_hdr(skb)->source == htons(PTP_EVENT_PORT);
1387 }
1388 return false;
1389 }
1390
efx_ptp_insert_unicast_filter(struct efx_nic * efx,struct sk_buff * skb)1391 static int efx_ptp_insert_unicast_filter(struct efx_nic *efx,
1392 struct sk_buff *skb)
1393 {
1394 struct efx_ptp_data *ptp = efx->ptp_data;
1395 unsigned long expiry;
1396 int rc;
1397
1398 if (!efx_ptp_valid_unicast_event_pkt(skb))
1399 return -EINVAL;
1400
1401 expiry = jiffies + UCAST_FILTER_EXPIRY_JIFFIES;
1402
1403 if (skb->protocol == htons(ETH_P_IP)) {
1404 __be32 addr = ip_hdr(skb)->saddr;
1405
1406 rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_ucast,
1407 addr, PTP_EVENT_PORT, expiry);
1408 if (rc < 0)
1409 goto out;
1410
1411 rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_ucast,
1412 addr, PTP_GENERAL_PORT, expiry);
1413 } else if (efx_ptp_use_mac_tx_timestamps(efx)) {
1414 /* IPv6 PTP only supported by devices with MAC hw timestamp */
1415 struct in6_addr *addr = &ipv6_hdr(skb)->saddr;
1416
1417 rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_ucast,
1418 addr, PTP_EVENT_PORT, expiry);
1419 if (rc < 0)
1420 goto out;
1421
1422 rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_ucast,
1423 addr, PTP_GENERAL_PORT, expiry);
1424 } else {
1425 return -EOPNOTSUPP;
1426 }
1427
1428 out:
1429 return rc;
1430 }
1431
efx_ptp_start(struct efx_nic * efx)1432 static int efx_ptp_start(struct efx_nic *efx)
1433 {
1434 struct efx_ptp_data *ptp = efx->ptp_data;
1435 int rc;
1436
1437 ptp->reset_required = false;
1438
1439 rc = efx_ptp_insert_multicast_filters(efx);
1440 if (rc)
1441 return rc;
1442
1443 rc = efx_ptp_enable(efx);
1444 if (rc != 0)
1445 goto fail;
1446
1447 ptp->evt_frag_idx = 0;
1448 ptp->current_adjfreq = 0;
1449
1450 return 0;
1451
1452 fail:
1453 efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast);
1454 return rc;
1455 }
1456
efx_ptp_stop(struct efx_nic * efx)1457 static int efx_ptp_stop(struct efx_nic *efx)
1458 {
1459 struct efx_ptp_data *ptp = efx->ptp_data;
1460 int rc;
1461
1462 if (ptp == NULL)
1463 return 0;
1464
1465 rc = efx_ptp_disable(efx);
1466
1467 efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast);
1468 efx_ptp_remove_filters(efx, &ptp->rxfilters_ucast);
1469
1470 /* Make sure RX packets are really delivered */
1471 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1472 skb_queue_purge(&efx->ptp_data->txq);
1473
1474 return rc;
1475 }
1476
efx_ptp_restart(struct efx_nic * efx)1477 static int efx_ptp_restart(struct efx_nic *efx)
1478 {
1479 if (efx->ptp_data && efx->ptp_data->enabled)
1480 return efx_ptp_start(efx);
1481 return 0;
1482 }
1483
efx_ptp_pps_worker(struct work_struct * work)1484 static void efx_ptp_pps_worker(struct work_struct *work)
1485 {
1486 struct efx_ptp_data *ptp =
1487 container_of(work, struct efx_ptp_data, pps_work);
1488 struct efx_nic *efx = ptp->efx;
1489 struct ptp_clock_event ptp_evt;
1490
1491 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1492 return;
1493
1494 ptp_evt.type = PTP_CLOCK_PPSUSR;
1495 ptp_evt.pps_times = ptp->host_time_pps;
1496 ptp_clock_event(ptp->phc_clock, &ptp_evt);
1497 }
1498
efx_ptp_worker(struct work_struct * work)1499 static void efx_ptp_worker(struct work_struct *work)
1500 {
1501 struct efx_ptp_data *ptp_data =
1502 container_of(work, struct efx_ptp_data, work);
1503 struct efx_nic *efx = ptp_data->efx;
1504 struct sk_buff *skb;
1505 struct sk_buff_head tempq;
1506
1507 if (ptp_data->reset_required) {
1508 efx_ptp_stop(efx);
1509 efx_ptp_start(efx);
1510 return;
1511 }
1512
1513 __skb_queue_head_init(&tempq);
1514 efx_ptp_process_events(efx, &tempq);
1515
1516 while ((skb = skb_dequeue(&ptp_data->txq)))
1517 ptp_data->xmit_skb(efx, skb);
1518
1519 while ((skb = __skb_dequeue(&tempq)))
1520 efx_ptp_process_rx(efx, skb);
1521 }
1522
efx_ptp_cleanup_worker(struct work_struct * work)1523 static void efx_ptp_cleanup_worker(struct work_struct *work)
1524 {
1525 struct efx_ptp_data *ptp =
1526 container_of(work, struct efx_ptp_data, cleanup_work.work);
1527 struct efx_ptp_rxfilter *rxfilter, *tmp;
1528
1529 list_for_each_entry_safe(rxfilter, tmp, &ptp->rxfilters_ucast, list) {
1530 if (time_is_before_jiffies(rxfilter->expiry))
1531 efx_ptp_remove_one_filter(ptp->efx, rxfilter);
1532 }
1533
1534 if (!list_empty(&ptp->rxfilters_ucast)) {
1535 queue_delayed_work(ptp->workwq, &ptp->cleanup_work,
1536 UCAST_FILTER_EXPIRY_JIFFIES + 1);
1537 }
1538 }
1539
1540 static const struct ptp_clock_info efx_phc_clock_info = {
1541 .owner = THIS_MODULE,
1542 .name = "sfc",
1543 .max_adj = MAX_PPB,
1544 .n_alarm = 0,
1545 .n_ext_ts = 0,
1546 .n_per_out = 0,
1547 .n_pins = 0,
1548 .pps = 1,
1549 .adjfine = efx_phc_adjfine,
1550 .adjtime = efx_phc_adjtime,
1551 .gettime64 = efx_phc_gettime,
1552 .settime64 = efx_phc_settime,
1553 .enable = efx_phc_enable,
1554 };
1555
1556 /* Initialise PTP state. */
efx_ptp_probe(struct efx_nic * efx,struct efx_channel * channel)1557 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1558 {
1559 struct efx_ptp_data *ptp;
1560 int rc = 0;
1561
1562 if (efx->ptp_data) {
1563 efx->ptp_data->channel = channel;
1564 return 0;
1565 }
1566
1567 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1568 efx->ptp_data = ptp;
1569 if (!efx->ptp_data)
1570 return -ENOMEM;
1571
1572 ptp->efx = efx;
1573 ptp->channel = channel;
1574
1575 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1576 if (rc != 0)
1577 goto fail1;
1578
1579 skb_queue_head_init(&ptp->rxq);
1580 skb_queue_head_init(&ptp->txq);
1581 ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1582 if (!ptp->workwq) {
1583 rc = -ENOMEM;
1584 goto fail2;
1585 }
1586
1587 if (efx_ptp_use_mac_tx_timestamps(efx)) {
1588 ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1589 /* Request sync events on this channel. */
1590 channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1591 } else {
1592 ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1593 }
1594
1595 INIT_WORK(&ptp->work, efx_ptp_worker);
1596 INIT_DELAYED_WORK(&ptp->cleanup_work, efx_ptp_cleanup_worker);
1597 ptp->config.flags = 0;
1598 ptp->config.tx_type = HWTSTAMP_TX_OFF;
1599 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1600 INIT_LIST_HEAD(&ptp->rxfilters_mcast);
1601 INIT_LIST_HEAD(&ptp->rxfilters_ucast);
1602
1603 /* Get the NIC PTP attributes and set up time conversions */
1604 rc = efx_ptp_get_attributes(efx);
1605 if (rc < 0)
1606 goto fail3;
1607
1608 /* Get the timestamp corrections */
1609 rc = efx_ptp_get_timestamp_corrections(efx);
1610 if (rc < 0)
1611 goto fail3;
1612
1613 if (efx->mcdi->fn_flags &
1614 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1615 ptp->phc_clock_info = efx_phc_clock_info;
1616 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1617 &efx->pci_dev->dev);
1618 if (IS_ERR(ptp->phc_clock)) {
1619 rc = PTR_ERR(ptp->phc_clock);
1620 goto fail3;
1621 } else if (ptp->phc_clock) {
1622 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1623 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1624 if (!ptp->pps_workwq) {
1625 rc = -ENOMEM;
1626 goto fail4;
1627 }
1628 }
1629 }
1630 ptp->nic_ts_enabled = false;
1631
1632 return 0;
1633 fail4:
1634 ptp_clock_unregister(efx->ptp_data->phc_clock);
1635
1636 fail3:
1637 destroy_workqueue(efx->ptp_data->workwq);
1638
1639 fail2:
1640 efx_nic_free_buffer(efx, &ptp->start);
1641
1642 fail1:
1643 kfree(efx->ptp_data);
1644 efx->ptp_data = NULL;
1645
1646 return rc;
1647 }
1648
1649 /* Initialise PTP channel.
1650 *
1651 * Setting core_index to zero causes the queue to be initialised and doesn't
1652 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1653 */
efx_ptp_probe_channel(struct efx_channel * channel)1654 static int efx_ptp_probe_channel(struct efx_channel *channel)
1655 {
1656 struct efx_nic *efx = channel->efx;
1657 int rc;
1658
1659 channel->irq_moderation_us = 0;
1660 channel->rx_queue.core_index = 0;
1661
1662 rc = efx_ptp_probe(efx, channel);
1663 /* Failure to probe PTP is not fatal; this channel will just not be
1664 * used for anything.
1665 * In the case of EPERM, efx_ptp_probe will print its own message (in
1666 * efx_ptp_get_attributes()), so we don't need to.
1667 */
1668 if (rc && rc != -EPERM)
1669 netif_warn(efx, drv, efx->net_dev,
1670 "Failed to probe PTP, rc=%d\n", rc);
1671 return 0;
1672 }
1673
efx_ptp_remove(struct efx_nic * efx)1674 void efx_ptp_remove(struct efx_nic *efx)
1675 {
1676 if (!efx->ptp_data)
1677 return;
1678
1679 (void)efx_ptp_disable(efx);
1680
1681 cancel_work_sync(&efx->ptp_data->work);
1682 cancel_delayed_work_sync(&efx->ptp_data->cleanup_work);
1683 if (efx->ptp_data->pps_workwq)
1684 cancel_work_sync(&efx->ptp_data->pps_work);
1685
1686 skb_queue_purge(&efx->ptp_data->rxq);
1687 skb_queue_purge(&efx->ptp_data->txq);
1688
1689 if (efx->ptp_data->phc_clock) {
1690 destroy_workqueue(efx->ptp_data->pps_workwq);
1691 ptp_clock_unregister(efx->ptp_data->phc_clock);
1692 }
1693
1694 destroy_workqueue(efx->ptp_data->workwq);
1695
1696 efx_nic_free_buffer(efx, &efx->ptp_data->start);
1697 kfree(efx->ptp_data);
1698 efx->ptp_data = NULL;
1699 }
1700
efx_ptp_remove_channel(struct efx_channel * channel)1701 static void efx_ptp_remove_channel(struct efx_channel *channel)
1702 {
1703 efx_ptp_remove(channel->efx);
1704 }
1705
efx_ptp_get_channel_name(struct efx_channel * channel,char * buf,size_t len)1706 static void efx_ptp_get_channel_name(struct efx_channel *channel,
1707 char *buf, size_t len)
1708 {
1709 snprintf(buf, len, "%s-ptp", channel->efx->name);
1710 }
1711
1712 /* Determine whether this packet should be processed by the PTP module
1713 * or transmitted conventionally.
1714 */
efx_ptp_is_ptp_tx(struct efx_nic * efx,struct sk_buff * skb)1715 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1716 {
1717 return efx->ptp_data &&
1718 efx->ptp_data->enabled &&
1719 skb->len >= PTP_MIN_LENGTH &&
1720 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1721 likely(skb->protocol == htons(ETH_P_IP)) &&
1722 skb_transport_header_was_set(skb) &&
1723 skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1724 ip_hdr(skb)->protocol == IPPROTO_UDP &&
1725 skb_headlen(skb) >=
1726 skb_transport_offset(skb) + sizeof(struct udphdr) &&
1727 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1728 }
1729
1730 /* Receive a PTP packet. Packets are queued until the arrival of
1731 * the receive timestamp from the MC - this will probably occur after the
1732 * packet arrival because of the processing in the MC.
1733 */
efx_ptp_rx(struct efx_channel * channel,struct sk_buff * skb)1734 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1735 {
1736 struct efx_nic *efx = channel->efx;
1737 struct efx_ptp_data *ptp = efx->ptp_data;
1738 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1739 unsigned int version;
1740 u8 *data;
1741
1742 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1743
1744 /* Correct version? */
1745 if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1746 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1747 return false;
1748 }
1749 data = skb->data;
1750 version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1751 if (version != PTP_VERSION_V1) {
1752 return false;
1753 }
1754 } else {
1755 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1756 return false;
1757 }
1758 data = skb->data;
1759 version = data[PTP_V2_VERSION_OFFSET];
1760 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1761 return false;
1762 }
1763 }
1764
1765 /* Does this packet require timestamping? */
1766 if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1767 match->state = PTP_PACKET_STATE_UNMATCHED;
1768
1769 /* We expect the sequence number to be in the same position in
1770 * the packet for PTP V1 and V2
1771 */
1772 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1773 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1774 } else {
1775 match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1776 }
1777
1778 skb_queue_tail(&ptp->rxq, skb);
1779 queue_work(ptp->workwq, &ptp->work);
1780
1781 return true;
1782 }
1783
1784 /* Transmit a PTP packet. This has to be transmitted by the MC
1785 * itself, through an MCDI call. MCDI calls aren't permitted
1786 * in the transmit path so defer the actual transmission to a suitable worker.
1787 */
efx_ptp_tx(struct efx_nic * efx,struct sk_buff * skb)1788 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1789 {
1790 struct efx_ptp_data *ptp = efx->ptp_data;
1791
1792 skb_queue_tail(&ptp->txq, skb);
1793
1794 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1795 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1796 efx_xmit_hwtstamp_pending(skb);
1797 queue_work(ptp->workwq, &ptp->work);
1798
1799 return NETDEV_TX_OK;
1800 }
1801
efx_ptp_get_mode(struct efx_nic * efx)1802 int efx_ptp_get_mode(struct efx_nic *efx)
1803 {
1804 return efx->ptp_data->mode;
1805 }
1806
efx_ptp_change_mode(struct efx_nic * efx,bool enable_wanted,unsigned int new_mode)1807 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1808 unsigned int new_mode)
1809 {
1810 if ((enable_wanted != efx->ptp_data->enabled) ||
1811 (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1812 int rc = 0;
1813
1814 if (enable_wanted) {
1815 /* Change of mode requires disable */
1816 if (efx->ptp_data->enabled &&
1817 (efx->ptp_data->mode != new_mode)) {
1818 efx->ptp_data->enabled = false;
1819 rc = efx_ptp_stop(efx);
1820 if (rc != 0)
1821 return rc;
1822 }
1823
1824 /* Set new operating mode and establish
1825 * baseline synchronisation, which must
1826 * succeed.
1827 */
1828 efx->ptp_data->mode = new_mode;
1829 if (netif_running(efx->net_dev))
1830 rc = efx_ptp_start(efx);
1831 if (rc == 0) {
1832 rc = efx_ptp_synchronize(efx,
1833 PTP_SYNC_ATTEMPTS * 2);
1834 if (rc != 0)
1835 efx_ptp_stop(efx);
1836 }
1837 } else {
1838 rc = efx_ptp_stop(efx);
1839 }
1840
1841 if (rc != 0)
1842 return rc;
1843
1844 efx->ptp_data->enabled = enable_wanted;
1845 }
1846
1847 return 0;
1848 }
1849
efx_ptp_ts_init(struct efx_nic * efx,struct hwtstamp_config * init)1850 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1851 {
1852 int rc;
1853
1854 if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1855 (init->tx_type != HWTSTAMP_TX_ON))
1856 return -ERANGE;
1857
1858 rc = efx->type->ptp_set_ts_config(efx, init);
1859 if (rc)
1860 return rc;
1861
1862 efx->ptp_data->config = *init;
1863 return 0;
1864 }
1865
efx_ptp_get_ts_info(struct efx_nic * efx,struct ethtool_ts_info * ts_info)1866 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1867 {
1868 struct efx_ptp_data *ptp = efx->ptp_data;
1869 struct efx_nic *primary = efx->primary;
1870
1871 ASSERT_RTNL();
1872
1873 if (!ptp)
1874 return;
1875
1876 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1877 SOF_TIMESTAMPING_RX_HARDWARE |
1878 SOF_TIMESTAMPING_RAW_HARDWARE);
1879 /* Check licensed features. If we don't have the license for TX
1880 * timestamps, the NIC will not support them.
1881 */
1882 if (efx_ptp_use_mac_tx_timestamps(efx)) {
1883 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1884
1885 if (!(nic_data->licensed_features &
1886 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1887 ts_info->so_timestamping &=
1888 ~SOF_TIMESTAMPING_TX_HARDWARE;
1889 }
1890 if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1891 ts_info->phc_index =
1892 ptp_clock_index(primary->ptp_data->phc_clock);
1893 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1894 ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1895 }
1896
efx_ptp_set_ts_config(struct efx_nic * efx,struct ifreq * ifr)1897 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1898 {
1899 struct hwtstamp_config config;
1900 int rc;
1901
1902 /* Not a PTP enabled port */
1903 if (!efx->ptp_data)
1904 return -EOPNOTSUPP;
1905
1906 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1907 return -EFAULT;
1908
1909 rc = efx_ptp_ts_init(efx, &config);
1910 if (rc != 0)
1911 return rc;
1912
1913 return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1914 ? -EFAULT : 0;
1915 }
1916
efx_ptp_get_ts_config(struct efx_nic * efx,struct ifreq * ifr)1917 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1918 {
1919 if (!efx->ptp_data)
1920 return -EOPNOTSUPP;
1921
1922 return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1923 sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1924 }
1925
ptp_event_failure(struct efx_nic * efx,int expected_frag_len)1926 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1927 {
1928 struct efx_ptp_data *ptp = efx->ptp_data;
1929
1930 netif_err(efx, hw, efx->net_dev,
1931 "PTP unexpected event length: got %d expected %d\n",
1932 ptp->evt_frag_idx, expected_frag_len);
1933 ptp->reset_required = true;
1934 queue_work(ptp->workwq, &ptp->work);
1935 }
1936
ptp_event_fault(struct efx_nic * efx,struct efx_ptp_data * ptp)1937 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1938 {
1939 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1940 if (ptp->evt_frag_idx != 1) {
1941 ptp_event_failure(efx, 1);
1942 return;
1943 }
1944
1945 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1946 }
1947
ptp_event_pps(struct efx_nic * efx,struct efx_ptp_data * ptp)1948 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1949 {
1950 if (ptp->nic_ts_enabled)
1951 queue_work(ptp->pps_workwq, &ptp->pps_work);
1952 }
1953
efx_ptp_event(struct efx_nic * efx,efx_qword_t * ev)1954 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1955 {
1956 struct efx_ptp_data *ptp = efx->ptp_data;
1957 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1958
1959 if (!ptp) {
1960 if (!efx->ptp_warned) {
1961 netif_warn(efx, drv, efx->net_dev,
1962 "Received PTP event but PTP not set up\n");
1963 efx->ptp_warned = true;
1964 }
1965 return;
1966 }
1967
1968 if (!ptp->enabled)
1969 return;
1970
1971 if (ptp->evt_frag_idx == 0) {
1972 ptp->evt_code = code;
1973 } else if (ptp->evt_code != code) {
1974 netif_err(efx, hw, efx->net_dev,
1975 "PTP out of sequence event %d\n", code);
1976 ptp->evt_frag_idx = 0;
1977 }
1978
1979 ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1980 if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1981 /* Process resulting event */
1982 switch (code) {
1983 case MCDI_EVENT_CODE_PTP_FAULT:
1984 ptp_event_fault(efx, ptp);
1985 break;
1986 case MCDI_EVENT_CODE_PTP_PPS:
1987 ptp_event_pps(efx, ptp);
1988 break;
1989 default:
1990 netif_err(efx, hw, efx->net_dev,
1991 "PTP unknown event %d\n", code);
1992 break;
1993 }
1994 ptp->evt_frag_idx = 0;
1995 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1996 netif_err(efx, hw, efx->net_dev,
1997 "PTP too many event fragments\n");
1998 ptp->evt_frag_idx = 0;
1999 }
2000 }
2001
efx_time_sync_event(struct efx_channel * channel,efx_qword_t * ev)2002 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
2003 {
2004 struct efx_nic *efx = channel->efx;
2005 struct efx_ptp_data *ptp = efx->ptp_data;
2006
2007 /* When extracting the sync timestamp minor value, we should discard
2008 * the least significant two bits. These are not required in order
2009 * to reconstruct full-range timestamps and they are optionally used
2010 * to report status depending on the options supplied when subscribing
2011 * for sync events.
2012 */
2013 channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
2014 channel->sync_timestamp_minor =
2015 (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
2016 << ptp->nic_time.sync_event_minor_shift;
2017
2018 /* if sync events have been disabled then we want to silently ignore
2019 * this event, so throw away result.
2020 */
2021 (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
2022 SYNC_EVENTS_VALID);
2023 }
2024
efx_rx_buf_timestamp_minor(struct efx_nic * efx,const u8 * eh)2025 static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
2026 {
2027 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
2028 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
2029 #else
2030 const u8 *data = eh + efx->rx_packet_ts_offset;
2031 return (u32)data[0] |
2032 (u32)data[1] << 8 |
2033 (u32)data[2] << 16 |
2034 (u32)data[3] << 24;
2035 #endif
2036 }
2037
__efx_rx_skb_attach_timestamp(struct efx_channel * channel,struct sk_buff * skb)2038 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
2039 struct sk_buff *skb)
2040 {
2041 struct efx_nic *efx = channel->efx;
2042 struct efx_ptp_data *ptp = efx->ptp_data;
2043 u32 pkt_timestamp_major, pkt_timestamp_minor;
2044 u32 diff, carry;
2045 struct skb_shared_hwtstamps *timestamps;
2046
2047 if (channel->sync_events_state != SYNC_EVENTS_VALID)
2048 return;
2049
2050 pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
2051
2052 /* get the difference between the packet and sync timestamps,
2053 * modulo one second
2054 */
2055 diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
2056 if (pkt_timestamp_minor < channel->sync_timestamp_minor)
2057 diff += ptp->nic_time.minor_max;
2058
2059 /* do we roll over a second boundary and need to carry the one? */
2060 carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
2061 1 : 0;
2062
2063 if (diff <= ptp->nic_time.sync_event_diff_max) {
2064 /* packet is ahead of the sync event by a quarter of a second or
2065 * less (allowing for fuzz)
2066 */
2067 pkt_timestamp_major = channel->sync_timestamp_major + carry;
2068 } else if (diff >= ptp->nic_time.sync_event_diff_min) {
2069 /* packet is behind the sync event but within the fuzz factor.
2070 * This means the RX packet and sync event crossed as they were
2071 * placed on the event queue, which can sometimes happen.
2072 */
2073 pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2074 } else {
2075 /* it's outside tolerance in both directions. this might be
2076 * indicative of us missing sync events for some reason, so
2077 * we'll call it an error rather than risk giving a bogus
2078 * timestamp.
2079 */
2080 netif_vdbg(efx, drv, efx->net_dev,
2081 "packet timestamp %x too far from sync event %x:%x\n",
2082 pkt_timestamp_minor, channel->sync_timestamp_major,
2083 channel->sync_timestamp_minor);
2084 return;
2085 }
2086
2087 /* attach the timestamps to the skb */
2088 timestamps = skb_hwtstamps(skb);
2089 timestamps->hwtstamp =
2090 ptp->nic_to_kernel_time(pkt_timestamp_major,
2091 pkt_timestamp_minor,
2092 ptp->ts_corrections.general_rx);
2093 }
2094
efx_phc_adjfine(struct ptp_clock_info * ptp,long scaled_ppm)2095 static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
2096 {
2097 struct efx_ptp_data *ptp_data = container_of(ptp,
2098 struct efx_ptp_data,
2099 phc_clock_info);
2100 s32 delta = scaled_ppm_to_ppb(scaled_ppm);
2101 struct efx_nic *efx = ptp_data->efx;
2102 MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2103 s64 adjustment_ns;
2104 int rc;
2105
2106 if (delta > MAX_PPB)
2107 delta = MAX_PPB;
2108 else if (delta < -MAX_PPB)
2109 delta = -MAX_PPB;
2110
2111 /* Convert ppb to fixed point ns taking care to round correctly. */
2112 adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2113 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2114 ptp_data->adjfreq_ppb_shift;
2115
2116 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2117 MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2118 MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2119 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2120 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2121 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2122 NULL, 0, NULL);
2123 if (rc != 0)
2124 return rc;
2125
2126 ptp_data->current_adjfreq = adjustment_ns;
2127 return 0;
2128 }
2129
efx_phc_adjtime(struct ptp_clock_info * ptp,s64 delta)2130 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2131 {
2132 u32 nic_major, nic_minor;
2133 struct efx_ptp_data *ptp_data = container_of(ptp,
2134 struct efx_ptp_data,
2135 phc_clock_info);
2136 struct efx_nic *efx = ptp_data->efx;
2137 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2138
2139 efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2140
2141 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2142 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2143 MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2144 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2145 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2146 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2147 NULL, 0, NULL);
2148 }
2149
efx_phc_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)2150 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2151 {
2152 struct efx_ptp_data *ptp_data = container_of(ptp,
2153 struct efx_ptp_data,
2154 phc_clock_info);
2155 struct efx_nic *efx = ptp_data->efx;
2156 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2157 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2158 int rc;
2159 ktime_t kt;
2160
2161 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2162 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2163
2164 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2165 outbuf, sizeof(outbuf), NULL);
2166 if (rc != 0)
2167 return rc;
2168
2169 kt = ptp_data->nic_to_kernel_time(
2170 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2171 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2172 *ts = ktime_to_timespec64(kt);
2173 return 0;
2174 }
2175
efx_phc_settime(struct ptp_clock_info * ptp,const struct timespec64 * e_ts)2176 static int efx_phc_settime(struct ptp_clock_info *ptp,
2177 const struct timespec64 *e_ts)
2178 {
2179 /* Get the current NIC time, efx_phc_gettime.
2180 * Subtract from the desired time to get the offset
2181 * call efx_phc_adjtime with the offset
2182 */
2183 int rc;
2184 struct timespec64 time_now;
2185 struct timespec64 delta;
2186
2187 rc = efx_phc_gettime(ptp, &time_now);
2188 if (rc != 0)
2189 return rc;
2190
2191 delta = timespec64_sub(*e_ts, time_now);
2192
2193 rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2194 if (rc != 0)
2195 return rc;
2196
2197 return 0;
2198 }
2199
efx_phc_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * request,int enable)2200 static int efx_phc_enable(struct ptp_clock_info *ptp,
2201 struct ptp_clock_request *request,
2202 int enable)
2203 {
2204 struct efx_ptp_data *ptp_data = container_of(ptp,
2205 struct efx_ptp_data,
2206 phc_clock_info);
2207 if (request->type != PTP_CLK_REQ_PPS)
2208 return -EOPNOTSUPP;
2209
2210 ptp_data->nic_ts_enabled = !!enable;
2211 return 0;
2212 }
2213
2214 static const struct efx_channel_type efx_ptp_channel_type = {
2215 .handle_no_channel = efx_ptp_handle_no_channel,
2216 .pre_probe = efx_ptp_probe_channel,
2217 .post_remove = efx_ptp_remove_channel,
2218 .get_name = efx_ptp_get_channel_name,
2219 .copy = efx_copy_channel,
2220 .receive_skb = efx_ptp_rx,
2221 .want_txqs = efx_ptp_want_txqs,
2222 .keep_eventq = false,
2223 };
2224
efx_ptp_defer_probe_with_channel(struct efx_nic * efx)2225 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
2226 {
2227 /* Check whether PTP is implemented on this NIC. The DISABLE
2228 * operation will succeed if and only if it is implemented.
2229 */
2230 if (efx_ptp_disable(efx) == 0)
2231 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2232 &efx_ptp_channel_type;
2233 }
2234
efx_ptp_start_datapath(struct efx_nic * efx)2235 void efx_ptp_start_datapath(struct efx_nic *efx)
2236 {
2237 if (efx_ptp_restart(efx))
2238 netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2239 /* re-enable timestamping if it was previously enabled */
2240 if (efx->type->ptp_set_ts_sync_events)
2241 efx->type->ptp_set_ts_sync_events(efx, true, true);
2242 }
2243
efx_ptp_stop_datapath(struct efx_nic * efx)2244 void efx_ptp_stop_datapath(struct efx_nic *efx)
2245 {
2246 /* temporarily disable timestamping */
2247 if (efx->type->ptp_set_ts_sync_events)
2248 efx->type->ptp_set_ts_sync_events(efx, false, true);
2249 efx_ptp_stop(efx);
2250 }
2251