1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include "net_driver.h"
17 #include "bitfield.h"
18 #include "efx.h"
19 #include "nic.h"
20 #include "regs.h"
21 #include "io.h"
22 #include "workarounds.h"
23
24 /**************************************************************************
25 *
26 * Configurable values
27 *
28 **************************************************************************
29 */
30
31 /* This is set to 16 for a good reason. In summary, if larger than
32 * 16, the descriptor cache holds more than a default socket
33 * buffer's worth of packets (for UDP we can only have at most one
34 * socket buffer's worth outstanding). This combined with the fact
35 * that we only get 1 TX event per descriptor cache means the NIC
36 * goes idle.
37 */
38 #define TX_DC_ENTRIES 16
39 #define TX_DC_ENTRIES_ORDER 1
40
41 #define RX_DC_ENTRIES 64
42 #define RX_DC_ENTRIES_ORDER 3
43
44 /* If EFX_MAX_INT_ERRORS internal errors occur within
45 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
46 * disable it.
47 */
48 #define EFX_INT_ERROR_EXPIRE 3600
49 #define EFX_MAX_INT_ERRORS 5
50
51 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
52 */
53 #define EFX_FLUSH_INTERVAL 10
54 #define EFX_FLUSH_POLL_COUNT 100
55
56 /* Size and alignment of special buffers (4KB) */
57 #define EFX_BUF_SIZE 4096
58
59 /* Depth of RX flush request fifo */
60 #define EFX_RX_FLUSH_COUNT 4
61
62 /* Generated event code for efx_generate_test_event() */
63 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
64 (0x00010100 + (_channel)->channel)
65
66 /* Generated event code for efx_generate_fill_event() */
67 #define EFX_CHANNEL_MAGIC_FILL(_channel) \
68 (0x00010200 + (_channel)->channel)
69
70 /**************************************************************************
71 *
72 * Solarstorm hardware access
73 *
74 **************************************************************************/
75
efx_write_buf_tbl(struct efx_nic * efx,efx_qword_t * value,unsigned int index)76 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
77 unsigned int index)
78 {
79 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
80 value, index);
81 }
82
83 /* Read the current event from the event queue */
efx_event(struct efx_channel * channel,unsigned int index)84 static inline efx_qword_t *efx_event(struct efx_channel *channel,
85 unsigned int index)
86 {
87 return ((efx_qword_t *) (channel->eventq.addr)) +
88 (index & channel->eventq_mask);
89 }
90
91 /* See if an event is present
92 *
93 * We check both the high and low dword of the event for all ones. We
94 * wrote all ones when we cleared the event, and no valid event can
95 * have all ones in either its high or low dwords. This approach is
96 * robust against reordering.
97 *
98 * Note that using a single 64-bit comparison is incorrect; even
99 * though the CPU read will be atomic, the DMA write may not be.
100 */
efx_event_present(efx_qword_t * event)101 static inline int efx_event_present(efx_qword_t *event)
102 {
103 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
104 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
105 }
106
efx_masked_compare_oword(const efx_oword_t * a,const efx_oword_t * b,const efx_oword_t * mask)107 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
108 const efx_oword_t *mask)
109 {
110 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
111 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
112 }
113
efx_nic_test_registers(struct efx_nic * efx,const struct efx_nic_register_test * regs,size_t n_regs)114 int efx_nic_test_registers(struct efx_nic *efx,
115 const struct efx_nic_register_test *regs,
116 size_t n_regs)
117 {
118 unsigned address = 0, i, j;
119 efx_oword_t mask, imask, original, reg, buf;
120
121 /* Falcon should be in loopback to isolate the XMAC from the PHY */
122 WARN_ON(!LOOPBACK_INTERNAL(efx));
123
124 for (i = 0; i < n_regs; ++i) {
125 address = regs[i].address;
126 mask = imask = regs[i].mask;
127 EFX_INVERT_OWORD(imask);
128
129 efx_reado(efx, &original, address);
130
131 /* bit sweep on and off */
132 for (j = 0; j < 128; j++) {
133 if (!EFX_EXTRACT_OWORD32(mask, j, j))
134 continue;
135
136 /* Test this testable bit can be set in isolation */
137 EFX_AND_OWORD(reg, original, mask);
138 EFX_SET_OWORD32(reg, j, j, 1);
139
140 efx_writeo(efx, ®, address);
141 efx_reado(efx, &buf, address);
142
143 if (efx_masked_compare_oword(®, &buf, &mask))
144 goto fail;
145
146 /* Test this testable bit can be cleared in isolation */
147 EFX_OR_OWORD(reg, original, mask);
148 EFX_SET_OWORD32(reg, j, j, 0);
149
150 efx_writeo(efx, ®, address);
151 efx_reado(efx, &buf, address);
152
153 if (efx_masked_compare_oword(®, &buf, &mask))
154 goto fail;
155 }
156
157 efx_writeo(efx, &original, address);
158 }
159
160 return 0;
161
162 fail:
163 netif_err(efx, hw, efx->net_dev,
164 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
165 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
166 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
167 return -EIO;
168 }
169
170 /**************************************************************************
171 *
172 * Special buffer handling
173 * Special buffers are used for event queues and the TX and RX
174 * descriptor rings.
175 *
176 *************************************************************************/
177
178 /*
179 * Initialise a special buffer
180 *
181 * This will define a buffer (previously allocated via
182 * efx_alloc_special_buffer()) in the buffer table, allowing
183 * it to be used for event queues, descriptor rings etc.
184 */
185 static void
efx_init_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)186 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
187 {
188 efx_qword_t buf_desc;
189 int index;
190 dma_addr_t dma_addr;
191 int i;
192
193 EFX_BUG_ON_PARANOID(!buffer->addr);
194
195 /* Write buffer descriptors to NIC */
196 for (i = 0; i < buffer->entries; i++) {
197 index = buffer->index + i;
198 dma_addr = buffer->dma_addr + (i * 4096);
199 netif_dbg(efx, probe, efx->net_dev,
200 "mapping special buffer %d at %llx\n",
201 index, (unsigned long long)dma_addr);
202 EFX_POPULATE_QWORD_3(buf_desc,
203 FRF_AZ_BUF_ADR_REGION, 0,
204 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
205 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
206 efx_write_buf_tbl(efx, &buf_desc, index);
207 }
208 }
209
210 /* Unmaps a buffer and clears the buffer table entries */
211 static void
efx_fini_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)212 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
213 {
214 efx_oword_t buf_tbl_upd;
215 unsigned int start = buffer->index;
216 unsigned int end = (buffer->index + buffer->entries - 1);
217
218 if (!buffer->entries)
219 return;
220
221 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
222 buffer->index, buffer->index + buffer->entries - 1);
223
224 EFX_POPULATE_OWORD_4(buf_tbl_upd,
225 FRF_AZ_BUF_UPD_CMD, 0,
226 FRF_AZ_BUF_CLR_CMD, 1,
227 FRF_AZ_BUF_CLR_END_ID, end,
228 FRF_AZ_BUF_CLR_START_ID, start);
229 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
230 }
231
232 /*
233 * Allocate a new special buffer
234 *
235 * This allocates memory for a new buffer, clears it and allocates a
236 * new buffer ID range. It does not write into the buffer table.
237 *
238 * This call will allocate 4KB buffers, since 8KB buffers can't be
239 * used for event queues and descriptor rings.
240 */
efx_alloc_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer,unsigned int len)241 static int efx_alloc_special_buffer(struct efx_nic *efx,
242 struct efx_special_buffer *buffer,
243 unsigned int len)
244 {
245 len = ALIGN(len, EFX_BUF_SIZE);
246
247 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
248 &buffer->dma_addr, GFP_KERNEL);
249 if (!buffer->addr)
250 return -ENOMEM;
251 buffer->len = len;
252 buffer->entries = len / EFX_BUF_SIZE;
253 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
254
255 /* All zeros is a potentially valid event so memset to 0xff */
256 memset(buffer->addr, 0xff, len);
257
258 /* Select new buffer ID */
259 buffer->index = efx->next_buffer_table;
260 efx->next_buffer_table += buffer->entries;
261
262 netif_dbg(efx, probe, efx->net_dev,
263 "allocating special buffers %d-%d at %llx+%x "
264 "(virt %p phys %llx)\n", buffer->index,
265 buffer->index + buffer->entries - 1,
266 (u64)buffer->dma_addr, len,
267 buffer->addr, (u64)virt_to_phys(buffer->addr));
268
269 return 0;
270 }
271
272 static void
efx_free_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)273 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
274 {
275 if (!buffer->addr)
276 return;
277
278 netif_dbg(efx, hw, efx->net_dev,
279 "deallocating special buffers %d-%d at %llx+%x "
280 "(virt %p phys %llx)\n", buffer->index,
281 buffer->index + buffer->entries - 1,
282 (u64)buffer->dma_addr, buffer->len,
283 buffer->addr, (u64)virt_to_phys(buffer->addr));
284
285 dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
286 buffer->dma_addr);
287 buffer->addr = NULL;
288 buffer->entries = 0;
289 }
290
291 /**************************************************************************
292 *
293 * Generic buffer handling
294 * These buffers are used for interrupt status and MAC stats
295 *
296 **************************************************************************/
297
efx_nic_alloc_buffer(struct efx_nic * efx,struct efx_buffer * buffer,unsigned int len)298 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
299 unsigned int len)
300 {
301 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
302 &buffer->dma_addr);
303 if (!buffer->addr)
304 return -ENOMEM;
305 buffer->len = len;
306 memset(buffer->addr, 0, len);
307 return 0;
308 }
309
efx_nic_free_buffer(struct efx_nic * efx,struct efx_buffer * buffer)310 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
311 {
312 if (buffer->addr) {
313 pci_free_consistent(efx->pci_dev, buffer->len,
314 buffer->addr, buffer->dma_addr);
315 buffer->addr = NULL;
316 }
317 }
318
319 /**************************************************************************
320 *
321 * TX path
322 *
323 **************************************************************************/
324
325 /* Returns a pointer to the specified transmit descriptor in the TX
326 * descriptor queue belonging to the specified channel.
327 */
328 static inline efx_qword_t *
efx_tx_desc(struct efx_tx_queue * tx_queue,unsigned int index)329 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
330 {
331 return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
332 }
333
334 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
efx_notify_tx_desc(struct efx_tx_queue * tx_queue)335 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
336 {
337 unsigned write_ptr;
338 efx_dword_t reg;
339
340 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
341 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
342 efx_writed_page(tx_queue->efx, ®,
343 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
344 }
345
346 /* Write pointer and first descriptor for TX descriptor ring */
efx_push_tx_desc(struct efx_tx_queue * tx_queue,const efx_qword_t * txd)347 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
348 const efx_qword_t *txd)
349 {
350 unsigned write_ptr;
351 efx_oword_t reg;
352
353 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
354 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
355
356 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
357 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
358 FRF_AZ_TX_DESC_WPTR, write_ptr);
359 reg.qword[0] = *txd;
360 efx_writeo_page(tx_queue->efx, ®,
361 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
362 }
363
364 static inline bool
efx_may_push_tx_desc(struct efx_tx_queue * tx_queue,unsigned int write_count)365 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
366 {
367 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
368
369 if (empty_read_count == 0)
370 return false;
371
372 tx_queue->empty_read_count = 0;
373 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
374 }
375
376 /* For each entry inserted into the software descriptor ring, create a
377 * descriptor in the hardware TX descriptor ring (in host memory), and
378 * write a doorbell.
379 */
efx_nic_push_buffers(struct efx_tx_queue * tx_queue)380 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
381 {
382
383 struct efx_tx_buffer *buffer;
384 efx_qword_t *txd;
385 unsigned write_ptr;
386 unsigned old_write_count = tx_queue->write_count;
387
388 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
389
390 do {
391 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
392 buffer = &tx_queue->buffer[write_ptr];
393 txd = efx_tx_desc(tx_queue, write_ptr);
394 ++tx_queue->write_count;
395
396 /* Create TX descriptor ring entry */
397 EFX_POPULATE_QWORD_4(*txd,
398 FSF_AZ_TX_KER_CONT, buffer->continuation,
399 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
400 FSF_AZ_TX_KER_BUF_REGION, 0,
401 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
402 } while (tx_queue->write_count != tx_queue->insert_count);
403
404 wmb(); /* Ensure descriptors are written before they are fetched */
405
406 if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
407 txd = efx_tx_desc(tx_queue,
408 old_write_count & tx_queue->ptr_mask);
409 efx_push_tx_desc(tx_queue, txd);
410 ++tx_queue->pushes;
411 } else {
412 efx_notify_tx_desc(tx_queue);
413 }
414 }
415
416 /* Allocate hardware resources for a TX queue */
efx_nic_probe_tx(struct efx_tx_queue * tx_queue)417 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
418 {
419 struct efx_nic *efx = tx_queue->efx;
420 unsigned entries;
421
422 entries = tx_queue->ptr_mask + 1;
423 return efx_alloc_special_buffer(efx, &tx_queue->txd,
424 entries * sizeof(efx_qword_t));
425 }
426
efx_nic_init_tx(struct efx_tx_queue * tx_queue)427 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
428 {
429 struct efx_nic *efx = tx_queue->efx;
430 efx_oword_t reg;
431
432 tx_queue->flushed = FLUSH_NONE;
433
434 /* Pin TX descriptor ring */
435 efx_init_special_buffer(efx, &tx_queue->txd);
436
437 /* Push TX descriptor ring to card */
438 EFX_POPULATE_OWORD_10(reg,
439 FRF_AZ_TX_DESCQ_EN, 1,
440 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
441 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
442 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
443 FRF_AZ_TX_DESCQ_EVQ_ID,
444 tx_queue->channel->channel,
445 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
446 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
447 FRF_AZ_TX_DESCQ_SIZE,
448 __ffs(tx_queue->txd.entries),
449 FRF_AZ_TX_DESCQ_TYPE, 0,
450 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
451
452 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
453 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
454 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
455 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
456 !csum);
457 }
458
459 efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base,
460 tx_queue->queue);
461
462 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
463 /* Only 128 bits in this register */
464 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
465
466 efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG);
467 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
468 clear_bit_le(tx_queue->queue, (void *)®);
469 else
470 set_bit_le(tx_queue->queue, (void *)®);
471 efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG);
472 }
473
474 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
475 EFX_POPULATE_OWORD_1(reg,
476 FRF_BZ_TX_PACE,
477 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
478 FFE_BZ_TX_PACE_OFF :
479 FFE_BZ_TX_PACE_RESERVED);
480 efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL,
481 tx_queue->queue);
482 }
483 }
484
efx_flush_tx_queue(struct efx_tx_queue * tx_queue)485 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
486 {
487 struct efx_nic *efx = tx_queue->efx;
488 efx_oword_t tx_flush_descq;
489
490 tx_queue->flushed = FLUSH_PENDING;
491
492 /* Post a flush command */
493 EFX_POPULATE_OWORD_2(tx_flush_descq,
494 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
495 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
496 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
497 }
498
efx_nic_fini_tx(struct efx_tx_queue * tx_queue)499 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
500 {
501 struct efx_nic *efx = tx_queue->efx;
502 efx_oword_t tx_desc_ptr;
503
504 /* The queue should have been flushed */
505 WARN_ON(tx_queue->flushed != FLUSH_DONE);
506
507 /* Remove TX descriptor ring from card */
508 EFX_ZERO_OWORD(tx_desc_ptr);
509 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
510 tx_queue->queue);
511
512 /* Unpin TX descriptor ring */
513 efx_fini_special_buffer(efx, &tx_queue->txd);
514 }
515
516 /* Free buffers backing TX queue */
efx_nic_remove_tx(struct efx_tx_queue * tx_queue)517 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
518 {
519 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
520 }
521
522 /**************************************************************************
523 *
524 * RX path
525 *
526 **************************************************************************/
527
528 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
529 static inline efx_qword_t *
efx_rx_desc(struct efx_rx_queue * rx_queue,unsigned int index)530 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
531 {
532 return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
533 }
534
535 /* This creates an entry in the RX descriptor queue */
536 static inline void
efx_build_rx_desc(struct efx_rx_queue * rx_queue,unsigned index)537 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
538 {
539 struct efx_rx_buffer *rx_buf;
540 efx_qword_t *rxd;
541
542 rxd = efx_rx_desc(rx_queue, index);
543 rx_buf = efx_rx_buffer(rx_queue, index);
544 EFX_POPULATE_QWORD_3(*rxd,
545 FSF_AZ_RX_KER_BUF_SIZE,
546 rx_buf->len -
547 rx_queue->efx->type->rx_buffer_padding,
548 FSF_AZ_RX_KER_BUF_REGION, 0,
549 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
550 }
551
552 /* This writes to the RX_DESC_WPTR register for the specified receive
553 * descriptor ring.
554 */
efx_nic_notify_rx_desc(struct efx_rx_queue * rx_queue)555 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
556 {
557 struct efx_nic *efx = rx_queue->efx;
558 efx_dword_t reg;
559 unsigned write_ptr;
560
561 while (rx_queue->notified_count != rx_queue->added_count) {
562 efx_build_rx_desc(
563 rx_queue,
564 rx_queue->notified_count & rx_queue->ptr_mask);
565 ++rx_queue->notified_count;
566 }
567
568 wmb();
569 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
570 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
571 efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0,
572 efx_rx_queue_index(rx_queue));
573 }
574
efx_nic_probe_rx(struct efx_rx_queue * rx_queue)575 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
576 {
577 struct efx_nic *efx = rx_queue->efx;
578 unsigned entries;
579
580 entries = rx_queue->ptr_mask + 1;
581 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
582 entries * sizeof(efx_qword_t));
583 }
584
efx_nic_init_rx(struct efx_rx_queue * rx_queue)585 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
586 {
587 efx_oword_t rx_desc_ptr;
588 struct efx_nic *efx = rx_queue->efx;
589 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
590 bool iscsi_digest_en = is_b0;
591
592 netif_dbg(efx, hw, efx->net_dev,
593 "RX queue %d ring in special buffers %d-%d\n",
594 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
595 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
596
597 rx_queue->flushed = FLUSH_NONE;
598
599 /* Pin RX descriptor ring */
600 efx_init_special_buffer(efx, &rx_queue->rxd);
601
602 /* Push RX descriptor ring to card */
603 EFX_POPULATE_OWORD_10(rx_desc_ptr,
604 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
605 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
606 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
607 FRF_AZ_RX_DESCQ_EVQ_ID,
608 efx_rx_queue_channel(rx_queue)->channel,
609 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
610 FRF_AZ_RX_DESCQ_LABEL,
611 efx_rx_queue_index(rx_queue),
612 FRF_AZ_RX_DESCQ_SIZE,
613 __ffs(rx_queue->rxd.entries),
614 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
615 /* For >=B0 this is scatter so disable */
616 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
617 FRF_AZ_RX_DESCQ_EN, 1);
618 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
619 efx_rx_queue_index(rx_queue));
620 }
621
efx_flush_rx_queue(struct efx_rx_queue * rx_queue)622 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
623 {
624 struct efx_nic *efx = rx_queue->efx;
625 efx_oword_t rx_flush_descq;
626
627 rx_queue->flushed = FLUSH_PENDING;
628
629 /* Post a flush command */
630 EFX_POPULATE_OWORD_2(rx_flush_descq,
631 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
632 FRF_AZ_RX_FLUSH_DESCQ,
633 efx_rx_queue_index(rx_queue));
634 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
635 }
636
efx_nic_fini_rx(struct efx_rx_queue * rx_queue)637 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
638 {
639 efx_oword_t rx_desc_ptr;
640 struct efx_nic *efx = rx_queue->efx;
641
642 /* The queue should already have been flushed */
643 WARN_ON(rx_queue->flushed != FLUSH_DONE);
644
645 /* Remove RX descriptor ring from card */
646 EFX_ZERO_OWORD(rx_desc_ptr);
647 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
648 efx_rx_queue_index(rx_queue));
649
650 /* Unpin RX descriptor ring */
651 efx_fini_special_buffer(efx, &rx_queue->rxd);
652 }
653
654 /* Free buffers backing RX queue */
efx_nic_remove_rx(struct efx_rx_queue * rx_queue)655 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
656 {
657 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
658 }
659
660 /**************************************************************************
661 *
662 * Event queue processing
663 * Event queues are processed by per-channel tasklets.
664 *
665 **************************************************************************/
666
667 /* Update a channel's event queue's read pointer (RPTR) register
668 *
669 * This writes the EVQ_RPTR_REG register for the specified channel's
670 * event queue.
671 */
efx_nic_eventq_read_ack(struct efx_channel * channel)672 void efx_nic_eventq_read_ack(struct efx_channel *channel)
673 {
674 efx_dword_t reg;
675 struct efx_nic *efx = channel->efx;
676
677 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
678 channel->eventq_read_ptr & channel->eventq_mask);
679 efx_writed_table(efx, ®, efx->type->evq_rptr_tbl_base,
680 channel->channel);
681 }
682
683 /* Use HW to insert a SW defined event */
efx_generate_event(struct efx_channel * channel,efx_qword_t * event)684 static void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
685 {
686 efx_oword_t drv_ev_reg;
687
688 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
689 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
690 drv_ev_reg.u32[0] = event->u32[0];
691 drv_ev_reg.u32[1] = event->u32[1];
692 drv_ev_reg.u32[2] = 0;
693 drv_ev_reg.u32[3] = 0;
694 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
695 efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
696 }
697
698 /* Handle a transmit completion event
699 *
700 * The NIC batches TX completion events; the message we receive is of
701 * the form "complete all TX events up to this index".
702 */
703 static int
efx_handle_tx_event(struct efx_channel * channel,efx_qword_t * event)704 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
705 {
706 unsigned int tx_ev_desc_ptr;
707 unsigned int tx_ev_q_label;
708 struct efx_tx_queue *tx_queue;
709 struct efx_nic *efx = channel->efx;
710 int tx_packets = 0;
711
712 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
713 /* Transmit completion */
714 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
715 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
716 tx_queue = efx_channel_get_tx_queue(
717 channel, tx_ev_q_label % EFX_TXQ_TYPES);
718 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
719 tx_queue->ptr_mask);
720 channel->irq_mod_score += tx_packets;
721 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
722 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
723 /* Rewrite the FIFO write pointer */
724 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
725 tx_queue = efx_channel_get_tx_queue(
726 channel, tx_ev_q_label % EFX_TXQ_TYPES);
727
728 if (efx_dev_registered(efx))
729 netif_tx_lock(efx->net_dev);
730 efx_notify_tx_desc(tx_queue);
731 if (efx_dev_registered(efx))
732 netif_tx_unlock(efx->net_dev);
733 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
734 EFX_WORKAROUND_10727(efx)) {
735 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
736 } else {
737 netif_err(efx, tx_err, efx->net_dev,
738 "channel %d unexpected TX event "
739 EFX_QWORD_FMT"\n", channel->channel,
740 EFX_QWORD_VAL(*event));
741 }
742
743 return tx_packets;
744 }
745
746 /* Detect errors included in the rx_evt_pkt_ok bit. */
efx_handle_rx_not_ok(struct efx_rx_queue * rx_queue,const efx_qword_t * event,bool * rx_ev_pkt_ok,bool * discard)747 static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
748 const efx_qword_t *event,
749 bool *rx_ev_pkt_ok,
750 bool *discard)
751 {
752 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
753 struct efx_nic *efx = rx_queue->efx;
754 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
755 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
756 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
757 bool rx_ev_other_err, rx_ev_pause_frm;
758 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
759 unsigned rx_ev_pkt_type;
760
761 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
762 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
763 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
764 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
765 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
766 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
767 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
768 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
769 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
770 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
771 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
772 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
773 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
774 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
775 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
776
777 /* Every error apart from tobe_disc and pause_frm */
778 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
779 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
780 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
781
782 /* Count errors that are not in MAC stats. Ignore expected
783 * checksum errors during self-test. */
784 if (rx_ev_frm_trunc)
785 ++channel->n_rx_frm_trunc;
786 else if (rx_ev_tobe_disc)
787 ++channel->n_rx_tobe_disc;
788 else if (!efx->loopback_selftest) {
789 if (rx_ev_ip_hdr_chksum_err)
790 ++channel->n_rx_ip_hdr_chksum_err;
791 else if (rx_ev_tcp_udp_chksum_err)
792 ++channel->n_rx_tcp_udp_chksum_err;
793 }
794
795 /* The frame must be discarded if any of these are true. */
796 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
797 rx_ev_tobe_disc | rx_ev_pause_frm);
798
799 /* TOBE_DISC is expected on unicast mismatches; don't print out an
800 * error message. FRM_TRUNC indicates RXDP dropped the packet due
801 * to a FIFO overflow.
802 */
803 #ifdef EFX_ENABLE_DEBUG
804 if (rx_ev_other_err && net_ratelimit()) {
805 netif_dbg(efx, rx_err, efx->net_dev,
806 " RX queue %d unexpected RX event "
807 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
808 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
809 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
810 rx_ev_ip_hdr_chksum_err ?
811 " [IP_HDR_CHKSUM_ERR]" : "",
812 rx_ev_tcp_udp_chksum_err ?
813 " [TCP_UDP_CHKSUM_ERR]" : "",
814 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
815 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
816 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
817 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
818 rx_ev_pause_frm ? " [PAUSE]" : "");
819 }
820 #endif
821 }
822
823 /* Handle receive events that are not in-order. */
824 static void
efx_handle_rx_bad_index(struct efx_rx_queue * rx_queue,unsigned index)825 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
826 {
827 struct efx_nic *efx = rx_queue->efx;
828 unsigned expected, dropped;
829
830 expected = rx_queue->removed_count & rx_queue->ptr_mask;
831 dropped = (index - expected) & rx_queue->ptr_mask;
832 netif_info(efx, rx_err, efx->net_dev,
833 "dropped %d events (index=%d expected=%d)\n",
834 dropped, index, expected);
835
836 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
837 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
838 }
839
840 /* Handle a packet received event
841 *
842 * The NIC gives a "discard" flag if it's a unicast packet with the
843 * wrong destination address
844 * Also "is multicast" and "matches multicast filter" flags can be used to
845 * discard non-matching multicast packets.
846 */
847 static void
efx_handle_rx_event(struct efx_channel * channel,const efx_qword_t * event)848 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
849 {
850 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
851 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
852 unsigned expected_ptr;
853 bool rx_ev_pkt_ok, discard = false, checksummed;
854 struct efx_rx_queue *rx_queue;
855 struct efx_nic *efx = channel->efx;
856
857 /* Basic packet information */
858 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
859 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
860 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
861 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
862 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
863 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
864 channel->channel);
865
866 rx_queue = efx_channel_get_rx_queue(channel);
867
868 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
869 expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
870 if (unlikely(rx_ev_desc_ptr != expected_ptr))
871 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
872
873 if (likely(rx_ev_pkt_ok)) {
874 /* If packet is marked as OK and packet type is TCP/IP or
875 * UDP/IP, then we can rely on the hardware checksum.
876 */
877 checksummed =
878 likely(efx->rx_checksum_enabled) &&
879 (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
880 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP);
881 } else {
882 efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
883 checksummed = false;
884 }
885
886 /* Detect multicast packets that didn't match the filter */
887 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
888 if (rx_ev_mcast_pkt) {
889 unsigned int rx_ev_mcast_hash_match =
890 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
891
892 if (unlikely(!rx_ev_mcast_hash_match)) {
893 ++channel->n_rx_mcast_mismatch;
894 discard = true;
895 }
896 }
897
898 channel->irq_mod_score += 2;
899
900 /* Handle received packet */
901 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
902 checksummed, discard);
903 }
904
905 static void
efx_handle_generated_event(struct efx_channel * channel,efx_qword_t * event)906 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
907 {
908 struct efx_nic *efx = channel->efx;
909 unsigned code;
910
911 code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
912 if (code == EFX_CHANNEL_MAGIC_TEST(channel))
913 ; /* ignore */
914 else if (code == EFX_CHANNEL_MAGIC_FILL(channel))
915 /* The queue must be empty, so we won't receive any rx
916 * events, so efx_process_channel() won't refill the
917 * queue. Refill it here */
918 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
919 else
920 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
921 "generated event "EFX_QWORD_FMT"\n",
922 channel->channel, EFX_QWORD_VAL(*event));
923 }
924
925 static void
efx_handle_driver_event(struct efx_channel * channel,efx_qword_t * event)926 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
927 {
928 struct efx_nic *efx = channel->efx;
929 unsigned int ev_sub_code;
930 unsigned int ev_sub_data;
931
932 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
933 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
934
935 switch (ev_sub_code) {
936 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
937 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
938 channel->channel, ev_sub_data);
939 break;
940 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
941 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
942 channel->channel, ev_sub_data);
943 break;
944 case FSE_AZ_EVQ_INIT_DONE_EV:
945 netif_dbg(efx, hw, efx->net_dev,
946 "channel %d EVQ %d initialised\n",
947 channel->channel, ev_sub_data);
948 break;
949 case FSE_AZ_SRM_UPD_DONE_EV:
950 netif_vdbg(efx, hw, efx->net_dev,
951 "channel %d SRAM update done\n", channel->channel);
952 break;
953 case FSE_AZ_WAKE_UP_EV:
954 netif_vdbg(efx, hw, efx->net_dev,
955 "channel %d RXQ %d wakeup event\n",
956 channel->channel, ev_sub_data);
957 break;
958 case FSE_AZ_TIMER_EV:
959 netif_vdbg(efx, hw, efx->net_dev,
960 "channel %d RX queue %d timer expired\n",
961 channel->channel, ev_sub_data);
962 break;
963 case FSE_AA_RX_RECOVER_EV:
964 netif_err(efx, rx_err, efx->net_dev,
965 "channel %d seen DRIVER RX_RESET event. "
966 "Resetting.\n", channel->channel);
967 atomic_inc(&efx->rx_reset);
968 efx_schedule_reset(efx,
969 EFX_WORKAROUND_6555(efx) ?
970 RESET_TYPE_RX_RECOVERY :
971 RESET_TYPE_DISABLE);
972 break;
973 case FSE_BZ_RX_DSC_ERROR_EV:
974 netif_err(efx, rx_err, efx->net_dev,
975 "RX DMA Q %d reports descriptor fetch error."
976 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
977 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
978 break;
979 case FSE_BZ_TX_DSC_ERROR_EV:
980 netif_err(efx, tx_err, efx->net_dev,
981 "TX DMA Q %d reports descriptor fetch error."
982 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
983 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
984 break;
985 default:
986 netif_vdbg(efx, hw, efx->net_dev,
987 "channel %d unknown driver event code %d "
988 "data %04x\n", channel->channel, ev_sub_code,
989 ev_sub_data);
990 break;
991 }
992 }
993
efx_nic_process_eventq(struct efx_channel * channel,int budget)994 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
995 {
996 struct efx_nic *efx = channel->efx;
997 unsigned int read_ptr;
998 efx_qword_t event, *p_event;
999 int ev_code;
1000 int tx_packets = 0;
1001 int spent = 0;
1002
1003 read_ptr = channel->eventq_read_ptr;
1004
1005 for (;;) {
1006 p_event = efx_event(channel, read_ptr);
1007 event = *p_event;
1008
1009 if (!efx_event_present(&event))
1010 /* End of events */
1011 break;
1012
1013 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1014 "channel %d event is "EFX_QWORD_FMT"\n",
1015 channel->channel, EFX_QWORD_VAL(event));
1016
1017 /* Clear this event by marking it all ones */
1018 EFX_SET_QWORD(*p_event);
1019
1020 ++read_ptr;
1021
1022 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1023
1024 switch (ev_code) {
1025 case FSE_AZ_EV_CODE_RX_EV:
1026 efx_handle_rx_event(channel, &event);
1027 if (++spent == budget)
1028 goto out;
1029 break;
1030 case FSE_AZ_EV_CODE_TX_EV:
1031 tx_packets += efx_handle_tx_event(channel, &event);
1032 if (tx_packets > efx->txq_entries) {
1033 spent = budget;
1034 goto out;
1035 }
1036 break;
1037 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1038 efx_handle_generated_event(channel, &event);
1039 break;
1040 case FSE_AZ_EV_CODE_DRIVER_EV:
1041 efx_handle_driver_event(channel, &event);
1042 break;
1043 case FSE_CZ_EV_CODE_MCDI_EV:
1044 efx_mcdi_process_event(channel, &event);
1045 break;
1046 case FSE_AZ_EV_CODE_GLOBAL_EV:
1047 if (efx->type->handle_global_event &&
1048 efx->type->handle_global_event(channel, &event))
1049 break;
1050 /* else fall through */
1051 default:
1052 netif_err(channel->efx, hw, channel->efx->net_dev,
1053 "channel %d unknown event type %d (data "
1054 EFX_QWORD_FMT ")\n", channel->channel,
1055 ev_code, EFX_QWORD_VAL(event));
1056 }
1057 }
1058
1059 out:
1060 channel->eventq_read_ptr = read_ptr;
1061 return spent;
1062 }
1063
1064 /* Check whether an event is present in the eventq at the current
1065 * read pointer. Only useful for self-test.
1066 */
efx_nic_event_present(struct efx_channel * channel)1067 bool efx_nic_event_present(struct efx_channel *channel)
1068 {
1069 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1070 }
1071
1072 /* Allocate buffer table entries for event queue */
efx_nic_probe_eventq(struct efx_channel * channel)1073 int efx_nic_probe_eventq(struct efx_channel *channel)
1074 {
1075 struct efx_nic *efx = channel->efx;
1076 unsigned entries;
1077
1078 entries = channel->eventq_mask + 1;
1079 return efx_alloc_special_buffer(efx, &channel->eventq,
1080 entries * sizeof(efx_qword_t));
1081 }
1082
efx_nic_init_eventq(struct efx_channel * channel)1083 void efx_nic_init_eventq(struct efx_channel *channel)
1084 {
1085 efx_oword_t reg;
1086 struct efx_nic *efx = channel->efx;
1087
1088 netif_dbg(efx, hw, efx->net_dev,
1089 "channel %d event queue in special buffers %d-%d\n",
1090 channel->channel, channel->eventq.index,
1091 channel->eventq.index + channel->eventq.entries - 1);
1092
1093 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1094 EFX_POPULATE_OWORD_3(reg,
1095 FRF_CZ_TIMER_Q_EN, 1,
1096 FRF_CZ_HOST_NOTIFY_MODE, 0,
1097 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1098 efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel);
1099 }
1100
1101 /* Pin event queue buffer */
1102 efx_init_special_buffer(efx, &channel->eventq);
1103
1104 /* Fill event queue with all ones (i.e. empty events) */
1105 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1106
1107 /* Push event queue to card */
1108 EFX_POPULATE_OWORD_3(reg,
1109 FRF_AZ_EVQ_EN, 1,
1110 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1111 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1112 efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base,
1113 channel->channel);
1114
1115 efx->type->push_irq_moderation(channel);
1116 }
1117
efx_nic_fini_eventq(struct efx_channel * channel)1118 void efx_nic_fini_eventq(struct efx_channel *channel)
1119 {
1120 efx_oword_t reg;
1121 struct efx_nic *efx = channel->efx;
1122
1123 /* Remove event queue from card */
1124 EFX_ZERO_OWORD(reg);
1125 efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base,
1126 channel->channel);
1127 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1128 efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel);
1129
1130 /* Unpin event queue */
1131 efx_fini_special_buffer(efx, &channel->eventq);
1132 }
1133
1134 /* Free buffers backing event queue */
efx_nic_remove_eventq(struct efx_channel * channel)1135 void efx_nic_remove_eventq(struct efx_channel *channel)
1136 {
1137 efx_free_special_buffer(channel->efx, &channel->eventq);
1138 }
1139
1140
efx_nic_generate_test_event(struct efx_channel * channel)1141 void efx_nic_generate_test_event(struct efx_channel *channel)
1142 {
1143 unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel);
1144 efx_qword_t test_event;
1145
1146 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1147 FSE_AZ_EV_CODE_DRV_GEN_EV,
1148 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1149 efx_generate_event(channel, &test_event);
1150 }
1151
efx_nic_generate_fill_event(struct efx_channel * channel)1152 void efx_nic_generate_fill_event(struct efx_channel *channel)
1153 {
1154 unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel);
1155 efx_qword_t test_event;
1156
1157 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1158 FSE_AZ_EV_CODE_DRV_GEN_EV,
1159 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1160 efx_generate_event(channel, &test_event);
1161 }
1162
1163 /**************************************************************************
1164 *
1165 * Flush handling
1166 *
1167 **************************************************************************/
1168
1169
efx_poll_flush_events(struct efx_nic * efx)1170 static void efx_poll_flush_events(struct efx_nic *efx)
1171 {
1172 struct efx_channel *channel = efx_get_channel(efx, 0);
1173 struct efx_tx_queue *tx_queue;
1174 struct efx_rx_queue *rx_queue;
1175 unsigned int read_ptr = channel->eventq_read_ptr;
1176 unsigned int end_ptr = read_ptr + channel->eventq_mask - 1;
1177
1178 do {
1179 efx_qword_t *event = efx_event(channel, read_ptr);
1180 int ev_code, ev_sub_code, ev_queue;
1181 bool ev_failed;
1182
1183 if (!efx_event_present(event))
1184 break;
1185
1186 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1187 ev_sub_code = EFX_QWORD_FIELD(*event,
1188 FSF_AZ_DRIVER_EV_SUBCODE);
1189 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1190 ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1191 ev_queue = EFX_QWORD_FIELD(*event,
1192 FSF_AZ_DRIVER_EV_SUBDATA);
1193 if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) {
1194 tx_queue = efx_get_tx_queue(
1195 efx, ev_queue / EFX_TXQ_TYPES,
1196 ev_queue % EFX_TXQ_TYPES);
1197 tx_queue->flushed = FLUSH_DONE;
1198 }
1199 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1200 ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1201 ev_queue = EFX_QWORD_FIELD(
1202 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1203 ev_failed = EFX_QWORD_FIELD(
1204 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1205 if (ev_queue < efx->n_rx_channels) {
1206 rx_queue = efx_get_rx_queue(efx, ev_queue);
1207 rx_queue->flushed =
1208 ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1209 }
1210 }
1211
1212 /* We're about to destroy the queue anyway, so
1213 * it's ok to throw away every non-flush event */
1214 EFX_SET_QWORD(*event);
1215
1216 ++read_ptr;
1217 } while (read_ptr != end_ptr);
1218
1219 channel->eventq_read_ptr = read_ptr;
1220 }
1221
1222 /* Handle tx and rx flushes at the same time, since they run in
1223 * parallel in the hardware and there's no reason for us to
1224 * serialise them */
efx_nic_flush_queues(struct efx_nic * efx)1225 int efx_nic_flush_queues(struct efx_nic *efx)
1226 {
1227 struct efx_channel *channel;
1228 struct efx_rx_queue *rx_queue;
1229 struct efx_tx_queue *tx_queue;
1230 int i, tx_pending, rx_pending;
1231
1232 /* If necessary prepare the hardware for flushing */
1233 efx->type->prepare_flush(efx);
1234
1235 /* Flush all tx queues in parallel */
1236 efx_for_each_channel(channel, efx) {
1237 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1238 if (tx_queue->initialised)
1239 efx_flush_tx_queue(tx_queue);
1240 }
1241 }
1242
1243 /* The hardware supports four concurrent rx flushes, each of which may
1244 * need to be retried if there is an outstanding descriptor fetch */
1245 for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
1246 rx_pending = tx_pending = 0;
1247 efx_for_each_channel(channel, efx) {
1248 efx_for_each_channel_rx_queue(rx_queue, channel) {
1249 if (rx_queue->flushed == FLUSH_PENDING)
1250 ++rx_pending;
1251 }
1252 }
1253 efx_for_each_channel(channel, efx) {
1254 efx_for_each_channel_rx_queue(rx_queue, channel) {
1255 if (rx_pending == EFX_RX_FLUSH_COUNT)
1256 break;
1257 if (rx_queue->flushed == FLUSH_FAILED ||
1258 rx_queue->flushed == FLUSH_NONE) {
1259 efx_flush_rx_queue(rx_queue);
1260 ++rx_pending;
1261 }
1262 }
1263 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1264 if (tx_queue->initialised &&
1265 tx_queue->flushed != FLUSH_DONE)
1266 ++tx_pending;
1267 }
1268 }
1269
1270 if (rx_pending == 0 && tx_pending == 0)
1271 return 0;
1272
1273 msleep(EFX_FLUSH_INTERVAL);
1274 efx_poll_flush_events(efx);
1275 }
1276
1277 /* Mark the queues as all flushed. We're going to return failure
1278 * leading to a reset, or fake up success anyway */
1279 efx_for_each_channel(channel, efx) {
1280 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1281 if (tx_queue->initialised &&
1282 tx_queue->flushed != FLUSH_DONE)
1283 netif_err(efx, hw, efx->net_dev,
1284 "tx queue %d flush command timed out\n",
1285 tx_queue->queue);
1286 tx_queue->flushed = FLUSH_DONE;
1287 }
1288 efx_for_each_channel_rx_queue(rx_queue, channel) {
1289 if (rx_queue->flushed != FLUSH_DONE)
1290 netif_err(efx, hw, efx->net_dev,
1291 "rx queue %d flush command timed out\n",
1292 efx_rx_queue_index(rx_queue));
1293 rx_queue->flushed = FLUSH_DONE;
1294 }
1295 }
1296
1297 return -ETIMEDOUT;
1298 }
1299
1300 /**************************************************************************
1301 *
1302 * Hardware interrupts
1303 * The hardware interrupt handler does very little work; all the event
1304 * queue processing is carried out by per-channel tasklets.
1305 *
1306 **************************************************************************/
1307
1308 /* Enable/disable/generate interrupts */
efx_nic_interrupts(struct efx_nic * efx,bool enabled,bool force)1309 static inline void efx_nic_interrupts(struct efx_nic *efx,
1310 bool enabled, bool force)
1311 {
1312 efx_oword_t int_en_reg_ker;
1313
1314 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1315 FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level,
1316 FRF_AZ_KER_INT_KER, force,
1317 FRF_AZ_DRV_INT_EN_KER, enabled);
1318 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1319 }
1320
efx_nic_enable_interrupts(struct efx_nic * efx)1321 void efx_nic_enable_interrupts(struct efx_nic *efx)
1322 {
1323 struct efx_channel *channel;
1324
1325 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1326 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1327
1328 /* Enable interrupts */
1329 efx_nic_interrupts(efx, true, false);
1330
1331 /* Force processing of all the channels to get the EVQ RPTRs up to
1332 date */
1333 efx_for_each_channel(channel, efx)
1334 efx_schedule_channel(channel);
1335 }
1336
efx_nic_disable_interrupts(struct efx_nic * efx)1337 void efx_nic_disable_interrupts(struct efx_nic *efx)
1338 {
1339 /* Disable interrupts */
1340 efx_nic_interrupts(efx, false, false);
1341 }
1342
1343 /* Generate a test interrupt
1344 * Interrupt must already have been enabled, otherwise nasty things
1345 * may happen.
1346 */
efx_nic_generate_interrupt(struct efx_nic * efx)1347 void efx_nic_generate_interrupt(struct efx_nic *efx)
1348 {
1349 efx_nic_interrupts(efx, true, true);
1350 }
1351
1352 /* Process a fatal interrupt
1353 * Disable bus mastering ASAP and schedule a reset
1354 */
efx_nic_fatal_interrupt(struct efx_nic * efx)1355 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1356 {
1357 struct falcon_nic_data *nic_data = efx->nic_data;
1358 efx_oword_t *int_ker = efx->irq_status.addr;
1359 efx_oword_t fatal_intr;
1360 int error, mem_perr;
1361
1362 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1363 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1364
1365 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1366 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1367 EFX_OWORD_VAL(fatal_intr),
1368 error ? "disabling bus mastering" : "no recognised error");
1369
1370 /* If this is a memory parity error dump which blocks are offending */
1371 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1372 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1373 if (mem_perr) {
1374 efx_oword_t reg;
1375 efx_reado(efx, ®, FR_AZ_MEM_STAT);
1376 netif_err(efx, hw, efx->net_dev,
1377 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1378 EFX_OWORD_VAL(reg));
1379 }
1380
1381 /* Disable both devices */
1382 pci_clear_master(efx->pci_dev);
1383 if (efx_nic_is_dual_func(efx))
1384 pci_clear_master(nic_data->pci_dev2);
1385 efx_nic_disable_interrupts(efx);
1386
1387 /* Count errors and reset or disable the NIC accordingly */
1388 if (efx->int_error_count == 0 ||
1389 time_after(jiffies, efx->int_error_expire)) {
1390 efx->int_error_count = 0;
1391 efx->int_error_expire =
1392 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1393 }
1394 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1395 netif_err(efx, hw, efx->net_dev,
1396 "SYSTEM ERROR - reset scheduled\n");
1397 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1398 } else {
1399 netif_err(efx, hw, efx->net_dev,
1400 "SYSTEM ERROR - max number of errors seen."
1401 "NIC will be disabled\n");
1402 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1403 }
1404
1405 return IRQ_HANDLED;
1406 }
1407
1408 /* Handle a legacy interrupt
1409 * Acknowledges the interrupt and schedule event queue processing.
1410 */
efx_legacy_interrupt(int irq,void * dev_id)1411 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1412 {
1413 struct efx_nic *efx = dev_id;
1414 efx_oword_t *int_ker = efx->irq_status.addr;
1415 irqreturn_t result = IRQ_NONE;
1416 struct efx_channel *channel;
1417 efx_dword_t reg;
1418 u32 queues;
1419 int syserr;
1420
1421 /* Could this be ours? If interrupts are disabled then the
1422 * channel state may not be valid.
1423 */
1424 if (!efx->legacy_irq_enabled)
1425 return result;
1426
1427 /* Read the ISR which also ACKs the interrupts */
1428 efx_readd(efx, ®, FR_BZ_INT_ISR0);
1429 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1430
1431 /* Check to see if we have a serious error condition */
1432 if (queues & (1U << efx->fatal_irq_level)) {
1433 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1434 if (unlikely(syserr))
1435 return efx_nic_fatal_interrupt(efx);
1436 }
1437
1438 if (queues != 0) {
1439 if (EFX_WORKAROUND_15783(efx))
1440 efx->irq_zero_count = 0;
1441
1442 /* Schedule processing of any interrupting queues */
1443 efx_for_each_channel(channel, efx) {
1444 if (queues & 1)
1445 efx_schedule_channel(channel);
1446 queues >>= 1;
1447 }
1448 result = IRQ_HANDLED;
1449
1450 } else if (EFX_WORKAROUND_15783(efx)) {
1451 efx_qword_t *event;
1452
1453 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1454 * because this might be a shared interrupt. */
1455 if (efx->irq_zero_count++ == 0)
1456 result = IRQ_HANDLED;
1457
1458 /* Ensure we schedule or rearm all event queues */
1459 efx_for_each_channel(channel, efx) {
1460 event = efx_event(channel, channel->eventq_read_ptr);
1461 if (efx_event_present(event))
1462 efx_schedule_channel(channel);
1463 else
1464 efx_nic_eventq_read_ack(channel);
1465 }
1466 }
1467
1468 if (result == IRQ_HANDLED) {
1469 efx->last_irq_cpu = raw_smp_processor_id();
1470 netif_vdbg(efx, intr, efx->net_dev,
1471 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1472 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1473 }
1474
1475 return result;
1476 }
1477
1478 /* Handle an MSI interrupt
1479 *
1480 * Handle an MSI hardware interrupt. This routine schedules event
1481 * queue processing. No interrupt acknowledgement cycle is necessary.
1482 * Also, we never need to check that the interrupt is for us, since
1483 * MSI interrupts cannot be shared.
1484 */
efx_msi_interrupt(int irq,void * dev_id)1485 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1486 {
1487 struct efx_channel *channel = *(struct efx_channel **)dev_id;
1488 struct efx_nic *efx = channel->efx;
1489 efx_oword_t *int_ker = efx->irq_status.addr;
1490 int syserr;
1491
1492 efx->last_irq_cpu = raw_smp_processor_id();
1493 netif_vdbg(efx, intr, efx->net_dev,
1494 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1495 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1496
1497 /* Check to see if we have a serious error condition */
1498 if (channel->channel == efx->fatal_irq_level) {
1499 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1500 if (unlikely(syserr))
1501 return efx_nic_fatal_interrupt(efx);
1502 }
1503
1504 /* Schedule processing of the channel */
1505 efx_schedule_channel(channel);
1506
1507 return IRQ_HANDLED;
1508 }
1509
1510
1511 /* Setup RSS indirection table.
1512 * This maps from the hash value of the packet to RXQ
1513 */
efx_nic_push_rx_indir_table(struct efx_nic * efx)1514 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1515 {
1516 size_t i = 0;
1517 efx_dword_t dword;
1518
1519 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1520 return;
1521
1522 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1523 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1524
1525 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1526 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1527 efx->rx_indir_table[i]);
1528 efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1529 }
1530 }
1531
1532 /* Hook interrupt handler(s)
1533 * Try MSI and then legacy interrupts.
1534 */
efx_nic_init_interrupt(struct efx_nic * efx)1535 int efx_nic_init_interrupt(struct efx_nic *efx)
1536 {
1537 struct efx_channel *channel;
1538 int rc;
1539
1540 if (!EFX_INT_MODE_USE_MSI(efx)) {
1541 irq_handler_t handler;
1542 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1543 handler = efx_legacy_interrupt;
1544 else
1545 handler = falcon_legacy_interrupt_a1;
1546
1547 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1548 efx->name, efx);
1549 if (rc) {
1550 netif_err(efx, drv, efx->net_dev,
1551 "failed to hook legacy IRQ %d\n",
1552 efx->pci_dev->irq);
1553 goto fail1;
1554 }
1555 return 0;
1556 }
1557
1558 /* Hook MSI or MSI-X interrupt */
1559 efx_for_each_channel(channel, efx) {
1560 rc = request_irq(channel->irq, efx_msi_interrupt,
1561 IRQF_PROBE_SHARED, /* Not shared */
1562 efx->channel_name[channel->channel],
1563 &efx->channel[channel->channel]);
1564 if (rc) {
1565 netif_err(efx, drv, efx->net_dev,
1566 "failed to hook IRQ %d\n", channel->irq);
1567 goto fail2;
1568 }
1569 }
1570
1571 return 0;
1572
1573 fail2:
1574 efx_for_each_channel(channel, efx)
1575 free_irq(channel->irq, &efx->channel[channel->channel]);
1576 fail1:
1577 return rc;
1578 }
1579
efx_nic_fini_interrupt(struct efx_nic * efx)1580 void efx_nic_fini_interrupt(struct efx_nic *efx)
1581 {
1582 struct efx_channel *channel;
1583 efx_oword_t reg;
1584
1585 /* Disable MSI/MSI-X interrupts */
1586 efx_for_each_channel(channel, efx) {
1587 if (channel->irq)
1588 free_irq(channel->irq, &efx->channel[channel->channel]);
1589 }
1590
1591 /* ACK legacy interrupt */
1592 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1593 efx_reado(efx, ®, FR_BZ_INT_ISR0);
1594 else
1595 falcon_irq_ack_a1(efx);
1596
1597 /* Disable legacy interrupt */
1598 if (efx->legacy_irq)
1599 free_irq(efx->legacy_irq, efx);
1600 }
1601
efx_nic_fpga_ver(struct efx_nic * efx)1602 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1603 {
1604 efx_oword_t altera_build;
1605 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1606 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1607 }
1608
efx_nic_init_common(struct efx_nic * efx)1609 void efx_nic_init_common(struct efx_nic *efx)
1610 {
1611 efx_oword_t temp;
1612
1613 /* Set positions of descriptor caches in SRAM. */
1614 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
1615 efx->type->tx_dc_base / 8);
1616 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1617 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
1618 efx->type->rx_dc_base / 8);
1619 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1620
1621 /* Set TX descriptor cache size. */
1622 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1623 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1624 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1625
1626 /* Set RX descriptor cache size. Set low watermark to size-8, as
1627 * this allows most efficient prefetching.
1628 */
1629 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1630 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1631 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1632 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1633 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1634
1635 /* Program INT_KER address */
1636 EFX_POPULATE_OWORD_2(temp,
1637 FRF_AZ_NORM_INT_VEC_DIS_KER,
1638 EFX_INT_MODE_USE_MSI(efx),
1639 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1640 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1641
1642 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1643 /* Use an interrupt level unused by event queues */
1644 efx->fatal_irq_level = 0x1f;
1645 else
1646 /* Use a valid MSI-X vector */
1647 efx->fatal_irq_level = 0;
1648
1649 /* Enable all the genuinely fatal interrupts. (They are still
1650 * masked by the overall interrupt mask, controlled by
1651 * falcon_interrupts()).
1652 *
1653 * Note: All other fatal interrupts are enabled
1654 */
1655 EFX_POPULATE_OWORD_3(temp,
1656 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1657 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1658 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1659 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1660 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1661 EFX_INVERT_OWORD(temp);
1662 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1663
1664 efx_nic_push_rx_indir_table(efx);
1665
1666 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1667 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1668 */
1669 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1670 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1671 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1672 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1673 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1674 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1675 /* Enable SW_EV to inherit in char driver - assume harmless here */
1676 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1677 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1678 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1679 /* Disable hardware watchdog which can misfire */
1680 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1681 /* Squash TX of packets of 16 bytes or less */
1682 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1683 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1684 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1685
1686 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1687 EFX_POPULATE_OWORD_4(temp,
1688 /* Default values */
1689 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1690 FRF_BZ_TX_PACE_SB_AF, 0xb,
1691 FRF_BZ_TX_PACE_FB_BASE, 0,
1692 /* Allow large pace values in the
1693 * fast bin. */
1694 FRF_BZ_TX_PACE_BIN_TH,
1695 FFE_BZ_TX_PACE_RESERVED);
1696 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1697 }
1698 }
1699
1700 /* Register dump */
1701
1702 #define REGISTER_REVISION_A 1
1703 #define REGISTER_REVISION_B 2
1704 #define REGISTER_REVISION_C 3
1705 #define REGISTER_REVISION_Z 3 /* latest revision */
1706
1707 struct efx_nic_reg {
1708 u32 offset:24;
1709 u32 min_revision:2, max_revision:2;
1710 };
1711
1712 #define REGISTER(name, min_rev, max_rev) { \
1713 FR_ ## min_rev ## max_rev ## _ ## name, \
1714 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1715 }
1716 #define REGISTER_AA(name) REGISTER(name, A, A)
1717 #define REGISTER_AB(name) REGISTER(name, A, B)
1718 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1719 #define REGISTER_BB(name) REGISTER(name, B, B)
1720 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1721 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1722
1723 static const struct efx_nic_reg efx_nic_regs[] = {
1724 REGISTER_AZ(ADR_REGION),
1725 REGISTER_AZ(INT_EN_KER),
1726 REGISTER_BZ(INT_EN_CHAR),
1727 REGISTER_AZ(INT_ADR_KER),
1728 REGISTER_BZ(INT_ADR_CHAR),
1729 /* INT_ACK_KER is WO */
1730 /* INT_ISR0 is RC */
1731 REGISTER_AZ(HW_INIT),
1732 REGISTER_CZ(USR_EV_CFG),
1733 REGISTER_AB(EE_SPI_HCMD),
1734 REGISTER_AB(EE_SPI_HADR),
1735 REGISTER_AB(EE_SPI_HDATA),
1736 REGISTER_AB(EE_BASE_PAGE),
1737 REGISTER_AB(EE_VPD_CFG0),
1738 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1739 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1740 /* PCIE_CORE_INDIRECT is indirect */
1741 REGISTER_AB(NIC_STAT),
1742 REGISTER_AB(GPIO_CTL),
1743 REGISTER_AB(GLB_CTL),
1744 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1745 REGISTER_BZ(DP_CTRL),
1746 REGISTER_AZ(MEM_STAT),
1747 REGISTER_AZ(CS_DEBUG),
1748 REGISTER_AZ(ALTERA_BUILD),
1749 REGISTER_AZ(CSR_SPARE),
1750 REGISTER_AB(PCIE_SD_CTL0123),
1751 REGISTER_AB(PCIE_SD_CTL45),
1752 REGISTER_AB(PCIE_PCS_CTL_STAT),
1753 /* DEBUG_DATA_OUT is not used */
1754 /* DRV_EV is WO */
1755 REGISTER_AZ(EVQ_CTL),
1756 REGISTER_AZ(EVQ_CNT1),
1757 REGISTER_AZ(EVQ_CNT2),
1758 REGISTER_AZ(BUF_TBL_CFG),
1759 REGISTER_AZ(SRM_RX_DC_CFG),
1760 REGISTER_AZ(SRM_TX_DC_CFG),
1761 REGISTER_AZ(SRM_CFG),
1762 /* BUF_TBL_UPD is WO */
1763 REGISTER_AZ(SRM_UPD_EVQ),
1764 REGISTER_AZ(SRAM_PARITY),
1765 REGISTER_AZ(RX_CFG),
1766 REGISTER_BZ(RX_FILTER_CTL),
1767 /* RX_FLUSH_DESCQ is WO */
1768 REGISTER_AZ(RX_DC_CFG),
1769 REGISTER_AZ(RX_DC_PF_WM),
1770 REGISTER_BZ(RX_RSS_TKEY),
1771 /* RX_NODESC_DROP is RC */
1772 REGISTER_AA(RX_SELF_RST),
1773 /* RX_DEBUG, RX_PUSH_DROP are not used */
1774 REGISTER_CZ(RX_RSS_IPV6_REG1),
1775 REGISTER_CZ(RX_RSS_IPV6_REG2),
1776 REGISTER_CZ(RX_RSS_IPV6_REG3),
1777 /* TX_FLUSH_DESCQ is WO */
1778 REGISTER_AZ(TX_DC_CFG),
1779 REGISTER_AA(TX_CHKSM_CFG),
1780 REGISTER_AZ(TX_CFG),
1781 /* TX_PUSH_DROP is not used */
1782 REGISTER_AZ(TX_RESERVED),
1783 REGISTER_BZ(TX_PACE),
1784 /* TX_PACE_DROP_QID is RC */
1785 REGISTER_BB(TX_VLAN),
1786 REGISTER_BZ(TX_IPFIL_PORTEN),
1787 REGISTER_AB(MD_TXD),
1788 REGISTER_AB(MD_RXD),
1789 REGISTER_AB(MD_CS),
1790 REGISTER_AB(MD_PHY_ADR),
1791 REGISTER_AB(MD_ID),
1792 /* MD_STAT is RC */
1793 REGISTER_AB(MAC_STAT_DMA),
1794 REGISTER_AB(MAC_CTRL),
1795 REGISTER_BB(GEN_MODE),
1796 REGISTER_AB(MAC_MC_HASH_REG0),
1797 REGISTER_AB(MAC_MC_HASH_REG1),
1798 REGISTER_AB(GM_CFG1),
1799 REGISTER_AB(GM_CFG2),
1800 /* GM_IPG and GM_HD are not used */
1801 REGISTER_AB(GM_MAX_FLEN),
1802 /* GM_TEST is not used */
1803 REGISTER_AB(GM_ADR1),
1804 REGISTER_AB(GM_ADR2),
1805 REGISTER_AB(GMF_CFG0),
1806 REGISTER_AB(GMF_CFG1),
1807 REGISTER_AB(GMF_CFG2),
1808 REGISTER_AB(GMF_CFG3),
1809 REGISTER_AB(GMF_CFG4),
1810 REGISTER_AB(GMF_CFG5),
1811 REGISTER_BB(TX_SRC_MAC_CTL),
1812 REGISTER_AB(XM_ADR_LO),
1813 REGISTER_AB(XM_ADR_HI),
1814 REGISTER_AB(XM_GLB_CFG),
1815 REGISTER_AB(XM_TX_CFG),
1816 REGISTER_AB(XM_RX_CFG),
1817 REGISTER_AB(XM_MGT_INT_MASK),
1818 REGISTER_AB(XM_FC),
1819 REGISTER_AB(XM_PAUSE_TIME),
1820 REGISTER_AB(XM_TX_PARAM),
1821 REGISTER_AB(XM_RX_PARAM),
1822 /* XM_MGT_INT_MSK (note no 'A') is RC */
1823 REGISTER_AB(XX_PWR_RST),
1824 REGISTER_AB(XX_SD_CTL),
1825 REGISTER_AB(XX_TXDRV_CTL),
1826 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1827 /* XX_CORE_STAT is partly RC */
1828 };
1829
1830 struct efx_nic_reg_table {
1831 u32 offset:24;
1832 u32 min_revision:2, max_revision:2;
1833 u32 step:6, rows:21;
1834 };
1835
1836 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1837 offset, \
1838 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1839 step, rows \
1840 }
1841 #define REGISTER_TABLE(name, min_rev, max_rev) \
1842 REGISTER_TABLE_DIMENSIONS( \
1843 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1844 min_rev, max_rev, \
1845 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1846 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1847 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1848 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1849 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1850 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1851 #define REGISTER_TABLE_BB_CZ(name) \
1852 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1853 FR_BZ_ ## name ## _STEP, \
1854 FR_BB_ ## name ## _ROWS), \
1855 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1856 FR_BZ_ ## name ## _STEP, \
1857 FR_CZ_ ## name ## _ROWS)
1858 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1859
1860 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1861 /* DRIVER is not used */
1862 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1863 REGISTER_TABLE_BB(TX_IPFIL_TBL),
1864 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1865 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1866 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1867 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1868 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1869 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1870 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1871 /* We can't reasonably read all of the buffer table (up to 8MB!).
1872 * However this driver will only use a few entries. Reading
1873 * 1K entries allows for some expansion of queue count and
1874 * size before we need to change the version. */
1875 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1876 A, A, 8, 1024),
1877 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1878 B, Z, 8, 1024),
1879 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1880 REGISTER_TABLE_BB_CZ(TIMER_TBL),
1881 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1882 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1883 /* TX_FILTER_TBL0 is huge and not used by this driver */
1884 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1885 REGISTER_TABLE_CZ(MC_TREG_SMEM),
1886 /* MSIX_PBA_TABLE is not mapped */
1887 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1888 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
1889 };
1890
efx_nic_get_regs_len(struct efx_nic * efx)1891 size_t efx_nic_get_regs_len(struct efx_nic *efx)
1892 {
1893 const struct efx_nic_reg *reg;
1894 const struct efx_nic_reg_table *table;
1895 size_t len = 0;
1896
1897 for (reg = efx_nic_regs;
1898 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1899 reg++)
1900 if (efx->type->revision >= reg->min_revision &&
1901 efx->type->revision <= reg->max_revision)
1902 len += sizeof(efx_oword_t);
1903
1904 for (table = efx_nic_reg_tables;
1905 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1906 table++)
1907 if (efx->type->revision >= table->min_revision &&
1908 efx->type->revision <= table->max_revision)
1909 len += table->rows * min_t(size_t, table->step, 16);
1910
1911 return len;
1912 }
1913
efx_nic_get_regs(struct efx_nic * efx,void * buf)1914 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
1915 {
1916 const struct efx_nic_reg *reg;
1917 const struct efx_nic_reg_table *table;
1918
1919 for (reg = efx_nic_regs;
1920 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1921 reg++) {
1922 if (efx->type->revision >= reg->min_revision &&
1923 efx->type->revision <= reg->max_revision) {
1924 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
1925 buf += sizeof(efx_oword_t);
1926 }
1927 }
1928
1929 for (table = efx_nic_reg_tables;
1930 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1931 table++) {
1932 size_t size, i;
1933
1934 if (!(efx->type->revision >= table->min_revision &&
1935 efx->type->revision <= table->max_revision))
1936 continue;
1937
1938 size = min_t(size_t, table->step, 16);
1939
1940 if (table->offset >= efx->type->mem_map_size) {
1941 /* No longer mapped; return dummy data */
1942 memcpy(buf, "\xde\xc0\xad\xde", 4);
1943 buf += table->rows * size;
1944 continue;
1945 }
1946
1947 for (i = 0; i < table->rows; i++) {
1948 switch (table->step) {
1949 case 4: /* 32-bit register or SRAM */
1950 efx_readd_table(efx, buf, table->offset, i);
1951 break;
1952 case 8: /* 64-bit SRAM */
1953 efx_sram_readq(efx,
1954 efx->membase + table->offset,
1955 buf, i);
1956 break;
1957 case 16: /* 128-bit register */
1958 efx_reado_table(efx, buf, table->offset, i);
1959 break;
1960 case 32: /* 128-bit register, interleaved */
1961 efx_reado_table(efx, buf, table->offset, 2 * i);
1962 break;
1963 default:
1964 WARN_ON(1);
1965 return;
1966 }
1967 buf += size;
1968 }
1969 }
1970 }
1971