1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
24 
25 /**************************************************************************
26  *
27  * Configurable values
28  *
29  **************************************************************************
30  */
31 
32 /* This is set to 16 for a good reason.  In summary, if larger than
33  * 16, the descriptor cache holds more than a default socket
34  * buffer's worth of packets (for UDP we can only have at most one
35  * socket buffer's worth outstanding).  This combined with the fact
36  * that we only get 1 TX event per descriptor cache means the NIC
37  * goes idle.
38  */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41 
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44 
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47  * disable it.
48  */
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
51 
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
54 
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST		0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL		0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
60 
61 #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
63 
64 #define EFX_CHANNEL_MAGIC_TEST(_channel)				\
65 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
67 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
68 			   efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
70 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
71 			   efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
73 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
74 			   (_tx_queue)->queue)
75 
76 static void efx_magic_event(struct efx_channel *channel, u32 magic);
77 
78 /**************************************************************************
79  *
80  * Solarstorm hardware access
81  *
82  **************************************************************************/
83 
efx_write_buf_tbl(struct efx_nic * efx,efx_qword_t * value,unsigned int index)84 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
85 				     unsigned int index)
86 {
87 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
88 			value, index);
89 }
90 
91 /* Read the current event from the event queue */
efx_event(struct efx_channel * channel,unsigned int index)92 static inline efx_qword_t *efx_event(struct efx_channel *channel,
93 				     unsigned int index)
94 {
95 	return ((efx_qword_t *) (channel->eventq.addr)) +
96 		(index & channel->eventq_mask);
97 }
98 
99 /* See if an event is present
100  *
101  * We check both the high and low dword of the event for all ones.  We
102  * wrote all ones when we cleared the event, and no valid event can
103  * have all ones in either its high or low dwords.  This approach is
104  * robust against reordering.
105  *
106  * Note that using a single 64-bit comparison is incorrect; even
107  * though the CPU read will be atomic, the DMA write may not be.
108  */
efx_event_present(efx_qword_t * event)109 static inline int efx_event_present(efx_qword_t *event)
110 {
111 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
112 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
113 }
114 
efx_masked_compare_oword(const efx_oword_t * a,const efx_oword_t * b,const efx_oword_t * mask)115 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
116 				     const efx_oword_t *mask)
117 {
118 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
119 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
120 }
121 
efx_nic_test_registers(struct efx_nic * efx,const struct efx_nic_register_test * regs,size_t n_regs)122 int efx_nic_test_registers(struct efx_nic *efx,
123 			   const struct efx_nic_register_test *regs,
124 			   size_t n_regs)
125 {
126 	unsigned address = 0, i, j;
127 	efx_oword_t mask, imask, original, reg, buf;
128 
129 	for (i = 0; i < n_regs; ++i) {
130 		address = regs[i].address;
131 		mask = imask = regs[i].mask;
132 		EFX_INVERT_OWORD(imask);
133 
134 		efx_reado(efx, &original, address);
135 
136 		/* bit sweep on and off */
137 		for (j = 0; j < 128; j++) {
138 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
139 				continue;
140 
141 			/* Test this testable bit can be set in isolation */
142 			EFX_AND_OWORD(reg, original, mask);
143 			EFX_SET_OWORD32(reg, j, j, 1);
144 
145 			efx_writeo(efx, &reg, address);
146 			efx_reado(efx, &buf, address);
147 
148 			if (efx_masked_compare_oword(&reg, &buf, &mask))
149 				goto fail;
150 
151 			/* Test this testable bit can be cleared in isolation */
152 			EFX_OR_OWORD(reg, original, mask);
153 			EFX_SET_OWORD32(reg, j, j, 0);
154 
155 			efx_writeo(efx, &reg, address);
156 			efx_reado(efx, &buf, address);
157 
158 			if (efx_masked_compare_oword(&reg, &buf, &mask))
159 				goto fail;
160 		}
161 
162 		efx_writeo(efx, &original, address);
163 	}
164 
165 	return 0;
166 
167 fail:
168 	netif_err(efx, hw, efx->net_dev,
169 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
170 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
171 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
172 	return -EIO;
173 }
174 
175 /**************************************************************************
176  *
177  * Special buffer handling
178  * Special buffers are used for event queues and the TX and RX
179  * descriptor rings.
180  *
181  *************************************************************************/
182 
183 /*
184  * Initialise a special buffer
185  *
186  * This will define a buffer (previously allocated via
187  * efx_alloc_special_buffer()) in the buffer table, allowing
188  * it to be used for event queues, descriptor rings etc.
189  */
190 static void
efx_init_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)191 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
192 {
193 	efx_qword_t buf_desc;
194 	unsigned int index;
195 	dma_addr_t dma_addr;
196 	int i;
197 
198 	EFX_BUG_ON_PARANOID(!buffer->addr);
199 
200 	/* Write buffer descriptors to NIC */
201 	for (i = 0; i < buffer->entries; i++) {
202 		index = buffer->index + i;
203 		dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
204 		netif_dbg(efx, probe, efx->net_dev,
205 			  "mapping special buffer %d at %llx\n",
206 			  index, (unsigned long long)dma_addr);
207 		EFX_POPULATE_QWORD_3(buf_desc,
208 				     FRF_AZ_BUF_ADR_REGION, 0,
209 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
210 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
211 		efx_write_buf_tbl(efx, &buf_desc, index);
212 	}
213 }
214 
215 /* Unmaps a buffer and clears the buffer table entries */
216 static void
efx_fini_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)217 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
218 {
219 	efx_oword_t buf_tbl_upd;
220 	unsigned int start = buffer->index;
221 	unsigned int end = (buffer->index + buffer->entries - 1);
222 
223 	if (!buffer->entries)
224 		return;
225 
226 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
227 		  buffer->index, buffer->index + buffer->entries - 1);
228 
229 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
230 			     FRF_AZ_BUF_UPD_CMD, 0,
231 			     FRF_AZ_BUF_CLR_CMD, 1,
232 			     FRF_AZ_BUF_CLR_END_ID, end,
233 			     FRF_AZ_BUF_CLR_START_ID, start);
234 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
235 }
236 
237 /*
238  * Allocate a new special buffer
239  *
240  * This allocates memory for a new buffer, clears it and allocates a
241  * new buffer ID range.  It does not write into the buffer table.
242  *
243  * This call will allocate 4KB buffers, since 8KB buffers can't be
244  * used for event queues and descriptor rings.
245  */
efx_alloc_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer,unsigned int len)246 static int efx_alloc_special_buffer(struct efx_nic *efx,
247 				    struct efx_special_buffer *buffer,
248 				    unsigned int len)
249 {
250 	len = ALIGN(len, EFX_BUF_SIZE);
251 
252 	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
253 					  &buffer->dma_addr, GFP_KERNEL);
254 	if (!buffer->addr)
255 		return -ENOMEM;
256 	buffer->len = len;
257 	buffer->entries = len / EFX_BUF_SIZE;
258 	BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
259 
260 	/* All zeros is a potentially valid event so memset to 0xff */
261 	memset(buffer->addr, 0xff, len);
262 
263 	/* Select new buffer ID */
264 	buffer->index = efx->next_buffer_table;
265 	efx->next_buffer_table += buffer->entries;
266 #ifdef CONFIG_SFC_SRIOV
267 	BUG_ON(efx_sriov_enabled(efx) &&
268 	       efx->vf_buftbl_base < efx->next_buffer_table);
269 #endif
270 
271 	netif_dbg(efx, probe, efx->net_dev,
272 		  "allocating special buffers %d-%d at %llx+%x "
273 		  "(virt %p phys %llx)\n", buffer->index,
274 		  buffer->index + buffer->entries - 1,
275 		  (u64)buffer->dma_addr, len,
276 		  buffer->addr, (u64)virt_to_phys(buffer->addr));
277 
278 	return 0;
279 }
280 
281 static void
efx_free_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)282 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
283 {
284 	if (!buffer->addr)
285 		return;
286 
287 	netif_dbg(efx, hw, efx->net_dev,
288 		  "deallocating special buffers %d-%d at %llx+%x "
289 		  "(virt %p phys %llx)\n", buffer->index,
290 		  buffer->index + buffer->entries - 1,
291 		  (u64)buffer->dma_addr, buffer->len,
292 		  buffer->addr, (u64)virt_to_phys(buffer->addr));
293 
294 	dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
295 			  buffer->dma_addr);
296 	buffer->addr = NULL;
297 	buffer->entries = 0;
298 }
299 
300 /**************************************************************************
301  *
302  * Generic buffer handling
303  * These buffers are used for interrupt status and MAC stats
304  *
305  **************************************************************************/
306 
efx_nic_alloc_buffer(struct efx_nic * efx,struct efx_buffer * buffer,unsigned int len)307 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
308 			 unsigned int len)
309 {
310 	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
311 					    &buffer->dma_addr);
312 	if (!buffer->addr)
313 		return -ENOMEM;
314 	buffer->len = len;
315 	memset(buffer->addr, 0, len);
316 	return 0;
317 }
318 
efx_nic_free_buffer(struct efx_nic * efx,struct efx_buffer * buffer)319 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
320 {
321 	if (buffer->addr) {
322 		pci_free_consistent(efx->pci_dev, buffer->len,
323 				    buffer->addr, buffer->dma_addr);
324 		buffer->addr = NULL;
325 	}
326 }
327 
328 /**************************************************************************
329  *
330  * TX path
331  *
332  **************************************************************************/
333 
334 /* Returns a pointer to the specified transmit descriptor in the TX
335  * descriptor queue belonging to the specified channel.
336  */
337 static inline efx_qword_t *
efx_tx_desc(struct efx_tx_queue * tx_queue,unsigned int index)338 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
339 {
340 	return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
341 }
342 
343 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
efx_notify_tx_desc(struct efx_tx_queue * tx_queue)344 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
345 {
346 	unsigned write_ptr;
347 	efx_dword_t reg;
348 
349 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
350 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
351 	efx_writed_page(tx_queue->efx, &reg,
352 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
353 }
354 
355 /* Write pointer and first descriptor for TX descriptor ring */
efx_push_tx_desc(struct efx_tx_queue * tx_queue,const efx_qword_t * txd)356 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
357 				    const efx_qword_t *txd)
358 {
359 	unsigned write_ptr;
360 	efx_oword_t reg;
361 
362 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
363 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
364 
365 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
366 	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
367 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
368 	reg.qword[0] = *txd;
369 	efx_writeo_page(tx_queue->efx, &reg,
370 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
371 }
372 
373 static inline bool
efx_may_push_tx_desc(struct efx_tx_queue * tx_queue,unsigned int write_count)374 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
375 {
376 	unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
377 
378 	if (empty_read_count == 0)
379 		return false;
380 
381 	tx_queue->empty_read_count = 0;
382 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
383 		&& tx_queue->write_count - write_count == 1;
384 }
385 
386 /* For each entry inserted into the software descriptor ring, create a
387  * descriptor in the hardware TX descriptor ring (in host memory), and
388  * write a doorbell.
389  */
efx_nic_push_buffers(struct efx_tx_queue * tx_queue)390 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
391 {
392 
393 	struct efx_tx_buffer *buffer;
394 	efx_qword_t *txd;
395 	unsigned write_ptr;
396 	unsigned old_write_count = tx_queue->write_count;
397 
398 	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
399 
400 	do {
401 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
402 		buffer = &tx_queue->buffer[write_ptr];
403 		txd = efx_tx_desc(tx_queue, write_ptr);
404 		++tx_queue->write_count;
405 
406 		/* Create TX descriptor ring entry */
407 		EFX_POPULATE_QWORD_4(*txd,
408 				     FSF_AZ_TX_KER_CONT, buffer->continuation,
409 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
410 				     FSF_AZ_TX_KER_BUF_REGION, 0,
411 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
412 	} while (tx_queue->write_count != tx_queue->insert_count);
413 
414 	wmb(); /* Ensure descriptors are written before they are fetched */
415 
416 	if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
417 		txd = efx_tx_desc(tx_queue,
418 				  old_write_count & tx_queue->ptr_mask);
419 		efx_push_tx_desc(tx_queue, txd);
420 		++tx_queue->pushes;
421 	} else {
422 		efx_notify_tx_desc(tx_queue);
423 	}
424 }
425 
426 /* Allocate hardware resources for a TX queue */
efx_nic_probe_tx(struct efx_tx_queue * tx_queue)427 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
428 {
429 	struct efx_nic *efx = tx_queue->efx;
430 	unsigned entries;
431 
432 	entries = tx_queue->ptr_mask + 1;
433 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
434 					entries * sizeof(efx_qword_t));
435 }
436 
efx_nic_init_tx(struct efx_tx_queue * tx_queue)437 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
438 {
439 	struct efx_nic *efx = tx_queue->efx;
440 	efx_oword_t reg;
441 
442 	/* Pin TX descriptor ring */
443 	efx_init_special_buffer(efx, &tx_queue->txd);
444 
445 	/* Push TX descriptor ring to card */
446 	EFX_POPULATE_OWORD_10(reg,
447 			      FRF_AZ_TX_DESCQ_EN, 1,
448 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
449 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
450 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
451 			      FRF_AZ_TX_DESCQ_EVQ_ID,
452 			      tx_queue->channel->channel,
453 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
454 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
455 			      FRF_AZ_TX_DESCQ_SIZE,
456 			      __ffs(tx_queue->txd.entries),
457 			      FRF_AZ_TX_DESCQ_TYPE, 0,
458 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
459 
460 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
461 		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
462 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
463 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
464 				    !csum);
465 	}
466 
467 	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
468 			 tx_queue->queue);
469 
470 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
471 		/* Only 128 bits in this register */
472 		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
473 
474 		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
475 		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
476 			clear_bit_le(tx_queue->queue, (void *)&reg);
477 		else
478 			set_bit_le(tx_queue->queue, (void *)&reg);
479 		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
480 	}
481 
482 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
483 		EFX_POPULATE_OWORD_1(reg,
484 				     FRF_BZ_TX_PACE,
485 				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
486 				     FFE_BZ_TX_PACE_OFF :
487 				     FFE_BZ_TX_PACE_RESERVED);
488 		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
489 				 tx_queue->queue);
490 	}
491 }
492 
efx_flush_tx_queue(struct efx_tx_queue * tx_queue)493 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
494 {
495 	struct efx_nic *efx = tx_queue->efx;
496 	efx_oword_t tx_flush_descq;
497 
498 	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
499 	atomic_set(&tx_queue->flush_outstanding, 1);
500 
501 	EFX_POPULATE_OWORD_2(tx_flush_descq,
502 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
503 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
504 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
505 }
506 
efx_nic_fini_tx(struct efx_tx_queue * tx_queue)507 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
508 {
509 	struct efx_nic *efx = tx_queue->efx;
510 	efx_oword_t tx_desc_ptr;
511 
512 	/* Remove TX descriptor ring from card */
513 	EFX_ZERO_OWORD(tx_desc_ptr);
514 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
515 			 tx_queue->queue);
516 
517 	/* Unpin TX descriptor ring */
518 	efx_fini_special_buffer(efx, &tx_queue->txd);
519 }
520 
521 /* Free buffers backing TX queue */
efx_nic_remove_tx(struct efx_tx_queue * tx_queue)522 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
523 {
524 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
525 }
526 
527 /**************************************************************************
528  *
529  * RX path
530  *
531  **************************************************************************/
532 
533 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
534 static inline efx_qword_t *
efx_rx_desc(struct efx_rx_queue * rx_queue,unsigned int index)535 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
536 {
537 	return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
538 }
539 
540 /* This creates an entry in the RX descriptor queue */
541 static inline void
efx_build_rx_desc(struct efx_rx_queue * rx_queue,unsigned index)542 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
543 {
544 	struct efx_rx_buffer *rx_buf;
545 	efx_qword_t *rxd;
546 
547 	rxd = efx_rx_desc(rx_queue, index);
548 	rx_buf = efx_rx_buffer(rx_queue, index);
549 	EFX_POPULATE_QWORD_3(*rxd,
550 			     FSF_AZ_RX_KER_BUF_SIZE,
551 			     rx_buf->len -
552 			     rx_queue->efx->type->rx_buffer_padding,
553 			     FSF_AZ_RX_KER_BUF_REGION, 0,
554 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
555 }
556 
557 /* This writes to the RX_DESC_WPTR register for the specified receive
558  * descriptor ring.
559  */
efx_nic_notify_rx_desc(struct efx_rx_queue * rx_queue)560 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
561 {
562 	struct efx_nic *efx = rx_queue->efx;
563 	efx_dword_t reg;
564 	unsigned write_ptr;
565 
566 	while (rx_queue->notified_count != rx_queue->added_count) {
567 		efx_build_rx_desc(
568 			rx_queue,
569 			rx_queue->notified_count & rx_queue->ptr_mask);
570 		++rx_queue->notified_count;
571 	}
572 
573 	wmb();
574 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
575 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
576 	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
577 			efx_rx_queue_index(rx_queue));
578 }
579 
efx_nic_probe_rx(struct efx_rx_queue * rx_queue)580 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
581 {
582 	struct efx_nic *efx = rx_queue->efx;
583 	unsigned entries;
584 
585 	entries = rx_queue->ptr_mask + 1;
586 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
587 					entries * sizeof(efx_qword_t));
588 }
589 
efx_nic_init_rx(struct efx_rx_queue * rx_queue)590 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
591 {
592 	efx_oword_t rx_desc_ptr;
593 	struct efx_nic *efx = rx_queue->efx;
594 	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
595 	bool iscsi_digest_en = is_b0;
596 
597 	netif_dbg(efx, hw, efx->net_dev,
598 		  "RX queue %d ring in special buffers %d-%d\n",
599 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
600 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
601 
602 	/* Pin RX descriptor ring */
603 	efx_init_special_buffer(efx, &rx_queue->rxd);
604 
605 	/* Push RX descriptor ring to card */
606 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
607 			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
608 			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
609 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
610 			      FRF_AZ_RX_DESCQ_EVQ_ID,
611 			      efx_rx_queue_channel(rx_queue)->channel,
612 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
613 			      FRF_AZ_RX_DESCQ_LABEL,
614 			      efx_rx_queue_index(rx_queue),
615 			      FRF_AZ_RX_DESCQ_SIZE,
616 			      __ffs(rx_queue->rxd.entries),
617 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
618 			      /* For >=B0 this is scatter so disable */
619 			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
620 			      FRF_AZ_RX_DESCQ_EN, 1);
621 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
622 			 efx_rx_queue_index(rx_queue));
623 }
624 
efx_flush_rx_queue(struct efx_rx_queue * rx_queue)625 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
626 {
627 	struct efx_nic *efx = rx_queue->efx;
628 	efx_oword_t rx_flush_descq;
629 
630 	EFX_POPULATE_OWORD_2(rx_flush_descq,
631 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
632 			     FRF_AZ_RX_FLUSH_DESCQ,
633 			     efx_rx_queue_index(rx_queue));
634 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
635 }
636 
efx_nic_fini_rx(struct efx_rx_queue * rx_queue)637 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
638 {
639 	efx_oword_t rx_desc_ptr;
640 	struct efx_nic *efx = rx_queue->efx;
641 
642 	/* Remove RX descriptor ring from card */
643 	EFX_ZERO_OWORD(rx_desc_ptr);
644 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
645 			 efx_rx_queue_index(rx_queue));
646 
647 	/* Unpin RX descriptor ring */
648 	efx_fini_special_buffer(efx, &rx_queue->rxd);
649 }
650 
651 /* Free buffers backing RX queue */
efx_nic_remove_rx(struct efx_rx_queue * rx_queue)652 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
653 {
654 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
655 }
656 
657 /**************************************************************************
658  *
659  * Flush handling
660  *
661  **************************************************************************/
662 
663 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
664  * or more RX flushes can be kicked off.
665  */
efx_flush_wake(struct efx_nic * efx)666 static bool efx_flush_wake(struct efx_nic *efx)
667 {
668 	/* Ensure that all updates are visible to efx_nic_flush_queues() */
669 	smp_mb();
670 
671 	return (atomic_read(&efx->drain_pending) == 0 ||
672 		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
673 		 && atomic_read(&efx->rxq_flush_pending) > 0));
674 }
675 
efx_check_tx_flush_complete(struct efx_nic * efx)676 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
677 {
678 	bool i = true;
679 	efx_oword_t txd_ptr_tbl;
680 	struct efx_channel *channel;
681 	struct efx_tx_queue *tx_queue;
682 
683 	efx_for_each_channel(channel, efx) {
684 		efx_for_each_channel_tx_queue(tx_queue, channel) {
685 			efx_reado_table(efx, &txd_ptr_tbl,
686 					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
687 			if (EFX_OWORD_FIELD(txd_ptr_tbl,
688 					    FRF_AZ_TX_DESCQ_FLUSH) ||
689 			    EFX_OWORD_FIELD(txd_ptr_tbl,
690 					    FRF_AZ_TX_DESCQ_EN)) {
691 				netif_dbg(efx, hw, efx->net_dev,
692 					  "flush did not complete on TXQ %d\n",
693 					  tx_queue->queue);
694 				i = false;
695 			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
696 						  1, 0)) {
697 				/* The flush is complete, but we didn't
698 				 * receive a flush completion event
699 				 */
700 				netif_dbg(efx, hw, efx->net_dev,
701 					  "flush complete on TXQ %d, so drain "
702 					  "the queue\n", tx_queue->queue);
703 				/* Don't need to increment drain_pending as it
704 				 * has already been incremented for the queues
705 				 * which did not drain
706 				 */
707 				efx_magic_event(channel,
708 						EFX_CHANNEL_MAGIC_TX_DRAIN(
709 							tx_queue));
710 			}
711 		}
712 	}
713 
714 	return i;
715 }
716 
717 /* Flush all the transmit queues, and continue flushing receive queues until
718  * they're all flushed. Wait for the DRAIN events to be recieved so that there
719  * are no more RX and TX events left on any channel. */
efx_nic_flush_queues(struct efx_nic * efx)720 int efx_nic_flush_queues(struct efx_nic *efx)
721 {
722 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
723 	struct efx_channel *channel;
724 	struct efx_rx_queue *rx_queue;
725 	struct efx_tx_queue *tx_queue;
726 	int rc = 0;
727 
728 	efx->type->prepare_flush(efx);
729 
730 	efx_for_each_channel(channel, efx) {
731 		efx_for_each_channel_tx_queue(tx_queue, channel) {
732 			atomic_inc(&efx->drain_pending);
733 			efx_flush_tx_queue(tx_queue);
734 		}
735 		efx_for_each_channel_rx_queue(rx_queue, channel) {
736 			atomic_inc(&efx->drain_pending);
737 			rx_queue->flush_pending = true;
738 			atomic_inc(&efx->rxq_flush_pending);
739 		}
740 	}
741 
742 	while (timeout && atomic_read(&efx->drain_pending) > 0) {
743 		/* If SRIOV is enabled, then offload receive queue flushing to
744 		 * the firmware (though we will still have to poll for
745 		 * completion). If that fails, fall back to the old scheme.
746 		 */
747 		if (efx_sriov_enabled(efx)) {
748 			rc = efx_mcdi_flush_rxqs(efx);
749 			if (!rc)
750 				goto wait;
751 		}
752 
753 		/* The hardware supports four concurrent rx flushes, each of
754 		 * which may need to be retried if there is an outstanding
755 		 * descriptor fetch
756 		 */
757 		efx_for_each_channel(channel, efx) {
758 			efx_for_each_channel_rx_queue(rx_queue, channel) {
759 				if (atomic_read(&efx->rxq_flush_outstanding) >=
760 				    EFX_RX_FLUSH_COUNT)
761 					break;
762 
763 				if (rx_queue->flush_pending) {
764 					rx_queue->flush_pending = false;
765 					atomic_dec(&efx->rxq_flush_pending);
766 					atomic_inc(&efx->rxq_flush_outstanding);
767 					efx_flush_rx_queue(rx_queue);
768 				}
769 			}
770 		}
771 
772 	wait:
773 		timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
774 					     timeout);
775 	}
776 
777 	if (atomic_read(&efx->drain_pending) &&
778 	    !efx_check_tx_flush_complete(efx)) {
779 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
780 			  "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
781 			  atomic_read(&efx->rxq_flush_outstanding),
782 			  atomic_read(&efx->rxq_flush_pending));
783 		rc = -ETIMEDOUT;
784 
785 		atomic_set(&efx->drain_pending, 0);
786 		atomic_set(&efx->rxq_flush_pending, 0);
787 		atomic_set(&efx->rxq_flush_outstanding, 0);
788 	}
789 
790 	efx->type->finish_flush(efx);
791 
792 	return rc;
793 }
794 
795 /**************************************************************************
796  *
797  * Event queue processing
798  * Event queues are processed by per-channel tasklets.
799  *
800  **************************************************************************/
801 
802 /* Update a channel's event queue's read pointer (RPTR) register
803  *
804  * This writes the EVQ_RPTR_REG register for the specified channel's
805  * event queue.
806  */
efx_nic_eventq_read_ack(struct efx_channel * channel)807 void efx_nic_eventq_read_ack(struct efx_channel *channel)
808 {
809 	efx_dword_t reg;
810 	struct efx_nic *efx = channel->efx;
811 
812 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
813 			     channel->eventq_read_ptr & channel->eventq_mask);
814 	efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
815 			 channel->channel);
816 }
817 
818 /* Use HW to insert a SW defined event */
efx_generate_event(struct efx_nic * efx,unsigned int evq,efx_qword_t * event)819 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
820 			efx_qword_t *event)
821 {
822 	efx_oword_t drv_ev_reg;
823 
824 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
825 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
826 	drv_ev_reg.u32[0] = event->u32[0];
827 	drv_ev_reg.u32[1] = event->u32[1];
828 	drv_ev_reg.u32[2] = 0;
829 	drv_ev_reg.u32[3] = 0;
830 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
831 	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
832 }
833 
efx_magic_event(struct efx_channel * channel,u32 magic)834 static void efx_magic_event(struct efx_channel *channel, u32 magic)
835 {
836 	efx_qword_t event;
837 
838 	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
839 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
840 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
841 	efx_generate_event(channel->efx, channel->channel, &event);
842 }
843 
844 /* Handle a transmit completion event
845  *
846  * The NIC batches TX completion events; the message we receive is of
847  * the form "complete all TX events up to this index".
848  */
849 static int
efx_handle_tx_event(struct efx_channel * channel,efx_qword_t * event)850 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
851 {
852 	unsigned int tx_ev_desc_ptr;
853 	unsigned int tx_ev_q_label;
854 	struct efx_tx_queue *tx_queue;
855 	struct efx_nic *efx = channel->efx;
856 	int tx_packets = 0;
857 
858 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
859 		return 0;
860 
861 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
862 		/* Transmit completion */
863 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
864 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
865 		tx_queue = efx_channel_get_tx_queue(
866 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
867 		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
868 			      tx_queue->ptr_mask);
869 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
870 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
871 		/* Rewrite the FIFO write pointer */
872 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
873 		tx_queue = efx_channel_get_tx_queue(
874 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
875 
876 		netif_tx_lock(efx->net_dev);
877 		efx_notify_tx_desc(tx_queue);
878 		netif_tx_unlock(efx->net_dev);
879 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
880 		   EFX_WORKAROUND_10727(efx)) {
881 		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
882 	} else {
883 		netif_err(efx, tx_err, efx->net_dev,
884 			  "channel %d unexpected TX event "
885 			  EFX_QWORD_FMT"\n", channel->channel,
886 			  EFX_QWORD_VAL(*event));
887 	}
888 
889 	return tx_packets;
890 }
891 
892 /* Detect errors included in the rx_evt_pkt_ok bit. */
efx_handle_rx_not_ok(struct efx_rx_queue * rx_queue,const efx_qword_t * event)893 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
894 				const efx_qword_t *event)
895 {
896 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
897 	struct efx_nic *efx = rx_queue->efx;
898 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
899 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
900 	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
901 	bool rx_ev_other_err, rx_ev_pause_frm;
902 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
903 	unsigned rx_ev_pkt_type;
904 
905 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
906 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
907 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
908 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
909 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
910 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
911 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
912 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
913 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
914 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
915 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
916 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
917 	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
918 			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
919 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
920 
921 	/* Every error apart from tobe_disc and pause_frm */
922 	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
923 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
924 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
925 
926 	/* Count errors that are not in MAC stats.  Ignore expected
927 	 * checksum errors during self-test. */
928 	if (rx_ev_frm_trunc)
929 		++channel->n_rx_frm_trunc;
930 	else if (rx_ev_tobe_disc)
931 		++channel->n_rx_tobe_disc;
932 	else if (!efx->loopback_selftest) {
933 		if (rx_ev_ip_hdr_chksum_err)
934 			++channel->n_rx_ip_hdr_chksum_err;
935 		else if (rx_ev_tcp_udp_chksum_err)
936 			++channel->n_rx_tcp_udp_chksum_err;
937 	}
938 
939 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
940 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
941 	 * to a FIFO overflow.
942 	 */
943 #ifdef DEBUG
944 	if (rx_ev_other_err && net_ratelimit()) {
945 		netif_dbg(efx, rx_err, efx->net_dev,
946 			  " RX queue %d unexpected RX event "
947 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
948 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
949 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
950 			  rx_ev_ip_hdr_chksum_err ?
951 			  " [IP_HDR_CHKSUM_ERR]" : "",
952 			  rx_ev_tcp_udp_chksum_err ?
953 			  " [TCP_UDP_CHKSUM_ERR]" : "",
954 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
955 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
956 			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
957 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
958 			  rx_ev_pause_frm ? " [PAUSE]" : "");
959 	}
960 #endif
961 
962 	/* The frame must be discarded if any of these are true. */
963 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
964 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
965 		EFX_RX_PKT_DISCARD : 0;
966 }
967 
968 /* Handle receive events that are not in-order. */
969 static void
efx_handle_rx_bad_index(struct efx_rx_queue * rx_queue,unsigned index)970 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
971 {
972 	struct efx_nic *efx = rx_queue->efx;
973 	unsigned expected, dropped;
974 
975 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
976 	dropped = (index - expected) & rx_queue->ptr_mask;
977 	netif_info(efx, rx_err, efx->net_dev,
978 		   "dropped %d events (index=%d expected=%d)\n",
979 		   dropped, index, expected);
980 
981 	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
982 			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
983 }
984 
985 /* Handle a packet received event
986  *
987  * The NIC gives a "discard" flag if it's a unicast packet with the
988  * wrong destination address
989  * Also "is multicast" and "matches multicast filter" flags can be used to
990  * discard non-matching multicast packets.
991  */
992 static void
efx_handle_rx_event(struct efx_channel * channel,const efx_qword_t * event)993 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
994 {
995 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
996 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
997 	unsigned expected_ptr;
998 	bool rx_ev_pkt_ok;
999 	u16 flags;
1000 	struct efx_rx_queue *rx_queue;
1001 	struct efx_nic *efx = channel->efx;
1002 
1003 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1004 		return;
1005 
1006 	/* Basic packet information */
1007 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1008 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1009 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1010 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
1011 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
1012 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1013 		channel->channel);
1014 
1015 	rx_queue = efx_channel_get_rx_queue(channel);
1016 
1017 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1018 	expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1019 	if (unlikely(rx_ev_desc_ptr != expected_ptr))
1020 		efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
1021 
1022 	if (likely(rx_ev_pkt_ok)) {
1023 		/* If packet is marked as OK and packet type is TCP/IP or
1024 		 * UDP/IP, then we can rely on the hardware checksum.
1025 		 */
1026 		flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
1027 			 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
1028 			EFX_RX_PKT_CSUMMED : 0;
1029 	} else {
1030 		flags = efx_handle_rx_not_ok(rx_queue, event);
1031 	}
1032 
1033 	/* Detect multicast packets that didn't match the filter */
1034 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1035 	if (rx_ev_mcast_pkt) {
1036 		unsigned int rx_ev_mcast_hash_match =
1037 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1038 
1039 		if (unlikely(!rx_ev_mcast_hash_match)) {
1040 			++channel->n_rx_mcast_mismatch;
1041 			flags |= EFX_RX_PKT_DISCARD;
1042 		}
1043 	}
1044 
1045 	channel->irq_mod_score += 2;
1046 
1047 	/* Handle received packet */
1048 	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
1049 }
1050 
1051 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1052  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1053  * of all transmit completions.
1054  */
1055 static void
efx_handle_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)1056 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1057 {
1058 	struct efx_tx_queue *tx_queue;
1059 	int qid;
1060 
1061 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1062 	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1063 		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1064 					    qid % EFX_TXQ_TYPES);
1065 		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1066 			efx_magic_event(tx_queue->channel,
1067 					EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1068 		}
1069 	}
1070 }
1071 
1072 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1073  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1074  * the RX queue back to the mask of RX queues in need of flushing.
1075  */
1076 static void
efx_handle_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)1077 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1078 {
1079 	struct efx_channel *channel;
1080 	struct efx_rx_queue *rx_queue;
1081 	int qid;
1082 	bool failed;
1083 
1084 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1085 	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1086 	if (qid >= efx->n_channels)
1087 		return;
1088 	channel = efx_get_channel(efx, qid);
1089 	if (!efx_channel_has_rx_queue(channel))
1090 		return;
1091 	rx_queue = efx_channel_get_rx_queue(channel);
1092 
1093 	if (failed) {
1094 		netif_info(efx, hw, efx->net_dev,
1095 			   "RXQ %d flush retry\n", qid);
1096 		rx_queue->flush_pending = true;
1097 		atomic_inc(&efx->rxq_flush_pending);
1098 	} else {
1099 		efx_magic_event(efx_rx_queue_channel(rx_queue),
1100 				EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1101 	}
1102 	atomic_dec(&efx->rxq_flush_outstanding);
1103 	if (efx_flush_wake(efx))
1104 		wake_up(&efx->flush_wq);
1105 }
1106 
1107 static void
efx_handle_drain_event(struct efx_channel * channel)1108 efx_handle_drain_event(struct efx_channel *channel)
1109 {
1110 	struct efx_nic *efx = channel->efx;
1111 
1112 	WARN_ON(atomic_read(&efx->drain_pending) == 0);
1113 	atomic_dec(&efx->drain_pending);
1114 	if (efx_flush_wake(efx))
1115 		wake_up(&efx->flush_wq);
1116 }
1117 
1118 static void
efx_handle_generated_event(struct efx_channel * channel,efx_qword_t * event)1119 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1120 {
1121 	struct efx_nic *efx = channel->efx;
1122 	struct efx_rx_queue *rx_queue =
1123 		efx_channel_has_rx_queue(channel) ?
1124 		efx_channel_get_rx_queue(channel) : NULL;
1125 	unsigned magic, code;
1126 
1127 	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1128 	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1129 
1130 	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1131 		channel->event_test_cpu = raw_smp_processor_id();
1132 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1133 		/* The queue must be empty, so we won't receive any rx
1134 		 * events, so efx_process_channel() won't refill the
1135 		 * queue. Refill it here */
1136 		efx_fast_push_rx_descriptors(rx_queue);
1137 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1138 		rx_queue->enabled = false;
1139 		efx_handle_drain_event(channel);
1140 	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1141 		efx_handle_drain_event(channel);
1142 	} else {
1143 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1144 			  "generated event "EFX_QWORD_FMT"\n",
1145 			  channel->channel, EFX_QWORD_VAL(*event));
1146 	}
1147 }
1148 
1149 static void
efx_handle_driver_event(struct efx_channel * channel,efx_qword_t * event)1150 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1151 {
1152 	struct efx_nic *efx = channel->efx;
1153 	unsigned int ev_sub_code;
1154 	unsigned int ev_sub_data;
1155 
1156 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1157 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1158 
1159 	switch (ev_sub_code) {
1160 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1161 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1162 			   channel->channel, ev_sub_data);
1163 		efx_handle_tx_flush_done(efx, event);
1164 		efx_sriov_tx_flush_done(efx, event);
1165 		break;
1166 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1167 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1168 			   channel->channel, ev_sub_data);
1169 		efx_handle_rx_flush_done(efx, event);
1170 		efx_sriov_rx_flush_done(efx, event);
1171 		break;
1172 	case FSE_AZ_EVQ_INIT_DONE_EV:
1173 		netif_dbg(efx, hw, efx->net_dev,
1174 			  "channel %d EVQ %d initialised\n",
1175 			  channel->channel, ev_sub_data);
1176 		break;
1177 	case FSE_AZ_SRM_UPD_DONE_EV:
1178 		netif_vdbg(efx, hw, efx->net_dev,
1179 			   "channel %d SRAM update done\n", channel->channel);
1180 		break;
1181 	case FSE_AZ_WAKE_UP_EV:
1182 		netif_vdbg(efx, hw, efx->net_dev,
1183 			   "channel %d RXQ %d wakeup event\n",
1184 			   channel->channel, ev_sub_data);
1185 		break;
1186 	case FSE_AZ_TIMER_EV:
1187 		netif_vdbg(efx, hw, efx->net_dev,
1188 			   "channel %d RX queue %d timer expired\n",
1189 			   channel->channel, ev_sub_data);
1190 		break;
1191 	case FSE_AA_RX_RECOVER_EV:
1192 		netif_err(efx, rx_err, efx->net_dev,
1193 			  "channel %d seen DRIVER RX_RESET event. "
1194 			"Resetting.\n", channel->channel);
1195 		atomic_inc(&efx->rx_reset);
1196 		efx_schedule_reset(efx,
1197 				   EFX_WORKAROUND_6555(efx) ?
1198 				   RESET_TYPE_RX_RECOVERY :
1199 				   RESET_TYPE_DISABLE);
1200 		break;
1201 	case FSE_BZ_RX_DSC_ERROR_EV:
1202 		if (ev_sub_data < EFX_VI_BASE) {
1203 			netif_err(efx, rx_err, efx->net_dev,
1204 				  "RX DMA Q %d reports descriptor fetch error."
1205 				  " RX Q %d is disabled.\n", ev_sub_data,
1206 				  ev_sub_data);
1207 			efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1208 		} else
1209 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1210 		break;
1211 	case FSE_BZ_TX_DSC_ERROR_EV:
1212 		if (ev_sub_data < EFX_VI_BASE) {
1213 			netif_err(efx, tx_err, efx->net_dev,
1214 				  "TX DMA Q %d reports descriptor fetch error."
1215 				  " TX Q %d is disabled.\n", ev_sub_data,
1216 				  ev_sub_data);
1217 			efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1218 		} else
1219 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1220 		break;
1221 	default:
1222 		netif_vdbg(efx, hw, efx->net_dev,
1223 			   "channel %d unknown driver event code %d "
1224 			   "data %04x\n", channel->channel, ev_sub_code,
1225 			   ev_sub_data);
1226 		break;
1227 	}
1228 }
1229 
efx_nic_process_eventq(struct efx_channel * channel,int budget)1230 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1231 {
1232 	struct efx_nic *efx = channel->efx;
1233 	unsigned int read_ptr;
1234 	efx_qword_t event, *p_event;
1235 	int ev_code;
1236 	int tx_packets = 0;
1237 	int spent = 0;
1238 
1239 	read_ptr = channel->eventq_read_ptr;
1240 
1241 	for (;;) {
1242 		p_event = efx_event(channel, read_ptr);
1243 		event = *p_event;
1244 
1245 		if (!efx_event_present(&event))
1246 			/* End of events */
1247 			break;
1248 
1249 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1250 			   "channel %d event is "EFX_QWORD_FMT"\n",
1251 			   channel->channel, EFX_QWORD_VAL(event));
1252 
1253 		/* Clear this event by marking it all ones */
1254 		EFX_SET_QWORD(*p_event);
1255 
1256 		++read_ptr;
1257 
1258 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1259 
1260 		switch (ev_code) {
1261 		case FSE_AZ_EV_CODE_RX_EV:
1262 			efx_handle_rx_event(channel, &event);
1263 			if (++spent == budget)
1264 				goto out;
1265 			break;
1266 		case FSE_AZ_EV_CODE_TX_EV:
1267 			tx_packets += efx_handle_tx_event(channel, &event);
1268 			if (tx_packets > efx->txq_entries) {
1269 				spent = budget;
1270 				goto out;
1271 			}
1272 			break;
1273 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1274 			efx_handle_generated_event(channel, &event);
1275 			break;
1276 		case FSE_AZ_EV_CODE_DRIVER_EV:
1277 			efx_handle_driver_event(channel, &event);
1278 			break;
1279 		case FSE_CZ_EV_CODE_USER_EV:
1280 			efx_sriov_event(channel, &event);
1281 			break;
1282 		case FSE_CZ_EV_CODE_MCDI_EV:
1283 			efx_mcdi_process_event(channel, &event);
1284 			break;
1285 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1286 			if (efx->type->handle_global_event &&
1287 			    efx->type->handle_global_event(channel, &event))
1288 				break;
1289 			/* else fall through */
1290 		default:
1291 			netif_err(channel->efx, hw, channel->efx->net_dev,
1292 				  "channel %d unknown event type %d (data "
1293 				  EFX_QWORD_FMT ")\n", channel->channel,
1294 				  ev_code, EFX_QWORD_VAL(event));
1295 		}
1296 	}
1297 
1298 out:
1299 	channel->eventq_read_ptr = read_ptr;
1300 	return spent;
1301 }
1302 
1303 /* Check whether an event is present in the eventq at the current
1304  * read pointer.  Only useful for self-test.
1305  */
efx_nic_event_present(struct efx_channel * channel)1306 bool efx_nic_event_present(struct efx_channel *channel)
1307 {
1308 	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1309 }
1310 
1311 /* Allocate buffer table entries for event queue */
efx_nic_probe_eventq(struct efx_channel * channel)1312 int efx_nic_probe_eventq(struct efx_channel *channel)
1313 {
1314 	struct efx_nic *efx = channel->efx;
1315 	unsigned entries;
1316 
1317 	entries = channel->eventq_mask + 1;
1318 	return efx_alloc_special_buffer(efx, &channel->eventq,
1319 					entries * sizeof(efx_qword_t));
1320 }
1321 
efx_nic_init_eventq(struct efx_channel * channel)1322 void efx_nic_init_eventq(struct efx_channel *channel)
1323 {
1324 	efx_oword_t reg;
1325 	struct efx_nic *efx = channel->efx;
1326 
1327 	netif_dbg(efx, hw, efx->net_dev,
1328 		  "channel %d event queue in special buffers %d-%d\n",
1329 		  channel->channel, channel->eventq.index,
1330 		  channel->eventq.index + channel->eventq.entries - 1);
1331 
1332 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1333 		EFX_POPULATE_OWORD_3(reg,
1334 				     FRF_CZ_TIMER_Q_EN, 1,
1335 				     FRF_CZ_HOST_NOTIFY_MODE, 0,
1336 				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1337 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1338 	}
1339 
1340 	/* Pin event queue buffer */
1341 	efx_init_special_buffer(efx, &channel->eventq);
1342 
1343 	/* Fill event queue with all ones (i.e. empty events) */
1344 	memset(channel->eventq.addr, 0xff, channel->eventq.len);
1345 
1346 	/* Push event queue to card */
1347 	EFX_POPULATE_OWORD_3(reg,
1348 			     FRF_AZ_EVQ_EN, 1,
1349 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1350 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1351 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1352 			 channel->channel);
1353 
1354 	efx->type->push_irq_moderation(channel);
1355 }
1356 
efx_nic_fini_eventq(struct efx_channel * channel)1357 void efx_nic_fini_eventq(struct efx_channel *channel)
1358 {
1359 	efx_oword_t reg;
1360 	struct efx_nic *efx = channel->efx;
1361 
1362 	/* Remove event queue from card */
1363 	EFX_ZERO_OWORD(reg);
1364 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1365 			 channel->channel);
1366 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1367 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1368 
1369 	/* Unpin event queue */
1370 	efx_fini_special_buffer(efx, &channel->eventq);
1371 }
1372 
1373 /* Free buffers backing event queue */
efx_nic_remove_eventq(struct efx_channel * channel)1374 void efx_nic_remove_eventq(struct efx_channel *channel)
1375 {
1376 	efx_free_special_buffer(channel->efx, &channel->eventq);
1377 }
1378 
1379 
efx_nic_event_test_start(struct efx_channel * channel)1380 void efx_nic_event_test_start(struct efx_channel *channel)
1381 {
1382 	channel->event_test_cpu = -1;
1383 	smp_wmb();
1384 	efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1385 }
1386 
efx_nic_generate_fill_event(struct efx_rx_queue * rx_queue)1387 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1388 {
1389 	efx_magic_event(efx_rx_queue_channel(rx_queue),
1390 			EFX_CHANNEL_MAGIC_FILL(rx_queue));
1391 }
1392 
1393 /**************************************************************************
1394  *
1395  * Hardware interrupts
1396  * The hardware interrupt handler does very little work; all the event
1397  * queue processing is carried out by per-channel tasklets.
1398  *
1399  **************************************************************************/
1400 
1401 /* Enable/disable/generate interrupts */
efx_nic_interrupts(struct efx_nic * efx,bool enabled,bool force)1402 static inline void efx_nic_interrupts(struct efx_nic *efx,
1403 				      bool enabled, bool force)
1404 {
1405 	efx_oword_t int_en_reg_ker;
1406 
1407 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1408 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1409 			     FRF_AZ_KER_INT_KER, force,
1410 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1411 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1412 }
1413 
efx_nic_enable_interrupts(struct efx_nic * efx)1414 void efx_nic_enable_interrupts(struct efx_nic *efx)
1415 {
1416 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1417 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1418 
1419 	efx_nic_interrupts(efx, true, false);
1420 }
1421 
efx_nic_disable_interrupts(struct efx_nic * efx)1422 void efx_nic_disable_interrupts(struct efx_nic *efx)
1423 {
1424 	/* Disable interrupts */
1425 	efx_nic_interrupts(efx, false, false);
1426 }
1427 
1428 /* Generate a test interrupt
1429  * Interrupt must already have been enabled, otherwise nasty things
1430  * may happen.
1431  */
efx_nic_irq_test_start(struct efx_nic * efx)1432 void efx_nic_irq_test_start(struct efx_nic *efx)
1433 {
1434 	efx->last_irq_cpu = -1;
1435 	smp_wmb();
1436 	efx_nic_interrupts(efx, true, true);
1437 }
1438 
1439 /* Process a fatal interrupt
1440  * Disable bus mastering ASAP and schedule a reset
1441  */
efx_nic_fatal_interrupt(struct efx_nic * efx)1442 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1443 {
1444 	struct falcon_nic_data *nic_data = efx->nic_data;
1445 	efx_oword_t *int_ker = efx->irq_status.addr;
1446 	efx_oword_t fatal_intr;
1447 	int error, mem_perr;
1448 
1449 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1450 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1451 
1452 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1453 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1454 		  EFX_OWORD_VAL(fatal_intr),
1455 		  error ? "disabling bus mastering" : "no recognised error");
1456 
1457 	/* If this is a memory parity error dump which blocks are offending */
1458 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1459 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1460 	if (mem_perr) {
1461 		efx_oword_t reg;
1462 		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1463 		netif_err(efx, hw, efx->net_dev,
1464 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1465 			  EFX_OWORD_VAL(reg));
1466 	}
1467 
1468 	/* Disable both devices */
1469 	pci_clear_master(efx->pci_dev);
1470 	if (efx_nic_is_dual_func(efx))
1471 		pci_clear_master(nic_data->pci_dev2);
1472 	efx_nic_disable_interrupts(efx);
1473 
1474 	/* Count errors and reset or disable the NIC accordingly */
1475 	if (efx->int_error_count == 0 ||
1476 	    time_after(jiffies, efx->int_error_expire)) {
1477 		efx->int_error_count = 0;
1478 		efx->int_error_expire =
1479 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1480 	}
1481 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1482 		netif_err(efx, hw, efx->net_dev,
1483 			  "SYSTEM ERROR - reset scheduled\n");
1484 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1485 	} else {
1486 		netif_err(efx, hw, efx->net_dev,
1487 			  "SYSTEM ERROR - max number of errors seen."
1488 			  "NIC will be disabled\n");
1489 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1490 	}
1491 
1492 	return IRQ_HANDLED;
1493 }
1494 
1495 /* Handle a legacy interrupt
1496  * Acknowledges the interrupt and schedule event queue processing.
1497  */
efx_legacy_interrupt(int irq,void * dev_id)1498 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1499 {
1500 	struct efx_nic *efx = dev_id;
1501 	efx_oword_t *int_ker = efx->irq_status.addr;
1502 	irqreturn_t result = IRQ_NONE;
1503 	struct efx_channel *channel;
1504 	efx_dword_t reg;
1505 	u32 queues;
1506 	int syserr;
1507 
1508 	/* Could this be ours?  If interrupts are disabled then the
1509 	 * channel state may not be valid.
1510 	 */
1511 	if (!efx->legacy_irq_enabled)
1512 		return result;
1513 
1514 	/* Read the ISR which also ACKs the interrupts */
1515 	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1516 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1517 
1518 	/* Handle non-event-queue sources */
1519 	if (queues & (1U << efx->irq_level)) {
1520 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1521 		if (unlikely(syserr))
1522 			return efx_nic_fatal_interrupt(efx);
1523 		efx->last_irq_cpu = raw_smp_processor_id();
1524 	}
1525 
1526 	if (queues != 0) {
1527 		if (EFX_WORKAROUND_15783(efx))
1528 			efx->irq_zero_count = 0;
1529 
1530 		/* Schedule processing of any interrupting queues */
1531 		efx_for_each_channel(channel, efx) {
1532 			if (queues & 1)
1533 				efx_schedule_channel_irq(channel);
1534 			queues >>= 1;
1535 		}
1536 		result = IRQ_HANDLED;
1537 
1538 	} else if (EFX_WORKAROUND_15783(efx)) {
1539 		efx_qword_t *event;
1540 
1541 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1542 		 * because this might be a shared interrupt. */
1543 		if (efx->irq_zero_count++ == 0)
1544 			result = IRQ_HANDLED;
1545 
1546 		/* Ensure we schedule or rearm all event queues */
1547 		efx_for_each_channel(channel, efx) {
1548 			event = efx_event(channel, channel->eventq_read_ptr);
1549 			if (efx_event_present(event))
1550 				efx_schedule_channel_irq(channel);
1551 			else
1552 				efx_nic_eventq_read_ack(channel);
1553 		}
1554 	}
1555 
1556 	if (result == IRQ_HANDLED)
1557 		netif_vdbg(efx, intr, efx->net_dev,
1558 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1559 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1560 
1561 	return result;
1562 }
1563 
1564 /* Handle an MSI interrupt
1565  *
1566  * Handle an MSI hardware interrupt.  This routine schedules event
1567  * queue processing.  No interrupt acknowledgement cycle is necessary.
1568  * Also, we never need to check that the interrupt is for us, since
1569  * MSI interrupts cannot be shared.
1570  */
efx_msi_interrupt(int irq,void * dev_id)1571 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1572 {
1573 	struct efx_channel *channel = *(struct efx_channel **)dev_id;
1574 	struct efx_nic *efx = channel->efx;
1575 	efx_oword_t *int_ker = efx->irq_status.addr;
1576 	int syserr;
1577 
1578 	netif_vdbg(efx, intr, efx->net_dev,
1579 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1580 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1581 
1582 	/* Handle non-event-queue sources */
1583 	if (channel->channel == efx->irq_level) {
1584 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1585 		if (unlikely(syserr))
1586 			return efx_nic_fatal_interrupt(efx);
1587 		efx->last_irq_cpu = raw_smp_processor_id();
1588 	}
1589 
1590 	/* Schedule processing of the channel */
1591 	efx_schedule_channel_irq(channel);
1592 
1593 	return IRQ_HANDLED;
1594 }
1595 
1596 
1597 /* Setup RSS indirection table.
1598  * This maps from the hash value of the packet to RXQ
1599  */
efx_nic_push_rx_indir_table(struct efx_nic * efx)1600 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1601 {
1602 	size_t i = 0;
1603 	efx_dword_t dword;
1604 
1605 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1606 		return;
1607 
1608 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1609 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1610 
1611 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1612 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1613 				     efx->rx_indir_table[i]);
1614 		efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1615 	}
1616 }
1617 
1618 /* Hook interrupt handler(s)
1619  * Try MSI and then legacy interrupts.
1620  */
efx_nic_init_interrupt(struct efx_nic * efx)1621 int efx_nic_init_interrupt(struct efx_nic *efx)
1622 {
1623 	struct efx_channel *channel;
1624 	int rc;
1625 
1626 	if (!EFX_INT_MODE_USE_MSI(efx)) {
1627 		irq_handler_t handler;
1628 		if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1629 			handler = efx_legacy_interrupt;
1630 		else
1631 			handler = falcon_legacy_interrupt_a1;
1632 
1633 		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1634 				 efx->name, efx);
1635 		if (rc) {
1636 			netif_err(efx, drv, efx->net_dev,
1637 				  "failed to hook legacy IRQ %d\n",
1638 				  efx->pci_dev->irq);
1639 			goto fail1;
1640 		}
1641 		return 0;
1642 	}
1643 
1644 	/* Hook MSI or MSI-X interrupt */
1645 	efx_for_each_channel(channel, efx) {
1646 		rc = request_irq(channel->irq, efx_msi_interrupt,
1647 				 IRQF_PROBE_SHARED, /* Not shared */
1648 				 efx->channel_name[channel->channel],
1649 				 &efx->channel[channel->channel]);
1650 		if (rc) {
1651 			netif_err(efx, drv, efx->net_dev,
1652 				  "failed to hook IRQ %d\n", channel->irq);
1653 			goto fail2;
1654 		}
1655 	}
1656 
1657 	return 0;
1658 
1659  fail2:
1660 	efx_for_each_channel(channel, efx)
1661 		free_irq(channel->irq, &efx->channel[channel->channel]);
1662  fail1:
1663 	return rc;
1664 }
1665 
efx_nic_fini_interrupt(struct efx_nic * efx)1666 void efx_nic_fini_interrupt(struct efx_nic *efx)
1667 {
1668 	struct efx_channel *channel;
1669 	efx_oword_t reg;
1670 
1671 	/* Disable MSI/MSI-X interrupts */
1672 	efx_for_each_channel(channel, efx) {
1673 		if (channel->irq)
1674 			free_irq(channel->irq, &efx->channel[channel->channel]);
1675 	}
1676 
1677 	/* ACK legacy interrupt */
1678 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1679 		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1680 	else
1681 		falcon_irq_ack_a1(efx);
1682 
1683 	/* Disable legacy interrupt */
1684 	if (efx->legacy_irq)
1685 		free_irq(efx->legacy_irq, efx);
1686 }
1687 
1688 /* Looks at available SRAM resources and works out how many queues we
1689  * can support, and where things like descriptor caches should live.
1690  *
1691  * SRAM is split up as follows:
1692  * 0                          buftbl entries for channels
1693  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1694  * efx->rx_dc_base            RX descriptor caches
1695  * efx->tx_dc_base            TX descriptor caches
1696  */
efx_nic_dimension_resources(struct efx_nic * efx,unsigned sram_lim_qw)1697 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1698 {
1699 	unsigned vi_count, buftbl_min;
1700 
1701 	/* Account for the buffer table entries backing the datapath channels
1702 	 * and the descriptor caches for those channels.
1703 	 */
1704 	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1705 		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1706 		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1707 		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1708 	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1709 
1710 #ifdef CONFIG_SFC_SRIOV
1711 	if (efx_sriov_wanted(efx)) {
1712 		unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1713 
1714 		efx->vf_buftbl_base = buftbl_min;
1715 
1716 		vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1717 		vi_count = max(vi_count, EFX_VI_BASE);
1718 		buftbl_free = (sram_lim_qw - buftbl_min -
1719 			       vi_count * vi_dc_entries);
1720 
1721 		entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1722 				  efx_vf_size(efx));
1723 		vf_limit = min(buftbl_free / entries_per_vf,
1724 			       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1725 
1726 		if (efx->vf_count > vf_limit) {
1727 			netif_err(efx, probe, efx->net_dev,
1728 				  "Reducing VF count from from %d to %d\n",
1729 				  efx->vf_count, vf_limit);
1730 			efx->vf_count = vf_limit;
1731 		}
1732 		vi_count += efx->vf_count * efx_vf_size(efx);
1733 	}
1734 #endif
1735 
1736 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1737 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1738 }
1739 
efx_nic_fpga_ver(struct efx_nic * efx)1740 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1741 {
1742 	efx_oword_t altera_build;
1743 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1744 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1745 }
1746 
efx_nic_init_common(struct efx_nic * efx)1747 void efx_nic_init_common(struct efx_nic *efx)
1748 {
1749 	efx_oword_t temp;
1750 
1751 	/* Set positions of descriptor caches in SRAM. */
1752 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1753 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1754 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1755 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1756 
1757 	/* Set TX descriptor cache size. */
1758 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1759 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1760 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1761 
1762 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1763 	 * this allows most efficient prefetching.
1764 	 */
1765 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1766 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1767 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1768 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1769 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1770 
1771 	/* Program INT_KER address */
1772 	EFX_POPULATE_OWORD_2(temp,
1773 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1774 			     EFX_INT_MODE_USE_MSI(efx),
1775 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1776 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1777 
1778 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1779 		/* Use an interrupt level unused by event queues */
1780 		efx->irq_level = 0x1f;
1781 	else
1782 		/* Use a valid MSI-X vector */
1783 		efx->irq_level = 0;
1784 
1785 	/* Enable all the genuinely fatal interrupts.  (They are still
1786 	 * masked by the overall interrupt mask, controlled by
1787 	 * falcon_interrupts()).
1788 	 *
1789 	 * Note: All other fatal interrupts are enabled
1790 	 */
1791 	EFX_POPULATE_OWORD_3(temp,
1792 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1793 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1794 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1795 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1796 		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1797 	EFX_INVERT_OWORD(temp);
1798 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1799 
1800 	efx_nic_push_rx_indir_table(efx);
1801 
1802 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1803 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1804 	 */
1805 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1806 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1807 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1808 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1809 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1810 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1811 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1812 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1813 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1814 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1815 	/* Disable hardware watchdog which can misfire */
1816 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1817 	/* Squash TX of packets of 16 bytes or less */
1818 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1819 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1820 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1821 
1822 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1823 		EFX_POPULATE_OWORD_4(temp,
1824 				     /* Default values */
1825 				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1826 				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1827 				     FRF_BZ_TX_PACE_FB_BASE, 0,
1828 				     /* Allow large pace values in the
1829 				      * fast bin. */
1830 				     FRF_BZ_TX_PACE_BIN_TH,
1831 				     FFE_BZ_TX_PACE_RESERVED);
1832 		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1833 	}
1834 }
1835 
1836 /* Register dump */
1837 
1838 #define REGISTER_REVISION_A	1
1839 #define REGISTER_REVISION_B	2
1840 #define REGISTER_REVISION_C	3
1841 #define REGISTER_REVISION_Z	3	/* latest revision */
1842 
1843 struct efx_nic_reg {
1844 	u32 offset:24;
1845 	u32 min_revision:2, max_revision:2;
1846 };
1847 
1848 #define REGISTER(name, min_rev, max_rev) {				\
1849 	FR_ ## min_rev ## max_rev ## _ ## name,				\
1850 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev	\
1851 }
1852 #define REGISTER_AA(name) REGISTER(name, A, A)
1853 #define REGISTER_AB(name) REGISTER(name, A, B)
1854 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1855 #define REGISTER_BB(name) REGISTER(name, B, B)
1856 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1857 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1858 
1859 static const struct efx_nic_reg efx_nic_regs[] = {
1860 	REGISTER_AZ(ADR_REGION),
1861 	REGISTER_AZ(INT_EN_KER),
1862 	REGISTER_BZ(INT_EN_CHAR),
1863 	REGISTER_AZ(INT_ADR_KER),
1864 	REGISTER_BZ(INT_ADR_CHAR),
1865 	/* INT_ACK_KER is WO */
1866 	/* INT_ISR0 is RC */
1867 	REGISTER_AZ(HW_INIT),
1868 	REGISTER_CZ(USR_EV_CFG),
1869 	REGISTER_AB(EE_SPI_HCMD),
1870 	REGISTER_AB(EE_SPI_HADR),
1871 	REGISTER_AB(EE_SPI_HDATA),
1872 	REGISTER_AB(EE_BASE_PAGE),
1873 	REGISTER_AB(EE_VPD_CFG0),
1874 	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1875 	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1876 	/* PCIE_CORE_INDIRECT is indirect */
1877 	REGISTER_AB(NIC_STAT),
1878 	REGISTER_AB(GPIO_CTL),
1879 	REGISTER_AB(GLB_CTL),
1880 	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1881 	REGISTER_BZ(DP_CTRL),
1882 	REGISTER_AZ(MEM_STAT),
1883 	REGISTER_AZ(CS_DEBUG),
1884 	REGISTER_AZ(ALTERA_BUILD),
1885 	REGISTER_AZ(CSR_SPARE),
1886 	REGISTER_AB(PCIE_SD_CTL0123),
1887 	REGISTER_AB(PCIE_SD_CTL45),
1888 	REGISTER_AB(PCIE_PCS_CTL_STAT),
1889 	/* DEBUG_DATA_OUT is not used */
1890 	/* DRV_EV is WO */
1891 	REGISTER_AZ(EVQ_CTL),
1892 	REGISTER_AZ(EVQ_CNT1),
1893 	REGISTER_AZ(EVQ_CNT2),
1894 	REGISTER_AZ(BUF_TBL_CFG),
1895 	REGISTER_AZ(SRM_RX_DC_CFG),
1896 	REGISTER_AZ(SRM_TX_DC_CFG),
1897 	REGISTER_AZ(SRM_CFG),
1898 	/* BUF_TBL_UPD is WO */
1899 	REGISTER_AZ(SRM_UPD_EVQ),
1900 	REGISTER_AZ(SRAM_PARITY),
1901 	REGISTER_AZ(RX_CFG),
1902 	REGISTER_BZ(RX_FILTER_CTL),
1903 	/* RX_FLUSH_DESCQ is WO */
1904 	REGISTER_AZ(RX_DC_CFG),
1905 	REGISTER_AZ(RX_DC_PF_WM),
1906 	REGISTER_BZ(RX_RSS_TKEY),
1907 	/* RX_NODESC_DROP is RC */
1908 	REGISTER_AA(RX_SELF_RST),
1909 	/* RX_DEBUG, RX_PUSH_DROP are not used */
1910 	REGISTER_CZ(RX_RSS_IPV6_REG1),
1911 	REGISTER_CZ(RX_RSS_IPV6_REG2),
1912 	REGISTER_CZ(RX_RSS_IPV6_REG3),
1913 	/* TX_FLUSH_DESCQ is WO */
1914 	REGISTER_AZ(TX_DC_CFG),
1915 	REGISTER_AA(TX_CHKSM_CFG),
1916 	REGISTER_AZ(TX_CFG),
1917 	/* TX_PUSH_DROP is not used */
1918 	REGISTER_AZ(TX_RESERVED),
1919 	REGISTER_BZ(TX_PACE),
1920 	/* TX_PACE_DROP_QID is RC */
1921 	REGISTER_BB(TX_VLAN),
1922 	REGISTER_BZ(TX_IPFIL_PORTEN),
1923 	REGISTER_AB(MD_TXD),
1924 	REGISTER_AB(MD_RXD),
1925 	REGISTER_AB(MD_CS),
1926 	REGISTER_AB(MD_PHY_ADR),
1927 	REGISTER_AB(MD_ID),
1928 	/* MD_STAT is RC */
1929 	REGISTER_AB(MAC_STAT_DMA),
1930 	REGISTER_AB(MAC_CTRL),
1931 	REGISTER_BB(GEN_MODE),
1932 	REGISTER_AB(MAC_MC_HASH_REG0),
1933 	REGISTER_AB(MAC_MC_HASH_REG1),
1934 	REGISTER_AB(GM_CFG1),
1935 	REGISTER_AB(GM_CFG2),
1936 	/* GM_IPG and GM_HD are not used */
1937 	REGISTER_AB(GM_MAX_FLEN),
1938 	/* GM_TEST is not used */
1939 	REGISTER_AB(GM_ADR1),
1940 	REGISTER_AB(GM_ADR2),
1941 	REGISTER_AB(GMF_CFG0),
1942 	REGISTER_AB(GMF_CFG1),
1943 	REGISTER_AB(GMF_CFG2),
1944 	REGISTER_AB(GMF_CFG3),
1945 	REGISTER_AB(GMF_CFG4),
1946 	REGISTER_AB(GMF_CFG5),
1947 	REGISTER_BB(TX_SRC_MAC_CTL),
1948 	REGISTER_AB(XM_ADR_LO),
1949 	REGISTER_AB(XM_ADR_HI),
1950 	REGISTER_AB(XM_GLB_CFG),
1951 	REGISTER_AB(XM_TX_CFG),
1952 	REGISTER_AB(XM_RX_CFG),
1953 	REGISTER_AB(XM_MGT_INT_MASK),
1954 	REGISTER_AB(XM_FC),
1955 	REGISTER_AB(XM_PAUSE_TIME),
1956 	REGISTER_AB(XM_TX_PARAM),
1957 	REGISTER_AB(XM_RX_PARAM),
1958 	/* XM_MGT_INT_MSK (note no 'A') is RC */
1959 	REGISTER_AB(XX_PWR_RST),
1960 	REGISTER_AB(XX_SD_CTL),
1961 	REGISTER_AB(XX_TXDRV_CTL),
1962 	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1963 	/* XX_CORE_STAT is partly RC */
1964 };
1965 
1966 struct efx_nic_reg_table {
1967 	u32 offset:24;
1968 	u32 min_revision:2, max_revision:2;
1969 	u32 step:6, rows:21;
1970 };
1971 
1972 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1973 	offset,								\
1974 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,	\
1975 	step, rows							\
1976 }
1977 #define REGISTER_TABLE(name, min_rev, max_rev)				\
1978 	REGISTER_TABLE_DIMENSIONS(					\
1979 		name, FR_ ## min_rev ## max_rev ## _ ## name,		\
1980 		min_rev, max_rev,					\
1981 		FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
1982 		FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1983 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1984 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1985 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1986 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1987 #define REGISTER_TABLE_BB_CZ(name)					\
1988 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,		\
1989 				  FR_BZ_ ## name ## _STEP,		\
1990 				  FR_BB_ ## name ## _ROWS),		\
1991 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,		\
1992 				  FR_BZ_ ## name ## _STEP,		\
1993 				  FR_CZ_ ## name ## _ROWS)
1994 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1995 
1996 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1997 	/* DRIVER is not used */
1998 	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1999 	REGISTER_TABLE_BB(TX_IPFIL_TBL),
2000 	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
2001 	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
2002 	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
2003 	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
2004 	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
2005 	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
2006 	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
2007 	/* We can't reasonably read all of the buffer table (up to 8MB!).
2008 	 * However this driver will only use a few entries.  Reading
2009 	 * 1K entries allows for some expansion of queue count and
2010 	 * size before we need to change the version. */
2011 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
2012 				  A, A, 8, 1024),
2013 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
2014 				  B, Z, 8, 1024),
2015 	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
2016 	REGISTER_TABLE_BB_CZ(TIMER_TBL),
2017 	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
2018 	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
2019 	/* TX_FILTER_TBL0 is huge and not used by this driver */
2020 	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
2021 	REGISTER_TABLE_CZ(MC_TREG_SMEM),
2022 	/* MSIX_PBA_TABLE is not mapped */
2023 	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
2024 	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
2025 };
2026 
efx_nic_get_regs_len(struct efx_nic * efx)2027 size_t efx_nic_get_regs_len(struct efx_nic *efx)
2028 {
2029 	const struct efx_nic_reg *reg;
2030 	const struct efx_nic_reg_table *table;
2031 	size_t len = 0;
2032 
2033 	for (reg = efx_nic_regs;
2034 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2035 	     reg++)
2036 		if (efx->type->revision >= reg->min_revision &&
2037 		    efx->type->revision <= reg->max_revision)
2038 			len += sizeof(efx_oword_t);
2039 
2040 	for (table = efx_nic_reg_tables;
2041 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2042 	     table++)
2043 		if (efx->type->revision >= table->min_revision &&
2044 		    efx->type->revision <= table->max_revision)
2045 			len += table->rows * min_t(size_t, table->step, 16);
2046 
2047 	return len;
2048 }
2049 
efx_nic_get_regs(struct efx_nic * efx,void * buf)2050 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2051 {
2052 	const struct efx_nic_reg *reg;
2053 	const struct efx_nic_reg_table *table;
2054 
2055 	for (reg = efx_nic_regs;
2056 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2057 	     reg++) {
2058 		if (efx->type->revision >= reg->min_revision &&
2059 		    efx->type->revision <= reg->max_revision) {
2060 			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2061 			buf += sizeof(efx_oword_t);
2062 		}
2063 	}
2064 
2065 	for (table = efx_nic_reg_tables;
2066 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2067 	     table++) {
2068 		size_t size, i;
2069 
2070 		if (!(efx->type->revision >= table->min_revision &&
2071 		      efx->type->revision <= table->max_revision))
2072 			continue;
2073 
2074 		size = min_t(size_t, table->step, 16);
2075 
2076 		for (i = 0; i < table->rows; i++) {
2077 			switch (table->step) {
2078 			case 4: /* 32-bit register or SRAM */
2079 				efx_readd_table(efx, buf, table->offset, i);
2080 				break;
2081 			case 8: /* 64-bit SRAM */
2082 				efx_sram_readq(efx,
2083 					       efx->membase + table->offset,
2084 					       buf, i);
2085 				break;
2086 			case 16: /* 128-bit register */
2087 				efx_reado_table(efx, buf, table->offset, i);
2088 				break;
2089 			case 32: /* 128-bit register, interleaved */
2090 				efx_reado_table(efx, buf, table->offset, 2 * i);
2091 				break;
2092 			default:
2093 				WARN_ON(1);
2094 				return;
2095 			}
2096 			buf += size;
2097 		}
2098 	}
2099 }
2100