1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2008-2013 Solarflare Communications Inc.
5 */
6
7 #include <linux/delay.h>
8 #include <linux/moduleparam.h>
9 #include <linux/atomic.h>
10 #include "net_driver.h"
11 #include "nic.h"
12 #include "io.h"
13 #include "farch_regs.h"
14 #include "mcdi_pcol.h"
15
16 /**************************************************************************
17 *
18 * Management-Controller-to-Driver Interface
19 *
20 **************************************************************************
21 */
22
23 #define MCDI_RPC_TIMEOUT (10 * HZ)
24
25 /* A reboot/assertion causes the MCDI status word to be set after the
26 * command word is set or a REBOOT event is sent. If we notice a reboot
27 * via these mechanisms then wait 250ms for the status word to be set.
28 */
29 #define MCDI_STATUS_DELAY_US 100
30 #define MCDI_STATUS_DELAY_COUNT 2500
31 #define MCDI_STATUS_SLEEP_MS \
32 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
33
34 #define SEQ_MASK \
35 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
36
37 struct efx_mcdi_async_param {
38 struct list_head list;
39 unsigned int cmd;
40 size_t inlen;
41 size_t outlen;
42 bool quiet;
43 efx_mcdi_async_completer *complete;
44 unsigned long cookie;
45 /* followed by request/response buffer */
46 };
47
48 static void efx_mcdi_timeout_async(struct timer_list *t);
49 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
50 bool *was_attached_out);
51 static bool efx_mcdi_poll_once(struct efx_nic *efx);
52 static void efx_mcdi_abandon(struct efx_nic *efx);
53
54 #ifdef CONFIG_SFC_MCDI_LOGGING
55 static bool mcdi_logging_default;
56 module_param(mcdi_logging_default, bool, 0644);
57 MODULE_PARM_DESC(mcdi_logging_default,
58 "Enable MCDI logging on newly-probed functions");
59 #endif
60
efx_mcdi_init(struct efx_nic * efx)61 int efx_mcdi_init(struct efx_nic *efx)
62 {
63 struct efx_mcdi_iface *mcdi;
64 bool already_attached;
65 int rc = -ENOMEM;
66
67 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
68 if (!efx->mcdi)
69 goto fail;
70
71 mcdi = efx_mcdi(efx);
72 mcdi->efx = efx;
73 #ifdef CONFIG_SFC_MCDI_LOGGING
74 /* consuming code assumes buffer is page-sized */
75 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
76 if (!mcdi->logging_buffer)
77 goto fail1;
78 mcdi->logging_enabled = mcdi_logging_default;
79 #endif
80 init_waitqueue_head(&mcdi->wq);
81 init_waitqueue_head(&mcdi->proxy_rx_wq);
82 spin_lock_init(&mcdi->iface_lock);
83 mcdi->state = MCDI_STATE_QUIESCENT;
84 mcdi->mode = MCDI_MODE_POLL;
85 spin_lock_init(&mcdi->async_lock);
86 INIT_LIST_HEAD(&mcdi->async_list);
87 timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
88
89 (void) efx_mcdi_poll_reboot(efx);
90 mcdi->new_epoch = true;
91
92 /* Recover from a failed assertion before probing */
93 rc = efx_mcdi_handle_assertion(efx);
94 if (rc)
95 goto fail2;
96
97 /* Let the MC (and BMC, if this is a LOM) know that the driver
98 * is loaded. We should do this before we reset the NIC.
99 */
100 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
101 if (rc) {
102 netif_err(efx, probe, efx->net_dev,
103 "Unable to register driver with MCPU\n");
104 goto fail2;
105 }
106 if (already_attached)
107 /* Not a fatal error */
108 netif_err(efx, probe, efx->net_dev,
109 "Host already registered with MCPU\n");
110
111 if (efx->mcdi->fn_flags &
112 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
113 efx->primary = efx;
114
115 return 0;
116 fail2:
117 #ifdef CONFIG_SFC_MCDI_LOGGING
118 free_page((unsigned long)mcdi->logging_buffer);
119 fail1:
120 #endif
121 kfree(efx->mcdi);
122 efx->mcdi = NULL;
123 fail:
124 return rc;
125 }
126
efx_mcdi_detach(struct efx_nic * efx)127 void efx_mcdi_detach(struct efx_nic *efx)
128 {
129 if (!efx->mcdi)
130 return;
131
132 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
133
134 /* Relinquish the device (back to the BMC, if this is a LOM) */
135 efx_mcdi_drv_attach(efx, false, NULL);
136 }
137
efx_mcdi_fini(struct efx_nic * efx)138 void efx_mcdi_fini(struct efx_nic *efx)
139 {
140 if (!efx->mcdi)
141 return;
142
143 #ifdef CONFIG_SFC_MCDI_LOGGING
144 free_page((unsigned long)efx->mcdi->iface.logging_buffer);
145 #endif
146
147 kfree(efx->mcdi);
148 }
149
efx_mcdi_send_request(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen)150 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
151 const efx_dword_t *inbuf, size_t inlen)
152 {
153 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
154 #ifdef CONFIG_SFC_MCDI_LOGGING
155 char *buf = mcdi->logging_buffer; /* page-sized */
156 #endif
157 efx_dword_t hdr[2];
158 size_t hdr_len;
159 u32 xflags, seqno;
160
161 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
162
163 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
164 spin_lock_bh(&mcdi->iface_lock);
165 ++mcdi->seqno;
166 seqno = mcdi->seqno & SEQ_MASK;
167 spin_unlock_bh(&mcdi->iface_lock);
168
169 xflags = 0;
170 if (mcdi->mode == MCDI_MODE_EVENTS)
171 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
172
173 if (efx->type->mcdi_max_ver == 1) {
174 /* MCDI v1 */
175 EFX_POPULATE_DWORD_7(hdr[0],
176 MCDI_HEADER_RESPONSE, 0,
177 MCDI_HEADER_RESYNC, 1,
178 MCDI_HEADER_CODE, cmd,
179 MCDI_HEADER_DATALEN, inlen,
180 MCDI_HEADER_SEQ, seqno,
181 MCDI_HEADER_XFLAGS, xflags,
182 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
183 hdr_len = 4;
184 } else {
185 /* MCDI v2 */
186 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
187 EFX_POPULATE_DWORD_7(hdr[0],
188 MCDI_HEADER_RESPONSE, 0,
189 MCDI_HEADER_RESYNC, 1,
190 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
191 MCDI_HEADER_DATALEN, 0,
192 MCDI_HEADER_SEQ, seqno,
193 MCDI_HEADER_XFLAGS, xflags,
194 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
195 EFX_POPULATE_DWORD_2(hdr[1],
196 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
197 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
198 hdr_len = 8;
199 }
200
201 #ifdef CONFIG_SFC_MCDI_LOGGING
202 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
203 int bytes = 0;
204 int i;
205 /* Lengths should always be a whole number of dwords, so scream
206 * if they're not.
207 */
208 WARN_ON_ONCE(hdr_len % 4);
209 WARN_ON_ONCE(inlen % 4);
210
211 /* We own the logging buffer, as only one MCDI can be in
212 * progress on a NIC at any one time. So no need for locking.
213 */
214 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
215 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
216 " %08x",
217 le32_to_cpu(hdr[i].u32[0]));
218
219 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
220 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
221 " %08x",
222 le32_to_cpu(inbuf[i].u32[0]));
223
224 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
225 }
226 #endif
227
228 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
229
230 mcdi->new_epoch = false;
231 }
232
efx_mcdi_errno(unsigned int mcdi_err)233 static int efx_mcdi_errno(unsigned int mcdi_err)
234 {
235 switch (mcdi_err) {
236 case 0:
237 return 0;
238 #define TRANSLATE_ERROR(name) \
239 case MC_CMD_ERR_ ## name: \
240 return -name;
241 TRANSLATE_ERROR(EPERM);
242 TRANSLATE_ERROR(ENOENT);
243 TRANSLATE_ERROR(EINTR);
244 TRANSLATE_ERROR(EAGAIN);
245 TRANSLATE_ERROR(EACCES);
246 TRANSLATE_ERROR(EBUSY);
247 TRANSLATE_ERROR(EINVAL);
248 TRANSLATE_ERROR(EDEADLK);
249 TRANSLATE_ERROR(ENOSYS);
250 TRANSLATE_ERROR(ETIME);
251 TRANSLATE_ERROR(EALREADY);
252 TRANSLATE_ERROR(ENOSPC);
253 #undef TRANSLATE_ERROR
254 case MC_CMD_ERR_ENOTSUP:
255 return -EOPNOTSUPP;
256 case MC_CMD_ERR_ALLOC_FAIL:
257 return -ENOBUFS;
258 case MC_CMD_ERR_MAC_EXIST:
259 return -EADDRINUSE;
260 default:
261 return -EPROTO;
262 }
263 }
264
efx_mcdi_read_response_header(struct efx_nic * efx)265 static void efx_mcdi_read_response_header(struct efx_nic *efx)
266 {
267 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
268 unsigned int respseq, respcmd, error;
269 #ifdef CONFIG_SFC_MCDI_LOGGING
270 char *buf = mcdi->logging_buffer; /* page-sized */
271 #endif
272 efx_dword_t hdr;
273
274 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
275 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
276 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
277 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
278
279 if (respcmd != MC_CMD_V2_EXTN) {
280 mcdi->resp_hdr_len = 4;
281 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
282 } else {
283 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
284 mcdi->resp_hdr_len = 8;
285 mcdi->resp_data_len =
286 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
287 }
288
289 #ifdef CONFIG_SFC_MCDI_LOGGING
290 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
291 size_t hdr_len, data_len;
292 int bytes = 0;
293 int i;
294
295 WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
296 hdr_len = mcdi->resp_hdr_len / 4;
297 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
298 * to dword size, and the MCDI buffer is always dword size
299 */
300 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
301
302 /* We own the logging buffer, as only one MCDI can be in
303 * progress on a NIC at any one time. So no need for locking.
304 */
305 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
306 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
307 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
308 " %08x", le32_to_cpu(hdr.u32[0]));
309 }
310
311 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
312 efx->type->mcdi_read_response(efx, &hdr,
313 mcdi->resp_hdr_len + (i * 4), 4);
314 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
315 " %08x", le32_to_cpu(hdr.u32[0]));
316 }
317
318 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
319 }
320 #endif
321
322 mcdi->resprc_raw = 0;
323 if (error && mcdi->resp_data_len == 0) {
324 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
325 mcdi->resprc = -EIO;
326 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
327 netif_err(efx, hw, efx->net_dev,
328 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
329 respseq, mcdi->seqno);
330 mcdi->resprc = -EIO;
331 } else if (error) {
332 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
333 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
334 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
335 } else {
336 mcdi->resprc = 0;
337 }
338 }
339
efx_mcdi_poll_once(struct efx_nic * efx)340 static bool efx_mcdi_poll_once(struct efx_nic *efx)
341 {
342 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
343
344 rmb();
345 if (!efx->type->mcdi_poll_response(efx))
346 return false;
347
348 spin_lock_bh(&mcdi->iface_lock);
349 efx_mcdi_read_response_header(efx);
350 spin_unlock_bh(&mcdi->iface_lock);
351
352 return true;
353 }
354
efx_mcdi_poll(struct efx_nic * efx)355 static int efx_mcdi_poll(struct efx_nic *efx)
356 {
357 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
358 unsigned long time, finish;
359 unsigned int spins;
360 int rc;
361
362 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
363 rc = efx_mcdi_poll_reboot(efx);
364 if (rc) {
365 spin_lock_bh(&mcdi->iface_lock);
366 mcdi->resprc = rc;
367 mcdi->resp_hdr_len = 0;
368 mcdi->resp_data_len = 0;
369 spin_unlock_bh(&mcdi->iface_lock);
370 return 0;
371 }
372
373 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
374 * because generally mcdi responses are fast. After that, back off
375 * and poll once a jiffy (approximately)
376 */
377 spins = USER_TICK_USEC;
378 finish = jiffies + MCDI_RPC_TIMEOUT;
379
380 while (1) {
381 if (spins != 0) {
382 --spins;
383 udelay(1);
384 } else {
385 schedule_timeout_uninterruptible(1);
386 }
387
388 time = jiffies;
389
390 if (efx_mcdi_poll_once(efx))
391 break;
392
393 if (time_after(time, finish))
394 return -ETIMEDOUT;
395 }
396
397 /* Return rc=0 like wait_event_timeout() */
398 return 0;
399 }
400
401 /* Test and clear MC-rebooted flag for this port/function; reset
402 * software state as necessary.
403 */
efx_mcdi_poll_reboot(struct efx_nic * efx)404 int efx_mcdi_poll_reboot(struct efx_nic *efx)
405 {
406 if (!efx->mcdi)
407 return 0;
408
409 return efx->type->mcdi_poll_reboot(efx);
410 }
411
efx_mcdi_acquire_async(struct efx_mcdi_iface * mcdi)412 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
413 {
414 return cmpxchg(&mcdi->state,
415 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
416 MCDI_STATE_QUIESCENT;
417 }
418
efx_mcdi_acquire_sync(struct efx_mcdi_iface * mcdi)419 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
420 {
421 /* Wait until the interface becomes QUIESCENT and we win the race
422 * to mark it RUNNING_SYNC.
423 */
424 wait_event(mcdi->wq,
425 cmpxchg(&mcdi->state,
426 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
427 MCDI_STATE_QUIESCENT);
428 }
429
efx_mcdi_await_completion(struct efx_nic * efx)430 static int efx_mcdi_await_completion(struct efx_nic *efx)
431 {
432 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
433
434 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
435 MCDI_RPC_TIMEOUT) == 0)
436 return -ETIMEDOUT;
437
438 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
439 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
440 * completed the request first, then we'll just end up completing the
441 * request again, which is safe.
442 *
443 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
444 * wait_event_timeout() implicitly provides.
445 */
446 if (mcdi->mode == MCDI_MODE_POLL)
447 return efx_mcdi_poll(efx);
448
449 return 0;
450 }
451
452 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
453 * requester. Return whether this was done. Does not take any locks.
454 */
efx_mcdi_complete_sync(struct efx_mcdi_iface * mcdi)455 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
456 {
457 if (cmpxchg(&mcdi->state,
458 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
459 MCDI_STATE_RUNNING_SYNC) {
460 wake_up(&mcdi->wq);
461 return true;
462 }
463
464 return false;
465 }
466
efx_mcdi_release(struct efx_mcdi_iface * mcdi)467 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
468 {
469 if (mcdi->mode == MCDI_MODE_EVENTS) {
470 struct efx_mcdi_async_param *async;
471 struct efx_nic *efx = mcdi->efx;
472
473 /* Process the asynchronous request queue */
474 spin_lock_bh(&mcdi->async_lock);
475 async = list_first_entry_or_null(
476 &mcdi->async_list, struct efx_mcdi_async_param, list);
477 if (async) {
478 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
479 efx_mcdi_send_request(efx, async->cmd,
480 (const efx_dword_t *)(async + 1),
481 async->inlen);
482 mod_timer(&mcdi->async_timer,
483 jiffies + MCDI_RPC_TIMEOUT);
484 }
485 spin_unlock_bh(&mcdi->async_lock);
486
487 if (async)
488 return;
489 }
490
491 mcdi->state = MCDI_STATE_QUIESCENT;
492 wake_up(&mcdi->wq);
493 }
494
495 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
496 * asynchronous completion function, and release the interface.
497 * Return whether this was done. Must be called in bh-disabled
498 * context. Will take iface_lock and async_lock.
499 */
efx_mcdi_complete_async(struct efx_mcdi_iface * mcdi,bool timeout)500 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
501 {
502 struct efx_nic *efx = mcdi->efx;
503 struct efx_mcdi_async_param *async;
504 size_t hdr_len, data_len, err_len;
505 efx_dword_t *outbuf;
506 MCDI_DECLARE_BUF_ERR(errbuf);
507 int rc;
508
509 if (cmpxchg(&mcdi->state,
510 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
511 MCDI_STATE_RUNNING_ASYNC)
512 return false;
513
514 spin_lock(&mcdi->iface_lock);
515 if (timeout) {
516 /* Ensure that if the completion event arrives later,
517 * the seqno check in efx_mcdi_ev_cpl() will fail
518 */
519 ++mcdi->seqno;
520 ++mcdi->credits;
521 rc = -ETIMEDOUT;
522 hdr_len = 0;
523 data_len = 0;
524 } else {
525 rc = mcdi->resprc;
526 hdr_len = mcdi->resp_hdr_len;
527 data_len = mcdi->resp_data_len;
528 }
529 spin_unlock(&mcdi->iface_lock);
530
531 /* Stop the timer. In case the timer function is running, we
532 * must wait for it to return so that there is no possibility
533 * of it aborting the next request.
534 */
535 if (!timeout)
536 del_timer_sync(&mcdi->async_timer);
537
538 spin_lock(&mcdi->async_lock);
539 async = list_first_entry(&mcdi->async_list,
540 struct efx_mcdi_async_param, list);
541 list_del(&async->list);
542 spin_unlock(&mcdi->async_lock);
543
544 outbuf = (efx_dword_t *)(async + 1);
545 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
546 min(async->outlen, data_len));
547 if (!timeout && rc && !async->quiet) {
548 err_len = min(sizeof(errbuf), data_len);
549 efx->type->mcdi_read_response(efx, errbuf, hdr_len,
550 sizeof(errbuf));
551 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
552 err_len, rc);
553 }
554
555 if (async->complete)
556 async->complete(efx, async->cookie, rc, outbuf,
557 min(async->outlen, data_len));
558 kfree(async);
559
560 efx_mcdi_release(mcdi);
561
562 return true;
563 }
564
efx_mcdi_ev_cpl(struct efx_nic * efx,unsigned int seqno,unsigned int datalen,unsigned int mcdi_err)565 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
566 unsigned int datalen, unsigned int mcdi_err)
567 {
568 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
569 bool wake = false;
570
571 spin_lock(&mcdi->iface_lock);
572
573 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
574 if (mcdi->credits)
575 /* The request has been cancelled */
576 --mcdi->credits;
577 else
578 netif_err(efx, hw, efx->net_dev,
579 "MC response mismatch tx seq 0x%x rx "
580 "seq 0x%x\n", seqno, mcdi->seqno);
581 } else {
582 if (efx->type->mcdi_max_ver >= 2) {
583 /* MCDI v2 responses don't fit in an event */
584 efx_mcdi_read_response_header(efx);
585 } else {
586 mcdi->resprc = efx_mcdi_errno(mcdi_err);
587 mcdi->resp_hdr_len = 4;
588 mcdi->resp_data_len = datalen;
589 }
590
591 wake = true;
592 }
593
594 spin_unlock(&mcdi->iface_lock);
595
596 if (wake) {
597 if (!efx_mcdi_complete_async(mcdi, false))
598 (void) efx_mcdi_complete_sync(mcdi);
599
600 /* If the interface isn't RUNNING_ASYNC or
601 * RUNNING_SYNC then we've received a duplicate
602 * completion after we've already transitioned back to
603 * QUIESCENT. [A subsequent invocation would increment
604 * seqno, so would have failed the seqno check].
605 */
606 }
607 }
608
efx_mcdi_timeout_async(struct timer_list * t)609 static void efx_mcdi_timeout_async(struct timer_list *t)
610 {
611 struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
612
613 efx_mcdi_complete_async(mcdi, true);
614 }
615
616 static int
efx_mcdi_check_supported(struct efx_nic * efx,unsigned int cmd,size_t inlen)617 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
618 {
619 if (efx->type->mcdi_max_ver < 0 ||
620 (efx->type->mcdi_max_ver < 2 &&
621 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
622 return -EINVAL;
623
624 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
625 (efx->type->mcdi_max_ver < 2 &&
626 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
627 return -EMSGSIZE;
628
629 return 0;
630 }
631
efx_mcdi_get_proxy_handle(struct efx_nic * efx,size_t hdr_len,size_t data_len,u32 * proxy_handle)632 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
633 size_t hdr_len, size_t data_len,
634 u32 *proxy_handle)
635 {
636 MCDI_DECLARE_BUF_ERR(testbuf);
637 const size_t buflen = sizeof(testbuf);
638
639 if (!proxy_handle || data_len < buflen)
640 return false;
641
642 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
643 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
644 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
645 return true;
646 }
647
648 return false;
649 }
650
_efx_mcdi_rpc_finish(struct efx_nic * efx,unsigned int cmd,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual,bool quiet,u32 * proxy_handle,int * raw_rc)651 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
652 size_t inlen,
653 efx_dword_t *outbuf, size_t outlen,
654 size_t *outlen_actual, bool quiet,
655 u32 *proxy_handle, int *raw_rc)
656 {
657 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
658 MCDI_DECLARE_BUF_ERR(errbuf);
659 int rc;
660
661 if (mcdi->mode == MCDI_MODE_POLL)
662 rc = efx_mcdi_poll(efx);
663 else
664 rc = efx_mcdi_await_completion(efx);
665
666 if (rc != 0) {
667 netif_err(efx, hw, efx->net_dev,
668 "MC command 0x%x inlen %d mode %d timed out\n",
669 cmd, (int)inlen, mcdi->mode);
670
671 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
672 netif_err(efx, hw, efx->net_dev,
673 "MCDI request was completed without an event\n");
674 rc = 0;
675 }
676
677 efx_mcdi_abandon(efx);
678
679 /* Close the race with efx_mcdi_ev_cpl() executing just too late
680 * and completing a request we've just cancelled, by ensuring
681 * that the seqno check therein fails.
682 */
683 spin_lock_bh(&mcdi->iface_lock);
684 ++mcdi->seqno;
685 ++mcdi->credits;
686 spin_unlock_bh(&mcdi->iface_lock);
687 }
688
689 if (proxy_handle)
690 *proxy_handle = 0;
691
692 if (rc != 0) {
693 if (outlen_actual)
694 *outlen_actual = 0;
695 } else {
696 size_t hdr_len, data_len, err_len;
697
698 /* At the very least we need a memory barrier here to ensure
699 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
700 * a spurious efx_mcdi_ev_cpl() running concurrently by
701 * acquiring the iface_lock. */
702 spin_lock_bh(&mcdi->iface_lock);
703 rc = mcdi->resprc;
704 if (raw_rc)
705 *raw_rc = mcdi->resprc_raw;
706 hdr_len = mcdi->resp_hdr_len;
707 data_len = mcdi->resp_data_len;
708 err_len = min(sizeof(errbuf), data_len);
709 spin_unlock_bh(&mcdi->iface_lock);
710
711 BUG_ON(rc > 0);
712
713 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
714 min(outlen, data_len));
715 if (outlen_actual)
716 *outlen_actual = data_len;
717
718 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
719
720 if (cmd == MC_CMD_REBOOT && rc == -EIO) {
721 /* Don't reset if MC_CMD_REBOOT returns EIO */
722 } else if (rc == -EIO || rc == -EINTR) {
723 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
724 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
725 cmd, -rc);
726 if (efx->type->mcdi_reboot_detected)
727 efx->type->mcdi_reboot_detected(efx);
728 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
729 } else if (proxy_handle && (rc == -EPROTO) &&
730 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
731 proxy_handle)) {
732 mcdi->proxy_rx_status = 0;
733 mcdi->proxy_rx_handle = 0;
734 mcdi->state = MCDI_STATE_PROXY_WAIT;
735 } else if (rc && !quiet) {
736 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
737 rc);
738 }
739
740 if (rc == -EIO || rc == -EINTR) {
741 msleep(MCDI_STATUS_SLEEP_MS);
742 efx_mcdi_poll_reboot(efx);
743 mcdi->new_epoch = true;
744 }
745 }
746
747 if (!proxy_handle || !*proxy_handle)
748 efx_mcdi_release(mcdi);
749 return rc;
750 }
751
efx_mcdi_proxy_abort(struct efx_mcdi_iface * mcdi)752 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
753 {
754 if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
755 /* Interrupt the proxy wait. */
756 mcdi->proxy_rx_status = -EINTR;
757 wake_up(&mcdi->proxy_rx_wq);
758 }
759 }
760
efx_mcdi_ev_proxy_response(struct efx_nic * efx,u32 handle,int status)761 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
762 u32 handle, int status)
763 {
764 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
765
766 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
767
768 mcdi->proxy_rx_status = efx_mcdi_errno(status);
769 /* Ensure the status is written before we update the handle, since the
770 * latter is used to check if we've finished.
771 */
772 wmb();
773 mcdi->proxy_rx_handle = handle;
774 wake_up(&mcdi->proxy_rx_wq);
775 }
776
efx_mcdi_proxy_wait(struct efx_nic * efx,u32 handle,bool quiet)777 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
778 {
779 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
780 int rc;
781
782 /* Wait for a proxy event, or timeout. */
783 rc = wait_event_timeout(mcdi->proxy_rx_wq,
784 mcdi->proxy_rx_handle != 0 ||
785 mcdi->proxy_rx_status == -EINTR,
786 MCDI_RPC_TIMEOUT);
787
788 if (rc <= 0) {
789 netif_dbg(efx, hw, efx->net_dev,
790 "MCDI proxy timeout %d\n", handle);
791 return -ETIMEDOUT;
792 } else if (mcdi->proxy_rx_handle != handle) {
793 netif_warn(efx, hw, efx->net_dev,
794 "MCDI proxy unexpected handle %d (expected %d)\n",
795 mcdi->proxy_rx_handle, handle);
796 return -EINVAL;
797 }
798
799 return mcdi->proxy_rx_status;
800 }
801
_efx_mcdi_rpc(struct efx_nic * efx,unsigned int cmd,const efx_dword_t * inbuf,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual,bool quiet,int * raw_rc)802 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
803 const efx_dword_t *inbuf, size_t inlen,
804 efx_dword_t *outbuf, size_t outlen,
805 size_t *outlen_actual, bool quiet, int *raw_rc)
806 {
807 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
808 int rc;
809
810 if (inbuf && inlen && (inbuf == outbuf)) {
811 /* The input buffer can't be aliased with the output. */
812 WARN_ON(1);
813 return -EINVAL;
814 }
815
816 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
817 if (rc)
818 return rc;
819
820 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
821 outlen_actual, quiet, &proxy_handle, raw_rc);
822
823 if (proxy_handle) {
824 /* Handle proxy authorisation. This allows approval of MCDI
825 * operations to be delegated to the admin function, allowing
826 * fine control over (eg) multicast subscriptions.
827 */
828 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
829
830 netif_dbg(efx, hw, efx->net_dev,
831 "MCDI waiting for proxy auth %d\n",
832 proxy_handle);
833 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
834
835 if (rc == 0) {
836 netif_dbg(efx, hw, efx->net_dev,
837 "MCDI proxy retry %d\n", proxy_handle);
838
839 /* We now retry the original request. */
840 mcdi->state = MCDI_STATE_RUNNING_SYNC;
841 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
842
843 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
844 outbuf, outlen, outlen_actual,
845 quiet, NULL, raw_rc);
846 } else {
847 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
848 "MC command 0x%x failed after proxy auth rc=%d\n",
849 cmd, rc);
850
851 if (rc == -EINTR || rc == -EIO)
852 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
853 efx_mcdi_release(mcdi);
854 }
855 }
856
857 return rc;
858 }
859
_efx_mcdi_rpc_evb_retry(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual,bool quiet)860 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
861 const efx_dword_t *inbuf, size_t inlen,
862 efx_dword_t *outbuf, size_t outlen,
863 size_t *outlen_actual, bool quiet)
864 {
865 int raw_rc = 0;
866 int rc;
867
868 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
869 outbuf, outlen, outlen_actual, true, &raw_rc);
870
871 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
872 efx->type->is_vf) {
873 /* If the EVB port isn't available within a VF this may
874 * mean the PF is still bringing the switch up. We should
875 * retry our request shortly.
876 */
877 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
878 unsigned int delay_us = 10000;
879
880 netif_dbg(efx, hw, efx->net_dev,
881 "%s: NO_EVB_PORT; will retry request\n",
882 __func__);
883
884 do {
885 usleep_range(delay_us, delay_us + 10000);
886 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
887 outbuf, outlen, outlen_actual,
888 true, &raw_rc);
889 if (delay_us < 100000)
890 delay_us <<= 1;
891 } while ((rc == -EPROTO) &&
892 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
893 time_before(jiffies, abort_time));
894 }
895
896 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
897 efx_mcdi_display_error(efx, cmd, inlen,
898 outbuf, outlen, rc);
899
900 return rc;
901 }
902
903 /**
904 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
905 * @efx: NIC through which to issue the command
906 * @cmd: Command type number
907 * @inbuf: Command parameters
908 * @inlen: Length of command parameters, in bytes. Must be a multiple
909 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
910 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
911 * @outlen: Length of response buffer, in bytes. If the actual
912 * response is longer than @outlen & ~3, it will be truncated
913 * to that length.
914 * @outlen_actual: Pointer through which to return the actual response
915 * length. May be %NULL if this is not needed.
916 *
917 * This function may sleep and therefore must be called in an appropriate
918 * context.
919 *
920 * Return: A negative error code, or zero if successful. The error
921 * code may come from the MCDI response or may indicate a failure
922 * to communicate with the MC. In the former case, the response
923 * will still be copied to @outbuf and *@outlen_actual will be
924 * set accordingly. In the latter case, *@outlen_actual will be
925 * set to zero.
926 */
efx_mcdi_rpc(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual)927 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
928 const efx_dword_t *inbuf, size_t inlen,
929 efx_dword_t *outbuf, size_t outlen,
930 size_t *outlen_actual)
931 {
932 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
933 outlen_actual, false);
934 }
935
936 /* Normally, on receiving an error code in the MCDI response,
937 * efx_mcdi_rpc will log an error message containing (among other
938 * things) the raw error code, by means of efx_mcdi_display_error.
939 * This _quiet version suppresses that; if the caller wishes to log
940 * the error conditionally on the return code, it should call this
941 * function and is then responsible for calling efx_mcdi_display_error
942 * as needed.
943 */
efx_mcdi_rpc_quiet(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual)944 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
945 const efx_dword_t *inbuf, size_t inlen,
946 efx_dword_t *outbuf, size_t outlen,
947 size_t *outlen_actual)
948 {
949 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
950 outlen_actual, true);
951 }
952
efx_mcdi_rpc_start(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen)953 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
954 const efx_dword_t *inbuf, size_t inlen)
955 {
956 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
957 int rc;
958
959 rc = efx_mcdi_check_supported(efx, cmd, inlen);
960 if (rc)
961 return rc;
962
963 if (efx->mc_bist_for_other_fn)
964 return -ENETDOWN;
965
966 if (mcdi->mode == MCDI_MODE_FAIL)
967 return -ENETDOWN;
968
969 efx_mcdi_acquire_sync(mcdi);
970 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
971 return 0;
972 }
973
_efx_mcdi_rpc_async(struct efx_nic * efx,unsigned int cmd,const efx_dword_t * inbuf,size_t inlen,size_t outlen,efx_mcdi_async_completer * complete,unsigned long cookie,bool quiet)974 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
975 const efx_dword_t *inbuf, size_t inlen,
976 size_t outlen,
977 efx_mcdi_async_completer *complete,
978 unsigned long cookie, bool quiet)
979 {
980 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
981 struct efx_mcdi_async_param *async;
982 int rc;
983
984 rc = efx_mcdi_check_supported(efx, cmd, inlen);
985 if (rc)
986 return rc;
987
988 if (efx->mc_bist_for_other_fn)
989 return -ENETDOWN;
990
991 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
992 GFP_ATOMIC);
993 if (!async)
994 return -ENOMEM;
995
996 async->cmd = cmd;
997 async->inlen = inlen;
998 async->outlen = outlen;
999 async->quiet = quiet;
1000 async->complete = complete;
1001 async->cookie = cookie;
1002 memcpy(async + 1, inbuf, inlen);
1003
1004 spin_lock_bh(&mcdi->async_lock);
1005
1006 if (mcdi->mode == MCDI_MODE_EVENTS) {
1007 list_add_tail(&async->list, &mcdi->async_list);
1008
1009 /* If this is at the front of the queue, try to start it
1010 * immediately
1011 */
1012 if (mcdi->async_list.next == &async->list &&
1013 efx_mcdi_acquire_async(mcdi)) {
1014 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1015 mod_timer(&mcdi->async_timer,
1016 jiffies + MCDI_RPC_TIMEOUT);
1017 }
1018 } else {
1019 kfree(async);
1020 rc = -ENETDOWN;
1021 }
1022
1023 spin_unlock_bh(&mcdi->async_lock);
1024
1025 return rc;
1026 }
1027
1028 /**
1029 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1030 * @efx: NIC through which to issue the command
1031 * @cmd: Command type number
1032 * @inbuf: Command parameters
1033 * @inlen: Length of command parameters, in bytes
1034 * @outlen: Length to allocate for response buffer, in bytes
1035 * @complete: Function to be called on completion or cancellation.
1036 * @cookie: Arbitrary value to be passed to @complete.
1037 *
1038 * This function does not sleep and therefore may be called in atomic
1039 * context. It will fail if event queues are disabled or if MCDI
1040 * event completions have been disabled due to an error.
1041 *
1042 * If it succeeds, the @complete function will be called exactly once
1043 * in atomic context, when one of the following occurs:
1044 * (a) the completion event is received (in NAPI context)
1045 * (b) event queues are disabled (in the process that disables them)
1046 * (c) the request times-out (in timer context)
1047 */
1048 int
efx_mcdi_rpc_async(struct efx_nic * efx,unsigned int cmd,const efx_dword_t * inbuf,size_t inlen,size_t outlen,efx_mcdi_async_completer * complete,unsigned long cookie)1049 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1050 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1051 efx_mcdi_async_completer *complete, unsigned long cookie)
1052 {
1053 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1054 cookie, false);
1055 }
1056
efx_mcdi_rpc_async_quiet(struct efx_nic * efx,unsigned int cmd,const efx_dword_t * inbuf,size_t inlen,size_t outlen,efx_mcdi_async_completer * complete,unsigned long cookie)1057 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1058 const efx_dword_t *inbuf, size_t inlen,
1059 size_t outlen, efx_mcdi_async_completer *complete,
1060 unsigned long cookie)
1061 {
1062 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1063 cookie, true);
1064 }
1065
efx_mcdi_rpc_finish(struct efx_nic * efx,unsigned cmd,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual)1066 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1067 efx_dword_t *outbuf, size_t outlen,
1068 size_t *outlen_actual)
1069 {
1070 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1071 outlen_actual, false, NULL, NULL);
1072 }
1073
efx_mcdi_rpc_finish_quiet(struct efx_nic * efx,unsigned cmd,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual)1074 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1075 efx_dword_t *outbuf, size_t outlen,
1076 size_t *outlen_actual)
1077 {
1078 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1079 outlen_actual, true, NULL, NULL);
1080 }
1081
efx_mcdi_display_error(struct efx_nic * efx,unsigned cmd,size_t inlen,efx_dword_t * outbuf,size_t outlen,int rc)1082 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1083 size_t inlen, efx_dword_t *outbuf,
1084 size_t outlen, int rc)
1085 {
1086 int code = 0, err_arg = 0;
1087
1088 if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1089 code = MCDI_DWORD(outbuf, ERR_CODE);
1090 if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1091 err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1092 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1093 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1094 cmd, inlen, rc, code, err_arg);
1095 }
1096
1097 /* Switch to polled MCDI completions. This can be called in various
1098 * error conditions with various locks held, so it must be lockless.
1099 * Caller is responsible for flushing asynchronous requests later.
1100 */
efx_mcdi_mode_poll(struct efx_nic * efx)1101 void efx_mcdi_mode_poll(struct efx_nic *efx)
1102 {
1103 struct efx_mcdi_iface *mcdi;
1104
1105 if (!efx->mcdi)
1106 return;
1107
1108 mcdi = efx_mcdi(efx);
1109 /* If already in polling mode, nothing to do.
1110 * If in fail-fast state, don't switch to polled completion.
1111 * FLR recovery will do that later.
1112 */
1113 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1114 return;
1115
1116 /* We can switch from event completion to polled completion, because
1117 * mcdi requests are always completed in shared memory. We do this by
1118 * switching the mode to POLL'd then completing the request.
1119 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1120 *
1121 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1122 * which efx_mcdi_complete_sync() provides for us.
1123 */
1124 mcdi->mode = MCDI_MODE_POLL;
1125
1126 efx_mcdi_complete_sync(mcdi);
1127 }
1128
1129 /* Flush any running or queued asynchronous requests, after event processing
1130 * is stopped
1131 */
efx_mcdi_flush_async(struct efx_nic * efx)1132 void efx_mcdi_flush_async(struct efx_nic *efx)
1133 {
1134 struct efx_mcdi_async_param *async, *next;
1135 struct efx_mcdi_iface *mcdi;
1136
1137 if (!efx->mcdi)
1138 return;
1139
1140 mcdi = efx_mcdi(efx);
1141
1142 /* We must be in poll or fail mode so no more requests can be queued */
1143 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1144
1145 del_timer_sync(&mcdi->async_timer);
1146
1147 /* If a request is still running, make sure we give the MC
1148 * time to complete it so that the response won't overwrite our
1149 * next request.
1150 */
1151 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1152 efx_mcdi_poll(efx);
1153 mcdi->state = MCDI_STATE_QUIESCENT;
1154 }
1155
1156 /* Nothing else will access the async list now, so it is safe
1157 * to walk it without holding async_lock. If we hold it while
1158 * calling a completer then lockdep may warn that we have
1159 * acquired locks in the wrong order.
1160 */
1161 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1162 if (async->complete)
1163 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1164 list_del(&async->list);
1165 kfree(async);
1166 }
1167 }
1168
efx_mcdi_mode_event(struct efx_nic * efx)1169 void efx_mcdi_mode_event(struct efx_nic *efx)
1170 {
1171 struct efx_mcdi_iface *mcdi;
1172
1173 if (!efx->mcdi)
1174 return;
1175
1176 mcdi = efx_mcdi(efx);
1177 /* If already in event completion mode, nothing to do.
1178 * If in fail-fast state, don't switch to event completion. FLR
1179 * recovery will do that later.
1180 */
1181 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1182 return;
1183
1184 /* We can't switch from polled to event completion in the middle of a
1185 * request, because the completion method is specified in the request.
1186 * So acquire the interface to serialise the requestors. We don't need
1187 * to acquire the iface_lock to change the mode here, but we do need a
1188 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1189 * efx_mcdi_acquire() provides.
1190 */
1191 efx_mcdi_acquire_sync(mcdi);
1192 mcdi->mode = MCDI_MODE_EVENTS;
1193 efx_mcdi_release(mcdi);
1194 }
1195
efx_mcdi_ev_death(struct efx_nic * efx,int rc)1196 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1197 {
1198 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1199
1200 /* If there is an outstanding MCDI request, it has been terminated
1201 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1202 * in polled mode, then do nothing because the MC reboot handler will
1203 * set the header correctly. However, if the mcdi interface is waiting
1204 * for a CMDDONE event it won't receive it [and since all MCDI events
1205 * are sent to the same queue, we can't be racing with
1206 * efx_mcdi_ev_cpl()]
1207 *
1208 * If there is an outstanding asynchronous request, we can't
1209 * complete it now (efx_mcdi_complete() would deadlock). The
1210 * reset process will take care of this.
1211 *
1212 * There's a race here with efx_mcdi_send_request(), because
1213 * we might receive a REBOOT event *before* the request has
1214 * been copied out. In polled mode (during startup) this is
1215 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1216 * event mode, this condition is just an edge-case of
1217 * receiving a REBOOT event after posting the MCDI
1218 * request. Did the mc reboot before or after the copyout? The
1219 * best we can do always is just return failure.
1220 *
1221 * If there is an outstanding proxy response expected it is not going
1222 * to arrive. We should thus abort it.
1223 */
1224 spin_lock(&mcdi->iface_lock);
1225 efx_mcdi_proxy_abort(mcdi);
1226
1227 if (efx_mcdi_complete_sync(mcdi)) {
1228 if (mcdi->mode == MCDI_MODE_EVENTS) {
1229 mcdi->resprc = rc;
1230 mcdi->resp_hdr_len = 0;
1231 mcdi->resp_data_len = 0;
1232 ++mcdi->credits;
1233 }
1234 } else {
1235 int count;
1236
1237 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1238 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1239 rc = efx_mcdi_poll_reboot(efx);
1240 if (rc)
1241 break;
1242 udelay(MCDI_STATUS_DELAY_US);
1243 }
1244
1245 /* On EF10, a CODE_MC_REBOOT event can be received without the
1246 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1247 * If zero was returned from the final call to
1248 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1249 * MC has definitely rebooted so prepare for the reset.
1250 */
1251 if (!rc && efx->type->mcdi_reboot_detected)
1252 efx->type->mcdi_reboot_detected(efx);
1253
1254 mcdi->new_epoch = true;
1255
1256 /* Nobody was waiting for an MCDI request, so trigger a reset */
1257 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1258 }
1259
1260 spin_unlock(&mcdi->iface_lock);
1261 }
1262
1263 /* The MC is going down in to BIST mode. set the BIST flag to block
1264 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1265 * (which doesn't actually execute a reset, it waits for the controlling
1266 * function to reset it).
1267 */
efx_mcdi_ev_bist(struct efx_nic * efx)1268 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1269 {
1270 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1271
1272 spin_lock(&mcdi->iface_lock);
1273 efx->mc_bist_for_other_fn = true;
1274 efx_mcdi_proxy_abort(mcdi);
1275
1276 if (efx_mcdi_complete_sync(mcdi)) {
1277 if (mcdi->mode == MCDI_MODE_EVENTS) {
1278 mcdi->resprc = -EIO;
1279 mcdi->resp_hdr_len = 0;
1280 mcdi->resp_data_len = 0;
1281 ++mcdi->credits;
1282 }
1283 }
1284 mcdi->new_epoch = true;
1285 efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1286 spin_unlock(&mcdi->iface_lock);
1287 }
1288
1289 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1290 * to recover.
1291 */
efx_mcdi_abandon(struct efx_nic * efx)1292 static void efx_mcdi_abandon(struct efx_nic *efx)
1293 {
1294 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1295
1296 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1297 return; /* it had already been done */
1298 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1299 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1300 }
1301
efx_handle_drain_event(struct efx_nic * efx)1302 static void efx_handle_drain_event(struct efx_nic *efx)
1303 {
1304 if (atomic_dec_and_test(&efx->active_queues))
1305 wake_up(&efx->flush_wq);
1306
1307 WARN_ON(atomic_read(&efx->active_queues) < 0);
1308 }
1309
1310 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
efx_mcdi_process_event(struct efx_channel * channel,efx_qword_t * event)1311 void efx_mcdi_process_event(struct efx_channel *channel,
1312 efx_qword_t *event)
1313 {
1314 struct efx_nic *efx = channel->efx;
1315 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1316 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1317
1318 switch (code) {
1319 case MCDI_EVENT_CODE_BADSSERT:
1320 netif_err(efx, hw, efx->net_dev,
1321 "MC watchdog or assertion failure at 0x%x\n", data);
1322 efx_mcdi_ev_death(efx, -EINTR);
1323 break;
1324
1325 case MCDI_EVENT_CODE_PMNOTICE:
1326 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1327 break;
1328
1329 case MCDI_EVENT_CODE_CMDDONE:
1330 efx_mcdi_ev_cpl(efx,
1331 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1332 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1333 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1334 break;
1335
1336 case MCDI_EVENT_CODE_LINKCHANGE:
1337 efx_mcdi_process_link_change(efx, event);
1338 break;
1339 case MCDI_EVENT_CODE_SENSOREVT:
1340 efx_sensor_event(efx, event);
1341 break;
1342 case MCDI_EVENT_CODE_SCHEDERR:
1343 netif_dbg(efx, hw, efx->net_dev,
1344 "MC Scheduler alert (0x%x)\n", data);
1345 break;
1346 case MCDI_EVENT_CODE_REBOOT:
1347 case MCDI_EVENT_CODE_MC_REBOOT:
1348 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1349 efx_mcdi_ev_death(efx, -EIO);
1350 break;
1351 case MCDI_EVENT_CODE_MC_BIST:
1352 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1353 efx_mcdi_ev_bist(efx);
1354 break;
1355 case MCDI_EVENT_CODE_MAC_STATS_DMA:
1356 /* MAC stats are gather lazily. We can ignore this. */
1357 break;
1358 case MCDI_EVENT_CODE_FLR:
1359 if (efx->type->sriov_flr)
1360 efx->type->sriov_flr(efx,
1361 MCDI_EVENT_FIELD(*event, FLR_VF));
1362 break;
1363 case MCDI_EVENT_CODE_PTP_RX:
1364 case MCDI_EVENT_CODE_PTP_FAULT:
1365 case MCDI_EVENT_CODE_PTP_PPS:
1366 efx_ptp_event(efx, event);
1367 break;
1368 case MCDI_EVENT_CODE_PTP_TIME:
1369 efx_time_sync_event(channel, event);
1370 break;
1371 case MCDI_EVENT_CODE_TX_FLUSH:
1372 case MCDI_EVENT_CODE_RX_FLUSH:
1373 /* Two flush events will be sent: one to the same event
1374 * queue as completions, and one to event queue 0.
1375 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1376 * flag will be set, and we should ignore the event
1377 * because we want to wait for all completions.
1378 */
1379 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1380 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1381 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1382 efx_handle_drain_event(efx);
1383 break;
1384 case MCDI_EVENT_CODE_TX_ERR:
1385 case MCDI_EVENT_CODE_RX_ERR:
1386 netif_err(efx, hw, efx->net_dev,
1387 "%s DMA error (event: "EFX_QWORD_FMT")\n",
1388 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1389 EFX_QWORD_VAL(*event));
1390 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1391 break;
1392 case MCDI_EVENT_CODE_PROXY_RESPONSE:
1393 efx_mcdi_ev_proxy_response(efx,
1394 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1395 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1396 break;
1397 default:
1398 netif_err(efx, hw, efx->net_dev,
1399 "Unknown MCDI event " EFX_QWORD_FMT "\n",
1400 EFX_QWORD_VAL(*event));
1401 }
1402 }
1403
1404 /**************************************************************************
1405 *
1406 * Specific request functions
1407 *
1408 **************************************************************************
1409 */
1410
efx_mcdi_print_fwver(struct efx_nic * efx,char * buf,size_t len)1411 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1412 {
1413 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1414 size_t outlength;
1415 const __le16 *ver_words;
1416 size_t offset;
1417 int rc;
1418
1419 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1420 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1421 outbuf, sizeof(outbuf), &outlength);
1422 if (rc)
1423 goto fail;
1424 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1425 rc = -EIO;
1426 goto fail;
1427 }
1428
1429 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1430 offset = scnprintf(buf, len, "%u.%u.%u.%u",
1431 le16_to_cpu(ver_words[0]),
1432 le16_to_cpu(ver_words[1]),
1433 le16_to_cpu(ver_words[2]),
1434 le16_to_cpu(ver_words[3]));
1435
1436 if (efx->type->print_additional_fwver)
1437 offset += efx->type->print_additional_fwver(efx, buf + offset,
1438 len - offset);
1439
1440 /* It's theoretically possible for the string to exceed 31
1441 * characters, though in practice the first three version
1442 * components are short enough that this doesn't happen.
1443 */
1444 if (WARN_ON(offset >= len))
1445 buf[0] = 0;
1446
1447 return;
1448
1449 fail:
1450 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1451 buf[0] = 0;
1452 }
1453
efx_mcdi_drv_attach(struct efx_nic * efx,bool driver_operating,bool * was_attached)1454 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1455 bool *was_attached)
1456 {
1457 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1458 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1459 size_t outlen;
1460 int rc;
1461
1462 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1463 driver_operating ? 1 : 0);
1464 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1465 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1466
1467 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1468 outbuf, sizeof(outbuf), &outlen);
1469 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1470 * specified will fail with EPERM, and we have to tell the MC we don't
1471 * care what firmware we get.
1472 */
1473 if (rc == -EPERM) {
1474 netif_dbg(efx, probe, efx->net_dev,
1475 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1476 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1477 MC_CMD_FW_DONT_CARE);
1478 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1479 sizeof(inbuf), outbuf, sizeof(outbuf),
1480 &outlen);
1481 }
1482 if (rc) {
1483 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1484 outbuf, outlen, rc);
1485 goto fail;
1486 }
1487 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1488 rc = -EIO;
1489 goto fail;
1490 }
1491
1492 if (driver_operating) {
1493 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1494 efx->mcdi->fn_flags =
1495 MCDI_DWORD(outbuf,
1496 DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1497 } else {
1498 /* Synthesise flags for Siena */
1499 efx->mcdi->fn_flags =
1500 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1501 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1502 (efx_port_num(efx) == 0) <<
1503 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1504 }
1505 }
1506
1507 /* We currently assume we have control of the external link
1508 * and are completely trusted by firmware. Abort probing
1509 * if that's not true for this function.
1510 */
1511
1512 if (was_attached != NULL)
1513 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1514 return 0;
1515
1516 fail:
1517 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1518 return rc;
1519 }
1520
efx_mcdi_get_board_cfg(struct efx_nic * efx,u8 * mac_address,u16 * fw_subtype_list,u32 * capabilities)1521 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1522 u16 *fw_subtype_list, u32 *capabilities)
1523 {
1524 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1525 size_t outlen, i;
1526 int port_num = efx_port_num(efx);
1527 int rc;
1528
1529 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1530 /* we need __aligned(2) for ether_addr_copy */
1531 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1532 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1533
1534 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1535 outbuf, sizeof(outbuf), &outlen);
1536 if (rc)
1537 goto fail;
1538
1539 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1540 rc = -EIO;
1541 goto fail;
1542 }
1543
1544 if (mac_address)
1545 ether_addr_copy(mac_address,
1546 port_num ?
1547 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1548 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1549 if (fw_subtype_list) {
1550 for (i = 0;
1551 i < MCDI_VAR_ARRAY_LEN(outlen,
1552 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1553 i++)
1554 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1555 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1556 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1557 fw_subtype_list[i] = 0;
1558 }
1559 if (capabilities) {
1560 if (port_num)
1561 *capabilities = MCDI_DWORD(outbuf,
1562 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1563 else
1564 *capabilities = MCDI_DWORD(outbuf,
1565 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1566 }
1567
1568 return 0;
1569
1570 fail:
1571 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1572 __func__, rc, (int)outlen);
1573
1574 return rc;
1575 }
1576
efx_mcdi_log_ctrl(struct efx_nic * efx,bool evq,bool uart,u32 dest_evq)1577 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1578 {
1579 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1580 u32 dest = 0;
1581 int rc;
1582
1583 if (uart)
1584 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1585 if (evq)
1586 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1587
1588 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1589 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1590
1591 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1592
1593 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1594 NULL, 0, NULL);
1595 return rc;
1596 }
1597
efx_mcdi_nvram_types(struct efx_nic * efx,u32 * nvram_types_out)1598 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1599 {
1600 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1601 size_t outlen;
1602 int rc;
1603
1604 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1605
1606 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1607 outbuf, sizeof(outbuf), &outlen);
1608 if (rc)
1609 goto fail;
1610 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1611 rc = -EIO;
1612 goto fail;
1613 }
1614
1615 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1616 return 0;
1617
1618 fail:
1619 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1620 __func__, rc);
1621 return rc;
1622 }
1623
1624 /* This function finds types using the new NVRAM_PARTITIONS mcdi. */
efx_new_mcdi_nvram_types(struct efx_nic * efx,u32 * number,u32 * nvram_types)1625 static int efx_new_mcdi_nvram_types(struct efx_nic *efx, u32 *number,
1626 u32 *nvram_types)
1627 {
1628 efx_dword_t *outbuf = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
1629 GFP_KERNEL);
1630 size_t outlen;
1631 int rc;
1632
1633 if (!outbuf)
1634 return -ENOMEM;
1635
1636 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
1637
1638 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
1639 outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2, &outlen);
1640 if (rc)
1641 goto fail;
1642
1643 *number = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
1644
1645 memcpy(nvram_types, MCDI_PTR(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID),
1646 *number * sizeof(u32));
1647
1648 fail:
1649 kfree(outbuf);
1650 return rc;
1651 }
1652
efx_mcdi_nvram_info(struct efx_nic * efx,unsigned int type,size_t * size_out,size_t * erase_size_out,bool * protected_out)1653 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1654 size_t *size_out, size_t *erase_size_out,
1655 bool *protected_out)
1656 {
1657 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1658 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1659 size_t outlen;
1660 int rc;
1661
1662 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1663
1664 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1665 outbuf, sizeof(outbuf), &outlen);
1666 if (rc)
1667 goto fail;
1668 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1669 rc = -EIO;
1670 goto fail;
1671 }
1672
1673 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1674 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1675 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1676 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1677 return 0;
1678
1679 fail:
1680 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1681 return rc;
1682 }
1683
efx_mcdi_nvram_test(struct efx_nic * efx,unsigned int type)1684 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1685 {
1686 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1687 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1688 int rc;
1689
1690 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1691
1692 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1693 outbuf, sizeof(outbuf), NULL);
1694 if (rc)
1695 return rc;
1696
1697 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1698 case MC_CMD_NVRAM_TEST_PASS:
1699 case MC_CMD_NVRAM_TEST_NOTSUPP:
1700 return 0;
1701 default:
1702 return -EIO;
1703 }
1704 }
1705
1706 /* This function tests nvram partitions using the new mcdi partition lookup scheme */
efx_new_mcdi_nvram_test_all(struct efx_nic * efx)1707 int efx_new_mcdi_nvram_test_all(struct efx_nic *efx)
1708 {
1709 u32 *nvram_types = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
1710 GFP_KERNEL);
1711 unsigned int number;
1712 int rc, i;
1713
1714 if (!nvram_types)
1715 return -ENOMEM;
1716
1717 rc = efx_new_mcdi_nvram_types(efx, &number, nvram_types);
1718 if (rc)
1719 goto fail;
1720
1721 /* Require at least one check */
1722 rc = -EAGAIN;
1723
1724 for (i = 0; i < number; i++) {
1725 if (nvram_types[i] == NVRAM_PARTITION_TYPE_PARTITION_MAP ||
1726 nvram_types[i] == NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG)
1727 continue;
1728
1729 rc = efx_mcdi_nvram_test(efx, nvram_types[i]);
1730 if (rc)
1731 goto fail;
1732 }
1733
1734 fail:
1735 kfree(nvram_types);
1736 return rc;
1737 }
1738
efx_mcdi_nvram_test_all(struct efx_nic * efx)1739 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1740 {
1741 u32 nvram_types;
1742 unsigned int type;
1743 int rc;
1744
1745 rc = efx_mcdi_nvram_types(efx, &nvram_types);
1746 if (rc)
1747 goto fail1;
1748
1749 type = 0;
1750 while (nvram_types != 0) {
1751 if (nvram_types & 1) {
1752 rc = efx_mcdi_nvram_test(efx, type);
1753 if (rc)
1754 goto fail2;
1755 }
1756 type++;
1757 nvram_types >>= 1;
1758 }
1759
1760 return 0;
1761
1762 fail2:
1763 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1764 __func__, type);
1765 fail1:
1766 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1767 return rc;
1768 }
1769
1770 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1771 * negative on error.
1772 */
efx_mcdi_read_assertion(struct efx_nic * efx)1773 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1774 {
1775 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1776 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1777 unsigned int flags, index;
1778 const char *reason;
1779 size_t outlen;
1780 int retry;
1781 int rc;
1782
1783 /* Attempt to read any stored assertion state before we reboot
1784 * the mcfw out of the assertion handler. Retry twice, once
1785 * because a boot-time assertion might cause this command to fail
1786 * with EINTR. And once again because GET_ASSERTS can race with
1787 * MC_CMD_REBOOT running on the other port. */
1788 retry = 2;
1789 do {
1790 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1791 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1792 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1793 outbuf, sizeof(outbuf), &outlen);
1794 if (rc == -EPERM)
1795 return 0;
1796 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1797
1798 if (rc) {
1799 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1800 MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1801 outlen, rc);
1802 return rc;
1803 }
1804 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1805 return -EIO;
1806
1807 /* Print out any recorded assertion state */
1808 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1809 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1810 return 0;
1811
1812 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1813 ? "system-level assertion"
1814 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1815 ? "thread-level assertion"
1816 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1817 ? "watchdog reset"
1818 : "unknown assertion";
1819 netif_err(efx, hw, efx->net_dev,
1820 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1821 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1822 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1823
1824 /* Print out the registers */
1825 for (index = 0;
1826 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1827 index++)
1828 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1829 1 + index,
1830 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1831 index));
1832
1833 return 1;
1834 }
1835
efx_mcdi_exit_assertion(struct efx_nic * efx)1836 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1837 {
1838 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1839 int rc;
1840
1841 /* If the MC is running debug firmware, it might now be
1842 * waiting for a debugger to attach, but we just want it to
1843 * reboot. We set a flag that makes the command a no-op if it
1844 * has already done so.
1845 * The MCDI will thus return either 0 or -EIO.
1846 */
1847 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1848 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1849 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1850 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1851 NULL, 0, NULL);
1852 if (rc == -EIO)
1853 rc = 0;
1854 if (rc)
1855 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1856 NULL, 0, rc);
1857 return rc;
1858 }
1859
efx_mcdi_handle_assertion(struct efx_nic * efx)1860 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1861 {
1862 int rc;
1863
1864 rc = efx_mcdi_read_assertion(efx);
1865 if (rc <= 0)
1866 return rc;
1867
1868 return efx_mcdi_exit_assertion(efx);
1869 }
1870
efx_mcdi_set_id_led(struct efx_nic * efx,enum efx_led_mode mode)1871 int efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1872 {
1873 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1874
1875 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1876 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1877 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1878
1879 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1880
1881 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1882
1883 return efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), NULL, 0, NULL);
1884 }
1885
efx_mcdi_reset_func(struct efx_nic * efx)1886 static int efx_mcdi_reset_func(struct efx_nic *efx)
1887 {
1888 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1889 int rc;
1890
1891 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1892 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1893 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1894 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1895 NULL, 0, NULL);
1896 return rc;
1897 }
1898
efx_mcdi_reset_mc(struct efx_nic * efx)1899 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1900 {
1901 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1902 int rc;
1903
1904 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1905 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1906 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1907 NULL, 0, NULL);
1908 /* White is black, and up is down */
1909 if (rc == -EIO)
1910 return 0;
1911 if (rc == 0)
1912 rc = -EIO;
1913 return rc;
1914 }
1915
efx_mcdi_map_reset_reason(enum reset_type reason)1916 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1917 {
1918 return RESET_TYPE_RECOVER_OR_ALL;
1919 }
1920
efx_mcdi_reset(struct efx_nic * efx,enum reset_type method)1921 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1922 {
1923 int rc;
1924
1925 /* If MCDI is down, we can't handle_assertion */
1926 if (method == RESET_TYPE_MCDI_TIMEOUT) {
1927 rc = pci_reset_function(efx->pci_dev);
1928 if (rc)
1929 return rc;
1930 /* Re-enable polled MCDI completion */
1931 if (efx->mcdi) {
1932 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1933 mcdi->mode = MCDI_MODE_POLL;
1934 }
1935 return 0;
1936 }
1937
1938 /* Recover from a failed assertion pre-reset */
1939 rc = efx_mcdi_handle_assertion(efx);
1940 if (rc)
1941 return rc;
1942
1943 if (method == RESET_TYPE_DATAPATH)
1944 return 0;
1945 else if (method == RESET_TYPE_WORLD)
1946 return efx_mcdi_reset_mc(efx);
1947 else
1948 return efx_mcdi_reset_func(efx);
1949 }
1950
efx_mcdi_wol_filter_set(struct efx_nic * efx,u32 type,const u8 * mac,int * id_out)1951 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1952 const u8 *mac, int *id_out)
1953 {
1954 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1955 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1956 size_t outlen;
1957 int rc;
1958
1959 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1960 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1961 MC_CMD_FILTER_MODE_SIMPLE);
1962 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1963
1964 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1965 outbuf, sizeof(outbuf), &outlen);
1966 if (rc)
1967 goto fail;
1968
1969 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1970 rc = -EIO;
1971 goto fail;
1972 }
1973
1974 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1975
1976 return 0;
1977
1978 fail:
1979 *id_out = -1;
1980 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1981 return rc;
1982
1983 }
1984
1985
1986 int
efx_mcdi_wol_filter_set_magic(struct efx_nic * efx,const u8 * mac,int * id_out)1987 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
1988 {
1989 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1990 }
1991
1992
efx_mcdi_wol_filter_get_magic(struct efx_nic * efx,int * id_out)1993 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1994 {
1995 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1996 size_t outlen;
1997 int rc;
1998
1999 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
2000 outbuf, sizeof(outbuf), &outlen);
2001 if (rc)
2002 goto fail;
2003
2004 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
2005 rc = -EIO;
2006 goto fail;
2007 }
2008
2009 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
2010
2011 return 0;
2012
2013 fail:
2014 *id_out = -1;
2015 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2016 return rc;
2017 }
2018
2019
efx_mcdi_wol_filter_remove(struct efx_nic * efx,int id)2020 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
2021 {
2022 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
2023 int rc;
2024
2025 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
2026
2027 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
2028 NULL, 0, NULL);
2029 return rc;
2030 }
2031
efx_mcdi_flush_rxqs(struct efx_nic * efx)2032 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
2033 {
2034 struct efx_channel *channel;
2035 struct efx_rx_queue *rx_queue;
2036 MCDI_DECLARE_BUF(inbuf,
2037 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
2038 int rc, count;
2039
2040 BUILD_BUG_ON(EFX_MAX_CHANNELS >
2041 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
2042
2043 count = 0;
2044 efx_for_each_channel(channel, efx) {
2045 efx_for_each_channel_rx_queue(rx_queue, channel) {
2046 if (rx_queue->flush_pending) {
2047 rx_queue->flush_pending = false;
2048 atomic_dec(&efx->rxq_flush_pending);
2049 MCDI_SET_ARRAY_DWORD(
2050 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
2051 count, efx_rx_queue_index(rx_queue));
2052 count++;
2053 }
2054 }
2055 }
2056
2057 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
2058 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
2059 WARN_ON(rc < 0);
2060
2061 return rc;
2062 }
2063
efx_mcdi_wol_filter_reset(struct efx_nic * efx)2064 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
2065 {
2066 int rc;
2067
2068 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
2069 return rc;
2070 }
2071
efx_mcdi_set_workaround(struct efx_nic * efx,u32 type,bool enabled,unsigned int * flags)2072 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2073 unsigned int *flags)
2074 {
2075 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2076 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2077 size_t outlen;
2078 int rc;
2079
2080 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2081 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2082 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2083 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2084 outbuf, sizeof(outbuf), &outlen);
2085 if (rc)
2086 return rc;
2087
2088 if (!flags)
2089 return 0;
2090
2091 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2092 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2093 else
2094 *flags = 0;
2095
2096 return 0;
2097 }
2098
efx_mcdi_get_workarounds(struct efx_nic * efx,unsigned int * impl_out,unsigned int * enabled_out)2099 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2100 unsigned int *enabled_out)
2101 {
2102 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2103 size_t outlen;
2104 int rc;
2105
2106 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2107 outbuf, sizeof(outbuf), &outlen);
2108 if (rc)
2109 goto fail;
2110
2111 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2112 rc = -EIO;
2113 goto fail;
2114 }
2115
2116 if (impl_out)
2117 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2118
2119 if (enabled_out)
2120 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2121
2122 return 0;
2123
2124 fail:
2125 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2126 * terrifying. The call site will have to deal with it though.
2127 */
2128 netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err,
2129 "%s: failed rc=%d\n", __func__, rc);
2130 return rc;
2131 }
2132
2133 #ifdef CONFIG_SFC_MTD
2134
2135 #define EFX_MCDI_NVRAM_LEN_MAX 128
2136
efx_mcdi_nvram_update_start(struct efx_nic * efx,unsigned int type)2137 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2138 {
2139 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN);
2140 int rc;
2141
2142 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2143 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS,
2144 NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2145 1);
2146
2147 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2148
2149 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2150 NULL, 0, NULL);
2151
2152 return rc;
2153 }
2154
efx_mcdi_nvram_read(struct efx_nic * efx,unsigned int type,loff_t offset,u8 * buffer,size_t length)2155 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2156 loff_t offset, u8 *buffer, size_t length)
2157 {
2158 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN);
2159 MCDI_DECLARE_BUF(outbuf,
2160 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2161 size_t outlen;
2162 int rc;
2163
2164 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2165 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2166 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2167 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE,
2168 MC_CMD_NVRAM_READ_IN_V2_DEFAULT);
2169
2170 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2171 outbuf, sizeof(outbuf), &outlen);
2172 if (rc)
2173 return rc;
2174
2175 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2176 return 0;
2177 }
2178
efx_mcdi_nvram_write(struct efx_nic * efx,unsigned int type,loff_t offset,const u8 * buffer,size_t length)2179 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2180 loff_t offset, const u8 *buffer, size_t length)
2181 {
2182 MCDI_DECLARE_BUF(inbuf,
2183 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2184 int rc;
2185
2186 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2187 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2188 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2189 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2190
2191 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2192
2193 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2194 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2195 NULL, 0, NULL);
2196 return rc;
2197 }
2198
efx_mcdi_nvram_erase(struct efx_nic * efx,unsigned int type,loff_t offset,size_t length)2199 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2200 loff_t offset, size_t length)
2201 {
2202 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2203 int rc;
2204
2205 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2206 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2207 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2208
2209 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2210
2211 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2212 NULL, 0, NULL);
2213 return rc;
2214 }
2215
efx_mcdi_nvram_update_finish(struct efx_nic * efx,unsigned int type)2216 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2217 {
2218 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN);
2219 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN);
2220 size_t outlen;
2221 int rc, rc2;
2222
2223 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2224 /* Always set this flag. Old firmware ignores it */
2225 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS,
2226 NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2227 1);
2228
2229 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2230 outbuf, sizeof(outbuf), &outlen);
2231 if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) {
2232 rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE);
2233 if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS)
2234 netif_err(efx, drv, efx->net_dev,
2235 "NVRAM update failed verification with code 0x%x\n",
2236 rc2);
2237 switch (rc2) {
2238 case MC_CMD_NVRAM_VERIFY_RC_SUCCESS:
2239 break;
2240 case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED:
2241 case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED:
2242 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED:
2243 case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED:
2244 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED:
2245 rc = -EIO;
2246 break;
2247 case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT:
2248 case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST:
2249 rc = -EINVAL;
2250 break;
2251 case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES:
2252 case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS:
2253 case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH:
2254 rc = -EPERM;
2255 break;
2256 default:
2257 netif_err(efx, drv, efx->net_dev,
2258 "Unknown response to NVRAM_UPDATE_FINISH\n");
2259 rc = -EIO;
2260 }
2261 }
2262
2263 return rc;
2264 }
2265
efx_mcdi_mtd_read(struct mtd_info * mtd,loff_t start,size_t len,size_t * retlen,u8 * buffer)2266 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2267 size_t len, size_t *retlen, u8 *buffer)
2268 {
2269 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2270 struct efx_nic *efx = mtd->priv;
2271 loff_t offset = start;
2272 loff_t end = min_t(loff_t, start + len, mtd->size);
2273 size_t chunk;
2274 int rc = 0;
2275
2276 while (offset < end) {
2277 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2278 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2279 buffer, chunk);
2280 if (rc)
2281 goto out;
2282 offset += chunk;
2283 buffer += chunk;
2284 }
2285 out:
2286 *retlen = offset - start;
2287 return rc;
2288 }
2289
efx_mcdi_mtd_erase(struct mtd_info * mtd,loff_t start,size_t len)2290 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2291 {
2292 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2293 struct efx_nic *efx = mtd->priv;
2294 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2295 loff_t end = min_t(loff_t, start + len, mtd->size);
2296 size_t chunk = part->common.mtd.erasesize;
2297 int rc = 0;
2298
2299 if (!part->updating) {
2300 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2301 if (rc)
2302 goto out;
2303 part->updating = true;
2304 }
2305
2306 /* The MCDI interface can in fact do multiple erase blocks at once;
2307 * but erasing may be slow, so we make multiple calls here to avoid
2308 * tripping the MCDI RPC timeout. */
2309 while (offset < end) {
2310 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2311 chunk);
2312 if (rc)
2313 goto out;
2314 offset += chunk;
2315 }
2316 out:
2317 return rc;
2318 }
2319
efx_mcdi_mtd_write(struct mtd_info * mtd,loff_t start,size_t len,size_t * retlen,const u8 * buffer)2320 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2321 size_t len, size_t *retlen, const u8 *buffer)
2322 {
2323 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2324 struct efx_nic *efx = mtd->priv;
2325 loff_t offset = start;
2326 loff_t end = min_t(loff_t, start + len, mtd->size);
2327 size_t chunk;
2328 int rc = 0;
2329
2330 if (!part->updating) {
2331 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2332 if (rc)
2333 goto out;
2334 part->updating = true;
2335 }
2336
2337 while (offset < end) {
2338 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2339 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2340 buffer, chunk);
2341 if (rc)
2342 goto out;
2343 offset += chunk;
2344 buffer += chunk;
2345 }
2346 out:
2347 *retlen = offset - start;
2348 return rc;
2349 }
2350
efx_mcdi_mtd_sync(struct mtd_info * mtd)2351 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2352 {
2353 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2354 struct efx_nic *efx = mtd->priv;
2355 int rc = 0;
2356
2357 if (part->updating) {
2358 part->updating = false;
2359 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2360 }
2361
2362 return rc;
2363 }
2364
efx_mcdi_mtd_rename(struct efx_mtd_partition * part)2365 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2366 {
2367 struct efx_mcdi_mtd_partition *mcdi_part =
2368 container_of(part, struct efx_mcdi_mtd_partition, common);
2369 struct efx_nic *efx = part->mtd.priv;
2370
2371 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2372 efx->name, part->type_name, mcdi_part->fw_subtype);
2373 }
2374
2375 #endif /* CONFIG_SFC_MTD */
2376