1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2010 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24
25 /*
26 * TX descriptor ring full threshold
27 *
28 * The tx_queue descriptor ring fill-level must fall below this value
29 * before we restart the netif queue
30 */
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
32
efx_dequeue_buffer(struct efx_tx_queue * tx_queue,struct efx_tx_buffer * buffer)33 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
34 struct efx_tx_buffer *buffer)
35 {
36 if (buffer->unmap_len) {
37 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
38 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
39 buffer->unmap_len);
40 if (buffer->unmap_single)
41 pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
42 PCI_DMA_TODEVICE);
43 else
44 pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
45 PCI_DMA_TODEVICE);
46 buffer->unmap_len = 0;
47 buffer->unmap_single = false;
48 }
49
50 if (buffer->skb) {
51 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
52 buffer->skb = NULL;
53 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
54 "TX queue %d transmission id %x complete\n",
55 tx_queue->queue, tx_queue->read_count);
56 }
57 }
58
59 /**
60 * struct efx_tso_header - a DMA mapped buffer for packet headers
61 * @next: Linked list of free ones.
62 * The list is protected by the TX queue lock.
63 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
64 * @dma_addr: The DMA address of the header below.
65 *
66 * This controls the memory used for a TSO header. Use TSOH_DATA()
67 * to find the packet header data. Use TSOH_SIZE() to calculate the
68 * total size required for a given packet header length. TSO headers
69 * in the free list are exactly %TSOH_STD_SIZE bytes in size.
70 */
71 struct efx_tso_header {
72 union {
73 struct efx_tso_header *next;
74 size_t unmap_len;
75 };
76 dma_addr_t dma_addr;
77 };
78
79 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
80 struct sk_buff *skb);
81 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
82 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
83 struct efx_tso_header *tsoh);
84
efx_tsoh_free(struct efx_tx_queue * tx_queue,struct efx_tx_buffer * buffer)85 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
86 struct efx_tx_buffer *buffer)
87 {
88 if (buffer->tsoh) {
89 if (likely(!buffer->tsoh->unmap_len)) {
90 buffer->tsoh->next = tx_queue->tso_headers_free;
91 tx_queue->tso_headers_free = buffer->tsoh;
92 } else {
93 efx_tsoh_heap_free(tx_queue, buffer->tsoh);
94 }
95 buffer->tsoh = NULL;
96 }
97 }
98
99
100 static inline unsigned
efx_max_tx_len(struct efx_nic * efx,dma_addr_t dma_addr)101 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
102 {
103 /* Depending on the NIC revision, we can use descriptor
104 * lengths up to 8K or 8K-1. However, since PCI Express
105 * devices must split read requests at 4K boundaries, there is
106 * little benefit from using descriptors that cross those
107 * boundaries and we keep things simple by not doing so.
108 */
109 unsigned len = (~dma_addr & 0xfff) + 1;
110
111 /* Work around hardware bug for unaligned buffers. */
112 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
113 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
114
115 return len;
116 }
117
118 /*
119 * Add a socket buffer to a TX queue
120 *
121 * This maps all fragments of a socket buffer for DMA and adds them to
122 * the TX queue. The queue's insert pointer will be incremented by
123 * the number of fragments in the socket buffer.
124 *
125 * If any DMA mapping fails, any mapped fragments will be unmapped,
126 * the queue's insert pointer will be restored to its original value.
127 *
128 * This function is split out from efx_hard_start_xmit to allow the
129 * loopback test to direct packets via specific TX queues.
130 *
131 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
132 * You must hold netif_tx_lock() to call this function.
133 */
efx_enqueue_skb(struct efx_tx_queue * tx_queue,struct sk_buff * skb)134 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
135 {
136 struct efx_nic *efx = tx_queue->efx;
137 struct pci_dev *pci_dev = efx->pci_dev;
138 struct efx_tx_buffer *buffer;
139 skb_frag_t *fragment;
140 struct page *page;
141 int page_offset;
142 unsigned int len, unmap_len = 0, fill_level, insert_ptr;
143 dma_addr_t dma_addr, unmap_addr = 0;
144 unsigned int dma_len;
145 bool unmap_single;
146 int q_space, i = 0;
147 netdev_tx_t rc = NETDEV_TX_OK;
148
149 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
150
151 if (skb_shinfo(skb)->gso_size)
152 return efx_enqueue_skb_tso(tx_queue, skb);
153
154 /* Get size of the initial fragment */
155 len = skb_headlen(skb);
156
157 /* Pad if necessary */
158 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
159 EFX_BUG_ON_PARANOID(skb->data_len);
160 len = 32 + 1;
161 if (skb_pad(skb, len - skb->len))
162 return NETDEV_TX_OK;
163 }
164
165 fill_level = tx_queue->insert_count - tx_queue->old_read_count;
166 q_space = efx->txq_entries - 1 - fill_level;
167
168 /* Map for DMA. Use pci_map_single rather than pci_map_page
169 * since this is more efficient on machines with sparse
170 * memory.
171 */
172 unmap_single = true;
173 dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
174
175 /* Process all fragments */
176 while (1) {
177 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
178 goto pci_err;
179
180 /* Store fields for marking in the per-fragment final
181 * descriptor */
182 unmap_len = len;
183 unmap_addr = dma_addr;
184
185 /* Add to TX queue, splitting across DMA boundaries */
186 do {
187 if (unlikely(q_space-- <= 0)) {
188 /* It might be that completions have
189 * happened since the xmit path last
190 * checked. Update the xmit path's
191 * copy of read_count.
192 */
193 netif_tx_stop_queue(tx_queue->core_txq);
194 /* This memory barrier protects the
195 * change of queue state from the access
196 * of read_count. */
197 smp_mb();
198 tx_queue->old_read_count =
199 ACCESS_ONCE(tx_queue->read_count);
200 fill_level = (tx_queue->insert_count
201 - tx_queue->old_read_count);
202 q_space = efx->txq_entries - 1 - fill_level;
203 if (unlikely(q_space-- <= 0)) {
204 rc = NETDEV_TX_BUSY;
205 goto unwind;
206 }
207 smp_mb();
208 netif_tx_start_queue(tx_queue->core_txq);
209 }
210
211 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
212 buffer = &tx_queue->buffer[insert_ptr];
213 efx_tsoh_free(tx_queue, buffer);
214 EFX_BUG_ON_PARANOID(buffer->tsoh);
215 EFX_BUG_ON_PARANOID(buffer->skb);
216 EFX_BUG_ON_PARANOID(buffer->len);
217 EFX_BUG_ON_PARANOID(!buffer->continuation);
218 EFX_BUG_ON_PARANOID(buffer->unmap_len);
219
220 dma_len = efx_max_tx_len(efx, dma_addr);
221 if (likely(dma_len >= len))
222 dma_len = len;
223
224 /* Fill out per descriptor fields */
225 buffer->len = dma_len;
226 buffer->dma_addr = dma_addr;
227 len -= dma_len;
228 dma_addr += dma_len;
229 ++tx_queue->insert_count;
230 } while (len);
231
232 /* Transfer ownership of the unmapping to the final buffer */
233 buffer->unmap_single = unmap_single;
234 buffer->unmap_len = unmap_len;
235 unmap_len = 0;
236
237 /* Get address and size of next fragment */
238 if (i >= skb_shinfo(skb)->nr_frags)
239 break;
240 fragment = &skb_shinfo(skb)->frags[i];
241 len = fragment->size;
242 page = fragment->page;
243 page_offset = fragment->page_offset;
244 i++;
245 /* Map for DMA */
246 unmap_single = false;
247 dma_addr = pci_map_page(pci_dev, page, page_offset, len,
248 PCI_DMA_TODEVICE);
249 }
250
251 /* Transfer ownership of the skb to the final buffer */
252 buffer->skb = skb;
253 buffer->continuation = false;
254
255 /* Pass off to hardware */
256 efx_nic_push_buffers(tx_queue);
257
258 return NETDEV_TX_OK;
259
260 pci_err:
261 netif_err(efx, tx_err, efx->net_dev,
262 " TX queue %d could not map skb with %d bytes %d "
263 "fragments for DMA\n", tx_queue->queue, skb->len,
264 skb_shinfo(skb)->nr_frags + 1);
265
266 /* Mark the packet as transmitted, and free the SKB ourselves */
267 dev_kfree_skb_any(skb);
268
269 unwind:
270 /* Work backwards until we hit the original insert pointer value */
271 while (tx_queue->insert_count != tx_queue->write_count) {
272 --tx_queue->insert_count;
273 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
274 buffer = &tx_queue->buffer[insert_ptr];
275 efx_dequeue_buffer(tx_queue, buffer);
276 buffer->len = 0;
277 }
278
279 /* Free the fragment we were mid-way through pushing */
280 if (unmap_len) {
281 if (unmap_single)
282 pci_unmap_single(pci_dev, unmap_addr, unmap_len,
283 PCI_DMA_TODEVICE);
284 else
285 pci_unmap_page(pci_dev, unmap_addr, unmap_len,
286 PCI_DMA_TODEVICE);
287 }
288
289 return rc;
290 }
291
292 /* Remove packets from the TX queue
293 *
294 * This removes packets from the TX queue, up to and including the
295 * specified index.
296 */
efx_dequeue_buffers(struct efx_tx_queue * tx_queue,unsigned int index)297 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
298 unsigned int index)
299 {
300 struct efx_nic *efx = tx_queue->efx;
301 unsigned int stop_index, read_ptr;
302
303 stop_index = (index + 1) & tx_queue->ptr_mask;
304 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
305
306 while (read_ptr != stop_index) {
307 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
308 if (unlikely(buffer->len == 0)) {
309 netif_err(efx, tx_err, efx->net_dev,
310 "TX queue %d spurious TX completion id %x\n",
311 tx_queue->queue, read_ptr);
312 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
313 return;
314 }
315
316 efx_dequeue_buffer(tx_queue, buffer);
317 buffer->continuation = true;
318 buffer->len = 0;
319
320 ++tx_queue->read_count;
321 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
322 }
323 }
324
325 /* Initiate a packet transmission. We use one channel per CPU
326 * (sharing when we have more CPUs than channels). On Falcon, the TX
327 * completion events will be directed back to the CPU that transmitted
328 * the packet, which should be cache-efficient.
329 *
330 * Context: non-blocking.
331 * Note that returning anything other than NETDEV_TX_OK will cause the
332 * OS to free the skb.
333 */
efx_hard_start_xmit(struct sk_buff * skb,struct net_device * net_dev)334 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
335 struct net_device *net_dev)
336 {
337 struct efx_nic *efx = netdev_priv(net_dev);
338 struct efx_tx_queue *tx_queue;
339 unsigned index, type;
340
341 if (unlikely(efx->port_inhibited))
342 return NETDEV_TX_BUSY;
343
344 index = skb_get_queue_mapping(skb);
345 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
346 if (index >= efx->n_tx_channels) {
347 index -= efx->n_tx_channels;
348 type |= EFX_TXQ_TYPE_HIGHPRI;
349 }
350 tx_queue = efx_get_tx_queue(efx, index, type);
351
352 return efx_enqueue_skb(tx_queue, skb);
353 }
354
efx_init_tx_queue_core_txq(struct efx_tx_queue * tx_queue)355 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
356 {
357 struct efx_nic *efx = tx_queue->efx;
358
359 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
360 tx_queue->core_txq =
361 netdev_get_tx_queue(efx->net_dev,
362 tx_queue->queue / EFX_TXQ_TYPES +
363 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
364 efx->n_tx_channels : 0));
365 }
366
efx_setup_tc(struct net_device * net_dev,u8 num_tc)367 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
368 {
369 struct efx_nic *efx = netdev_priv(net_dev);
370 struct efx_channel *channel;
371 struct efx_tx_queue *tx_queue;
372 unsigned tc;
373 int rc;
374
375 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
376 return -EINVAL;
377
378 if (num_tc == net_dev->num_tc)
379 return 0;
380
381 for (tc = 0; tc < num_tc; tc++) {
382 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
383 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
384 }
385
386 if (num_tc > net_dev->num_tc) {
387 /* Initialise high-priority queues as necessary */
388 efx_for_each_channel(channel, efx) {
389 efx_for_each_possible_channel_tx_queue(tx_queue,
390 channel) {
391 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
392 continue;
393 if (!tx_queue->buffer) {
394 rc = efx_probe_tx_queue(tx_queue);
395 if (rc)
396 return rc;
397 }
398 if (!tx_queue->initialised)
399 efx_init_tx_queue(tx_queue);
400 efx_init_tx_queue_core_txq(tx_queue);
401 }
402 }
403 } else {
404 /* Reduce number of classes before number of queues */
405 net_dev->num_tc = num_tc;
406 }
407
408 rc = netif_set_real_num_tx_queues(net_dev,
409 max_t(int, num_tc, 1) *
410 efx->n_tx_channels);
411 if (rc)
412 return rc;
413
414 /* Do not destroy high-priority queues when they become
415 * unused. We would have to flush them first, and it is
416 * fairly difficult to flush a subset of TX queues. Leave
417 * it to efx_fini_channels().
418 */
419
420 net_dev->num_tc = num_tc;
421 return 0;
422 }
423
efx_xmit_done(struct efx_tx_queue * tx_queue,unsigned int index)424 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
425 {
426 unsigned fill_level;
427 struct efx_nic *efx = tx_queue->efx;
428
429 EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
430
431 efx_dequeue_buffers(tx_queue, index);
432
433 /* See if we need to restart the netif queue. This barrier
434 * separates the update of read_count from the test of the
435 * queue state. */
436 smp_mb();
437 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
438 likely(efx->port_enabled) &&
439 likely(!efx->port_inhibited)) {
440 fill_level = tx_queue->insert_count - tx_queue->read_count;
441 if (fill_level < EFX_TXQ_THRESHOLD(efx)) {
442 EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
443 netif_tx_wake_queue(tx_queue->core_txq);
444 }
445 }
446
447 /* Check whether the hardware queue is now empty */
448 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
449 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
450 if (tx_queue->read_count == tx_queue->old_write_count) {
451 smp_mb();
452 tx_queue->empty_read_count =
453 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
454 }
455 }
456 }
457
efx_probe_tx_queue(struct efx_tx_queue * tx_queue)458 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
459 {
460 struct efx_nic *efx = tx_queue->efx;
461 unsigned int entries;
462 int i, rc;
463
464 /* Create the smallest power-of-two aligned ring */
465 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
466 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
467 tx_queue->ptr_mask = entries - 1;
468
469 netif_dbg(efx, probe, efx->net_dev,
470 "creating TX queue %d size %#x mask %#x\n",
471 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
472
473 /* Allocate software ring */
474 tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer),
475 GFP_KERNEL);
476 if (!tx_queue->buffer)
477 return -ENOMEM;
478 for (i = 0; i <= tx_queue->ptr_mask; ++i)
479 tx_queue->buffer[i].continuation = true;
480
481 /* Allocate hardware ring */
482 rc = efx_nic_probe_tx(tx_queue);
483 if (rc)
484 goto fail;
485
486 return 0;
487
488 fail:
489 kfree(tx_queue->buffer);
490 tx_queue->buffer = NULL;
491 return rc;
492 }
493
efx_init_tx_queue(struct efx_tx_queue * tx_queue)494 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
495 {
496 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
497 "initialising TX queue %d\n", tx_queue->queue);
498
499 tx_queue->insert_count = 0;
500 tx_queue->write_count = 0;
501 tx_queue->old_write_count = 0;
502 tx_queue->read_count = 0;
503 tx_queue->old_read_count = 0;
504 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
505
506 /* Set up TX descriptor ring */
507 efx_nic_init_tx(tx_queue);
508
509 tx_queue->initialised = true;
510 }
511
efx_release_tx_buffers(struct efx_tx_queue * tx_queue)512 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
513 {
514 struct efx_tx_buffer *buffer;
515
516 if (!tx_queue->buffer)
517 return;
518
519 /* Free any buffers left in the ring */
520 while (tx_queue->read_count != tx_queue->write_count) {
521 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
522 efx_dequeue_buffer(tx_queue, buffer);
523 buffer->continuation = true;
524 buffer->len = 0;
525
526 ++tx_queue->read_count;
527 }
528 }
529
efx_fini_tx_queue(struct efx_tx_queue * tx_queue)530 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
531 {
532 if (!tx_queue->initialised)
533 return;
534
535 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
536 "shutting down TX queue %d\n", tx_queue->queue);
537
538 tx_queue->initialised = false;
539
540 /* Flush TX queue, remove descriptor ring */
541 efx_nic_fini_tx(tx_queue);
542
543 efx_release_tx_buffers(tx_queue);
544
545 /* Free up TSO header cache */
546 efx_fini_tso(tx_queue);
547 }
548
efx_remove_tx_queue(struct efx_tx_queue * tx_queue)549 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
550 {
551 if (!tx_queue->buffer)
552 return;
553
554 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
555 "destroying TX queue %d\n", tx_queue->queue);
556 efx_nic_remove_tx(tx_queue);
557
558 kfree(tx_queue->buffer);
559 tx_queue->buffer = NULL;
560 }
561
562
563 /* Efx TCP segmentation acceleration.
564 *
565 * Why? Because by doing it here in the driver we can go significantly
566 * faster than the GSO.
567 *
568 * Requires TX checksum offload support.
569 */
570
571 /* Number of bytes inserted at the start of a TSO header buffer,
572 * similar to NET_IP_ALIGN.
573 */
574 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
575 #define TSOH_OFFSET 0
576 #else
577 #define TSOH_OFFSET NET_IP_ALIGN
578 #endif
579
580 #define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET)
581
582 /* Total size of struct efx_tso_header, buffer and padding */
583 #define TSOH_SIZE(hdr_len) \
584 (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
585
586 /* Size of blocks on free list. Larger blocks must be allocated from
587 * the heap.
588 */
589 #define TSOH_STD_SIZE 128
590
591 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
592 #define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data)
593 #define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data)
594 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
595 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
596
597 /**
598 * struct tso_state - TSO state for an SKB
599 * @out_len: Remaining length in current segment
600 * @seqnum: Current sequence number
601 * @ipv4_id: Current IPv4 ID, host endian
602 * @packet_space: Remaining space in current packet
603 * @dma_addr: DMA address of current position
604 * @in_len: Remaining length in current SKB fragment
605 * @unmap_len: Length of SKB fragment
606 * @unmap_addr: DMA address of SKB fragment
607 * @unmap_single: DMA single vs page mapping flag
608 * @protocol: Network protocol (after any VLAN header)
609 * @header_len: Number of bytes of header
610 * @full_packet_size: Number of bytes to put in each outgoing segment
611 *
612 * The state used during segmentation. It is put into this data structure
613 * just to make it easy to pass into inline functions.
614 */
615 struct tso_state {
616 /* Output position */
617 unsigned out_len;
618 unsigned seqnum;
619 unsigned ipv4_id;
620 unsigned packet_space;
621
622 /* Input position */
623 dma_addr_t dma_addr;
624 unsigned in_len;
625 unsigned unmap_len;
626 dma_addr_t unmap_addr;
627 bool unmap_single;
628
629 __be16 protocol;
630 unsigned header_len;
631 int full_packet_size;
632 };
633
634
635 /*
636 * Verify that our various assumptions about sk_buffs and the conditions
637 * under which TSO will be attempted hold true. Return the protocol number.
638 */
efx_tso_check_protocol(struct sk_buff * skb)639 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
640 {
641 __be16 protocol = skb->protocol;
642
643 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
644 protocol);
645 if (protocol == htons(ETH_P_8021Q)) {
646 /* Find the encapsulated protocol; reset network header
647 * and transport header based on that. */
648 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
649 protocol = veh->h_vlan_encapsulated_proto;
650 skb_set_network_header(skb, sizeof(*veh));
651 if (protocol == htons(ETH_P_IP))
652 skb_set_transport_header(skb, sizeof(*veh) +
653 4 * ip_hdr(skb)->ihl);
654 else if (protocol == htons(ETH_P_IPV6))
655 skb_set_transport_header(skb, sizeof(*veh) +
656 sizeof(struct ipv6hdr));
657 }
658
659 if (protocol == htons(ETH_P_IP)) {
660 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
661 } else {
662 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
663 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
664 }
665 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
666 + (tcp_hdr(skb)->doff << 2u)) >
667 skb_headlen(skb));
668
669 return protocol;
670 }
671
672
673 /*
674 * Allocate a page worth of efx_tso_header structures, and string them
675 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
676 */
efx_tsoh_block_alloc(struct efx_tx_queue * tx_queue)677 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
678 {
679
680 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
681 struct efx_tso_header *tsoh;
682 dma_addr_t dma_addr;
683 u8 *base_kva, *kva;
684
685 base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
686 if (base_kva == NULL) {
687 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
688 "Unable to allocate page for TSO headers\n");
689 return -ENOMEM;
690 }
691
692 /* pci_alloc_consistent() allocates pages. */
693 EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
694
695 for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
696 tsoh = (struct efx_tso_header *)kva;
697 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
698 tsoh->next = tx_queue->tso_headers_free;
699 tx_queue->tso_headers_free = tsoh;
700 }
701
702 return 0;
703 }
704
705
706 /* Free up a TSO header, and all others in the same page. */
efx_tsoh_block_free(struct efx_tx_queue * tx_queue,struct efx_tso_header * tsoh,struct pci_dev * pci_dev)707 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
708 struct efx_tso_header *tsoh,
709 struct pci_dev *pci_dev)
710 {
711 struct efx_tso_header **p;
712 unsigned long base_kva;
713 dma_addr_t base_dma;
714
715 base_kva = (unsigned long)tsoh & PAGE_MASK;
716 base_dma = tsoh->dma_addr & PAGE_MASK;
717
718 p = &tx_queue->tso_headers_free;
719 while (*p != NULL) {
720 if (((unsigned long)*p & PAGE_MASK) == base_kva)
721 *p = (*p)->next;
722 else
723 p = &(*p)->next;
724 }
725
726 pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
727 }
728
729 static struct efx_tso_header *
efx_tsoh_heap_alloc(struct efx_tx_queue * tx_queue,size_t header_len)730 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
731 {
732 struct efx_tso_header *tsoh;
733
734 tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
735 if (unlikely(!tsoh))
736 return NULL;
737
738 tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
739 TSOH_BUFFER(tsoh), header_len,
740 PCI_DMA_TODEVICE);
741 if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
742 tsoh->dma_addr))) {
743 kfree(tsoh);
744 return NULL;
745 }
746
747 tsoh->unmap_len = header_len;
748 return tsoh;
749 }
750
751 static void
efx_tsoh_heap_free(struct efx_tx_queue * tx_queue,struct efx_tso_header * tsoh)752 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
753 {
754 pci_unmap_single(tx_queue->efx->pci_dev,
755 tsoh->dma_addr, tsoh->unmap_len,
756 PCI_DMA_TODEVICE);
757 kfree(tsoh);
758 }
759
760 /**
761 * efx_tx_queue_insert - push descriptors onto the TX queue
762 * @tx_queue: Efx TX queue
763 * @dma_addr: DMA address of fragment
764 * @len: Length of fragment
765 * @final_buffer: The final buffer inserted into the queue
766 *
767 * Push descriptors onto the TX queue. Return 0 on success or 1 if
768 * @tx_queue full.
769 */
efx_tx_queue_insert(struct efx_tx_queue * tx_queue,dma_addr_t dma_addr,unsigned len,struct efx_tx_buffer ** final_buffer)770 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
771 dma_addr_t dma_addr, unsigned len,
772 struct efx_tx_buffer **final_buffer)
773 {
774 struct efx_tx_buffer *buffer;
775 struct efx_nic *efx = tx_queue->efx;
776 unsigned dma_len, fill_level, insert_ptr;
777 int q_space;
778
779 EFX_BUG_ON_PARANOID(len <= 0);
780
781 fill_level = tx_queue->insert_count - tx_queue->old_read_count;
782 /* -1 as there is no way to represent all descriptors used */
783 q_space = efx->txq_entries - 1 - fill_level;
784
785 while (1) {
786 if (unlikely(q_space-- <= 0)) {
787 /* It might be that completions have happened
788 * since the xmit path last checked. Update
789 * the xmit path's copy of read_count.
790 */
791 netif_tx_stop_queue(tx_queue->core_txq);
792 /* This memory barrier protects the change of
793 * queue state from the access of read_count. */
794 smp_mb();
795 tx_queue->old_read_count =
796 ACCESS_ONCE(tx_queue->read_count);
797 fill_level = (tx_queue->insert_count
798 - tx_queue->old_read_count);
799 q_space = efx->txq_entries - 1 - fill_level;
800 if (unlikely(q_space-- <= 0)) {
801 *final_buffer = NULL;
802 return 1;
803 }
804 smp_mb();
805 netif_tx_start_queue(tx_queue->core_txq);
806 }
807
808 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
809 buffer = &tx_queue->buffer[insert_ptr];
810 ++tx_queue->insert_count;
811
812 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
813 tx_queue->read_count >=
814 efx->txq_entries);
815
816 efx_tsoh_free(tx_queue, buffer);
817 EFX_BUG_ON_PARANOID(buffer->len);
818 EFX_BUG_ON_PARANOID(buffer->unmap_len);
819 EFX_BUG_ON_PARANOID(buffer->skb);
820 EFX_BUG_ON_PARANOID(!buffer->continuation);
821 EFX_BUG_ON_PARANOID(buffer->tsoh);
822
823 buffer->dma_addr = dma_addr;
824
825 dma_len = efx_max_tx_len(efx, dma_addr);
826
827 /* If there is enough space to send then do so */
828 if (dma_len >= len)
829 break;
830
831 buffer->len = dma_len; /* Don't set the other members */
832 dma_addr += dma_len;
833 len -= dma_len;
834 }
835
836 EFX_BUG_ON_PARANOID(!len);
837 buffer->len = len;
838 *final_buffer = buffer;
839 return 0;
840 }
841
842
843 /*
844 * Put a TSO header into the TX queue.
845 *
846 * This is special-cased because we know that it is small enough to fit in
847 * a single fragment, and we know it doesn't cross a page boundary. It
848 * also allows us to not worry about end-of-packet etc.
849 */
efx_tso_put_header(struct efx_tx_queue * tx_queue,struct efx_tso_header * tsoh,unsigned len)850 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
851 struct efx_tso_header *tsoh, unsigned len)
852 {
853 struct efx_tx_buffer *buffer;
854
855 buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
856 efx_tsoh_free(tx_queue, buffer);
857 EFX_BUG_ON_PARANOID(buffer->len);
858 EFX_BUG_ON_PARANOID(buffer->unmap_len);
859 EFX_BUG_ON_PARANOID(buffer->skb);
860 EFX_BUG_ON_PARANOID(!buffer->continuation);
861 EFX_BUG_ON_PARANOID(buffer->tsoh);
862 buffer->len = len;
863 buffer->dma_addr = tsoh->dma_addr;
864 buffer->tsoh = tsoh;
865
866 ++tx_queue->insert_count;
867 }
868
869
870 /* Remove descriptors put into a tx_queue. */
efx_enqueue_unwind(struct efx_tx_queue * tx_queue)871 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
872 {
873 struct efx_tx_buffer *buffer;
874 dma_addr_t unmap_addr;
875
876 /* Work backwards until we hit the original insert pointer value */
877 while (tx_queue->insert_count != tx_queue->write_count) {
878 --tx_queue->insert_count;
879 buffer = &tx_queue->buffer[tx_queue->insert_count &
880 tx_queue->ptr_mask];
881 efx_tsoh_free(tx_queue, buffer);
882 EFX_BUG_ON_PARANOID(buffer->skb);
883 if (buffer->unmap_len) {
884 unmap_addr = (buffer->dma_addr + buffer->len -
885 buffer->unmap_len);
886 if (buffer->unmap_single)
887 pci_unmap_single(tx_queue->efx->pci_dev,
888 unmap_addr, buffer->unmap_len,
889 PCI_DMA_TODEVICE);
890 else
891 pci_unmap_page(tx_queue->efx->pci_dev,
892 unmap_addr, buffer->unmap_len,
893 PCI_DMA_TODEVICE);
894 buffer->unmap_len = 0;
895 }
896 buffer->len = 0;
897 buffer->continuation = true;
898 }
899 }
900
901
902 /* Parse the SKB header and initialise state. */
tso_start(struct tso_state * st,const struct sk_buff * skb)903 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
904 {
905 /* All ethernet/IP/TCP headers combined size is TCP header size
906 * plus offset of TCP header relative to start of packet.
907 */
908 st->header_len = ((tcp_hdr(skb)->doff << 2u)
909 + PTR_DIFF(tcp_hdr(skb), skb->data));
910 st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
911
912 if (st->protocol == htons(ETH_P_IP))
913 st->ipv4_id = ntohs(ip_hdr(skb)->id);
914 else
915 st->ipv4_id = 0;
916 st->seqnum = ntohl(tcp_hdr(skb)->seq);
917
918 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
919 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
920 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
921
922 st->packet_space = st->full_packet_size;
923 st->out_len = skb->len - st->header_len;
924 st->unmap_len = 0;
925 st->unmap_single = false;
926 }
927
tso_get_fragment(struct tso_state * st,struct efx_nic * efx,skb_frag_t * frag)928 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
929 skb_frag_t *frag)
930 {
931 st->unmap_addr = pci_map_page(efx->pci_dev, frag->page,
932 frag->page_offset, frag->size,
933 PCI_DMA_TODEVICE);
934 if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
935 st->unmap_single = false;
936 st->unmap_len = frag->size;
937 st->in_len = frag->size;
938 st->dma_addr = st->unmap_addr;
939 return 0;
940 }
941 return -ENOMEM;
942 }
943
tso_get_head_fragment(struct tso_state * st,struct efx_nic * efx,const struct sk_buff * skb)944 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
945 const struct sk_buff *skb)
946 {
947 int hl = st->header_len;
948 int len = skb_headlen(skb) - hl;
949
950 st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
951 len, PCI_DMA_TODEVICE);
952 if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
953 st->unmap_single = true;
954 st->unmap_len = len;
955 st->in_len = len;
956 st->dma_addr = st->unmap_addr;
957 return 0;
958 }
959 return -ENOMEM;
960 }
961
962
963 /**
964 * tso_fill_packet_with_fragment - form descriptors for the current fragment
965 * @tx_queue: Efx TX queue
966 * @skb: Socket buffer
967 * @st: TSO state
968 *
969 * Form descriptors for the current fragment, until we reach the end
970 * of fragment or end-of-packet. Return 0 on success, 1 if not enough
971 * space in @tx_queue.
972 */
tso_fill_packet_with_fragment(struct efx_tx_queue * tx_queue,const struct sk_buff * skb,struct tso_state * st)973 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
974 const struct sk_buff *skb,
975 struct tso_state *st)
976 {
977 struct efx_tx_buffer *buffer;
978 int n, end_of_packet, rc;
979
980 if (st->in_len == 0)
981 return 0;
982 if (st->packet_space == 0)
983 return 0;
984
985 EFX_BUG_ON_PARANOID(st->in_len <= 0);
986 EFX_BUG_ON_PARANOID(st->packet_space <= 0);
987
988 n = min(st->in_len, st->packet_space);
989
990 st->packet_space -= n;
991 st->out_len -= n;
992 st->in_len -= n;
993
994 rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
995 if (likely(rc == 0)) {
996 if (st->out_len == 0)
997 /* Transfer ownership of the skb */
998 buffer->skb = skb;
999
1000 end_of_packet = st->out_len == 0 || st->packet_space == 0;
1001 buffer->continuation = !end_of_packet;
1002
1003 if (st->in_len == 0) {
1004 /* Transfer ownership of the pci mapping */
1005 buffer->unmap_len = st->unmap_len;
1006 buffer->unmap_single = st->unmap_single;
1007 st->unmap_len = 0;
1008 }
1009 }
1010
1011 st->dma_addr += n;
1012 return rc;
1013 }
1014
1015
1016 /**
1017 * tso_start_new_packet - generate a new header and prepare for the new packet
1018 * @tx_queue: Efx TX queue
1019 * @skb: Socket buffer
1020 * @st: TSO state
1021 *
1022 * Generate a new header and prepare for the new packet. Return 0 on
1023 * success, or -1 if failed to alloc header.
1024 */
tso_start_new_packet(struct efx_tx_queue * tx_queue,const struct sk_buff * skb,struct tso_state * st)1025 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1026 const struct sk_buff *skb,
1027 struct tso_state *st)
1028 {
1029 struct efx_tso_header *tsoh;
1030 struct tcphdr *tsoh_th;
1031 unsigned ip_length;
1032 u8 *header;
1033
1034 /* Allocate a DMA-mapped header buffer. */
1035 if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1036 if (tx_queue->tso_headers_free == NULL) {
1037 if (efx_tsoh_block_alloc(tx_queue))
1038 return -1;
1039 }
1040 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
1041 tsoh = tx_queue->tso_headers_free;
1042 tx_queue->tso_headers_free = tsoh->next;
1043 tsoh->unmap_len = 0;
1044 } else {
1045 tx_queue->tso_long_headers++;
1046 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
1047 if (unlikely(!tsoh))
1048 return -1;
1049 }
1050
1051 header = TSOH_BUFFER(tsoh);
1052 tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
1053
1054 /* Copy and update the headers. */
1055 memcpy(header, skb->data, st->header_len);
1056
1057 tsoh_th->seq = htonl(st->seqnum);
1058 st->seqnum += skb_shinfo(skb)->gso_size;
1059 if (st->out_len > skb_shinfo(skb)->gso_size) {
1060 /* This packet will not finish the TSO burst. */
1061 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1062 tsoh_th->fin = 0;
1063 tsoh_th->psh = 0;
1064 } else {
1065 /* This packet will be the last in the TSO burst. */
1066 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1067 tsoh_th->fin = tcp_hdr(skb)->fin;
1068 tsoh_th->psh = tcp_hdr(skb)->psh;
1069 }
1070
1071 if (st->protocol == htons(ETH_P_IP)) {
1072 struct iphdr *tsoh_iph =
1073 (struct iphdr *)(header + SKB_IPV4_OFF(skb));
1074
1075 tsoh_iph->tot_len = htons(ip_length);
1076
1077 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1078 tsoh_iph->id = htons(st->ipv4_id);
1079 st->ipv4_id++;
1080 } else {
1081 struct ipv6hdr *tsoh_iph =
1082 (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1083
1084 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1085 }
1086
1087 st->packet_space = skb_shinfo(skb)->gso_size;
1088 ++tx_queue->tso_packets;
1089
1090 /* Form a descriptor for this header. */
1091 efx_tso_put_header(tx_queue, tsoh, st->header_len);
1092
1093 return 0;
1094 }
1095
1096
1097 /**
1098 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1099 * @tx_queue: Efx TX queue
1100 * @skb: Socket buffer
1101 *
1102 * Context: You must hold netif_tx_lock() to call this function.
1103 *
1104 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1105 * @skb was not enqueued. In all cases @skb is consumed. Return
1106 * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1107 */
efx_enqueue_skb_tso(struct efx_tx_queue * tx_queue,struct sk_buff * skb)1108 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1109 struct sk_buff *skb)
1110 {
1111 struct efx_nic *efx = tx_queue->efx;
1112 int frag_i, rc, rc2 = NETDEV_TX_OK;
1113 struct tso_state state;
1114
1115 /* Find the packet protocol and sanity-check it */
1116 state.protocol = efx_tso_check_protocol(skb);
1117
1118 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1119
1120 tso_start(&state, skb);
1121
1122 /* Assume that skb header area contains exactly the headers, and
1123 * all payload is in the frag list.
1124 */
1125 if (skb_headlen(skb) == state.header_len) {
1126 /* Grab the first payload fragment. */
1127 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1128 frag_i = 0;
1129 rc = tso_get_fragment(&state, efx,
1130 skb_shinfo(skb)->frags + frag_i);
1131 if (rc)
1132 goto mem_err;
1133 } else {
1134 rc = tso_get_head_fragment(&state, efx, skb);
1135 if (rc)
1136 goto mem_err;
1137 frag_i = -1;
1138 }
1139
1140 if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1141 goto mem_err;
1142
1143 while (1) {
1144 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1145 if (unlikely(rc)) {
1146 rc2 = NETDEV_TX_BUSY;
1147 goto unwind;
1148 }
1149
1150 /* Move onto the next fragment? */
1151 if (state.in_len == 0) {
1152 if (++frag_i >= skb_shinfo(skb)->nr_frags)
1153 /* End of payload reached. */
1154 break;
1155 rc = tso_get_fragment(&state, efx,
1156 skb_shinfo(skb)->frags + frag_i);
1157 if (rc)
1158 goto mem_err;
1159 }
1160
1161 /* Start at new packet? */
1162 if (state.packet_space == 0 &&
1163 tso_start_new_packet(tx_queue, skb, &state) < 0)
1164 goto mem_err;
1165 }
1166
1167 /* Pass off to hardware */
1168 efx_nic_push_buffers(tx_queue);
1169
1170 tx_queue->tso_bursts++;
1171 return NETDEV_TX_OK;
1172
1173 mem_err:
1174 netif_err(efx, tx_err, efx->net_dev,
1175 "Out of memory for TSO headers, or PCI mapping error\n");
1176 dev_kfree_skb_any(skb);
1177
1178 unwind:
1179 /* Free the DMA mapping we were in the process of writing out */
1180 if (state.unmap_len) {
1181 if (state.unmap_single)
1182 pci_unmap_single(efx->pci_dev, state.unmap_addr,
1183 state.unmap_len, PCI_DMA_TODEVICE);
1184 else
1185 pci_unmap_page(efx->pci_dev, state.unmap_addr,
1186 state.unmap_len, PCI_DMA_TODEVICE);
1187 }
1188
1189 efx_enqueue_unwind(tx_queue);
1190 return rc2;
1191 }
1192
1193
1194 /*
1195 * Free up all TSO datastructures associated with tx_queue. This
1196 * routine should be called only once the tx_queue is both empty and
1197 * will no longer be used.
1198 */
efx_fini_tso(struct efx_tx_queue * tx_queue)1199 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1200 {
1201 unsigned i;
1202
1203 if (tx_queue->buffer) {
1204 for (i = 0; i <= tx_queue->ptr_mask; ++i)
1205 efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1206 }
1207
1208 while (tx_queue->tso_headers_free != NULL)
1209 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1210 tx_queue->efx->pci_dev);
1211 }
1212