1 /******************************************************************************
2 *
3 * Copyright(c) 2009-2010 Realtek Corporation.
4 *
5 * Tmis program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * tmis program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17 *
18 * Tme full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
25 *
26 * Larry Finger <Larry.Finger@lwfinger.net>
27 *
28 *****************************************************************************/
29
30 #include "wifi.h"
31 #include "efuse.h"
32
33 static const u8 MAX_PGPKT_SIZE = 9;
34 static const u8 PGPKT_DATA_SIZE = 8;
35 static const int EFUSE_MAX_SIZE = 512;
36
37 static const u8 EFUSE_OOB_PROTECT_BYTES = 15;
38
39 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
40 {0, 0, 0, 2},
41 {0, 1, 0, 2},
42 {0, 2, 0, 2},
43 {1, 0, 0, 1},
44 {1, 0, 1, 1},
45 {1, 1, 0, 1},
46 {1, 1, 1, 3},
47 {1, 3, 0, 17},
48 {3, 3, 1, 48},
49 {10, 0, 0, 6},
50 {10, 3, 0, 1},
51 {10, 3, 1, 1},
52 {11, 0, 0, 28}
53 };
54
55 static void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset,
56 u8 *pbuf);
57 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
58 u8 *value);
59 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
60 u16 *value);
61 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
62 u32 *value);
63 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
64 u8 value);
65 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
66 u16 value);
67 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
68 u32 value);
69 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
70 u8 *data);
71 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
72 u8 data);
73 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
74 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
75 u8 *data);
76 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
77 u8 word_en, u8 *data);
78 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
79 u8 *targetdata);
80 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
81 u16 efuse_addr, u8 word_en, u8 *data);
82 static void efuse_power_switch(struct ieee80211_hw *hw, u8 bwrite,
83 u8 pwrstate);
84 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
85 static u8 efuse_calculate_word_cnts(u8 word_en);
86
efuse_initialize(struct ieee80211_hw * hw)87 void efuse_initialize(struct ieee80211_hw *hw)
88 {
89 struct rtl_priv *rtlpriv = rtl_priv(hw);
90 u8 bytetemp;
91 u8 temp;
92
93 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
94 temp = bytetemp | 0x20;
95 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
96
97 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
98 temp = bytetemp & 0xFE;
99 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
100
101 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
102 temp = bytetemp | 0x80;
103 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
104
105 rtl_write_byte(rtlpriv, 0x2F8, 0x3);
106
107 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
108
109 }
110
efuse_read_1byte(struct ieee80211_hw * hw,u16 address)111 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
112 {
113 struct rtl_priv *rtlpriv = rtl_priv(hw);
114 u8 data;
115 u8 bytetemp;
116 u8 temp;
117 u32 k = 0;
118
119 if (address < EFUSE_REAL_CONTENT_LEN) {
120 temp = address & 0xFF;
121 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
122 temp);
123 bytetemp = rtl_read_byte(rtlpriv,
124 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
125 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
126 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
127 temp);
128
129 bytetemp = rtl_read_byte(rtlpriv,
130 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
131 temp = bytetemp & 0x7F;
132 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
133 temp);
134
135 bytetemp = rtl_read_byte(rtlpriv,
136 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
137 while (!(bytetemp & 0x80)) {
138 bytetemp = rtl_read_byte(rtlpriv,
139 rtlpriv->cfg->
140 maps[EFUSE_CTRL] + 3);
141 k++;
142 if (k == 1000) {
143 k = 0;
144 break;
145 }
146 }
147 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
148 return data;
149 } else
150 return 0xFF;
151
152 }
153 EXPORT_SYMBOL(efuse_read_1byte);
154
efuse_write_1byte(struct ieee80211_hw * hw,u16 address,u8 value)155 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
156 {
157 struct rtl_priv *rtlpriv = rtl_priv(hw);
158 u8 bytetemp;
159 u8 temp;
160 u32 k = 0;
161
162 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
163 ("Addr=%x Data =%x\n", address, value));
164
165 if (address < EFUSE_REAL_CONTENT_LEN) {
166 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
167
168 temp = address & 0xFF;
169 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
170 temp);
171 bytetemp = rtl_read_byte(rtlpriv,
172 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
173
174 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
175 rtl_write_byte(rtlpriv,
176 rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
177
178 bytetemp = rtl_read_byte(rtlpriv,
179 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
180 temp = bytetemp | 0x80;
181 rtl_write_byte(rtlpriv,
182 rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
183
184 bytetemp = rtl_read_byte(rtlpriv,
185 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
186
187 while (bytetemp & 0x80) {
188 bytetemp = rtl_read_byte(rtlpriv,
189 rtlpriv->cfg->
190 maps[EFUSE_CTRL] + 3);
191 k++;
192 if (k == 100) {
193 k = 0;
194 break;
195 }
196 }
197 }
198
199 }
200
read_efuse_byte(struct ieee80211_hw * hw,u16 _offset,u8 * pbuf)201 static void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
202 {
203 struct rtl_priv *rtlpriv = rtl_priv(hw);
204 u32 value32;
205 u8 readbyte;
206 u16 retry;
207
208 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
209 (_offset & 0xff));
210 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
211 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
212 ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
213
214 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
215 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
216 (readbyte & 0x7f));
217
218 retry = 0;
219 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
220 while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
221 value32 = rtl_read_dword(rtlpriv,
222 rtlpriv->cfg->maps[EFUSE_CTRL]);
223 retry++;
224 }
225
226 udelay(50);
227 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
228
229 *pbuf = (u8) (value32 & 0xff);
230 }
231
read_efuse(struct ieee80211_hw * hw,u16 _offset,u16 _size_byte,u8 * pbuf)232 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
233 {
234 struct rtl_priv *rtlpriv = rtl_priv(hw);
235 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
236 u8 efuse_tbl[EFUSE_MAP_LEN];
237 u8 rtemp8[1];
238 u16 efuse_addr = 0;
239 u8 offset, wren;
240 u16 i;
241 u16 j;
242 u16 efuse_word[EFUSE_MAX_SECTION][EFUSE_MAX_WORD_UNIT];
243 u16 efuse_utilized = 0;
244 u8 efuse_usage;
245
246 if ((_offset + _size_byte) > EFUSE_MAP_LEN) {
247 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
248 ("read_efuse(): Invalid offset(%#x) with read "
249 "bytes(%#x)!!\n", _offset, _size_byte));
250 return;
251 }
252
253 for (i = 0; i < EFUSE_MAX_SECTION; i++)
254 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
255 efuse_word[i][j] = 0xFFFF;
256
257 read_efuse_byte(hw, efuse_addr, rtemp8);
258 if (*rtemp8 != 0xFF) {
259 efuse_utilized++;
260 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
261 ("Addr=%d\n", efuse_addr));
262 efuse_addr++;
263 }
264
265 while ((*rtemp8 != 0xFF) && (efuse_addr < EFUSE_REAL_CONTENT_LEN)) {
266 offset = ((*rtemp8 >> 4) & 0x0f);
267
268 if (offset < EFUSE_MAX_SECTION) {
269 wren = (*rtemp8 & 0x0f);
270 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
271 ("offset-%d Worden=%x\n", offset, wren));
272
273 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
274 if (!(wren & 0x01)) {
275 RTPRINT(rtlpriv, FEEPROM,
276 EFUSE_READ_ALL, ("Addr=%d\n",
277 efuse_addr));
278
279 read_efuse_byte(hw, efuse_addr, rtemp8);
280 efuse_addr++;
281 efuse_utilized++;
282 efuse_word[offset][i] = (*rtemp8 & 0xff);
283
284 if (efuse_addr >= EFUSE_REAL_CONTENT_LEN)
285 break;
286
287 RTPRINT(rtlpriv, FEEPROM,
288 EFUSE_READ_ALL, ("Addr=%d\n",
289 efuse_addr));
290
291 read_efuse_byte(hw, efuse_addr, rtemp8);
292 efuse_addr++;
293 efuse_utilized++;
294 efuse_word[offset][i] |=
295 (((u16)*rtemp8 << 8) & 0xff00);
296
297 if (efuse_addr >= EFUSE_REAL_CONTENT_LEN)
298 break;
299 }
300
301 wren >>= 1;
302 }
303 }
304
305 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
306 ("Addr=%d\n", efuse_addr));
307 read_efuse_byte(hw, efuse_addr, rtemp8);
308 if (*rtemp8 != 0xFF && (efuse_addr < 512)) {
309 efuse_utilized++;
310 efuse_addr++;
311 }
312 }
313
314 for (i = 0; i < EFUSE_MAX_SECTION; i++) {
315 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
316 efuse_tbl[(i * 8) + (j * 2)] =
317 (efuse_word[i][j] & 0xff);
318 efuse_tbl[(i * 8) + ((j * 2) + 1)] =
319 ((efuse_word[i][j] >> 8) & 0xff);
320 }
321 }
322
323 for (i = 0; i < _size_byte; i++)
324 pbuf[i] = efuse_tbl[_offset + i];
325
326 rtlefuse->efuse_usedbytes = efuse_utilized;
327 efuse_usage = (u8)((efuse_utilized * 100) / EFUSE_REAL_CONTENT_LEN);
328 rtlefuse->efuse_usedpercentage = efuse_usage;
329 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
330 (u8 *)&efuse_utilized);
331 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
332 (u8 *)&efuse_usage);
333 }
334
efuse_shadow_update_chk(struct ieee80211_hw * hw)335 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
336 {
337 struct rtl_priv *rtlpriv = rtl_priv(hw);
338 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
339 u8 section_idx, i, Base;
340 u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
341 bool bwordchanged, bresult = true;
342
343 for (section_idx = 0; section_idx < 16; section_idx++) {
344 Base = section_idx * 8;
345 bwordchanged = false;
346
347 for (i = 0; i < 8; i = i + 2) {
348 if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
349 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
350 (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
351 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
352 1])) {
353 words_need++;
354 bwordchanged = true;
355 }
356 }
357
358 if (bwordchanged == true)
359 hdr_num++;
360 }
361
362 totalbytes = hdr_num + words_need * 2;
363 efuse_used = rtlefuse->efuse_usedbytes;
364
365 if ((totalbytes + efuse_used) >=
366 (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))
367 bresult = false;
368
369 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
370 ("efuse_shadow_update_chk(): totalbytes(%#x), "
371 "hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
372 totalbytes, hdr_num, words_need, efuse_used));
373
374 return bresult;
375 }
376
efuse_shadow_read(struct ieee80211_hw * hw,u8 type,u16 offset,u32 * value)377 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
378 u16 offset, u32 *value)
379 {
380 if (type == 1)
381 efuse_shadow_read_1byte(hw, offset, (u8 *) value);
382 else if (type == 2)
383 efuse_shadow_read_2byte(hw, offset, (u16 *) value);
384 else if (type == 4)
385 efuse_shadow_read_4byte(hw, offset, (u32 *) value);
386
387 }
388
efuse_shadow_write(struct ieee80211_hw * hw,u8 type,u16 offset,u32 value)389 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
390 u32 value)
391 {
392 if (type == 1)
393 efuse_shadow_write_1byte(hw, offset, (u8) value);
394 else if (type == 2)
395 efuse_shadow_write_2byte(hw, offset, (u16) value);
396 else if (type == 4)
397 efuse_shadow_write_4byte(hw, offset, (u32) value);
398
399 }
400
efuse_shadow_update(struct ieee80211_hw * hw)401 bool efuse_shadow_update(struct ieee80211_hw *hw)
402 {
403 struct rtl_priv *rtlpriv = rtl_priv(hw);
404 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
405 u16 i, offset, base;
406 u8 word_en = 0x0F;
407 u8 first_pg = false;
408
409 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("--->\n"));
410
411 if (!efuse_shadow_update_chk(hw)) {
412 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
413 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
414 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
415 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
416
417 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
418 ("<---efuse out of capacity!!\n"));
419 return false;
420 }
421 efuse_power_switch(hw, true, true);
422
423 for (offset = 0; offset < 16; offset++) {
424
425 word_en = 0x0F;
426 base = offset * 8;
427
428 for (i = 0; i < 8; i++) {
429 if (first_pg == true) {
430
431 word_en &= ~(BIT(i / 2));
432
433 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
434 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
435 } else {
436
437 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
438 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
439 word_en &= ~(BIT(i / 2));
440
441 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
442 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
443 }
444 }
445 }
446
447 if (word_en != 0x0F) {
448 u8 tmpdata[8];
449 memcpy(tmpdata,
450 &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
451 8);
452 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
453 ("U-efuse\n"), tmpdata, 8);
454
455 if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
456 tmpdata)) {
457 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
458 ("PG section(%#x) fail!!\n", offset));
459 break;
460 }
461 }
462
463 }
464
465 efuse_power_switch(hw, true, false);
466 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
467
468 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
469 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
470 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
471
472 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("<---\n"));
473 return true;
474 }
475
rtl_efuse_shadow_map_update(struct ieee80211_hw * hw)476 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
477 {
478 struct rtl_priv *rtlpriv = rtl_priv(hw);
479 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
480
481 if (rtlefuse->autoload_failflag == true) {
482 memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF, 128);
483 } else
484 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
485
486 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
487 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
488 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
489
490 }
491 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
492
efuse_force_write_vendor_Id(struct ieee80211_hw * hw)493 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
494 {
495 u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
496
497 efuse_power_switch(hw, true, true);
498
499 efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
500
501 efuse_power_switch(hw, true, false);
502
503 }
504
efuse_re_pg_section(struct ieee80211_hw * hw,u8 section_idx)505 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
506 {
507 }
508
efuse_shadow_read_1byte(struct ieee80211_hw * hw,u16 offset,u8 * value)509 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
510 u16 offset, u8 *value)
511 {
512 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
513 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
514 }
515
efuse_shadow_read_2byte(struct ieee80211_hw * hw,u16 offset,u16 * value)516 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
517 u16 offset, u16 *value)
518 {
519 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
520
521 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
522 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
523
524 }
525
efuse_shadow_read_4byte(struct ieee80211_hw * hw,u16 offset,u32 * value)526 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
527 u16 offset, u32 *value)
528 {
529 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
530
531 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
532 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
533 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
534 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
535 }
536
efuse_shadow_write_1byte(struct ieee80211_hw * hw,u16 offset,u8 value)537 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
538 u16 offset, u8 value)
539 {
540 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
541
542 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
543 }
544
efuse_shadow_write_2byte(struct ieee80211_hw * hw,u16 offset,u16 value)545 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
546 u16 offset, u16 value)
547 {
548 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
549
550 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
551 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
552
553 }
554
efuse_shadow_write_4byte(struct ieee80211_hw * hw,u16 offset,u32 value)555 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
556 u16 offset, u32 value)
557 {
558 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
559
560 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
561 (u8) (value & 0x000000FF);
562 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
563 (u8) ((value >> 8) & 0x0000FF);
564 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
565 (u8) ((value >> 16) & 0x00FF);
566 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
567 (u8) ((value >> 24) & 0xFF);
568
569 }
570
efuse_one_byte_read(struct ieee80211_hw * hw,u16 addr,u8 * data)571 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
572 {
573 struct rtl_priv *rtlpriv = rtl_priv(hw);
574 u8 tmpidx = 0;
575 int bresult;
576
577 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
578 (u8) (addr & 0xff));
579 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
580 ((u8) ((addr >> 8) & 0x03)) |
581 (rtl_read_byte(rtlpriv,
582 rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
583 0xFC));
584
585 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
586
587 while (!(0x80 & rtl_read_byte(rtlpriv,
588 rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
589 && (tmpidx < 100)) {
590 tmpidx++;
591 }
592
593 if (tmpidx < 100) {
594 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
595 bresult = true;
596 } else {
597 *data = 0xff;
598 bresult = false;
599 }
600 return bresult;
601 }
602
efuse_one_byte_write(struct ieee80211_hw * hw,u16 addr,u8 data)603 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
604 {
605 struct rtl_priv *rtlpriv = rtl_priv(hw);
606 u8 tmpidx = 0;
607 bool bresult;
608
609 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
610 ("Addr = %x Data=%x\n", addr, data));
611
612 rtl_write_byte(rtlpriv,
613 rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
614 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
615 (rtl_read_byte(rtlpriv,
616 rtlpriv->cfg->maps[EFUSE_CTRL] +
617 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
618
619 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
620 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
621
622 while ((0x80 & rtl_read_byte(rtlpriv,
623 rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
624 && (tmpidx < 100)) {
625 tmpidx++;
626 }
627
628 if (tmpidx < 100)
629 bresult = true;
630 else
631 bresult = false;
632
633 return bresult;
634 }
635
efuse_read_all_map(struct ieee80211_hw * hw,u8 * efuse)636 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
637 {
638 efuse_power_switch(hw, false, true);
639 read_efuse(hw, 0, 128, efuse);
640 efuse_power_switch(hw, false, false);
641 }
642
efuse_read_data_case1(struct ieee80211_hw * hw,u16 * efuse_addr,u8 efuse_data,u8 offset,u8 * tmpdata,u8 * readstate)643 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
644 u8 efuse_data, u8 offset, u8 *tmpdata,
645 u8 *readstate)
646 {
647 bool bdataempty = true;
648 u8 hoffset;
649 u8 tmpidx;
650 u8 hworden;
651 u8 word_cnts;
652
653 hoffset = (efuse_data >> 4) & 0x0F;
654 hworden = efuse_data & 0x0F;
655 word_cnts = efuse_calculate_word_cnts(hworden);
656
657 if (hoffset == offset) {
658 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
659 if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
660 &efuse_data)) {
661 tmpdata[tmpidx] = efuse_data;
662 if (efuse_data != 0xff)
663 bdataempty = true;
664 }
665 }
666
667 if (bdataempty == true)
668 *readstate = PG_STATE_DATA;
669 else {
670 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
671 *readstate = PG_STATE_HEADER;
672 }
673
674 } else {
675 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
676 *readstate = PG_STATE_HEADER;
677 }
678 }
679
efuse_pg_packet_read(struct ieee80211_hw * hw,u8 offset,u8 * data)680 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
681 {
682 u8 readstate = PG_STATE_HEADER;
683
684 bool bcontinual = true;
685
686 u8 efuse_data, word_cnts = 0;
687 u16 efuse_addr = 0;
688 u8 hworden = 0;
689 u8 tmpdata[8];
690
691 if (data == NULL)
692 return false;
693 if (offset > 15)
694 return false;
695
696 memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
697 memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
698
699 while (bcontinual && (efuse_addr < EFUSE_MAX_SIZE)) {
700 if (readstate & PG_STATE_HEADER) {
701 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
702 && (efuse_data != 0xFF))
703 efuse_read_data_case1(hw, &efuse_addr,
704 efuse_data,
705 offset, tmpdata,
706 &readstate);
707 else
708 bcontinual = false;
709 } else if (readstate & PG_STATE_DATA) {
710 efuse_word_enable_data_read(hworden, tmpdata, data);
711 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
712 readstate = PG_STATE_HEADER;
713 }
714
715 }
716
717 if ((data[0] == 0xff) && (data[1] == 0xff) &&
718 (data[2] == 0xff) && (data[3] == 0xff) &&
719 (data[4] == 0xff) && (data[5] == 0xff) &&
720 (data[6] == 0xff) && (data[7] == 0xff))
721 return false;
722 else
723 return true;
724
725 }
726
efuse_write_data_case1(struct ieee80211_hw * hw,u16 * efuse_addr,u8 efuse_data,u8 offset,int * bcontinual,u8 * write_state,struct pgpkt_struct * target_pkt,int * repeat_times,int * bresult,u8 word_en)727 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
728 u8 efuse_data, u8 offset, int *bcontinual,
729 u8 *write_state, struct pgpkt_struct *target_pkt,
730 int *repeat_times, int *bresult, u8 word_en)
731 {
732 struct rtl_priv *rtlpriv = rtl_priv(hw);
733 struct pgpkt_struct tmp_pkt;
734 int bdataempty = true;
735 u8 originaldata[8 * sizeof(u8)];
736 u8 badworden = 0x0F;
737 u8 match_word_en, tmp_word_en;
738 u8 tmpindex;
739 u8 tmp_header = efuse_data;
740 u8 tmp_word_cnts;
741
742 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
743 tmp_pkt.word_en = tmp_header & 0x0F;
744 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
745
746 if (tmp_pkt.offset != target_pkt->offset) {
747 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
748 *write_state = PG_STATE_HEADER;
749 } else {
750 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
751 u16 address = *efuse_addr + 1 + tmpindex;
752 if (efuse_one_byte_read(hw, address,
753 &efuse_data) && (efuse_data != 0xFF))
754 bdataempty = false;
755 }
756
757 if (bdataempty == false) {
758 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
759 *write_state = PG_STATE_HEADER;
760 } else {
761 match_word_en = 0x0F;
762 if (!((target_pkt->word_en & BIT(0)) |
763 (tmp_pkt.word_en & BIT(0))))
764 match_word_en &= (~BIT(0));
765
766 if (!((target_pkt->word_en & BIT(1)) |
767 (tmp_pkt.word_en & BIT(1))))
768 match_word_en &= (~BIT(1));
769
770 if (!((target_pkt->word_en & BIT(2)) |
771 (tmp_pkt.word_en & BIT(2))))
772 match_word_en &= (~BIT(2));
773
774 if (!((target_pkt->word_en & BIT(3)) |
775 (tmp_pkt.word_en & BIT(3))))
776 match_word_en &= (~BIT(3));
777
778 if ((match_word_en & 0x0F) != 0x0F) {
779 badworden = efuse_word_enable_data_write(
780 hw, *efuse_addr + 1,
781 tmp_pkt.word_en,
782 target_pkt->data);
783
784 if (0x0F != (badworden & 0x0F)) {
785 u8 reorg_offset = offset;
786 u8 reorg_worden = badworden;
787 efuse_pg_packet_write(hw, reorg_offset,
788 reorg_worden,
789 originaldata);
790 }
791
792 tmp_word_en = 0x0F;
793 if ((target_pkt->word_en & BIT(0)) ^
794 (match_word_en & BIT(0)))
795 tmp_word_en &= (~BIT(0));
796
797 if ((target_pkt->word_en & BIT(1)) ^
798 (match_word_en & BIT(1)))
799 tmp_word_en &= (~BIT(1));
800
801 if ((target_pkt->word_en & BIT(2)) ^
802 (match_word_en & BIT(2)))
803 tmp_word_en &= (~BIT(2));
804
805 if ((target_pkt->word_en & BIT(3)) ^
806 (match_word_en & BIT(3)))
807 tmp_word_en &= (~BIT(3));
808
809 if ((tmp_word_en & 0x0F) != 0x0F) {
810 *efuse_addr = efuse_get_current_size(hw);
811 target_pkt->offset = offset;
812 target_pkt->word_en = tmp_word_en;
813 } else
814 *bcontinual = false;
815 *write_state = PG_STATE_HEADER;
816 *repeat_times += 1;
817 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
818 *bcontinual = false;
819 *bresult = false;
820 }
821 } else {
822 *efuse_addr += (2 * tmp_word_cnts) + 1;
823 target_pkt->offset = offset;
824 target_pkt->word_en = word_en;
825 *write_state = PG_STATE_HEADER;
826 }
827 }
828 }
829 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse PG_STATE_HEADER-1\n"));
830 }
831
efuse_write_data_case2(struct ieee80211_hw * hw,u16 * efuse_addr,int * bcontinual,u8 * write_state,struct pgpkt_struct target_pkt,int * repeat_times,int * bresult)832 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
833 int *bcontinual, u8 *write_state,
834 struct pgpkt_struct target_pkt,
835 int *repeat_times, int *bresult)
836 {
837 struct rtl_priv *rtlpriv = rtl_priv(hw);
838 struct pgpkt_struct tmp_pkt;
839 u8 pg_header;
840 u8 tmp_header;
841 u8 originaldata[8 * sizeof(u8)];
842 u8 tmp_word_cnts;
843 u8 badworden = 0x0F;
844
845 pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
846 efuse_one_byte_write(hw, *efuse_addr, pg_header);
847 efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
848
849 if (tmp_header == pg_header)
850 *write_state = PG_STATE_DATA;
851 else if (tmp_header == 0xFF) {
852 *write_state = PG_STATE_HEADER;
853 *repeat_times += 1;
854 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
855 *bcontinual = false;
856 *bresult = false;
857 }
858 } else {
859 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
860 tmp_pkt.word_en = tmp_header & 0x0F;
861
862 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
863
864 memset(originaldata, 0xff, 8 * sizeof(u8));
865
866 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
867 badworden = efuse_word_enable_data_write(hw,
868 *efuse_addr + 1, tmp_pkt.word_en,
869 originaldata);
870
871 if (0x0F != (badworden & 0x0F)) {
872 u8 reorg_offset = tmp_pkt.offset;
873 u8 reorg_worden = badworden;
874 efuse_pg_packet_write(hw, reorg_offset,
875 reorg_worden,
876 originaldata);
877 *efuse_addr = efuse_get_current_size(hw);
878 } else
879 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
880 + 1;
881 } else
882 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
883
884 *write_state = PG_STATE_HEADER;
885 *repeat_times += 1;
886 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
887 *bcontinual = false;
888 *bresult = false;
889 }
890
891 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
892 ("efuse PG_STATE_HEADER-2\n"));
893 }
894 }
895
efuse_pg_packet_write(struct ieee80211_hw * hw,u8 offset,u8 word_en,u8 * data)896 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
897 u8 offset, u8 word_en, u8 *data)
898 {
899 struct rtl_priv *rtlpriv = rtl_priv(hw);
900 struct pgpkt_struct target_pkt;
901 u8 write_state = PG_STATE_HEADER;
902 int bcontinual = true, bdataempty = true, bresult = true;
903 u16 efuse_addr = 0;
904 u8 efuse_data;
905 u8 target_word_cnts = 0;
906 u8 badworden = 0x0F;
907 static int repeat_times;
908
909 if (efuse_get_current_size(hw) >=
910 (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
911 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
912 ("efuse_pg_packet_write error\n"));
913 return false;
914 }
915
916 target_pkt.offset = offset;
917 target_pkt.word_en = word_en;
918
919 memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
920
921 efuse_word_enable_data_read(word_en, data, target_pkt.data);
922 target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
923
924 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse Power ON\n"));
925
926 while (bcontinual && (efuse_addr <
927 (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))) {
928
929 if (write_state == PG_STATE_HEADER) {
930 bdataempty = true;
931 badworden = 0x0F;
932 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
933 ("efuse PG_STATE_HEADER\n"));
934
935 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
936 (efuse_data != 0xFF))
937 efuse_write_data_case1(hw, &efuse_addr,
938 efuse_data, offset,
939 &bcontinual,
940 &write_state, &target_pkt,
941 &repeat_times, &bresult,
942 word_en);
943 else
944 efuse_write_data_case2(hw, &efuse_addr,
945 &bcontinual,
946 &write_state,
947 target_pkt,
948 &repeat_times,
949 &bresult);
950
951 } else if (write_state == PG_STATE_DATA) {
952 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
953 ("efuse PG_STATE_DATA\n"));
954 badworden = 0x0f;
955 badworden =
956 efuse_word_enable_data_write(hw, efuse_addr + 1,
957 target_pkt.word_en,
958 target_pkt.data);
959
960 if ((badworden & 0x0F) == 0x0F) {
961 bcontinual = false;
962 } else {
963 efuse_addr =
964 efuse_addr + (2 * target_word_cnts) + 1;
965
966 target_pkt.offset = offset;
967 target_pkt.word_en = badworden;
968 target_word_cnts =
969 efuse_calculate_word_cnts(target_pkt.
970 word_en);
971 write_state = PG_STATE_HEADER;
972 repeat_times++;
973 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
974 bcontinual = false;
975 bresult = false;
976 }
977 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
978 ("efuse PG_STATE_HEADER-3\n"));
979 }
980 }
981 }
982
983 if (efuse_addr >= (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
984 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
985 ("efuse_addr(%#x) Out of size!!\n", efuse_addr));
986 }
987
988 return true;
989 }
990
efuse_word_enable_data_read(u8 word_en,u8 * sourdata,u8 * targetdata)991 static void efuse_word_enable_data_read(u8 word_en,
992 u8 *sourdata, u8 *targetdata)
993 {
994 if (!(word_en & BIT(0))) {
995 targetdata[0] = sourdata[0];
996 targetdata[1] = sourdata[1];
997 }
998
999 if (!(word_en & BIT(1))) {
1000 targetdata[2] = sourdata[2];
1001 targetdata[3] = sourdata[3];
1002 }
1003
1004 if (!(word_en & BIT(2))) {
1005 targetdata[4] = sourdata[4];
1006 targetdata[5] = sourdata[5];
1007 }
1008
1009 if (!(word_en & BIT(3))) {
1010 targetdata[6] = sourdata[6];
1011 targetdata[7] = sourdata[7];
1012 }
1013 }
1014
efuse_word_enable_data_write(struct ieee80211_hw * hw,u16 efuse_addr,u8 word_en,u8 * data)1015 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
1016 u16 efuse_addr, u8 word_en, u8 *data)
1017 {
1018 struct rtl_priv *rtlpriv = rtl_priv(hw);
1019 u16 tmpaddr;
1020 u16 start_addr = efuse_addr;
1021 u8 badworden = 0x0F;
1022 u8 tmpdata[8];
1023
1024 memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1025 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1026 ("word_en = %x efuse_addr=%x\n", word_en, efuse_addr));
1027
1028 if (!(word_en & BIT(0))) {
1029 tmpaddr = start_addr;
1030 efuse_one_byte_write(hw, start_addr++, data[0]);
1031 efuse_one_byte_write(hw, start_addr++, data[1]);
1032
1033 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1034 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1035 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1036 badworden &= (~BIT(0));
1037 }
1038
1039 if (!(word_en & BIT(1))) {
1040 tmpaddr = start_addr;
1041 efuse_one_byte_write(hw, start_addr++, data[2]);
1042 efuse_one_byte_write(hw, start_addr++, data[3]);
1043
1044 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1045 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1046 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1047 badworden &= (~BIT(1));
1048 }
1049
1050 if (!(word_en & BIT(2))) {
1051 tmpaddr = start_addr;
1052 efuse_one_byte_write(hw, start_addr++, data[4]);
1053 efuse_one_byte_write(hw, start_addr++, data[5]);
1054
1055 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1056 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1057 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1058 badworden &= (~BIT(2));
1059 }
1060
1061 if (!(word_en & BIT(3))) {
1062 tmpaddr = start_addr;
1063 efuse_one_byte_write(hw, start_addr++, data[6]);
1064 efuse_one_byte_write(hw, start_addr++, data[7]);
1065
1066 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1067 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1068 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1069 badworden &= (~BIT(3));
1070 }
1071
1072 return badworden;
1073 }
1074
efuse_power_switch(struct ieee80211_hw * hw,u8 bwrite,u8 pwrstate)1075 static void efuse_power_switch(struct ieee80211_hw *hw, u8 bwrite, u8 pwrstate)
1076 {
1077 struct rtl_priv *rtlpriv = rtl_priv(hw);
1078 u8 tempval;
1079 u16 tmpV16;
1080
1081 if (pwrstate == true) {
1082 tmpV16 = rtl_read_word(rtlpriv,
1083 rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1084 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1085 tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1086 rtl_write_word(rtlpriv,
1087 rtlpriv->cfg->maps[SYS_ISO_CTRL],
1088 tmpV16);
1089 }
1090
1091 tmpV16 = rtl_read_word(rtlpriv,
1092 rtlpriv->cfg->maps[SYS_FUNC_EN]);
1093 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1094 tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1095 rtl_write_word(rtlpriv,
1096 rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1097 }
1098
1099 tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1100 if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1101 (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1102 tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1103 rtlpriv->cfg->maps[EFUSE_ANA8M]);
1104 rtl_write_word(rtlpriv,
1105 rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1106 }
1107 }
1108
1109 if (pwrstate == true) {
1110 if (bwrite == true) {
1111 tempval = rtl_read_byte(rtlpriv,
1112 rtlpriv->cfg->maps[EFUSE_TEST] +
1113 3);
1114 tempval &= 0x0F;
1115 tempval |= (VOLTAGE_V25 << 4);
1116 rtl_write_byte(rtlpriv,
1117 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1118 (tempval | 0x80));
1119 }
1120
1121 } else {
1122 if (bwrite == true) {
1123 tempval = rtl_read_byte(rtlpriv,
1124 rtlpriv->cfg->maps[EFUSE_TEST] +
1125 3);
1126 rtl_write_byte(rtlpriv,
1127 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1128 (tempval & 0x7F));
1129 }
1130
1131 }
1132
1133 }
1134
efuse_get_current_size(struct ieee80211_hw * hw)1135 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1136 {
1137 int bcontinual = true;
1138 u16 efuse_addr = 0;
1139 u8 hoffset, hworden;
1140 u8 efuse_data, word_cnts;
1141
1142 while (bcontinual && efuse_one_byte_read(hw, efuse_addr, &efuse_data)
1143 && (efuse_addr < EFUSE_MAX_SIZE)) {
1144 if (efuse_data != 0xFF) {
1145 hoffset = (efuse_data >> 4) & 0x0F;
1146 hworden = efuse_data & 0x0F;
1147 word_cnts = efuse_calculate_word_cnts(hworden);
1148 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1149 } else {
1150 bcontinual = false;
1151 }
1152 }
1153
1154 return efuse_addr;
1155 }
1156
efuse_calculate_word_cnts(u8 word_en)1157 static u8 efuse_calculate_word_cnts(u8 word_en)
1158 {
1159 u8 word_cnts = 0;
1160 if (!(word_en & BIT(0)))
1161 word_cnts++;
1162 if (!(word_en & BIT(1)))
1163 word_cnts++;
1164 if (!(word_en & BIT(2)))
1165 word_cnts++;
1166 if (!(word_en & BIT(3)))
1167 word_cnts++;
1168 return word_cnts;
1169 }
1170
1171