1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9
5  * April 30, 1999
6  *
7  * Copyright (C) 1999 VA Linux Systems
8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *	Stephane Eranian <eranian@hpl.hp.com>
12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
14  *
15  * All EFI Runtime Services are not implemented yet as EFI only
16  * supports physical mode addressing on SoftSDV. This is to be fixed
17  * in a future version.  --drummond 1999-07-20
18  *
19  * Implemented EFI runtime services and virtual mode calls.  --davidm
20  *
21  * Goutham Rao: <goutham.rao@intel.com>
22  *	Skip non-WB memory and ignore empty memory ranges.
23  */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/crash_dump.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/time.h>
32 #include <linux/efi.h>
33 #include <linux/kexec.h>
34 #include <linux/mm.h>
35 
36 #include <asm/io.h>
37 #include <asm/kregs.h>
38 #include <asm/meminit.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/mca.h>
42 #include <asm/tlbflush.h>
43 
44 #define EFI_DEBUG	0
45 
46 extern efi_status_t efi_call_phys (void *, ...);
47 
48 struct efi efi;
49 EXPORT_SYMBOL(efi);
50 static efi_runtime_services_t *runtime;
51 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
52 
53 #define efi_call_virt(f, args...)	(*(f))(args)
54 
55 #define STUB_GET_TIME(prefix, adjust_arg)				       \
56 static efi_status_t							       \
57 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
58 {									       \
59 	struct ia64_fpreg fr[6];					       \
60 	efi_time_cap_t *atc = NULL;					       \
61 	efi_status_t ret;						       \
62 									       \
63 	if (tc)								       \
64 		atc = adjust_arg(tc);					       \
65 	ia64_save_scratch_fpregs(fr);					       \
66 	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
67 				adjust_arg(tm), atc);			       \
68 	ia64_load_scratch_fpregs(fr);					       \
69 	return ret;							       \
70 }
71 
72 #define STUB_SET_TIME(prefix, adjust_arg)				       \
73 static efi_status_t							       \
74 prefix##_set_time (efi_time_t *tm)					       \
75 {									       \
76 	struct ia64_fpreg fr[6];					       \
77 	efi_status_t ret;						       \
78 									       \
79 	ia64_save_scratch_fpregs(fr);					       \
80 	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
81 				adjust_arg(tm));			       \
82 	ia64_load_scratch_fpregs(fr);					       \
83 	return ret;							       \
84 }
85 
86 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
87 static efi_status_t							       \
88 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
89 			  efi_time_t *tm)				       \
90 {									       \
91 	struct ia64_fpreg fr[6];					       \
92 	efi_status_t ret;						       \
93 									       \
94 	ia64_save_scratch_fpregs(fr);					       \
95 	ret = efi_call_##prefix(					       \
96 		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
97 		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
98 	ia64_load_scratch_fpregs(fr);					       \
99 	return ret;							       \
100 }
101 
102 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
103 static efi_status_t							       \
104 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
105 {									       \
106 	struct ia64_fpreg fr[6];					       \
107 	efi_time_t *atm = NULL;						       \
108 	efi_status_t ret;						       \
109 									       \
110 	if (tm)								       \
111 		atm = adjust_arg(tm);					       \
112 	ia64_save_scratch_fpregs(fr);					       \
113 	ret = efi_call_##prefix(					       \
114 		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
115 		enabled, atm);						       \
116 	ia64_load_scratch_fpregs(fr);					       \
117 	return ret;							       \
118 }
119 
120 #define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
121 static efi_status_t							       \
122 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
123 		       unsigned long *data_size, void *data)		       \
124 {									       \
125 	struct ia64_fpreg fr[6];					       \
126 	u32 *aattr = NULL;						       \
127 	efi_status_t ret;						       \
128 									       \
129 	if (attr)							       \
130 		aattr = adjust_arg(attr);				       \
131 	ia64_save_scratch_fpregs(fr);					       \
132 	ret = efi_call_##prefix(					       \
133 		(efi_get_variable_t *) __va(runtime->get_variable),	       \
134 		adjust_arg(name), adjust_arg(vendor), aattr,		       \
135 		adjust_arg(data_size), adjust_arg(data));		       \
136 	ia64_load_scratch_fpregs(fr);					       \
137 	return ret;							       \
138 }
139 
140 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
141 static efi_status_t							       \
142 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
143 			    efi_guid_t *vendor)				       \
144 {									       \
145 	struct ia64_fpreg fr[6];					       \
146 	efi_status_t ret;						       \
147 									       \
148 	ia64_save_scratch_fpregs(fr);					       \
149 	ret = efi_call_##prefix(					       \
150 		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
151 		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
152 	ia64_load_scratch_fpregs(fr);					       \
153 	return ret;							       \
154 }
155 
156 #define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
157 static efi_status_t							       \
158 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
159 		       unsigned long attr, unsigned long data_size,	       \
160 		       void *data)					       \
161 {									       \
162 	struct ia64_fpreg fr[6];					       \
163 	efi_status_t ret;						       \
164 									       \
165 	ia64_save_scratch_fpregs(fr);					       \
166 	ret = efi_call_##prefix(					       \
167 		(efi_set_variable_t *) __va(runtime->set_variable),	       \
168 		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
169 		adjust_arg(data));					       \
170 	ia64_load_scratch_fpregs(fr);					       \
171 	return ret;							       \
172 }
173 
174 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
175 static efi_status_t							       \
176 prefix##_get_next_high_mono_count (u32 *count)				       \
177 {									       \
178 	struct ia64_fpreg fr[6];					       \
179 	efi_status_t ret;						       \
180 									       \
181 	ia64_save_scratch_fpregs(fr);					       \
182 	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
183 				__va(runtime->get_next_high_mono_count),       \
184 				adjust_arg(count));			       \
185 	ia64_load_scratch_fpregs(fr);					       \
186 	return ret;							       \
187 }
188 
189 #define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
190 static void								       \
191 prefix##_reset_system (int reset_type, efi_status_t status,		       \
192 		       unsigned long data_size, efi_char16_t *data)	       \
193 {									       \
194 	struct ia64_fpreg fr[6];					       \
195 	efi_char16_t *adata = NULL;					       \
196 									       \
197 	if (data)							       \
198 		adata = adjust_arg(data);				       \
199 									       \
200 	ia64_save_scratch_fpregs(fr);					       \
201 	efi_call_##prefix(						       \
202 		(efi_reset_system_t *) __va(runtime->reset_system),	       \
203 		reset_type, status, data_size, adata);			       \
204 	/* should not return, but just in case... */			       \
205 	ia64_load_scratch_fpregs(fr);					       \
206 }
207 
208 #define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
209 
STUB_GET_TIME(phys,phys_ptr)210 STUB_GET_TIME(phys, phys_ptr)
211 STUB_SET_TIME(phys, phys_ptr)
212 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
213 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
214 STUB_GET_VARIABLE(phys, phys_ptr)
215 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
216 STUB_SET_VARIABLE(phys, phys_ptr)
217 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
218 STUB_RESET_SYSTEM(phys, phys_ptr)
219 
220 #define id(arg)	arg
221 
222 STUB_GET_TIME(virt, id)
223 STUB_SET_TIME(virt, id)
224 STUB_GET_WAKEUP_TIME(virt, id)
225 STUB_SET_WAKEUP_TIME(virt, id)
226 STUB_GET_VARIABLE(virt, id)
227 STUB_GET_NEXT_VARIABLE(virt, id)
228 STUB_SET_VARIABLE(virt, id)
229 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
230 STUB_RESET_SYSTEM(virt, id)
231 
232 void
233 efi_gettimeofday (struct timespec *ts)
234 {
235 	efi_time_t tm;
236 
237 	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
238 		memset(ts, 0, sizeof(*ts));
239 		return;
240 	}
241 
242 	ts->tv_sec = mktime(tm.year, tm.month, tm.day,
243 			    tm.hour, tm.minute, tm.second);
244 	ts->tv_nsec = tm.nanosecond;
245 }
246 
247 static int
is_memory_available(efi_memory_desc_t * md)248 is_memory_available (efi_memory_desc_t *md)
249 {
250 	if (!(md->attribute & EFI_MEMORY_WB))
251 		return 0;
252 
253 	switch (md->type) {
254 	      case EFI_LOADER_CODE:
255 	      case EFI_LOADER_DATA:
256 	      case EFI_BOOT_SERVICES_CODE:
257 	      case EFI_BOOT_SERVICES_DATA:
258 	      case EFI_CONVENTIONAL_MEMORY:
259 		return 1;
260 	}
261 	return 0;
262 }
263 
264 typedef struct kern_memdesc {
265 	u64 attribute;
266 	u64 start;
267 	u64 num_pages;
268 } kern_memdesc_t;
269 
270 static kern_memdesc_t *kern_memmap;
271 
272 #define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
273 
274 static inline u64
kmd_end(kern_memdesc_t * kmd)275 kmd_end(kern_memdesc_t *kmd)
276 {
277 	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
278 }
279 
280 static inline u64
efi_md_end(efi_memory_desc_t * md)281 efi_md_end(efi_memory_desc_t *md)
282 {
283 	return (md->phys_addr + efi_md_size(md));
284 }
285 
286 static inline int
efi_wb(efi_memory_desc_t * md)287 efi_wb(efi_memory_desc_t *md)
288 {
289 	return (md->attribute & EFI_MEMORY_WB);
290 }
291 
292 static inline int
efi_uc(efi_memory_desc_t * md)293 efi_uc(efi_memory_desc_t *md)
294 {
295 	return (md->attribute & EFI_MEMORY_UC);
296 }
297 
298 static void
walk(efi_freemem_callback_t callback,void * arg,u64 attr)299 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
300 {
301 	kern_memdesc_t *k;
302 	u64 start, end, voff;
303 
304 	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
305 	for (k = kern_memmap; k->start != ~0UL; k++) {
306 		if (k->attribute != attr)
307 			continue;
308 		start = PAGE_ALIGN(k->start);
309 		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
310 		if (start < end)
311 			if ((*callback)(start + voff, end + voff, arg) < 0)
312 				return;
313 	}
314 }
315 
316 /*
317  * Walk the EFI memory map and call CALLBACK once for each EFI memory
318  * descriptor that has memory that is available for OS use.
319  */
320 void
efi_memmap_walk(efi_freemem_callback_t callback,void * arg)321 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
322 {
323 	walk(callback, arg, EFI_MEMORY_WB);
324 }
325 
326 /*
327  * Walk the EFI memory map and call CALLBACK once for each EFI memory
328  * descriptor that has memory that is available for uncached allocator.
329  */
330 void
efi_memmap_walk_uc(efi_freemem_callback_t callback,void * arg)331 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
332 {
333 	walk(callback, arg, EFI_MEMORY_UC);
334 }
335 
336 /*
337  * Look for the PAL_CODE region reported by EFI and map it using an
338  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
339  * Abstraction Layer chapter 11 in ADAG
340  */
341 void *
efi_get_pal_addr(void)342 efi_get_pal_addr (void)
343 {
344 	void *efi_map_start, *efi_map_end, *p;
345 	efi_memory_desc_t *md;
346 	u64 efi_desc_size;
347 	int pal_code_count = 0;
348 	u64 vaddr, mask;
349 
350 	efi_map_start = __va(ia64_boot_param->efi_memmap);
351 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
352 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
353 
354 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
355 		md = p;
356 		if (md->type != EFI_PAL_CODE)
357 			continue;
358 
359 		if (++pal_code_count > 1) {
360 			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
361 			       "dropped @ %llx\n", md->phys_addr);
362 			continue;
363 		}
364 		/*
365 		 * The only ITLB entry in region 7 that is used is the one
366 		 * installed by __start().  That entry covers a 64MB range.
367 		 */
368 		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
369 		vaddr = PAGE_OFFSET + md->phys_addr;
370 
371 		/*
372 		 * We must check that the PAL mapping won't overlap with the
373 		 * kernel mapping.
374 		 *
375 		 * PAL code is guaranteed to be aligned on a power of 2 between
376 		 * 4k and 256KB and that only one ITR is needed to map it. This
377 		 * implies that the PAL code is always aligned on its size,
378 		 * i.e., the closest matching page size supported by the TLB.
379 		 * Therefore PAL code is guaranteed never to cross a 64MB unless
380 		 * it is bigger than 64MB (very unlikely!).  So for now the
381 		 * following test is enough to determine whether or not we need
382 		 * a dedicated ITR for the PAL code.
383 		 */
384 		if ((vaddr & mask) == (KERNEL_START & mask)) {
385 			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
386 			       __func__);
387 			continue;
388 		}
389 
390 		if (efi_md_size(md) > IA64_GRANULE_SIZE)
391 			panic("Whoa!  PAL code size bigger than a granule!");
392 
393 #if EFI_DEBUG
394 		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
395 
396 		printk(KERN_INFO "CPU %d: mapping PAL code "
397                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
398                        smp_processor_id(), md->phys_addr,
399                        md->phys_addr + efi_md_size(md),
400                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
401 #endif
402 		return __va(md->phys_addr);
403 	}
404 	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
405 	       __func__);
406 	return NULL;
407 }
408 
409 
palo_checksum(u8 * buffer,u32 length)410 static u8 __init palo_checksum(u8 *buffer, u32 length)
411 {
412 	u8 sum = 0;
413 	u8 *end = buffer + length;
414 
415 	while (buffer < end)
416 		sum = (u8) (sum + *(buffer++));
417 
418 	return sum;
419 }
420 
421 /*
422  * Parse and handle PALO table which is published at:
423  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
424  */
handle_palo(unsigned long palo_phys)425 static void __init handle_palo(unsigned long palo_phys)
426 {
427 	struct palo_table *palo = __va(palo_phys);
428 	u8  checksum;
429 
430 	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
431 		printk(KERN_INFO "PALO signature incorrect.\n");
432 		return;
433 	}
434 
435 	checksum = palo_checksum((u8 *)palo, palo->length);
436 	if (checksum) {
437 		printk(KERN_INFO "PALO checksum incorrect.\n");
438 		return;
439 	}
440 
441 	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
442 }
443 
444 void
efi_map_pal_code(void)445 efi_map_pal_code (void)
446 {
447 	void *pal_vaddr = efi_get_pal_addr ();
448 	u64 psr;
449 
450 	if (!pal_vaddr)
451 		return;
452 
453 	/*
454 	 * Cannot write to CRx with PSR.ic=1
455 	 */
456 	psr = ia64_clear_ic();
457 	ia64_itr(0x1, IA64_TR_PALCODE,
458 		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
459 		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
460 		 IA64_GRANULE_SHIFT);
461 	paravirt_dv_serialize_data();
462 	ia64_set_psr(psr);		/* restore psr */
463 }
464 
465 void __init
efi_init(void)466 efi_init (void)
467 {
468 	void *efi_map_start, *efi_map_end;
469 	efi_config_table_t *config_tables;
470 	efi_char16_t *c16;
471 	u64 efi_desc_size;
472 	char *cp, vendor[100] = "unknown";
473 	int i;
474 	unsigned long palo_phys;
475 
476 	/*
477 	 * It's too early to be able to use the standard kernel command line
478 	 * support...
479 	 */
480 	for (cp = boot_command_line; *cp; ) {
481 		if (memcmp(cp, "mem=", 4) == 0) {
482 			mem_limit = memparse(cp + 4, &cp);
483 		} else if (memcmp(cp, "max_addr=", 9) == 0) {
484 			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
485 		} else if (memcmp(cp, "min_addr=", 9) == 0) {
486 			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
487 		} else {
488 			while (*cp != ' ' && *cp)
489 				++cp;
490 			while (*cp == ' ')
491 				++cp;
492 		}
493 	}
494 	if (min_addr != 0UL)
495 		printk(KERN_INFO "Ignoring memory below %lluMB\n",
496 		       min_addr >> 20);
497 	if (max_addr != ~0UL)
498 		printk(KERN_INFO "Ignoring memory above %lluMB\n",
499 		       max_addr >> 20);
500 
501 	efi.systab = __va(ia64_boot_param->efi_systab);
502 
503 	/*
504 	 * Verify the EFI Table
505 	 */
506 	if (efi.systab == NULL)
507 		panic("Whoa! Can't find EFI system table.\n");
508 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
509 		panic("Whoa! EFI system table signature incorrect\n");
510 	if ((efi.systab->hdr.revision >> 16) == 0)
511 		printk(KERN_WARNING "Warning: EFI system table version "
512 		       "%d.%02d, expected 1.00 or greater\n",
513 		       efi.systab->hdr.revision >> 16,
514 		       efi.systab->hdr.revision & 0xffff);
515 
516 	config_tables = __va(efi.systab->tables);
517 
518 	/* Show what we know for posterity */
519 	c16 = __va(efi.systab->fw_vendor);
520 	if (c16) {
521 		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
522 			vendor[i] = *c16++;
523 		vendor[i] = '\0';
524 	}
525 
526 	printk(KERN_INFO "EFI v%u.%.02u by %s:",
527 	       efi.systab->hdr.revision >> 16,
528 	       efi.systab->hdr.revision & 0xffff, vendor);
529 
530 	efi.mps        = EFI_INVALID_TABLE_ADDR;
531 	efi.acpi       = EFI_INVALID_TABLE_ADDR;
532 	efi.acpi20     = EFI_INVALID_TABLE_ADDR;
533 	efi.smbios     = EFI_INVALID_TABLE_ADDR;
534 	efi.sal_systab = EFI_INVALID_TABLE_ADDR;
535 	efi.boot_info  = EFI_INVALID_TABLE_ADDR;
536 	efi.hcdp       = EFI_INVALID_TABLE_ADDR;
537 	efi.uga        = EFI_INVALID_TABLE_ADDR;
538 
539 	palo_phys      = EFI_INVALID_TABLE_ADDR;
540 
541 	for (i = 0; i < (int) efi.systab->nr_tables; i++) {
542 		if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
543 			efi.mps = config_tables[i].table;
544 			printk(" MPS=0x%lx", config_tables[i].table);
545 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
546 			efi.acpi20 = config_tables[i].table;
547 			printk(" ACPI 2.0=0x%lx", config_tables[i].table);
548 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
549 			efi.acpi = config_tables[i].table;
550 			printk(" ACPI=0x%lx", config_tables[i].table);
551 		} else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
552 			efi.smbios = config_tables[i].table;
553 			printk(" SMBIOS=0x%lx", config_tables[i].table);
554 		} else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
555 			efi.sal_systab = config_tables[i].table;
556 			printk(" SALsystab=0x%lx", config_tables[i].table);
557 		} else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
558 			efi.hcdp = config_tables[i].table;
559 			printk(" HCDP=0x%lx", config_tables[i].table);
560 		} else if (efi_guidcmp(config_tables[i].guid,
561 			 PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) {
562 			palo_phys = config_tables[i].table;
563 			printk(" PALO=0x%lx", config_tables[i].table);
564 		}
565 	}
566 	printk("\n");
567 
568 	if (palo_phys != EFI_INVALID_TABLE_ADDR)
569 		handle_palo(palo_phys);
570 
571 	runtime = __va(efi.systab->runtime);
572 	efi.get_time = phys_get_time;
573 	efi.set_time = phys_set_time;
574 	efi.get_wakeup_time = phys_get_wakeup_time;
575 	efi.set_wakeup_time = phys_set_wakeup_time;
576 	efi.get_variable = phys_get_variable;
577 	efi.get_next_variable = phys_get_next_variable;
578 	efi.set_variable = phys_set_variable;
579 	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
580 	efi.reset_system = phys_reset_system;
581 
582 	efi_map_start = __va(ia64_boot_param->efi_memmap);
583 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
584 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
585 
586 #if EFI_DEBUG
587 	/* print EFI memory map: */
588 	{
589 		efi_memory_desc_t *md;
590 		void *p;
591 
592 		for (i = 0, p = efi_map_start; p < efi_map_end;
593 		     ++i, p += efi_desc_size)
594 		{
595 			const char *unit;
596 			unsigned long size;
597 
598 			md = p;
599 			size = md->num_pages << EFI_PAGE_SHIFT;
600 
601 			if ((size >> 40) > 0) {
602 				size >>= 40;
603 				unit = "TB";
604 			} else if ((size >> 30) > 0) {
605 				size >>= 30;
606 				unit = "GB";
607 			} else if ((size >> 20) > 0) {
608 				size >>= 20;
609 				unit = "MB";
610 			} else {
611 				size >>= 10;
612 				unit = "KB";
613 			}
614 
615 			printk("mem%02d: type=%2u, attr=0x%016lx, "
616 			       "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
617 			       i, md->type, md->attribute, md->phys_addr,
618 			       md->phys_addr + efi_md_size(md), size, unit);
619 		}
620 	}
621 #endif
622 
623 	efi_map_pal_code();
624 	efi_enter_virtual_mode();
625 }
626 
627 void
efi_enter_virtual_mode(void)628 efi_enter_virtual_mode (void)
629 {
630 	void *efi_map_start, *efi_map_end, *p;
631 	efi_memory_desc_t *md;
632 	efi_status_t status;
633 	u64 efi_desc_size;
634 
635 	efi_map_start = __va(ia64_boot_param->efi_memmap);
636 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
637 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
638 
639 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
640 		md = p;
641 		if (md->attribute & EFI_MEMORY_RUNTIME) {
642 			/*
643 			 * Some descriptors have multiple bits set, so the
644 			 * order of the tests is relevant.
645 			 */
646 			if (md->attribute & EFI_MEMORY_WB) {
647 				md->virt_addr = (u64) __va(md->phys_addr);
648 			} else if (md->attribute & EFI_MEMORY_UC) {
649 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
650 			} else if (md->attribute & EFI_MEMORY_WC) {
651 #if 0
652 				md->virt_addr = ia64_remap(md->phys_addr,
653 							   (_PAGE_A |
654 							    _PAGE_P |
655 							    _PAGE_D |
656 							    _PAGE_MA_WC |
657 							    _PAGE_PL_0 |
658 							    _PAGE_AR_RW));
659 #else
660 				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
661 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
662 #endif
663 			} else if (md->attribute & EFI_MEMORY_WT) {
664 #if 0
665 				md->virt_addr = ia64_remap(md->phys_addr,
666 							   (_PAGE_A |
667 							    _PAGE_P |
668 							    _PAGE_D |
669 							    _PAGE_MA_WT |
670 							    _PAGE_PL_0 |
671 							    _PAGE_AR_RW));
672 #else
673 				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
674 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
675 #endif
676 			}
677 		}
678 	}
679 
680 	status = efi_call_phys(__va(runtime->set_virtual_address_map),
681 			       ia64_boot_param->efi_memmap_size,
682 			       efi_desc_size,
683 			       ia64_boot_param->efi_memdesc_version,
684 			       ia64_boot_param->efi_memmap);
685 	if (status != EFI_SUCCESS) {
686 		printk(KERN_WARNING "warning: unable to switch EFI into "
687 		       "virtual mode (status=%lu)\n", status);
688 		return;
689 	}
690 
691 	/*
692 	 * Now that EFI is in virtual mode, we call the EFI functions more
693 	 * efficiently:
694 	 */
695 	efi.get_time = virt_get_time;
696 	efi.set_time = virt_set_time;
697 	efi.get_wakeup_time = virt_get_wakeup_time;
698 	efi.set_wakeup_time = virt_set_wakeup_time;
699 	efi.get_variable = virt_get_variable;
700 	efi.get_next_variable = virt_get_next_variable;
701 	efi.set_variable = virt_set_variable;
702 	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
703 	efi.reset_system = virt_reset_system;
704 }
705 
706 /*
707  * Walk the EFI memory map looking for the I/O port range.  There can only be
708  * one entry of this type, other I/O port ranges should be described via ACPI.
709  */
710 u64
efi_get_iobase(void)711 efi_get_iobase (void)
712 {
713 	void *efi_map_start, *efi_map_end, *p;
714 	efi_memory_desc_t *md;
715 	u64 efi_desc_size;
716 
717 	efi_map_start = __va(ia64_boot_param->efi_memmap);
718 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
719 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
720 
721 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
722 		md = p;
723 		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
724 			if (md->attribute & EFI_MEMORY_UC)
725 				return md->phys_addr;
726 		}
727 	}
728 	return 0;
729 }
730 
731 static struct kern_memdesc *
kern_memory_descriptor(unsigned long phys_addr)732 kern_memory_descriptor (unsigned long phys_addr)
733 {
734 	struct kern_memdesc *md;
735 
736 	for (md = kern_memmap; md->start != ~0UL; md++) {
737 		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
738 			 return md;
739 	}
740 	return NULL;
741 }
742 
743 static efi_memory_desc_t *
efi_memory_descriptor(unsigned long phys_addr)744 efi_memory_descriptor (unsigned long phys_addr)
745 {
746 	void *efi_map_start, *efi_map_end, *p;
747 	efi_memory_desc_t *md;
748 	u64 efi_desc_size;
749 
750 	efi_map_start = __va(ia64_boot_param->efi_memmap);
751 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
752 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
753 
754 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
755 		md = p;
756 
757 		if (phys_addr - md->phys_addr < efi_md_size(md))
758 			 return md;
759 	}
760 	return NULL;
761 }
762 
763 static int
efi_memmap_intersects(unsigned long phys_addr,unsigned long size)764 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
765 {
766 	void *efi_map_start, *efi_map_end, *p;
767 	efi_memory_desc_t *md;
768 	u64 efi_desc_size;
769 	unsigned long end;
770 
771 	efi_map_start = __va(ia64_boot_param->efi_memmap);
772 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
773 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
774 
775 	end = phys_addr + size;
776 
777 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
778 		md = p;
779 		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
780 			return 1;
781 	}
782 	return 0;
783 }
784 
785 u32
efi_mem_type(unsigned long phys_addr)786 efi_mem_type (unsigned long phys_addr)
787 {
788 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
789 
790 	if (md)
791 		return md->type;
792 	return 0;
793 }
794 
795 u64
efi_mem_attributes(unsigned long phys_addr)796 efi_mem_attributes (unsigned long phys_addr)
797 {
798 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
799 
800 	if (md)
801 		return md->attribute;
802 	return 0;
803 }
804 EXPORT_SYMBOL(efi_mem_attributes);
805 
806 u64
efi_mem_attribute(unsigned long phys_addr,unsigned long size)807 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
808 {
809 	unsigned long end = phys_addr + size;
810 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
811 	u64 attr;
812 
813 	if (!md)
814 		return 0;
815 
816 	/*
817 	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
818 	 * the kernel that firmware needs this region mapped.
819 	 */
820 	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
821 	do {
822 		unsigned long md_end = efi_md_end(md);
823 
824 		if (end <= md_end)
825 			return attr;
826 
827 		md = efi_memory_descriptor(md_end);
828 		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
829 			return 0;
830 	} while (md);
831 	return 0;	/* never reached */
832 }
833 
834 u64
kern_mem_attribute(unsigned long phys_addr,unsigned long size)835 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
836 {
837 	unsigned long end = phys_addr + size;
838 	struct kern_memdesc *md;
839 	u64 attr;
840 
841 	/*
842 	 * This is a hack for ioremap calls before we set up kern_memmap.
843 	 * Maybe we should do efi_memmap_init() earlier instead.
844 	 */
845 	if (!kern_memmap) {
846 		attr = efi_mem_attribute(phys_addr, size);
847 		if (attr & EFI_MEMORY_WB)
848 			return EFI_MEMORY_WB;
849 		return 0;
850 	}
851 
852 	md = kern_memory_descriptor(phys_addr);
853 	if (!md)
854 		return 0;
855 
856 	attr = md->attribute;
857 	do {
858 		unsigned long md_end = kmd_end(md);
859 
860 		if (end <= md_end)
861 			return attr;
862 
863 		md = kern_memory_descriptor(md_end);
864 		if (!md || md->attribute != attr)
865 			return 0;
866 	} while (md);
867 	return 0;	/* never reached */
868 }
869 EXPORT_SYMBOL(kern_mem_attribute);
870 
871 int
valid_phys_addr_range(unsigned long phys_addr,unsigned long size)872 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
873 {
874 	u64 attr;
875 
876 	/*
877 	 * /dev/mem reads and writes use copy_to_user(), which implicitly
878 	 * uses a granule-sized kernel identity mapping.  It's really
879 	 * only safe to do this for regions in kern_memmap.  For more
880 	 * details, see Documentation/ia64/aliasing.txt.
881 	 */
882 	attr = kern_mem_attribute(phys_addr, size);
883 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
884 		return 1;
885 	return 0;
886 }
887 
888 int
valid_mmap_phys_addr_range(unsigned long pfn,unsigned long size)889 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
890 {
891 	unsigned long phys_addr = pfn << PAGE_SHIFT;
892 	u64 attr;
893 
894 	attr = efi_mem_attribute(phys_addr, size);
895 
896 	/*
897 	 * /dev/mem mmap uses normal user pages, so we don't need the entire
898 	 * granule, but the entire region we're mapping must support the same
899 	 * attribute.
900 	 */
901 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
902 		return 1;
903 
904 	/*
905 	 * Intel firmware doesn't tell us about all the MMIO regions, so
906 	 * in general we have to allow mmap requests.  But if EFI *does*
907 	 * tell us about anything inside this region, we should deny it.
908 	 * The user can always map a smaller region to avoid the overlap.
909 	 */
910 	if (efi_memmap_intersects(phys_addr, size))
911 		return 0;
912 
913 	return 1;
914 }
915 
916 pgprot_t
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)917 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
918 		     pgprot_t vma_prot)
919 {
920 	unsigned long phys_addr = pfn << PAGE_SHIFT;
921 	u64 attr;
922 
923 	/*
924 	 * For /dev/mem mmap, we use user mappings, but if the region is
925 	 * in kern_memmap (and hence may be covered by a kernel mapping),
926 	 * we must use the same attribute as the kernel mapping.
927 	 */
928 	attr = kern_mem_attribute(phys_addr, size);
929 	if (attr & EFI_MEMORY_WB)
930 		return pgprot_cacheable(vma_prot);
931 	else if (attr & EFI_MEMORY_UC)
932 		return pgprot_noncached(vma_prot);
933 
934 	/*
935 	 * Some chipsets don't support UC access to memory.  If
936 	 * WB is supported, we prefer that.
937 	 */
938 	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
939 		return pgprot_cacheable(vma_prot);
940 
941 	return pgprot_noncached(vma_prot);
942 }
943 
944 int __init
efi_uart_console_only(void)945 efi_uart_console_only(void)
946 {
947 	efi_status_t status;
948 	char *s, name[] = "ConOut";
949 	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
950 	efi_char16_t *utf16, name_utf16[32];
951 	unsigned char data[1024];
952 	unsigned long size = sizeof(data);
953 	struct efi_generic_dev_path *hdr, *end_addr;
954 	int uart = 0;
955 
956 	/* Convert to UTF-16 */
957 	utf16 = name_utf16;
958 	s = name;
959 	while (*s)
960 		*utf16++ = *s++ & 0x7f;
961 	*utf16 = 0;
962 
963 	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
964 	if (status != EFI_SUCCESS) {
965 		printk(KERN_ERR "No EFI %s variable?\n", name);
966 		return 0;
967 	}
968 
969 	hdr = (struct efi_generic_dev_path *) data;
970 	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
971 	while (hdr < end_addr) {
972 		if (hdr->type == EFI_DEV_MSG &&
973 		    hdr->sub_type == EFI_DEV_MSG_UART)
974 			uart = 1;
975 		else if (hdr->type == EFI_DEV_END_PATH ||
976 			  hdr->type == EFI_DEV_END_PATH2) {
977 			if (!uart)
978 				return 0;
979 			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
980 				return 1;
981 			uart = 0;
982 		}
983 		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
984 	}
985 	printk(KERN_ERR "Malformed %s value\n", name);
986 	return 0;
987 }
988 
989 /*
990  * Look for the first granule aligned memory descriptor memory
991  * that is big enough to hold EFI memory map. Make sure this
992  * descriptor is atleast granule sized so it does not get trimmed
993  */
994 struct kern_memdesc *
find_memmap_space(void)995 find_memmap_space (void)
996 {
997 	u64	contig_low=0, contig_high=0;
998 	u64	as = 0, ae;
999 	void *efi_map_start, *efi_map_end, *p, *q;
1000 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1001 	u64	space_needed, efi_desc_size;
1002 	unsigned long total_mem = 0;
1003 
1004 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1005 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1006 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1007 
1008 	/*
1009 	 * Worst case: we need 3 kernel descriptors for each efi descriptor
1010 	 * (if every entry has a WB part in the middle, and UC head and tail),
1011 	 * plus one for the end marker.
1012 	 */
1013 	space_needed = sizeof(kern_memdesc_t) *
1014 		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
1015 
1016 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1017 		md = p;
1018 		if (!efi_wb(md)) {
1019 			continue;
1020 		}
1021 		if (pmd == NULL || !efi_wb(pmd) ||
1022 		    efi_md_end(pmd) != md->phys_addr) {
1023 			contig_low = GRANULEROUNDUP(md->phys_addr);
1024 			contig_high = efi_md_end(md);
1025 			for (q = p + efi_desc_size; q < efi_map_end;
1026 			     q += efi_desc_size) {
1027 				check_md = q;
1028 				if (!efi_wb(check_md))
1029 					break;
1030 				if (contig_high != check_md->phys_addr)
1031 					break;
1032 				contig_high = efi_md_end(check_md);
1033 			}
1034 			contig_high = GRANULEROUNDDOWN(contig_high);
1035 		}
1036 		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1037 			continue;
1038 
1039 		/* Round ends inward to granule boundaries */
1040 		as = max(contig_low, md->phys_addr);
1041 		ae = min(contig_high, efi_md_end(md));
1042 
1043 		/* keep within max_addr= and min_addr= command line arg */
1044 		as = max(as, min_addr);
1045 		ae = min(ae, max_addr);
1046 		if (ae <= as)
1047 			continue;
1048 
1049 		/* avoid going over mem= command line arg */
1050 		if (total_mem + (ae - as) > mem_limit)
1051 			ae -= total_mem + (ae - as) - mem_limit;
1052 
1053 		if (ae <= as)
1054 			continue;
1055 
1056 		if (ae - as > space_needed)
1057 			break;
1058 	}
1059 	if (p >= efi_map_end)
1060 		panic("Can't allocate space for kernel memory descriptors");
1061 
1062 	return __va(as);
1063 }
1064 
1065 /*
1066  * Walk the EFI memory map and gather all memory available for kernel
1067  * to use.  We can allocate partial granules only if the unavailable
1068  * parts exist, and are WB.
1069  */
1070 unsigned long
efi_memmap_init(u64 * s,u64 * e)1071 efi_memmap_init(u64 *s, u64 *e)
1072 {
1073 	struct kern_memdesc *k, *prev = NULL;
1074 	u64	contig_low=0, contig_high=0;
1075 	u64	as, ae, lim;
1076 	void *efi_map_start, *efi_map_end, *p, *q;
1077 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1078 	u64	efi_desc_size;
1079 	unsigned long total_mem = 0;
1080 
1081 	k = kern_memmap = find_memmap_space();
1082 
1083 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1084 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1085 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1086 
1087 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1088 		md = p;
1089 		if (!efi_wb(md)) {
1090 			if (efi_uc(md) &&
1091 			    (md->type == EFI_CONVENTIONAL_MEMORY ||
1092 			     md->type == EFI_BOOT_SERVICES_DATA)) {
1093 				k->attribute = EFI_MEMORY_UC;
1094 				k->start = md->phys_addr;
1095 				k->num_pages = md->num_pages;
1096 				k++;
1097 			}
1098 			continue;
1099 		}
1100 		if (pmd == NULL || !efi_wb(pmd) ||
1101 		    efi_md_end(pmd) != md->phys_addr) {
1102 			contig_low = GRANULEROUNDUP(md->phys_addr);
1103 			contig_high = efi_md_end(md);
1104 			for (q = p + efi_desc_size; q < efi_map_end;
1105 			     q += efi_desc_size) {
1106 				check_md = q;
1107 				if (!efi_wb(check_md))
1108 					break;
1109 				if (contig_high != check_md->phys_addr)
1110 					break;
1111 				contig_high = efi_md_end(check_md);
1112 			}
1113 			contig_high = GRANULEROUNDDOWN(contig_high);
1114 		}
1115 		if (!is_memory_available(md))
1116 			continue;
1117 
1118 #ifdef CONFIG_CRASH_DUMP
1119 		/* saved_max_pfn should ignore max_addr= command line arg */
1120 		if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1121 			saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1122 #endif
1123 		/*
1124 		 * Round ends inward to granule boundaries
1125 		 * Give trimmings to uncached allocator
1126 		 */
1127 		if (md->phys_addr < contig_low) {
1128 			lim = min(efi_md_end(md), contig_low);
1129 			if (efi_uc(md)) {
1130 				if (k > kern_memmap &&
1131 				    (k-1)->attribute == EFI_MEMORY_UC &&
1132 				    kmd_end(k-1) == md->phys_addr) {
1133 					(k-1)->num_pages +=
1134 						(lim - md->phys_addr)
1135 						>> EFI_PAGE_SHIFT;
1136 				} else {
1137 					k->attribute = EFI_MEMORY_UC;
1138 					k->start = md->phys_addr;
1139 					k->num_pages = (lim - md->phys_addr)
1140 						>> EFI_PAGE_SHIFT;
1141 					k++;
1142 				}
1143 			}
1144 			as = contig_low;
1145 		} else
1146 			as = md->phys_addr;
1147 
1148 		if (efi_md_end(md) > contig_high) {
1149 			lim = max(md->phys_addr, contig_high);
1150 			if (efi_uc(md)) {
1151 				if (lim == md->phys_addr && k > kern_memmap &&
1152 				    (k-1)->attribute == EFI_MEMORY_UC &&
1153 				    kmd_end(k-1) == md->phys_addr) {
1154 					(k-1)->num_pages += md->num_pages;
1155 				} else {
1156 					k->attribute = EFI_MEMORY_UC;
1157 					k->start = lim;
1158 					k->num_pages = (efi_md_end(md) - lim)
1159 						>> EFI_PAGE_SHIFT;
1160 					k++;
1161 				}
1162 			}
1163 			ae = contig_high;
1164 		} else
1165 			ae = efi_md_end(md);
1166 
1167 		/* keep within max_addr= and min_addr= command line arg */
1168 		as = max(as, min_addr);
1169 		ae = min(ae, max_addr);
1170 		if (ae <= as)
1171 			continue;
1172 
1173 		/* avoid going over mem= command line arg */
1174 		if (total_mem + (ae - as) > mem_limit)
1175 			ae -= total_mem + (ae - as) - mem_limit;
1176 
1177 		if (ae <= as)
1178 			continue;
1179 		if (prev && kmd_end(prev) == md->phys_addr) {
1180 			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1181 			total_mem += ae - as;
1182 			continue;
1183 		}
1184 		k->attribute = EFI_MEMORY_WB;
1185 		k->start = as;
1186 		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1187 		total_mem += ae - as;
1188 		prev = k++;
1189 	}
1190 	k->start = ~0L; /* end-marker */
1191 
1192 	/* reserve the memory we are using for kern_memmap */
1193 	*s = (u64)kern_memmap;
1194 	*e = (u64)++k;
1195 
1196 	return total_mem;
1197 }
1198 
1199 void
efi_initialize_iomem_resources(struct resource * code_resource,struct resource * data_resource,struct resource * bss_resource)1200 efi_initialize_iomem_resources(struct resource *code_resource,
1201 			       struct resource *data_resource,
1202 			       struct resource *bss_resource)
1203 {
1204 	struct resource *res;
1205 	void *efi_map_start, *efi_map_end, *p;
1206 	efi_memory_desc_t *md;
1207 	u64 efi_desc_size;
1208 	char *name;
1209 	unsigned long flags;
1210 
1211 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1212 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1213 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1214 
1215 	res = NULL;
1216 
1217 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1218 		md = p;
1219 
1220 		if (md->num_pages == 0) /* should not happen */
1221 			continue;
1222 
1223 		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1224 		switch (md->type) {
1225 
1226 			case EFI_MEMORY_MAPPED_IO:
1227 			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1228 				continue;
1229 
1230 			case EFI_LOADER_CODE:
1231 			case EFI_LOADER_DATA:
1232 			case EFI_BOOT_SERVICES_DATA:
1233 			case EFI_BOOT_SERVICES_CODE:
1234 			case EFI_CONVENTIONAL_MEMORY:
1235 				if (md->attribute & EFI_MEMORY_WP) {
1236 					name = "System ROM";
1237 					flags |= IORESOURCE_READONLY;
1238 				} else if (md->attribute == EFI_MEMORY_UC)
1239 					name = "Uncached RAM";
1240 				else
1241 					name = "System RAM";
1242 				break;
1243 
1244 			case EFI_ACPI_MEMORY_NVS:
1245 				name = "ACPI Non-volatile Storage";
1246 				break;
1247 
1248 			case EFI_UNUSABLE_MEMORY:
1249 				name = "reserved";
1250 				flags |= IORESOURCE_DISABLED;
1251 				break;
1252 
1253 			case EFI_RESERVED_TYPE:
1254 			case EFI_RUNTIME_SERVICES_CODE:
1255 			case EFI_RUNTIME_SERVICES_DATA:
1256 			case EFI_ACPI_RECLAIM_MEMORY:
1257 			default:
1258 				name = "reserved";
1259 				break;
1260 		}
1261 
1262 		if ((res = kzalloc(sizeof(struct resource),
1263 				   GFP_KERNEL)) == NULL) {
1264 			printk(KERN_ERR
1265 			       "failed to allocate resource for iomem\n");
1266 			return;
1267 		}
1268 
1269 		res->name = name;
1270 		res->start = md->phys_addr;
1271 		res->end = md->phys_addr + efi_md_size(md) - 1;
1272 		res->flags = flags;
1273 
1274 		if (insert_resource(&iomem_resource, res) < 0)
1275 			kfree(res);
1276 		else {
1277 			/*
1278 			 * We don't know which region contains
1279 			 * kernel data so we try it repeatedly and
1280 			 * let the resource manager test it.
1281 			 */
1282 			insert_resource(res, code_resource);
1283 			insert_resource(res, data_resource);
1284 			insert_resource(res, bss_resource);
1285 #ifdef CONFIG_KEXEC
1286                         insert_resource(res, &efi_memmap_res);
1287                         insert_resource(res, &boot_param_res);
1288 			if (crashk_res.end > crashk_res.start)
1289 				insert_resource(res, &crashk_res);
1290 #endif
1291 		}
1292 	}
1293 }
1294 
1295 #ifdef CONFIG_KEXEC
1296 /* find a block of memory aligned to 64M exclude reserved regions
1297    rsvd_regions are sorted
1298  */
1299 unsigned long __init
kdump_find_rsvd_region(unsigned long size,struct rsvd_region * r,int n)1300 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1301 {
1302 	int i;
1303 	u64 start, end;
1304 	u64 alignment = 1UL << _PAGE_SIZE_64M;
1305 	void *efi_map_start, *efi_map_end, *p;
1306 	efi_memory_desc_t *md;
1307 	u64 efi_desc_size;
1308 
1309 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1310 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1311 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1312 
1313 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1314 		md = p;
1315 		if (!efi_wb(md))
1316 			continue;
1317 		start = ALIGN(md->phys_addr, alignment);
1318 		end = efi_md_end(md);
1319 		for (i = 0; i < n; i++) {
1320 			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1321 				if (__pa(r[i].start) > start + size)
1322 					return start;
1323 				start = ALIGN(__pa(r[i].end), alignment);
1324 				if (i < n-1 &&
1325 				    __pa(r[i+1].start) < start + size)
1326 					continue;
1327 				else
1328 					break;
1329 			}
1330 		}
1331 		if (end > start + size)
1332 			return start;
1333 	}
1334 
1335 	printk(KERN_WARNING
1336 	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1337 	return ~0UL;
1338 }
1339 #endif
1340 
1341 #ifdef CONFIG_CRASH_DUMP
1342 /* locate the size find a the descriptor at a certain address */
1343 unsigned long __init
vmcore_find_descriptor_size(unsigned long address)1344 vmcore_find_descriptor_size (unsigned long address)
1345 {
1346 	void *efi_map_start, *efi_map_end, *p;
1347 	efi_memory_desc_t *md;
1348 	u64 efi_desc_size;
1349 	unsigned long ret = 0;
1350 
1351 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1352 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1353 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1354 
1355 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1356 		md = p;
1357 		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1358 		    && md->phys_addr == address) {
1359 			ret = efi_md_size(md);
1360 			break;
1361 		}
1362 	}
1363 
1364 	if (ret == 0)
1365 		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1366 
1367 	return ret;
1368 }
1369 #endif
1370