1 /* eepro.c: Intel EtherExpress Pro/10 device driver for Linux. */
2 /*
3 	Written 1994, 1995,1996 by Bao C. Ha.
4 
5 	Copyright (C) 1994, 1995,1996 by Bao C. Ha.
6 
7 	This software may be used and distributed
8 	according to the terms of the GNU General Public License,
9 	incorporated herein by reference.
10 
11 	The author may be reached at bao.ha@srs.gov
12 	or 418 Hastings Place, Martinez, GA 30907.
13 
14 	Things remaining to do:
15 	Better record keeping of errors.
16 	Eliminate transmit interrupt to reduce overhead.
17 	Implement "concurrent processing". I won't be doing it!
18 
19 	Bugs:
20 
21 	If you have a problem of not detecting the 82595 during a
22 	reboot (warm reset), disable the FLASH memory should fix it.
23 	This is a compatibility hardware problem.
24 
25 	Versions:
26 	0.13b	basic ethtool support (aris, 09/13/2004)
27 	0.13a   in memory shortage, drop packets also in board
28 		(Michael Westermann <mw@microdata-pos.de>, 07/30/2002)
29 	0.13    irq sharing, rewrote probe function, fixed a nasty bug in
30 		hardware_send_packet and a major cleanup (aris, 11/08/2001)
31 	0.12d	fixing a problem with single card detected as eight eth devices
32 		fixing a problem with sudden drop in card performance
33 		(chris (asdn@go2.pl), 10/29/2001)
34 	0.12c	fixing some problems with old cards (aris, 01/08/2001)
35 	0.12b	misc fixes (aris, 06/26/2000)
36 	0.12a   port of version 0.12a of 2.2.x kernels to 2.3.x
37 		(aris (aris@conectiva.com.br), 05/19/2000)
38 	0.11e   some tweaks about multiple cards support (PdP, jul/aug 1999)
39 	0.11d	added __initdata, __init stuff; call spin_lock_init
40 	        in eepro_probe1. Replaced "eepro" by dev->name. Augmented
41 		the code protected by spin_lock in interrupt routine
42 		(PdP, 12/12/1998)
43 	0.11c   minor cleanup (PdP, RMC, 09/12/1998)
44 	0.11b   Pascal Dupuis (dupuis@lei.ucl.ac.be): works as a module
45 	        under 2.1.xx. Debug messages are flagged as KERN_DEBUG to
46 		avoid console flooding. Added locking at critical parts. Now
47 		the dawn thing is SMP safe.
48 	0.11a   Attempt to get 2.1.xx support up (RMC)
49 	0.11	Brian Candler added support for multiple cards. Tested as
50 		a module, no idea if it works when compiled into kernel.
51 
52 	0.10e	Rick Bressler notified me that ifconfig up;ifconfig down fails
53 		because the irq is lost somewhere. Fixed that by moving
54 		request_irq and free_irq to eepro_open and eepro_close respectively.
55 	0.10d	Ugh! Now Wakeup works. Was seriously broken in my first attempt.
56 		I'll need to find a way to specify an ioport other than
57 		the default one in the PnP case. PnP definitively sucks.
58 		And, yes, this is not the only reason.
59 	0.10c	PnP Wakeup Test for 595FX. uncomment #define PnPWakeup;
60 		to use.
61 	0.10b	Should work now with (some) Pro/10+. At least for
62 		me (and my two cards) it does. _No_ guarantee for
63 		function with non-Pro/10+ cards! (don't have any)
64 		(RMC, 9/11/96)
65 
66 	0.10	Added support for the Etherexpress Pro/10+.  The
67 		IRQ map was changed significantly from the old
68 		pro/10.  The new interrupt map was provided by
69 		Rainer M. Canavan (Canavan@Zeus.cs.bonn.edu).
70 		(BCH, 9/3/96)
71 
72 	0.09	Fixed a race condition in the transmit algorithm,
73 		which causes crashes under heavy load with fast
74 		pentium computers.  The performance should also
75 		improve a bit.  The size of RX buffer, and hence
76 		TX buffer, can also be changed via lilo or insmod.
77 		(BCH, 7/31/96)
78 
79 	0.08	Implement 32-bit I/O for the 82595TX and 82595FX
80 		based lan cards.  Disable full-duplex mode if TPE
81 		is not used.  (BCH, 4/8/96)
82 
83 	0.07a	Fix a stat report which counts every packet as a
84 		heart-beat failure. (BCH, 6/3/95)
85 
86 	0.07	Modified to support all other 82595-based lan cards.
87 		The IRQ vector of the EtherExpress Pro will be set
88 		according to the value saved in the EEPROM.  For other
89 		cards, I will do autoirq_request() to grab the next
90 		available interrupt vector. (BCH, 3/17/95)
91 
92 	0.06a,b	Interim released.  Minor changes in the comments and
93 		print out format. (BCH, 3/9/95 and 3/14/95)
94 
95 	0.06	First stable release that I am comfortable with. (BCH,
96 		3/2/95)
97 
98 	0.05	Complete testing of multicast. (BCH, 2/23/95)
99 
100 	0.04	Adding multicast support. (BCH, 2/14/95)
101 
102 	0.03	First widely alpha release for public testing.
103 		(BCH, 2/14/95)
104 
105 */
106 
107 static const char version[] =
108 	"eepro.c: v0.13b 09/13/2004 aris@cathedrallabs.org\n";
109 
110 #include <linux/module.h>
111 
112 /*
113   Sources:
114 
115 	This driver wouldn't have been written without the availability
116 	of the Crynwr's Lan595 driver source code.  It helps me to
117 	familiarize with the 82595 chipset while waiting for the Intel
118 	documentation.  I also learned how to detect the 82595 using
119 	the packet driver's technique.
120 
121 	This driver is written by cutting and pasting the skeleton.c driver
122 	provided by Donald Becker.  I also borrowed the EEPROM routine from
123 	Donald Becker's 82586 driver.
124 
125 	Datasheet for the Intel 82595 (including the TX and FX version). It
126 	provides just enough info that the casual reader might think that it
127 	documents the i82595.
128 
129 	The User Manual for the 82595.  It provides a lot of the missing
130 	information.
131 
132 */
133 
134 #include <linux/kernel.h>
135 #include <linux/types.h>
136 #include <linux/fcntl.h>
137 #include <linux/interrupt.h>
138 #include <linux/ioport.h>
139 #include <linux/in.h>
140 #include <linux/string.h>
141 #include <linux/errno.h>
142 #include <linux/netdevice.h>
143 #include <linux/etherdevice.h>
144 #include <linux/skbuff.h>
145 #include <linux/spinlock.h>
146 #include <linux/init.h>
147 #include <linux/delay.h>
148 #include <linux/bitops.h>
149 #include <linux/ethtool.h>
150 
151 #include <asm/system.h>
152 #include <asm/io.h>
153 #include <asm/dma.h>
154 
155 #define DRV_NAME "eepro"
156 #define DRV_VERSION "0.13c"
157 
158 #define compat_dev_kfree_skb( skb, mode ) dev_kfree_skb( (skb) )
159 /* I had reports of looong delays with SLOW_DOWN defined as udelay(2) */
160 #define SLOW_DOWN inb(0x80)
161 /* udelay(2) */
162 #define compat_init_data     __initdata
163 enum iftype { AUI=0, BNC=1, TPE=2 };
164 
165 /* First, a few definitions that the brave might change. */
166 /* A zero-terminated list of I/O addresses to be probed. */
167 static unsigned int eepro_portlist[] compat_init_data =
168    { 0x300, 0x210, 0x240, 0x280, 0x2C0, 0x200, 0x320, 0x340, 0x360, 0};
169 /* note: 0x300 is default, the 595FX supports ALL IO Ports
170   from 0x000 to 0x3F0, some of which are reserved in PCs */
171 
172 /* To try the (not-really PnP Wakeup: */
173 /*
174 #define PnPWakeup
175 */
176 
177 /* use 0 for production, 1 for verification, >2 for debug */
178 #ifndef NET_DEBUG
179 #define NET_DEBUG 0
180 #endif
181 static unsigned int net_debug = NET_DEBUG;
182 
183 /* The number of low I/O ports used by the ethercard. */
184 #define EEPRO_IO_EXTENT	16
185 
186 /* Different 82595 chips */
187 #define	LAN595		0
188 #define	LAN595TX	1
189 #define	LAN595FX	2
190 #define	LAN595FX_10ISA	3
191 
192 /* Information that need to be kept for each board. */
193 struct eepro_local {
194 	unsigned rx_start;
195 	unsigned tx_start; /* start of the transmit chain */
196 	int tx_last;  /* pointer to last packet in the transmit chain */
197 	unsigned tx_end;   /* end of the transmit chain (plus 1) */
198 	int eepro;	/* 1 for the EtherExpress Pro/10,
199 			   2 for the EtherExpress Pro/10+,
200 			   3 for the EtherExpress 10 (blue cards),
201 			   0 for other 82595-based lan cards. */
202 	int version;	/* a flag to indicate if this is a TX or FX
203 				   version of the 82595 chip. */
204 	int stepping;
205 
206 	spinlock_t lock; /* Serializing lock  */
207 
208 	unsigned rcv_ram;	/* pre-calculated space for rx */
209 	unsigned xmt_ram;	/* pre-calculated space for tx */
210 	unsigned char xmt_bar;
211 	unsigned char xmt_lower_limit_reg;
212 	unsigned char xmt_upper_limit_reg;
213 	short xmt_lower_limit;
214 	short xmt_upper_limit;
215 	short rcv_lower_limit;
216 	short rcv_upper_limit;
217 	unsigned char eeprom_reg;
218 	unsigned short word[8];
219 };
220 
221 /* The station (ethernet) address prefix, used for IDing the board. */
222 #define SA_ADDR0 0x00	/* Etherexpress Pro/10 */
223 #define SA_ADDR1 0xaa
224 #define SA_ADDR2 0x00
225 
226 #define GetBit(x,y) ((x & (1<<y))>>y)
227 
228 /* EEPROM Word 0: */
229 #define ee_PnP       0  /* Plug 'n Play enable bit */
230 #define ee_Word1     1  /* Word 1? */
231 #define ee_BusWidth  2  /* 8/16 bit */
232 #define ee_FlashAddr 3  /* Flash Address */
233 #define ee_FlashMask 0x7   /* Mask */
234 #define ee_AutoIO    6  /* */
235 #define ee_reserved0 7  /* =0! */
236 #define ee_Flash     8  /* Flash there? */
237 #define ee_AutoNeg   9  /* Auto Negotiation enabled? */
238 #define ee_IO0       10 /* IO Address LSB */
239 #define ee_IO0Mask   0x /*...*/
240 #define ee_IO1       15 /* IO MSB */
241 
242 /* EEPROM Word 1: */
243 #define ee_IntSel    0   /* Interrupt */
244 #define ee_IntMask   0x7
245 #define ee_LI        3   /* Link Integrity 0= enabled */
246 #define ee_PC        4   /* Polarity Correction 0= enabled */
247 #define ee_TPE_AUI   5   /* PortSelection 1=TPE */
248 #define ee_Jabber    6   /* Jabber prevention 0= enabled */
249 #define ee_AutoPort  7   /* Auto Port Selection 1= Disabled */
250 #define ee_SMOUT     8   /* SMout Pin Control 0= Input */
251 #define ee_PROM      9   /* Flash EPROM / PROM 0=Flash */
252 #define ee_reserved1 10  /* .. 12 =0! */
253 #define ee_AltReady  13  /* Alternate Ready, 0=normal */
254 #define ee_reserved2 14  /* =0! */
255 #define ee_Duplex    15
256 
257 /* Word2,3,4: */
258 #define ee_IA5       0 /*bit start for individual Addr Byte 5 */
259 #define ee_IA4       8 /*bit start for individual Addr Byte 5 */
260 #define ee_IA3       0 /*bit start for individual Addr Byte 5 */
261 #define ee_IA2       8 /*bit start for individual Addr Byte 5 */
262 #define ee_IA1       0 /*bit start for individual Addr Byte 5 */
263 #define ee_IA0       8 /*bit start for individual Addr Byte 5 */
264 
265 /* Word 5: */
266 #define ee_BNC_TPE   0 /* 0=TPE */
267 #define ee_BootType  1 /* 00=None, 01=IPX, 10=ODI, 11=NDIS */
268 #define ee_BootTypeMask 0x3
269 #define ee_NumConn   3  /* Number of Connections 0= One or Two */
270 #define ee_FlashSock 4  /* Presence of Flash Socket 0= Present */
271 #define ee_PortTPE   5
272 #define ee_PortBNC   6
273 #define ee_PortAUI   7
274 #define ee_PowerMgt  10 /* 0= disabled */
275 #define ee_CP        13 /* Concurrent Processing */
276 #define ee_CPMask    0x7
277 
278 /* Word 6: */
279 #define ee_Stepping  0 /* Stepping info */
280 #define ee_StepMask  0x0F
281 #define ee_BoardID   4 /* Manucaturer Board ID, reserved */
282 #define ee_BoardMask 0x0FFF
283 
284 /* Word 7: */
285 #define ee_INT_TO_IRQ 0 /* int to IRQ Mapping  = 0x1EB8 for Pro/10+ */
286 #define ee_FX_INT2IRQ 0x1EB8 /* the _only_ mapping allowed for FX chips */
287 
288 /*..*/
289 #define ee_SIZE 0x40 /* total EEprom Size */
290 #define ee_Checksum 0xBABA /* initial and final value for adding checksum */
291 
292 
293 /* Card identification via EEprom:   */
294 #define ee_addr_vendor 0x10  /* Word offset for EISA Vendor ID */
295 #define ee_addr_id 0x11      /* Word offset for Card ID */
296 #define ee_addr_SN 0x12      /* Serial Number */
297 #define ee_addr_CRC_8 0x14   /* CRC over last thee Bytes */
298 
299 
300 #define ee_vendor_intel0 0x25  /* Vendor ID Intel */
301 #define ee_vendor_intel1 0xD4
302 #define ee_id_eepro10p0 0x10   /* ID for eepro/10+ */
303 #define ee_id_eepro10p1 0x31
304 
305 #define TX_TIMEOUT ((4*HZ)/10)
306 
307 /* Index to functions, as function prototypes. */
308 
309 static int	eepro_probe1(struct net_device *dev, int autoprobe);
310 static int	eepro_open(struct net_device *dev);
311 static netdev_tx_t eepro_send_packet(struct sk_buff *skb,
312 				     struct net_device *dev);
313 static irqreturn_t eepro_interrupt(int irq, void *dev_id);
314 static void 	eepro_rx(struct net_device *dev);
315 static void 	eepro_transmit_interrupt(struct net_device *dev);
316 static int	eepro_close(struct net_device *dev);
317 static void     set_multicast_list(struct net_device *dev);
318 static void     eepro_tx_timeout (struct net_device *dev);
319 
320 static int read_eeprom(int ioaddr, int location, struct net_device *dev);
321 static int	hardware_send_packet(struct net_device *dev, void *buf, short length);
322 static int	eepro_grab_irq(struct net_device *dev);
323 
324 /*
325 			Details of the i82595.
326 
327 You will need either the datasheet or the user manual to understand what
328 is going on here.  The 82595 is very different from the 82586, 82593.
329 
330 The receive algorithm in eepro_rx() is just an implementation of the
331 RCV ring structure that the Intel 82595 imposes at the hardware level.
332 The receive buffer is set at 24K, and the transmit buffer is 8K.  I
333 am assuming that the total buffer memory is 32K, which is true for the
334 Intel EtherExpress Pro/10.  If it is less than that on a generic card,
335 the driver will be broken.
336 
337 The transmit algorithm in the hardware_send_packet() is similar to the
338 one in the eepro_rx().  The transmit buffer is a ring linked list.
339 I just queue the next available packet to the end of the list.  In my
340 system, the 82595 is so fast that the list seems to always contain a
341 single packet.  In other systems with faster computers and more congested
342 network traffics, the ring linked list should improve performance by
343 allowing up to 8K worth of packets to be queued.
344 
345 The sizes of the receive and transmit buffers can now be changed via lilo
346 or insmod.  Lilo uses the appended line "ether=io,irq,debug,rx-buffer,eth0"
347 where rx-buffer is in KB unit.  Modules uses the parameter mem which is
348 also in KB unit, for example "insmod io=io-address irq=0 mem=rx-buffer."
349 The receive buffer has to be more than 3K or less than 29K.  Otherwise,
350 it is reset to the default of 24K, and, hence, 8K for the trasnmit
351 buffer (transmit-buffer = 32K - receive-buffer).
352 
353 */
354 #define RAM_SIZE        0x8000
355 
356 #define RCV_HEADER      8
357 #define RCV_DEFAULT_RAM 0x6000
358 
359 #define XMT_HEADER      8
360 #define XMT_DEFAULT_RAM	(RAM_SIZE - RCV_DEFAULT_RAM)
361 
362 #define XMT_START_PRO	RCV_DEFAULT_RAM
363 #define XMT_START_10	0x0000
364 #define RCV_START_PRO	0x0000
365 #define RCV_START_10	XMT_DEFAULT_RAM
366 
367 #define	RCV_DONE	0x0008
368 #define	RX_OK		0x2000
369 #define	RX_ERROR	0x0d81
370 
371 #define	TX_DONE_BIT	0x0080
372 #define	TX_OK		0x2000
373 #define	CHAIN_BIT	0x8000
374 #define	XMT_STATUS	0x02
375 #define	XMT_CHAIN	0x04
376 #define	XMT_COUNT	0x06
377 
378 #define	BANK0_SELECT	0x00
379 #define	BANK1_SELECT	0x40
380 #define	BANK2_SELECT	0x80
381 
382 /* Bank 0 registers */
383 #define	COMMAND_REG	0x00	/* Register 0 */
384 #define	MC_SETUP	0x03
385 #define	XMT_CMD		0x04
386 #define	DIAGNOSE_CMD	0x07
387 #define	RCV_ENABLE_CMD	0x08
388 #define	RCV_DISABLE_CMD	0x0a
389 #define	STOP_RCV_CMD	0x0b
390 #define	RESET_CMD	0x0e
391 #define	POWER_DOWN_CMD	0x18
392 #define	RESUME_XMT_CMD	0x1c
393 #define	SEL_RESET_CMD	0x1e
394 #define	STATUS_REG	0x01	/* Register 1 */
395 #define	RX_INT		0x02
396 #define	TX_INT		0x04
397 #define	EXEC_STATUS	0x30
398 #define	ID_REG		0x02	/* Register 2	*/
399 #define	R_ROBIN_BITS	0xc0	/* round robin counter */
400 #define	ID_REG_MASK	0x2c
401 #define	ID_REG_SIG	0x24
402 #define	AUTO_ENABLE	0x10
403 #define	INT_MASK_REG	0x03	/* Register 3	*/
404 #define	RX_STOP_MASK	0x01
405 #define	RX_MASK		0x02
406 #define	TX_MASK		0x04
407 #define	EXEC_MASK	0x08
408 #define	ALL_MASK	0x0f
409 #define	IO_32_BIT	0x10
410 #define	RCV_BAR		0x04	/* The following are word (16-bit) registers */
411 #define	RCV_STOP	0x06
412 
413 #define	XMT_BAR_PRO	0x0a
414 #define	XMT_BAR_10	0x0b
415 
416 #define	HOST_ADDRESS_REG	0x0c
417 #define	IO_PORT		0x0e
418 #define	IO_PORT_32_BIT	0x0c
419 
420 /* Bank 1 registers */
421 #define	REG1	0x01
422 #define	WORD_WIDTH	0x02
423 #define	INT_ENABLE	0x80
424 #define INT_NO_REG	0x02
425 #define	RCV_LOWER_LIMIT_REG	0x08
426 #define	RCV_UPPER_LIMIT_REG	0x09
427 
428 #define	XMT_LOWER_LIMIT_REG_PRO 0x0a
429 #define	XMT_UPPER_LIMIT_REG_PRO 0x0b
430 #define	XMT_LOWER_LIMIT_REG_10  0x0b
431 #define	XMT_UPPER_LIMIT_REG_10  0x0a
432 
433 /* Bank 2 registers */
434 #define	XMT_Chain_Int	0x20	/* Interrupt at the end of the transmit chain */
435 #define	XMT_Chain_ErrStop	0x40 /* Interrupt at the end of the chain even if there are errors */
436 #define	RCV_Discard_BadFrame	0x80 /* Throw bad frames away, and continue to receive others */
437 #define	REG2		0x02
438 #define	PRMSC_Mode	0x01
439 #define	Multi_IA	0x20
440 #define	REG3		0x03
441 #define	TPE_BIT		0x04
442 #define	BNC_BIT		0x20
443 #define	REG13		0x0d
444 #define	FDX		0x00
445 #define	A_N_ENABLE	0x02
446 
447 #define	I_ADD_REG0	0x04
448 #define	I_ADD_REG1	0x05
449 #define	I_ADD_REG2	0x06
450 #define	I_ADD_REG3	0x07
451 #define	I_ADD_REG4	0x08
452 #define	I_ADD_REG5	0x09
453 
454 #define	EEPROM_REG_PRO 0x0a
455 #define	EEPROM_REG_10  0x0b
456 
457 #define EESK 0x01
458 #define EECS 0x02
459 #define EEDI 0x04
460 #define EEDO 0x08
461 
462 /* do a full reset */
463 #define eepro_reset(ioaddr) outb(RESET_CMD, ioaddr)
464 
465 /* do a nice reset */
466 #define eepro_sel_reset(ioaddr) 	{ \
467 					outb(SEL_RESET_CMD, ioaddr); \
468 					SLOW_DOWN; \
469 					SLOW_DOWN; \
470 					}
471 
472 /* disable all interrupts */
473 #define eepro_dis_int(ioaddr) outb(ALL_MASK, ioaddr + INT_MASK_REG)
474 
475 /* clear all interrupts */
476 #define eepro_clear_int(ioaddr) outb(ALL_MASK, ioaddr + STATUS_REG)
477 
478 /* enable tx/rx */
479 #define eepro_en_int(ioaddr) outb(ALL_MASK & ~(RX_MASK | TX_MASK), \
480 							ioaddr + INT_MASK_REG)
481 
482 /* enable exec event interrupt */
483 #define eepro_en_intexec(ioaddr) outb(ALL_MASK & ~(EXEC_MASK), ioaddr + INT_MASK_REG)
484 
485 /* enable rx */
486 #define eepro_en_rx(ioaddr) outb(RCV_ENABLE_CMD, ioaddr)
487 
488 /* disable rx */
489 #define eepro_dis_rx(ioaddr) outb(RCV_DISABLE_CMD, ioaddr)
490 
491 /* switch bank */
492 #define eepro_sw2bank0(ioaddr) outb(BANK0_SELECT, ioaddr)
493 #define eepro_sw2bank1(ioaddr) outb(BANK1_SELECT, ioaddr)
494 #define eepro_sw2bank2(ioaddr) outb(BANK2_SELECT, ioaddr)
495 
496 /* enable interrupt line */
497 #define eepro_en_intline(ioaddr) outb(inb(ioaddr + REG1) | INT_ENABLE,\
498 				ioaddr + REG1)
499 
500 /* disable interrupt line */
501 #define eepro_dis_intline(ioaddr) outb(inb(ioaddr + REG1) & 0x7f, \
502 				ioaddr + REG1);
503 
504 /* set diagnose flag */
505 #define eepro_diag(ioaddr) outb(DIAGNOSE_CMD, ioaddr)
506 
507 /* ack for rx int */
508 #define eepro_ack_rx(ioaddr) outb (RX_INT, ioaddr + STATUS_REG)
509 
510 /* ack for tx int */
511 #define eepro_ack_tx(ioaddr) outb (TX_INT, ioaddr + STATUS_REG)
512 
513 /* a complete sel reset */
514 #define eepro_complete_selreset(ioaddr) { \
515 						dev->stats.tx_errors++;\
516 						eepro_sel_reset(ioaddr);\
517 						lp->tx_end = \
518 							lp->xmt_lower_limit;\
519 						lp->tx_start = lp->tx_end;\
520 						lp->tx_last = 0;\
521 						dev->trans_start = jiffies;\
522 						netif_wake_queue(dev);\
523 						eepro_en_rx(ioaddr);\
524 					}
525 
526 /* Check for a network adaptor of this type, and return '0' if one exists.
527    If dev->base_addr == 0, probe all likely locations.
528    If dev->base_addr == 1, always return failure.
529    If dev->base_addr == 2, allocate space for the device and return success
530    (detachable devices only).
531    */
do_eepro_probe(struct net_device * dev)532 static int __init do_eepro_probe(struct net_device *dev)
533 {
534 	int i;
535 	int base_addr = dev->base_addr;
536 	int irq = dev->irq;
537 
538 #ifdef PnPWakeup
539 	/* XXXX for multiple cards should this only be run once? */
540 
541 	/* Wakeup: */
542 	#define WakeupPort 0x279
543 	#define WakeupSeq    {0x6A, 0xB5, 0xDA, 0xED, 0xF6, 0xFB, 0x7D, 0xBE,\
544 	                      0xDF, 0x6F, 0x37, 0x1B, 0x0D, 0x86, 0xC3, 0x61,\
545 	                      0xB0, 0x58, 0x2C, 0x16, 0x8B, 0x45, 0xA2, 0xD1,\
546 	                      0xE8, 0x74, 0x3A, 0x9D, 0xCE, 0xE7, 0x73, 0x43}
547 
548 	{
549 		unsigned short int WS[32]=WakeupSeq;
550 
551 		if (request_region(WakeupPort, 2, "eepro wakeup")) {
552 			if (net_debug>5)
553 				printk(KERN_DEBUG "Waking UP\n");
554 
555 			outb_p(0,WakeupPort);
556 			outb_p(0,WakeupPort);
557 			for (i=0; i<32; i++) {
558 				outb_p(WS[i],WakeupPort);
559 				if (net_debug>5) printk(KERN_DEBUG ": %#x ",WS[i]);
560 			}
561 
562 			release_region(WakeupPort, 2);
563 		} else
564 			printk(KERN_WARNING "PnP wakeup region busy!\n");
565 	}
566 #endif
567 
568 	if (base_addr > 0x1ff)		/* Check a single specified location. */
569 		return eepro_probe1(dev, 0);
570 
571 	else if (base_addr != 0)	/* Don't probe at all. */
572 		return -ENXIO;
573 
574 	for (i = 0; eepro_portlist[i]; i++) {
575 		dev->base_addr = eepro_portlist[i];
576 		dev->irq = irq;
577 		if (eepro_probe1(dev, 1) == 0)
578 			return 0;
579 	}
580 
581 	return -ENODEV;
582 }
583 
584 #ifndef MODULE
eepro_probe(int unit)585 struct net_device * __init eepro_probe(int unit)
586 {
587 	struct net_device *dev = alloc_etherdev(sizeof(struct eepro_local));
588 	int err;
589 
590 	if (!dev)
591 		return ERR_PTR(-ENODEV);
592 
593 	sprintf(dev->name, "eth%d", unit);
594 	netdev_boot_setup_check(dev);
595 
596 	err = do_eepro_probe(dev);
597 	if (err)
598 		goto out;
599 	return dev;
600 out:
601 	free_netdev(dev);
602 	return ERR_PTR(err);
603 }
604 #endif
605 
printEEPROMInfo(struct net_device * dev)606 static void __init printEEPROMInfo(struct net_device *dev)
607 {
608 	struct eepro_local *lp = netdev_priv(dev);
609 	int ioaddr = dev->base_addr;
610 	unsigned short Word;
611 	int i,j;
612 
613 	j = ee_Checksum;
614 	for (i = 0; i < 8; i++)
615 		j += lp->word[i];
616 	for ( ; i < ee_SIZE; i++)
617 		j += read_eeprom(ioaddr, i, dev);
618 
619 	printk(KERN_DEBUG "Checksum: %#x\n",j&0xffff);
620 
621 	Word = lp->word[0];
622 	printk(KERN_DEBUG "Word0:\n");
623 	printk(KERN_DEBUG " Plug 'n Pray: %d\n",GetBit(Word,ee_PnP));
624 	printk(KERN_DEBUG " Buswidth: %d\n",(GetBit(Word,ee_BusWidth)+1)*8 );
625 	printk(KERN_DEBUG " AutoNegotiation: %d\n",GetBit(Word,ee_AutoNeg));
626 	printk(KERN_DEBUG " IO Address: %#x\n", (Word>>ee_IO0)<<4);
627 
628 	if (net_debug>4)  {
629 		Word = lp->word[1];
630 		printk(KERN_DEBUG "Word1:\n");
631 		printk(KERN_DEBUG " INT: %d\n", Word & ee_IntMask);
632 		printk(KERN_DEBUG " LI: %d\n", GetBit(Word,ee_LI));
633 		printk(KERN_DEBUG " PC: %d\n", GetBit(Word,ee_PC));
634 		printk(KERN_DEBUG " TPE/AUI: %d\n", GetBit(Word,ee_TPE_AUI));
635 		printk(KERN_DEBUG " Jabber: %d\n", GetBit(Word,ee_Jabber));
636 		printk(KERN_DEBUG " AutoPort: %d\n", !GetBit(Word,ee_AutoPort));
637 		printk(KERN_DEBUG " Duplex: %d\n", GetBit(Word,ee_Duplex));
638 	}
639 
640 	Word = lp->word[5];
641 	printk(KERN_DEBUG "Word5:\n");
642 	printk(KERN_DEBUG " BNC: %d\n",GetBit(Word,ee_BNC_TPE));
643 	printk(KERN_DEBUG " NumConnectors: %d\n",GetBit(Word,ee_NumConn));
644 	printk(KERN_DEBUG " Has ");
645 	if (GetBit(Word,ee_PortTPE)) printk(KERN_DEBUG "TPE ");
646 	if (GetBit(Word,ee_PortBNC)) printk(KERN_DEBUG "BNC ");
647 	if (GetBit(Word,ee_PortAUI)) printk(KERN_DEBUG "AUI ");
648 	printk(KERN_DEBUG "port(s)\n");
649 
650 	Word = lp->word[6];
651 	printk(KERN_DEBUG "Word6:\n");
652 	printk(KERN_DEBUG " Stepping: %d\n",Word & ee_StepMask);
653 	printk(KERN_DEBUG " BoardID: %d\n",Word>>ee_BoardID);
654 
655 	Word = lp->word[7];
656 	printk(KERN_DEBUG "Word7:\n");
657 	printk(KERN_DEBUG " INT to IRQ:\n");
658 
659 	for (i=0, j=0; i<15; i++)
660 		if (GetBit(Word,i)) printk(KERN_DEBUG " INT%d -> IRQ %d;",j++,i);
661 
662 	printk(KERN_DEBUG "\n");
663 }
664 
665 /* function to recalculate the limits of buffer based on rcv_ram */
eepro_recalc(struct net_device * dev)666 static void eepro_recalc (struct net_device *dev)
667 {
668 	struct eepro_local *	lp;
669 
670 	lp = netdev_priv(dev);
671 	lp->xmt_ram = RAM_SIZE - lp->rcv_ram;
672 
673 	if (lp->eepro == LAN595FX_10ISA) {
674 		lp->xmt_lower_limit = XMT_START_10;
675 		lp->xmt_upper_limit = (lp->xmt_ram - 2);
676 		lp->rcv_lower_limit = lp->xmt_ram;
677 		lp->rcv_upper_limit = (RAM_SIZE - 2);
678 	}
679 	else {
680 		lp->rcv_lower_limit = RCV_START_PRO;
681 		lp->rcv_upper_limit = (lp->rcv_ram - 2);
682 		lp->xmt_lower_limit = lp->rcv_ram;
683 		lp->xmt_upper_limit = (RAM_SIZE - 2);
684 	}
685 }
686 
687 /* prints boot-time info */
eepro_print_info(struct net_device * dev)688 static void __init eepro_print_info (struct net_device *dev)
689 {
690 	struct eepro_local *	lp = netdev_priv(dev);
691 	int			i;
692 	const char *		ifmap[] = {"AUI", "10Base2", "10BaseT"};
693 
694 	i = inb(dev->base_addr + ID_REG);
695 	printk(KERN_DEBUG " id: %#x ",i);
696 	printk(" io: %#x ", (unsigned)dev->base_addr);
697 
698 	switch (lp->eepro) {
699 		case LAN595FX_10ISA:
700 			printk("%s: Intel EtherExpress 10 ISA\n at %#x,",
701 					dev->name, (unsigned)dev->base_addr);
702 			break;
703 		case LAN595FX:
704 			printk("%s: Intel EtherExpress Pro/10+ ISA\n at %#x,",
705 					dev->name, (unsigned)dev->base_addr);
706 			break;
707 		case LAN595TX:
708 			printk("%s: Intel EtherExpress Pro/10 ISA at %#x,",
709 					dev->name, (unsigned)dev->base_addr);
710 			break;
711 		case LAN595:
712 			printk("%s: Intel 82595-based lan card at %#x,",
713 					dev->name, (unsigned)dev->base_addr);
714 			break;
715 	}
716 
717 	printk(" %pM", dev->dev_addr);
718 
719 	if (net_debug > 3)
720 		printk(KERN_DEBUG ", %dK RCV buffer",
721 				(int)(lp->rcv_ram)/1024);
722 
723 	if (dev->irq > 2)
724 		printk(", IRQ %d, %s.\n", dev->irq, ifmap[dev->if_port]);
725 	else
726 		printk(", %s.\n", ifmap[dev->if_port]);
727 
728 	if (net_debug > 3) {
729 		i = lp->word[5];
730 		if (i & 0x2000) /* bit 13 of EEPROM word 5 */
731 			printk(KERN_DEBUG "%s: Concurrent Processing is "
732 				"enabled but not used!\n", dev->name);
733 	}
734 
735 	/* Check the station address for the manufacturer's code */
736 	if (net_debug>3)
737 		printEEPROMInfo(dev);
738 }
739 
740 static const struct ethtool_ops eepro_ethtool_ops;
741 
742 static const struct net_device_ops eepro_netdev_ops = {
743  	.ndo_open               = eepro_open,
744  	.ndo_stop               = eepro_close,
745  	.ndo_start_xmit    	= eepro_send_packet,
746  	.ndo_set_multicast_list = set_multicast_list,
747  	.ndo_tx_timeout		= eepro_tx_timeout,
748 	.ndo_change_mtu		= eth_change_mtu,
749 	.ndo_set_mac_address 	= eth_mac_addr,
750 	.ndo_validate_addr	= eth_validate_addr,
751 };
752 
753 /* This is the real probe routine.  Linux has a history of friendly device
754    probes on the ISA bus.  A good device probe avoids doing writes, and
755    verifies that the correct device exists and functions.  */
756 
eepro_probe1(struct net_device * dev,int autoprobe)757 static int __init eepro_probe1(struct net_device *dev, int autoprobe)
758 {
759 	unsigned short station_addr[3], id, counter;
760 	int i;
761 	struct eepro_local *lp;
762 	int ioaddr = dev->base_addr;
763 	int err;
764 
765 	/* Grab the region so we can find another board if autoIRQ fails. */
766 	if (!request_region(ioaddr, EEPRO_IO_EXTENT, DRV_NAME)) {
767 		if (!autoprobe)
768 			printk(KERN_WARNING "EEPRO: io-port 0x%04x in use\n",
769 				ioaddr);
770 		return -EBUSY;
771 	}
772 
773 	/* Now, we are going to check for the signature of the
774 	   ID_REG (register 2 of bank 0) */
775 
776 	id = inb(ioaddr + ID_REG);
777 
778 	if ((id & ID_REG_MASK) != ID_REG_SIG)
779 		goto exit;
780 
781 	/* We seem to have the 82595 signature, let's
782 	   play with its counter (last 2 bits of
783 	   register 2 of bank 0) to be sure. */
784 
785 	counter = id & R_ROBIN_BITS;
786 
787 	if ((inb(ioaddr + ID_REG) & R_ROBIN_BITS) != (counter + 0x40))
788 		goto exit;
789 
790 	lp = netdev_priv(dev);
791 	memset(lp, 0, sizeof(struct eepro_local));
792 	lp->xmt_bar = XMT_BAR_PRO;
793 	lp->xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_PRO;
794 	lp->xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_PRO;
795 	lp->eeprom_reg = EEPROM_REG_PRO;
796 	spin_lock_init(&lp->lock);
797 
798 	/* Now, get the ethernet hardware address from
799 	   the EEPROM */
800 	station_addr[0] = read_eeprom(ioaddr, 2, dev);
801 
802 	/* FIXME - find another way to know that we've found
803 	 * an Etherexpress 10
804 	 */
805 	if (station_addr[0] == 0x0000 || station_addr[0] == 0xffff) {
806 		lp->eepro = LAN595FX_10ISA;
807 		lp->eeprom_reg = EEPROM_REG_10;
808 		lp->xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_10;
809 		lp->xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_10;
810 		lp->xmt_bar = XMT_BAR_10;
811 		station_addr[0] = read_eeprom(ioaddr, 2, dev);
812 	}
813 
814 	/* get all words at once. will be used here and for ethtool */
815 	for (i = 0; i < 8; i++) {
816 		lp->word[i] = read_eeprom(ioaddr, i, dev);
817 	}
818 	station_addr[1] = lp->word[3];
819 	station_addr[2] = lp->word[4];
820 
821 	if (!lp->eepro) {
822 		if (lp->word[7] == ee_FX_INT2IRQ)
823 			lp->eepro = 2;
824 		else if (station_addr[2] == SA_ADDR1)
825 			lp->eepro = 1;
826 	}
827 
828 	/* Fill in the 'dev' fields. */
829 	for (i=0; i < 6; i++)
830 		dev->dev_addr[i] = ((unsigned char *) station_addr)[5-i];
831 
832 	/* RX buffer must be more than 3K and less than 29K */
833 	if (dev->mem_end < 3072 || dev->mem_end > 29696)
834 		lp->rcv_ram = RCV_DEFAULT_RAM;
835 
836 	/* calculate {xmt,rcv}_{lower,upper}_limit */
837 	eepro_recalc(dev);
838 
839 	if (GetBit(lp->word[5], ee_BNC_TPE))
840 		dev->if_port = BNC;
841 	else
842 		dev->if_port = TPE;
843 
844  	if (dev->irq < 2 && lp->eepro != 0) {
845  		/* Mask off INT number */
846  		int count = lp->word[1] & 7;
847  		unsigned irqMask = lp->word[7];
848 
849  		while (count--)
850  			irqMask &= irqMask - 1;
851 
852  		count = ffs(irqMask);
853 
854  		if (count)
855  			dev->irq = count - 1;
856 
857  		if (dev->irq < 2) {
858  			printk(KERN_ERR " Duh! illegal interrupt vector stored in EEPROM.\n");
859  			goto exit;
860  		} else if (dev->irq == 2) {
861  			dev->irq = 9;
862  		}
863  	}
864 
865 	dev->netdev_ops		= &eepro_netdev_ops;
866  	dev->watchdog_timeo	= TX_TIMEOUT;
867 	dev->ethtool_ops	= &eepro_ethtool_ops;
868 
869 	/* print boot time info */
870 	eepro_print_info(dev);
871 
872 	/* reset 82595 */
873 	eepro_reset(ioaddr);
874 
875 	err = register_netdev(dev);
876 	if (err)
877 		goto err;
878 	return 0;
879 exit:
880 	err = -ENODEV;
881 err:
882  	release_region(dev->base_addr, EEPRO_IO_EXTENT);
883  	return err;
884 }
885 
886 /* Open/initialize the board.  This is called (in the current kernel)
887    sometime after booting when the 'ifconfig' program is run.
888 
889    This routine should set everything up anew at each open, even
890    registers that "should" only need to be set once at boot, so that
891    there is non-reboot way to recover if something goes wrong.
892    */
893 
894 static const char irqrmap[] = {-1,-1,0,1,-1,2,-1,-1,-1,0,3,4,-1,-1,-1,-1};
895 static const char irqrmap2[] = {-1,-1,4,0,1,2,-1,3,-1,4,5,6,7,-1,-1,-1};
eepro_grab_irq(struct net_device * dev)896 static int	eepro_grab_irq(struct net_device *dev)
897 {
898 	static const int irqlist[] = { 3, 4, 5, 7, 9, 10, 11, 12, 0 };
899 	const int *irqp = irqlist;
900 	int temp_reg, ioaddr = dev->base_addr;
901 
902 	eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
903 
904 	/* Enable the interrupt line. */
905 	eepro_en_intline(ioaddr);
906 
907 	/* be CAREFUL, BANK 0 now */
908 	eepro_sw2bank0(ioaddr);
909 
910 	/* clear all interrupts */
911 	eepro_clear_int(ioaddr);
912 
913 	/* Let EXEC event to interrupt */
914 	eepro_en_intexec(ioaddr);
915 
916 	do {
917 		eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
918 
919 		temp_reg = inb(ioaddr + INT_NO_REG);
920 		outb((temp_reg & 0xf8) | irqrmap[*irqp], ioaddr + INT_NO_REG);
921 
922 		eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
923 
924 		if (request_irq (*irqp, NULL, IRQF_SHARED, "bogus", dev) != EBUSY) {
925 			unsigned long irq_mask;
926 			/* Twinkle the interrupt, and check if it's seen */
927 			irq_mask = probe_irq_on();
928 
929 			eepro_diag(ioaddr); /* RESET the 82595 */
930 			mdelay(20);
931 
932 			if (*irqp == probe_irq_off(irq_mask))  /* It's a good IRQ line */
933 				break;
934 
935 			/* clear all interrupts */
936 			eepro_clear_int(ioaddr);
937 		}
938 	} while (*++irqp);
939 
940 	eepro_sw2bank1(ioaddr); /* Switch back to Bank 1 */
941 
942 	/* Disable the physical interrupt line. */
943 	eepro_dis_intline(ioaddr);
944 
945 	eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
946 
947 	/* Mask all the interrupts. */
948 	eepro_dis_int(ioaddr);
949 
950 	/* clear all interrupts */
951 	eepro_clear_int(ioaddr);
952 
953 	return dev->irq;
954 }
955 
eepro_open(struct net_device * dev)956 static int eepro_open(struct net_device *dev)
957 {
958 	unsigned short temp_reg, old8, old9;
959 	int irqMask;
960 	int i, ioaddr = dev->base_addr;
961 	struct eepro_local *lp = netdev_priv(dev);
962 
963 	if (net_debug > 3)
964 		printk(KERN_DEBUG "%s: entering eepro_open routine.\n", dev->name);
965 
966 	irqMask = lp->word[7];
967 
968 	if (lp->eepro == LAN595FX_10ISA) {
969 		if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 3;\n");
970 	}
971 	else if (irqMask == ee_FX_INT2IRQ) /* INT to IRQ Mask */
972 		{
973 			lp->eepro = 2; /* Yes, an Intel EtherExpress Pro/10+ */
974 			if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 2;\n");
975 		}
976 
977 	else if ((dev->dev_addr[0] == SA_ADDR0 &&
978 			dev->dev_addr[1] == SA_ADDR1 &&
979 			dev->dev_addr[2] == SA_ADDR2))
980 		{
981 			lp->eepro = 1;
982 			if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 1;\n");
983 		}  /* Yes, an Intel EtherExpress Pro/10 */
984 
985 	else lp->eepro = 0; /* No, it is a generic 82585 lan card */
986 
987 	/* Get the interrupt vector for the 82595 */
988 	if (dev->irq < 2 && eepro_grab_irq(dev) == 0) {
989 		printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq);
990 		return -EAGAIN;
991 	}
992 
993 	if (request_irq(dev->irq , eepro_interrupt, 0, dev->name, dev)) {
994 		printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq);
995 		return -EAGAIN;
996 	}
997 
998 	/* Initialize the 82595. */
999 
1000 	eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1001 	temp_reg = inb(ioaddr + lp->eeprom_reg);
1002 
1003 	lp->stepping = temp_reg >> 5;	/* Get the stepping number of the 595 */
1004 
1005 	if (net_debug > 3)
1006 		printk(KERN_DEBUG "The stepping of the 82595 is %d\n", lp->stepping);
1007 
1008 	if (temp_reg & 0x10) /* Check the TurnOff Enable bit */
1009 		outb(temp_reg & 0xef, ioaddr + lp->eeprom_reg);
1010 	for (i=0; i < 6; i++)
1011 		outb(dev->dev_addr[i] , ioaddr + I_ADD_REG0 + i);
1012 
1013 	temp_reg = inb(ioaddr + REG1);    /* Setup Transmit Chaining */
1014 	outb(temp_reg | XMT_Chain_Int | XMT_Chain_ErrStop /* and discard bad RCV frames */
1015 		| RCV_Discard_BadFrame, ioaddr + REG1);
1016 
1017 	temp_reg = inb(ioaddr + REG2); /* Match broadcast */
1018 	outb(temp_reg | 0x14, ioaddr + REG2);
1019 
1020 	temp_reg = inb(ioaddr + REG3);
1021 	outb(temp_reg & 0x3f, ioaddr + REG3); /* clear test mode */
1022 
1023 	/* Set the receiving mode */
1024 	eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
1025 
1026 	/* Set the interrupt vector */
1027 	temp_reg = inb(ioaddr + INT_NO_REG);
1028 	if (lp->eepro == LAN595FX || lp->eepro == LAN595FX_10ISA)
1029 		outb((temp_reg & 0xf8) | irqrmap2[dev->irq], ioaddr + INT_NO_REG);
1030 	else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG);
1031 
1032 
1033 	temp_reg = inb(ioaddr + INT_NO_REG);
1034 	if (lp->eepro == LAN595FX || lp->eepro == LAN595FX_10ISA)
1035 		outb((temp_reg & 0xf0) | irqrmap2[dev->irq] | 0x08,ioaddr+INT_NO_REG);
1036 	else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG);
1037 
1038 	if (net_debug > 3)
1039 		printk(KERN_DEBUG "eepro_open: content of INT Reg is %x\n", temp_reg);
1040 
1041 
1042 	/* Initialize the RCV and XMT upper and lower limits */
1043 	outb(lp->rcv_lower_limit >> 8, ioaddr + RCV_LOWER_LIMIT_REG);
1044 	outb(lp->rcv_upper_limit >> 8, ioaddr + RCV_UPPER_LIMIT_REG);
1045 	outb(lp->xmt_lower_limit >> 8, ioaddr + lp->xmt_lower_limit_reg);
1046 	outb(lp->xmt_upper_limit >> 8, ioaddr + lp->xmt_upper_limit_reg);
1047 
1048 	/* Enable the interrupt line. */
1049 	eepro_en_intline(ioaddr);
1050 
1051 	/* Switch back to Bank 0 */
1052 	eepro_sw2bank0(ioaddr);
1053 
1054 	/* Let RX and TX events to interrupt */
1055 	eepro_en_int(ioaddr);
1056 
1057 	/* clear all interrupts */
1058 	eepro_clear_int(ioaddr);
1059 
1060 	/* Initialize RCV */
1061 	outw(lp->rcv_lower_limit, ioaddr + RCV_BAR);
1062 	lp->rx_start = lp->rcv_lower_limit;
1063 	outw(lp->rcv_upper_limit | 0xfe, ioaddr + RCV_STOP);
1064 
1065 	/* Initialize XMT */
1066 	outw(lp->xmt_lower_limit, ioaddr + lp->xmt_bar);
1067 	lp->tx_start = lp->tx_end = lp->xmt_lower_limit;
1068 	lp->tx_last = 0;
1069 
1070 	/* Check for the i82595TX and i82595FX */
1071 	old8 = inb(ioaddr + 8);
1072 	outb(~old8, ioaddr + 8);
1073 
1074 	if ((temp_reg = inb(ioaddr + 8)) == old8) {
1075 		if (net_debug > 3)
1076 			printk(KERN_DEBUG "i82595 detected!\n");
1077 		lp->version = LAN595;
1078 	}
1079 	else {
1080 		lp->version = LAN595TX;
1081 		outb(old8, ioaddr + 8);
1082 		old9 = inb(ioaddr + 9);
1083 
1084 		if (irqMask==ee_FX_INT2IRQ) {
1085 			if (net_debug > 3) {
1086 				printk(KERN_DEBUG "IrqMask: %#x\n",irqMask);
1087 				printk(KERN_DEBUG "i82595FX detected!\n");
1088 			}
1089 			lp->version = LAN595FX;
1090 			outb(old9, ioaddr + 9);
1091 			if (dev->if_port != TPE) {	/* Hopefully, this will fix the
1092 							problem of using Pentiums and
1093 							pro/10 w/ BNC. */
1094 				eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1095 				temp_reg = inb(ioaddr + REG13);
1096 				/* disable the full duplex mode since it is not
1097 				applicable with the 10Base2 cable. */
1098 				outb(temp_reg & ~(FDX | A_N_ENABLE), REG13);
1099 				eepro_sw2bank0(ioaddr); /* be CAREFUL, BANK 0 now */
1100 			}
1101 		}
1102 		else if (net_debug > 3) {
1103 			printk(KERN_DEBUG "temp_reg: %#x  ~old9: %#x\n",temp_reg,((~old9)&0xff));
1104 			printk(KERN_DEBUG "i82595TX detected!\n");
1105 		}
1106 	}
1107 
1108 	eepro_sel_reset(ioaddr);
1109 
1110 	netif_start_queue(dev);
1111 
1112 	if (net_debug > 3)
1113 		printk(KERN_DEBUG "%s: exiting eepro_open routine.\n", dev->name);
1114 
1115 	/* enabling rx */
1116 	eepro_en_rx(ioaddr);
1117 
1118 	return 0;
1119 }
1120 
eepro_tx_timeout(struct net_device * dev)1121 static void eepro_tx_timeout (struct net_device *dev)
1122 {
1123 	struct eepro_local *lp = netdev_priv(dev);
1124 	int ioaddr = dev->base_addr;
1125 
1126 	/* if (net_debug > 1) */
1127 	printk (KERN_ERR "%s: transmit timed out, %s?\n", dev->name,
1128 		"network cable problem");
1129 	/* This is not a duplicate. One message for the console,
1130 	   one for the log file  */
1131 	printk (KERN_DEBUG "%s: transmit timed out, %s?\n", dev->name,
1132 		"network cable problem");
1133 	eepro_complete_selreset(ioaddr);
1134 }
1135 
1136 
eepro_send_packet(struct sk_buff * skb,struct net_device * dev)1137 static netdev_tx_t eepro_send_packet(struct sk_buff *skb,
1138 				     struct net_device *dev)
1139 {
1140 	struct eepro_local *lp = netdev_priv(dev);
1141 	unsigned long flags;
1142 	int ioaddr = dev->base_addr;
1143 	short length = skb->len;
1144 
1145 	if (net_debug > 5)
1146 		printk(KERN_DEBUG  "%s: entering eepro_send_packet routine.\n", dev->name);
1147 
1148 	if (length < ETH_ZLEN) {
1149 		if (skb_padto(skb, ETH_ZLEN))
1150 			return NETDEV_TX_OK;
1151 		length = ETH_ZLEN;
1152 	}
1153 	netif_stop_queue (dev);
1154 
1155 	eepro_dis_int(ioaddr);
1156 	spin_lock_irqsave(&lp->lock, flags);
1157 
1158 	{
1159 		unsigned char *buf = skb->data;
1160 
1161 		if (hardware_send_packet(dev, buf, length))
1162 			/* we won't wake queue here because we're out of space */
1163 			dev->stats.tx_dropped++;
1164 		else {
1165 			dev->stats.tx_bytes+=skb->len;
1166 			netif_wake_queue(dev);
1167 		}
1168 
1169 	}
1170 
1171 	dev_kfree_skb (skb);
1172 
1173 	/* You might need to clean up and record Tx statistics here. */
1174 	/* dev->stats.tx_aborted_errors++; */
1175 
1176 	if (net_debug > 5)
1177 		printk(KERN_DEBUG "%s: exiting eepro_send_packet routine.\n", dev->name);
1178 
1179 	eepro_en_int(ioaddr);
1180 	spin_unlock_irqrestore(&lp->lock, flags);
1181 
1182 	return NETDEV_TX_OK;
1183 }
1184 
1185 
1186 /*	The typical workload of the driver:
1187 	Handle the network interface interrupts. */
1188 
1189 static irqreturn_t
eepro_interrupt(int irq,void * dev_id)1190 eepro_interrupt(int irq, void *dev_id)
1191 {
1192 	struct net_device *dev = dev_id;
1193 	struct eepro_local *lp;
1194 	int ioaddr, status, boguscount = 20;
1195 	int handled = 0;
1196 
1197 	lp = netdev_priv(dev);
1198 
1199         spin_lock(&lp->lock);
1200 
1201 	if (net_debug > 5)
1202 		printk(KERN_DEBUG "%s: entering eepro_interrupt routine.\n", dev->name);
1203 
1204 	ioaddr = dev->base_addr;
1205 
1206 	while (((status = inb(ioaddr + STATUS_REG)) & (RX_INT|TX_INT)) && (boguscount--))
1207 	{
1208 		handled = 1;
1209 		if (status & RX_INT) {
1210 			if (net_debug > 4)
1211 				printk(KERN_DEBUG "%s: packet received interrupt.\n", dev->name);
1212 
1213 			eepro_dis_int(ioaddr);
1214 
1215 			/* Get the received packets */
1216 			eepro_ack_rx(ioaddr);
1217 			eepro_rx(dev);
1218 
1219 			eepro_en_int(ioaddr);
1220 		}
1221 		if (status & TX_INT) {
1222 			if (net_debug > 4)
1223  				printk(KERN_DEBUG "%s: packet transmit interrupt.\n", dev->name);
1224 
1225 
1226 			eepro_dis_int(ioaddr);
1227 
1228 			/* Process the status of transmitted packets */
1229 			eepro_ack_tx(ioaddr);
1230 			eepro_transmit_interrupt(dev);
1231 
1232 			eepro_en_int(ioaddr);
1233 		}
1234 	}
1235 
1236 	if (net_debug > 5)
1237 		printk(KERN_DEBUG "%s: exiting eepro_interrupt routine.\n", dev->name);
1238 
1239 	spin_unlock(&lp->lock);
1240 	return IRQ_RETVAL(handled);
1241 }
1242 
eepro_close(struct net_device * dev)1243 static int eepro_close(struct net_device *dev)
1244 {
1245 	struct eepro_local *lp = netdev_priv(dev);
1246 	int ioaddr = dev->base_addr;
1247 	short temp_reg;
1248 
1249 	netif_stop_queue(dev);
1250 
1251 	eepro_sw2bank1(ioaddr); /* Switch back to Bank 1 */
1252 
1253 	/* Disable the physical interrupt line. */
1254 	temp_reg = inb(ioaddr + REG1);
1255 	outb(temp_reg & 0x7f, ioaddr + REG1);
1256 
1257 	eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
1258 
1259 	/* Flush the Tx and disable Rx. */
1260 	outb(STOP_RCV_CMD, ioaddr);
1261 	lp->tx_start = lp->tx_end = lp->xmt_lower_limit;
1262 	lp->tx_last = 0;
1263 
1264 	/* Mask all the interrupts. */
1265 	eepro_dis_int(ioaddr);
1266 
1267 	/* clear all interrupts */
1268 	eepro_clear_int(ioaddr);
1269 
1270 	/* Reset the 82595 */
1271 	eepro_reset(ioaddr);
1272 
1273 	/* release the interrupt */
1274 	free_irq(dev->irq, dev);
1275 
1276 	/* Update the statistics here. What statistics? */
1277 
1278 	return 0;
1279 }
1280 
1281 /* Set or clear the multicast filter for this adaptor.
1282  */
1283 static void
set_multicast_list(struct net_device * dev)1284 set_multicast_list(struct net_device *dev)
1285 {
1286 	struct eepro_local *lp = netdev_priv(dev);
1287 	short ioaddr = dev->base_addr;
1288 	unsigned short mode;
1289 	struct netdev_hw_addr *ha;
1290 	int mc_count = netdev_mc_count(dev);
1291 
1292 	if (dev->flags&(IFF_ALLMULTI|IFF_PROMISC) || mc_count > 63)
1293 	{
1294 		eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1295 		mode = inb(ioaddr + REG2);
1296 		outb(mode | PRMSC_Mode, ioaddr + REG2);
1297 		mode = inb(ioaddr + REG3);
1298 		outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1299 		eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1300 	}
1301 
1302 	else if (mc_count == 0)
1303 	{
1304 		eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1305 		mode = inb(ioaddr + REG2);
1306 		outb(mode & 0xd6, ioaddr + REG2); /* Turn off Multi-IA and PRMSC_Mode bits */
1307 		mode = inb(ioaddr + REG3);
1308 		outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1309 		eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1310 	}
1311 
1312 	else
1313 	{
1314 		unsigned short status, *eaddrs;
1315 		int i, boguscount = 0;
1316 
1317 		/* Disable RX and TX interrupts.  Necessary to avoid
1318 		   corruption of the HOST_ADDRESS_REG by interrupt
1319 		   service routines. */
1320 		eepro_dis_int(ioaddr);
1321 
1322 		eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1323 		mode = inb(ioaddr + REG2);
1324 		outb(mode | Multi_IA, ioaddr + REG2);
1325 		mode = inb(ioaddr + REG3);
1326 		outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1327 		eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1328 		outw(lp->tx_end, ioaddr + HOST_ADDRESS_REG);
1329 		outw(MC_SETUP, ioaddr + IO_PORT);
1330 		outw(0, ioaddr + IO_PORT);
1331 		outw(0, ioaddr + IO_PORT);
1332 		outw(6 * (mc_count + 1), ioaddr + IO_PORT);
1333 
1334 		netdev_for_each_mc_addr(ha, dev) {
1335 			eaddrs = (unsigned short *) ha->addr;
1336 			outw(*eaddrs++, ioaddr + IO_PORT);
1337 			outw(*eaddrs++, ioaddr + IO_PORT);
1338 			outw(*eaddrs++, ioaddr + IO_PORT);
1339 		}
1340 
1341 		eaddrs = (unsigned short *) dev->dev_addr;
1342 		outw(eaddrs[0], ioaddr + IO_PORT);
1343 		outw(eaddrs[1], ioaddr + IO_PORT);
1344 		outw(eaddrs[2], ioaddr + IO_PORT);
1345 		outw(lp->tx_end, ioaddr + lp->xmt_bar);
1346 		outb(MC_SETUP, ioaddr);
1347 
1348 		/* Update the transmit queue */
1349 		i = lp->tx_end + XMT_HEADER + 6 * (mc_count + 1);
1350 
1351 		if (lp->tx_start != lp->tx_end)
1352 		{
1353 			/* update the next address and the chain bit in the
1354 			   last packet */
1355 			outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG);
1356 			outw(i, ioaddr + IO_PORT);
1357 			outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG);
1358 			status = inw(ioaddr + IO_PORT);
1359 			outw(status | CHAIN_BIT, ioaddr + IO_PORT);
1360 			lp->tx_end = i ;
1361 		}
1362 		else {
1363 			lp->tx_start = lp->tx_end = i ;
1364 		}
1365 
1366 		/* Acknowledge that the MC setup is done */
1367 		do { /* We should be doing this in the eepro_interrupt()! */
1368 			SLOW_DOWN;
1369 			SLOW_DOWN;
1370 			if (inb(ioaddr + STATUS_REG) & 0x08)
1371 			{
1372 				i = inb(ioaddr);
1373 				outb(0x08, ioaddr + STATUS_REG);
1374 
1375 				if (i & 0x20) { /* command ABORTed */
1376 					printk(KERN_NOTICE "%s: multicast setup failed.\n",
1377 						dev->name);
1378 					break;
1379 				} else if ((i & 0x0f) == 0x03)	{ /* MC-Done */
1380 					printk(KERN_DEBUG "%s: set Rx mode to %d address%s.\n",
1381 						dev->name, mc_count,
1382 						mc_count > 1 ? "es":"");
1383 					break;
1384 				}
1385 			}
1386 		} while (++boguscount < 100);
1387 
1388 		/* Re-enable RX and TX interrupts */
1389 		eepro_en_int(ioaddr);
1390 	}
1391 	if (lp->eepro == LAN595FX_10ISA) {
1392 		eepro_complete_selreset(ioaddr);
1393 	}
1394 	else
1395 		eepro_en_rx(ioaddr);
1396 }
1397 
1398 /* The horrible routine to read a word from the serial EEPROM. */
1399 /* IMPORTANT - the 82595 will be set to Bank 0 after the eeprom is read */
1400 
1401 /* The delay between EEPROM clock transitions. */
1402 #define eeprom_delay() { udelay(40); }
1403 #define EE_READ_CMD (6 << 6)
1404 
1405 static int
read_eeprom(int ioaddr,int location,struct net_device * dev)1406 read_eeprom(int ioaddr, int location, struct net_device *dev)
1407 {
1408 	int i;
1409 	unsigned short retval = 0;
1410 	struct eepro_local *lp = netdev_priv(dev);
1411 	short ee_addr = ioaddr + lp->eeprom_reg;
1412 	int read_cmd = location | EE_READ_CMD;
1413 	short ctrl_val = EECS ;
1414 
1415 	/* XXXX - black magic */
1416 		eepro_sw2bank1(ioaddr);
1417 		outb(0x00, ioaddr + STATUS_REG);
1418 	/* XXXX - black magic */
1419 
1420 	eepro_sw2bank2(ioaddr);
1421 	outb(ctrl_val, ee_addr);
1422 
1423 	/* Shift the read command bits out. */
1424 	for (i = 8; i >= 0; i--) {
1425 		short outval = (read_cmd & (1 << i)) ? ctrl_val | EEDI
1426 			: ctrl_val;
1427 		outb(outval, ee_addr);
1428 		outb(outval | EESK, ee_addr);	/* EEPROM clock tick. */
1429 		eeprom_delay();
1430 		outb(outval, ee_addr);	/* Finish EEPROM a clock tick. */
1431 		eeprom_delay();
1432 	}
1433 	outb(ctrl_val, ee_addr);
1434 
1435 	for (i = 16; i > 0; i--) {
1436 		outb(ctrl_val | EESK, ee_addr);	 eeprom_delay();
1437 		retval = (retval << 1) | ((inb(ee_addr) & EEDO) ? 1 : 0);
1438 		outb(ctrl_val, ee_addr);  eeprom_delay();
1439 	}
1440 
1441 	/* Terminate the EEPROM access. */
1442 	ctrl_val &= ~EECS;
1443 	outb(ctrl_val | EESK, ee_addr);
1444 	eeprom_delay();
1445 	outb(ctrl_val, ee_addr);
1446 	eeprom_delay();
1447 	eepro_sw2bank0(ioaddr);
1448 	return retval;
1449 }
1450 
1451 static int
hardware_send_packet(struct net_device * dev,void * buf,short length)1452 hardware_send_packet(struct net_device *dev, void *buf, short length)
1453 {
1454 	struct eepro_local *lp = netdev_priv(dev);
1455 	short ioaddr = dev->base_addr;
1456 	unsigned status, tx_available, last, end;
1457 
1458 	if (net_debug > 5)
1459 		printk(KERN_DEBUG "%s: entering hardware_send_packet routine.\n", dev->name);
1460 
1461 	/* determine how much of the transmit buffer space is available */
1462 	if (lp->tx_end > lp->tx_start)
1463 		tx_available = lp->xmt_ram - (lp->tx_end - lp->tx_start);
1464 	else if (lp->tx_end < lp->tx_start)
1465 		tx_available = lp->tx_start - lp->tx_end;
1466 	else tx_available = lp->xmt_ram;
1467 
1468 	if (((((length + 3) >> 1) << 1) + 2*XMT_HEADER) >= tx_available) {
1469 		/* No space available ??? */
1470 		return 1;
1471 		}
1472 
1473 		last = lp->tx_end;
1474 		end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
1475 
1476 	if (end >= lp->xmt_upper_limit + 2) { /* the transmit buffer is wrapped around */
1477 		if ((lp->xmt_upper_limit + 2 - last) <= XMT_HEADER) {
1478 				/* Arrrr!!!, must keep the xmt header together,
1479 				several days were lost to chase this one down. */
1480 			last = lp->xmt_lower_limit;
1481 				end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
1482 			}
1483 		else end = lp->xmt_lower_limit + (end -
1484 						lp->xmt_upper_limit + 2);
1485 		}
1486 
1487 		outw(last, ioaddr + HOST_ADDRESS_REG);
1488 		outw(XMT_CMD, ioaddr + IO_PORT);
1489 		outw(0, ioaddr + IO_PORT);
1490 		outw(end, ioaddr + IO_PORT);
1491 		outw(length, ioaddr + IO_PORT);
1492 
1493 		if (lp->version == LAN595)
1494 			outsw(ioaddr + IO_PORT, buf, (length + 3) >> 1);
1495 		else {	/* LAN595TX or LAN595FX, capable of 32-bit I/O processing */
1496 			unsigned short temp = inb(ioaddr + INT_MASK_REG);
1497 			outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG);
1498 			outsl(ioaddr + IO_PORT_32_BIT, buf, (length + 3) >> 2);
1499 			outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG);
1500 		}
1501 
1502 		/* A dummy read to flush the DRAM write pipeline */
1503 		status = inw(ioaddr + IO_PORT);
1504 
1505 		if (lp->tx_start == lp->tx_end) {
1506 		outw(last, ioaddr + lp->xmt_bar);
1507 			outb(XMT_CMD, ioaddr);
1508 			lp->tx_start = last;   /* I don't like to change tx_start here */
1509 		}
1510 		else {
1511 			/* update the next address and the chain bit in the
1512 			last packet */
1513 
1514 			if (lp->tx_end != last) {
1515 				outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG);
1516 				outw(last, ioaddr + IO_PORT);
1517 			}
1518 
1519 			outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG);
1520 			status = inw(ioaddr + IO_PORT);
1521 			outw(status | CHAIN_BIT, ioaddr + IO_PORT);
1522 
1523 			/* Continue the transmit command */
1524 			outb(RESUME_XMT_CMD, ioaddr);
1525 		}
1526 
1527 		lp->tx_last = last;
1528 		lp->tx_end = end;
1529 
1530 		if (net_debug > 5)
1531 			printk(KERN_DEBUG "%s: exiting hardware_send_packet routine.\n", dev->name);
1532 
1533 	return 0;
1534 }
1535 
1536 static void
eepro_rx(struct net_device * dev)1537 eepro_rx(struct net_device *dev)
1538 {
1539 	struct eepro_local *lp = netdev_priv(dev);
1540 	short ioaddr = dev->base_addr;
1541 	short boguscount = 20;
1542 	short rcv_car = lp->rx_start;
1543 	unsigned rcv_event, rcv_status, rcv_next_frame, rcv_size;
1544 
1545 	if (net_debug > 5)
1546 		printk(KERN_DEBUG "%s: entering eepro_rx routine.\n", dev->name);
1547 
1548 	/* Set the read pointer to the start of the RCV */
1549 	outw(rcv_car, ioaddr + HOST_ADDRESS_REG);
1550 
1551 	rcv_event = inw(ioaddr + IO_PORT);
1552 
1553 	while (rcv_event == RCV_DONE) {
1554 
1555 		rcv_status = inw(ioaddr + IO_PORT);
1556 		rcv_next_frame = inw(ioaddr + IO_PORT);
1557 		rcv_size = inw(ioaddr + IO_PORT);
1558 
1559 		if ((rcv_status & (RX_OK | RX_ERROR)) == RX_OK) {
1560 
1561 			/* Malloc up new buffer. */
1562 			struct sk_buff *skb;
1563 
1564 			dev->stats.rx_bytes+=rcv_size;
1565 			rcv_size &= 0x3fff;
1566 			skb = dev_alloc_skb(rcv_size+5);
1567 			if (skb == NULL) {
1568 				printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1569 				dev->stats.rx_dropped++;
1570 				rcv_car = lp->rx_start + RCV_HEADER + rcv_size;
1571 				lp->rx_start = rcv_next_frame;
1572 				outw(rcv_next_frame, ioaddr + HOST_ADDRESS_REG);
1573 
1574 				break;
1575 			}
1576 			skb_reserve(skb,2);
1577 
1578 			if (lp->version == LAN595)
1579 				insw(ioaddr+IO_PORT, skb_put(skb,rcv_size), (rcv_size + 3) >> 1);
1580 			else { /* LAN595TX or LAN595FX, capable of 32-bit I/O processing */
1581 				unsigned short temp = inb(ioaddr + INT_MASK_REG);
1582 				outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG);
1583 				insl(ioaddr+IO_PORT_32_BIT, skb_put(skb,rcv_size),
1584 					(rcv_size + 3) >> 2);
1585 				outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG);
1586 			}
1587 
1588 			skb->protocol = eth_type_trans(skb,dev);
1589 			netif_rx(skb);
1590 			dev->stats.rx_packets++;
1591 		}
1592 
1593 		else { /* Not sure will ever reach here,
1594 			I set the 595 to discard bad received frames */
1595 			dev->stats.rx_errors++;
1596 
1597 			if (rcv_status & 0x0100)
1598 				dev->stats.rx_over_errors++;
1599 
1600 			else if (rcv_status & 0x0400)
1601 				dev->stats.rx_frame_errors++;
1602 
1603 			else if (rcv_status & 0x0800)
1604 				dev->stats.rx_crc_errors++;
1605 
1606 			printk(KERN_DEBUG "%s: event = %#x, status = %#x, next = %#x, size = %#x\n",
1607 				dev->name, rcv_event, rcv_status, rcv_next_frame, rcv_size);
1608 		}
1609 
1610 		if (rcv_status & 0x1000)
1611 			dev->stats.rx_length_errors++;
1612 
1613 		rcv_car = lp->rx_start + RCV_HEADER + rcv_size;
1614 		lp->rx_start = rcv_next_frame;
1615 
1616 		if (--boguscount == 0)
1617 			break;
1618 
1619 		outw(rcv_next_frame, ioaddr + HOST_ADDRESS_REG);
1620 		rcv_event = inw(ioaddr + IO_PORT);
1621 
1622 	}
1623 	if (rcv_car == 0)
1624 		rcv_car = lp->rcv_upper_limit | 0xff;
1625 
1626 	outw(rcv_car - 1, ioaddr + RCV_STOP);
1627 
1628 	if (net_debug > 5)
1629 		printk(KERN_DEBUG "%s: exiting eepro_rx routine.\n", dev->name);
1630 }
1631 
1632 static void
eepro_transmit_interrupt(struct net_device * dev)1633 eepro_transmit_interrupt(struct net_device *dev)
1634 {
1635 	struct eepro_local *lp = netdev_priv(dev);
1636 	short ioaddr = dev->base_addr;
1637 	short boguscount = 25;
1638 	short xmt_status;
1639 
1640 	while ((lp->tx_start != lp->tx_end) && boguscount--) {
1641 
1642 		outw(lp->tx_start, ioaddr + HOST_ADDRESS_REG);
1643 		xmt_status = inw(ioaddr+IO_PORT);
1644 
1645 		if (!(xmt_status & TX_DONE_BIT))
1646 				break;
1647 
1648 		xmt_status = inw(ioaddr+IO_PORT);
1649 		lp->tx_start = inw(ioaddr+IO_PORT);
1650 
1651 		netif_wake_queue (dev);
1652 
1653 		if (xmt_status & TX_OK)
1654 			dev->stats.tx_packets++;
1655 		else {
1656 			dev->stats.tx_errors++;
1657 			if (xmt_status & 0x0400) {
1658 				dev->stats.tx_carrier_errors++;
1659 				printk(KERN_DEBUG "%s: carrier error\n",
1660 					dev->name);
1661 				printk(KERN_DEBUG "%s: XMT status = %#x\n",
1662 					dev->name, xmt_status);
1663 			}
1664 			else {
1665 				printk(KERN_DEBUG "%s: XMT status = %#x\n",
1666 					dev->name, xmt_status);
1667 				printk(KERN_DEBUG "%s: XMT status = %#x\n",
1668 					dev->name, xmt_status);
1669 			}
1670 		}
1671 		if (xmt_status & 0x000f) {
1672 			dev->stats.collisions += (xmt_status & 0x000f);
1673 		}
1674 
1675 		if ((xmt_status & 0x0040) == 0x0) {
1676 			dev->stats.tx_heartbeat_errors++;
1677 		}
1678 	}
1679 }
1680 
eepro_ethtool_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1681 static int eepro_ethtool_get_settings(struct net_device *dev,
1682 					struct ethtool_cmd *cmd)
1683 {
1684 	struct eepro_local	*lp = netdev_priv(dev);
1685 
1686 	cmd->supported = 	SUPPORTED_10baseT_Half |
1687 				SUPPORTED_10baseT_Full |
1688 				SUPPORTED_Autoneg;
1689 	cmd->advertising =	ADVERTISED_10baseT_Half |
1690 				ADVERTISED_10baseT_Full |
1691 				ADVERTISED_Autoneg;
1692 
1693 	if (GetBit(lp->word[5], ee_PortTPE)) {
1694 		cmd->supported |= SUPPORTED_TP;
1695 		cmd->advertising |= ADVERTISED_TP;
1696 	}
1697 	if (GetBit(lp->word[5], ee_PortBNC)) {
1698 		cmd->supported |= SUPPORTED_BNC;
1699 		cmd->advertising |= ADVERTISED_BNC;
1700 	}
1701 	if (GetBit(lp->word[5], ee_PortAUI)) {
1702 		cmd->supported |= SUPPORTED_AUI;
1703 		cmd->advertising |= ADVERTISED_AUI;
1704 	}
1705 
1706 	cmd->speed = SPEED_10;
1707 
1708 	if (dev->if_port == TPE && lp->word[1] & ee_Duplex) {
1709 		cmd->duplex = DUPLEX_FULL;
1710 	}
1711 	else {
1712 		cmd->duplex = DUPLEX_HALF;
1713 	}
1714 
1715 	cmd->port = dev->if_port;
1716 	cmd->phy_address = dev->base_addr;
1717 	cmd->transceiver = XCVR_INTERNAL;
1718 
1719 	if (lp->word[0] & ee_AutoNeg) {
1720 		cmd->autoneg = 1;
1721 	}
1722 
1723 	return 0;
1724 }
1725 
eepro_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * drvinfo)1726 static void eepro_ethtool_get_drvinfo(struct net_device *dev,
1727 					struct ethtool_drvinfo *drvinfo)
1728 {
1729 	strcpy(drvinfo->driver, DRV_NAME);
1730 	strcpy(drvinfo->version, DRV_VERSION);
1731 	sprintf(drvinfo->bus_info, "ISA 0x%lx", dev->base_addr);
1732 }
1733 
1734 static const struct ethtool_ops eepro_ethtool_ops = {
1735 	.get_settings	= eepro_ethtool_get_settings,
1736 	.get_drvinfo 	= eepro_ethtool_get_drvinfo,
1737 };
1738 
1739 #ifdef MODULE
1740 
1741 #define MAX_EEPRO 8
1742 static struct net_device *dev_eepro[MAX_EEPRO];
1743 
1744 static int io[MAX_EEPRO] = {
1745   [0 ... MAX_EEPRO-1] = -1
1746 };
1747 static int irq[MAX_EEPRO];
1748 static int mem[MAX_EEPRO] = {	/* Size of the rx buffer in KB */
1749   [0 ... MAX_EEPRO-1] = RCV_DEFAULT_RAM/1024
1750 };
1751 static int autodetect;
1752 
1753 static int n_eepro;
1754 /* For linux 2.1.xx */
1755 
1756 MODULE_AUTHOR("Pascal Dupuis and others");
1757 MODULE_DESCRIPTION("Intel i82595 ISA EtherExpressPro10/10+ driver");
1758 MODULE_LICENSE("GPL");
1759 
1760 module_param_array(io, int, NULL, 0);
1761 module_param_array(irq, int, NULL, 0);
1762 module_param_array(mem, int, NULL, 0);
1763 module_param(autodetect, int, 0);
1764 MODULE_PARM_DESC(io, "EtherExpress Pro/10 I/O base address(es)");
1765 MODULE_PARM_DESC(irq, "EtherExpress Pro/10 IRQ number(s)");
1766 MODULE_PARM_DESC(mem, "EtherExpress Pro/10 Rx buffer size(es) in kB (3-29)");
1767 MODULE_PARM_DESC(autodetect, "EtherExpress Pro/10 force board(s) detection (0-1)");
1768 
init_module(void)1769 int __init init_module(void)
1770 {
1771 	struct net_device *dev;
1772 	int i;
1773 	if (io[0] == -1 && autodetect == 0) {
1774 		printk(KERN_WARNING "eepro_init_module: Probe is very dangerous in ISA boards!\n");
1775 		printk(KERN_WARNING "eepro_init_module: Please add \"autodetect=1\" to force probe\n");
1776 		return -ENODEV;
1777 	}
1778 	else if (autodetect) {
1779 		/* if autodetect is set then we must force detection */
1780 		for (i = 0; i < MAX_EEPRO; i++) {
1781 			io[i] = 0;
1782 		}
1783 
1784 		printk(KERN_INFO "eepro_init_module: Auto-detecting boards (May God protect us...)\n");
1785 	}
1786 
1787 	for (i = 0; i < MAX_EEPRO && io[i] != -1; i++) {
1788 		dev = alloc_etherdev(sizeof(struct eepro_local));
1789 		if (!dev)
1790 			break;
1791 
1792 		dev->mem_end = mem[i];
1793 		dev->base_addr = io[i];
1794 		dev->irq = irq[i];
1795 
1796 		if (do_eepro_probe(dev) == 0) {
1797 			dev_eepro[n_eepro++] = dev;
1798 			continue;
1799 		}
1800 		free_netdev(dev);
1801 		break;
1802 	}
1803 
1804 	if (n_eepro)
1805 		printk(KERN_INFO "%s", version);
1806 
1807 	return n_eepro ? 0 : -ENODEV;
1808 }
1809 
1810 void __exit
cleanup_module(void)1811 cleanup_module(void)
1812 {
1813 	int i;
1814 
1815 	for (i=0; i<n_eepro; i++) {
1816 		struct net_device *dev = dev_eepro[i];
1817 		unregister_netdev(dev);
1818 		release_region(dev->base_addr, EEPRO_IO_EXTENT);
1819 		free_netdev(dev);
1820 	}
1821 }
1822 #endif /* MODULE */
1823