1 /* eepro.c: Intel EtherExpress Pro/10 device driver for Linux. */
2 /*
3 Written 1994, 1995,1996 by Bao C. Ha.
4
5 Copyright (C) 1994, 1995,1996 by Bao C. Ha.
6
7 This software may be used and distributed
8 according to the terms of the GNU General Public License,
9 incorporated herein by reference.
10
11 The author may be reached at bao.ha@srs.gov
12 or 418 Hastings Place, Martinez, GA 30907.
13
14 Things remaining to do:
15 Better record keeping of errors.
16 Eliminate transmit interrupt to reduce overhead.
17 Implement "concurrent processing". I won't be doing it!
18
19 Bugs:
20
21 If you have a problem of not detecting the 82595 during a
22 reboot (warm reset), disable the FLASH memory should fix it.
23 This is a compatibility hardware problem.
24
25 Versions:
26 0.13b basic ethtool support (aris, 09/13/2004)
27 0.13a in memory shortage, drop packets also in board
28 (Michael Westermann <mw@microdata-pos.de>, 07/30/2002)
29 0.13 irq sharing, rewrote probe function, fixed a nasty bug in
30 hardware_send_packet and a major cleanup (aris, 11/08/2001)
31 0.12d fixing a problem with single card detected as eight eth devices
32 fixing a problem with sudden drop in card performance
33 (chris (asdn@go2.pl), 10/29/2001)
34 0.12c fixing some problems with old cards (aris, 01/08/2001)
35 0.12b misc fixes (aris, 06/26/2000)
36 0.12a port of version 0.12a of 2.2.x kernels to 2.3.x
37 (aris (aris@conectiva.com.br), 05/19/2000)
38 0.11e some tweaks about multiple cards support (PdP, jul/aug 1999)
39 0.11d added __initdata, __init stuff; call spin_lock_init
40 in eepro_probe1. Replaced "eepro" by dev->name. Augmented
41 the code protected by spin_lock in interrupt routine
42 (PdP, 12/12/1998)
43 0.11c minor cleanup (PdP, RMC, 09/12/1998)
44 0.11b Pascal Dupuis (dupuis@lei.ucl.ac.be): works as a module
45 under 2.1.xx. Debug messages are flagged as KERN_DEBUG to
46 avoid console flooding. Added locking at critical parts. Now
47 the dawn thing is SMP safe.
48 0.11a Attempt to get 2.1.xx support up (RMC)
49 0.11 Brian Candler added support for multiple cards. Tested as
50 a module, no idea if it works when compiled into kernel.
51
52 0.10e Rick Bressler notified me that ifconfig up;ifconfig down fails
53 because the irq is lost somewhere. Fixed that by moving
54 request_irq and free_irq to eepro_open and eepro_close respectively.
55 0.10d Ugh! Now Wakeup works. Was seriously broken in my first attempt.
56 I'll need to find a way to specify an ioport other than
57 the default one in the PnP case. PnP definitively sucks.
58 And, yes, this is not the only reason.
59 0.10c PnP Wakeup Test for 595FX. uncomment #define PnPWakeup;
60 to use.
61 0.10b Should work now with (some) Pro/10+. At least for
62 me (and my two cards) it does. _No_ guarantee for
63 function with non-Pro/10+ cards! (don't have any)
64 (RMC, 9/11/96)
65
66 0.10 Added support for the Etherexpress Pro/10+. The
67 IRQ map was changed significantly from the old
68 pro/10. The new interrupt map was provided by
69 Rainer M. Canavan (Canavan@Zeus.cs.bonn.edu).
70 (BCH, 9/3/96)
71
72 0.09 Fixed a race condition in the transmit algorithm,
73 which causes crashes under heavy load with fast
74 pentium computers. The performance should also
75 improve a bit. The size of RX buffer, and hence
76 TX buffer, can also be changed via lilo or insmod.
77 (BCH, 7/31/96)
78
79 0.08 Implement 32-bit I/O for the 82595TX and 82595FX
80 based lan cards. Disable full-duplex mode if TPE
81 is not used. (BCH, 4/8/96)
82
83 0.07a Fix a stat report which counts every packet as a
84 heart-beat failure. (BCH, 6/3/95)
85
86 0.07 Modified to support all other 82595-based lan cards.
87 The IRQ vector of the EtherExpress Pro will be set
88 according to the value saved in the EEPROM. For other
89 cards, I will do autoirq_request() to grab the next
90 available interrupt vector. (BCH, 3/17/95)
91
92 0.06a,b Interim released. Minor changes in the comments and
93 print out format. (BCH, 3/9/95 and 3/14/95)
94
95 0.06 First stable release that I am comfortable with. (BCH,
96 3/2/95)
97
98 0.05 Complete testing of multicast. (BCH, 2/23/95)
99
100 0.04 Adding multicast support. (BCH, 2/14/95)
101
102 0.03 First widely alpha release for public testing.
103 (BCH, 2/14/95)
104
105 */
106
107 static const char version[] =
108 "eepro.c: v0.13b 09/13/2004 aris@cathedrallabs.org\n";
109
110 #include <linux/module.h>
111
112 /*
113 Sources:
114
115 This driver wouldn't have been written without the availability
116 of the Crynwr's Lan595 driver source code. It helps me to
117 familiarize with the 82595 chipset while waiting for the Intel
118 documentation. I also learned how to detect the 82595 using
119 the packet driver's technique.
120
121 This driver is written by cutting and pasting the skeleton.c driver
122 provided by Donald Becker. I also borrowed the EEPROM routine from
123 Donald Becker's 82586 driver.
124
125 Datasheet for the Intel 82595 (including the TX and FX version). It
126 provides just enough info that the casual reader might think that it
127 documents the i82595.
128
129 The User Manual for the 82595. It provides a lot of the missing
130 information.
131
132 */
133
134 #include <linux/kernel.h>
135 #include <linux/types.h>
136 #include <linux/fcntl.h>
137 #include <linux/interrupt.h>
138 #include <linux/ioport.h>
139 #include <linux/in.h>
140 #include <linux/string.h>
141 #include <linux/errno.h>
142 #include <linux/netdevice.h>
143 #include <linux/etherdevice.h>
144 #include <linux/skbuff.h>
145 #include <linux/spinlock.h>
146 #include <linux/init.h>
147 #include <linux/delay.h>
148 #include <linux/bitops.h>
149 #include <linux/ethtool.h>
150
151 #include <asm/system.h>
152 #include <asm/io.h>
153 #include <asm/dma.h>
154
155 #define DRV_NAME "eepro"
156 #define DRV_VERSION "0.13c"
157
158 #define compat_dev_kfree_skb( skb, mode ) dev_kfree_skb( (skb) )
159 /* I had reports of looong delays with SLOW_DOWN defined as udelay(2) */
160 #define SLOW_DOWN inb(0x80)
161 /* udelay(2) */
162 #define compat_init_data __initdata
163 enum iftype { AUI=0, BNC=1, TPE=2 };
164
165 /* First, a few definitions that the brave might change. */
166 /* A zero-terminated list of I/O addresses to be probed. */
167 static unsigned int eepro_portlist[] compat_init_data =
168 { 0x300, 0x210, 0x240, 0x280, 0x2C0, 0x200, 0x320, 0x340, 0x360, 0};
169 /* note: 0x300 is default, the 595FX supports ALL IO Ports
170 from 0x000 to 0x3F0, some of which are reserved in PCs */
171
172 /* To try the (not-really PnP Wakeup: */
173 /*
174 #define PnPWakeup
175 */
176
177 /* use 0 for production, 1 for verification, >2 for debug */
178 #ifndef NET_DEBUG
179 #define NET_DEBUG 0
180 #endif
181 static unsigned int net_debug = NET_DEBUG;
182
183 /* The number of low I/O ports used by the ethercard. */
184 #define EEPRO_IO_EXTENT 16
185
186 /* Different 82595 chips */
187 #define LAN595 0
188 #define LAN595TX 1
189 #define LAN595FX 2
190 #define LAN595FX_10ISA 3
191
192 /* Information that need to be kept for each board. */
193 struct eepro_local {
194 unsigned rx_start;
195 unsigned tx_start; /* start of the transmit chain */
196 int tx_last; /* pointer to last packet in the transmit chain */
197 unsigned tx_end; /* end of the transmit chain (plus 1) */
198 int eepro; /* 1 for the EtherExpress Pro/10,
199 2 for the EtherExpress Pro/10+,
200 3 for the EtherExpress 10 (blue cards),
201 0 for other 82595-based lan cards. */
202 int version; /* a flag to indicate if this is a TX or FX
203 version of the 82595 chip. */
204 int stepping;
205
206 spinlock_t lock; /* Serializing lock */
207
208 unsigned rcv_ram; /* pre-calculated space for rx */
209 unsigned xmt_ram; /* pre-calculated space for tx */
210 unsigned char xmt_bar;
211 unsigned char xmt_lower_limit_reg;
212 unsigned char xmt_upper_limit_reg;
213 short xmt_lower_limit;
214 short xmt_upper_limit;
215 short rcv_lower_limit;
216 short rcv_upper_limit;
217 unsigned char eeprom_reg;
218 unsigned short word[8];
219 };
220
221 /* The station (ethernet) address prefix, used for IDing the board. */
222 #define SA_ADDR0 0x00 /* Etherexpress Pro/10 */
223 #define SA_ADDR1 0xaa
224 #define SA_ADDR2 0x00
225
226 #define GetBit(x,y) ((x & (1<<y))>>y)
227
228 /* EEPROM Word 0: */
229 #define ee_PnP 0 /* Plug 'n Play enable bit */
230 #define ee_Word1 1 /* Word 1? */
231 #define ee_BusWidth 2 /* 8/16 bit */
232 #define ee_FlashAddr 3 /* Flash Address */
233 #define ee_FlashMask 0x7 /* Mask */
234 #define ee_AutoIO 6 /* */
235 #define ee_reserved0 7 /* =0! */
236 #define ee_Flash 8 /* Flash there? */
237 #define ee_AutoNeg 9 /* Auto Negotiation enabled? */
238 #define ee_IO0 10 /* IO Address LSB */
239 #define ee_IO0Mask 0x /*...*/
240 #define ee_IO1 15 /* IO MSB */
241
242 /* EEPROM Word 1: */
243 #define ee_IntSel 0 /* Interrupt */
244 #define ee_IntMask 0x7
245 #define ee_LI 3 /* Link Integrity 0= enabled */
246 #define ee_PC 4 /* Polarity Correction 0= enabled */
247 #define ee_TPE_AUI 5 /* PortSelection 1=TPE */
248 #define ee_Jabber 6 /* Jabber prevention 0= enabled */
249 #define ee_AutoPort 7 /* Auto Port Selection 1= Disabled */
250 #define ee_SMOUT 8 /* SMout Pin Control 0= Input */
251 #define ee_PROM 9 /* Flash EPROM / PROM 0=Flash */
252 #define ee_reserved1 10 /* .. 12 =0! */
253 #define ee_AltReady 13 /* Alternate Ready, 0=normal */
254 #define ee_reserved2 14 /* =0! */
255 #define ee_Duplex 15
256
257 /* Word2,3,4: */
258 #define ee_IA5 0 /*bit start for individual Addr Byte 5 */
259 #define ee_IA4 8 /*bit start for individual Addr Byte 5 */
260 #define ee_IA3 0 /*bit start for individual Addr Byte 5 */
261 #define ee_IA2 8 /*bit start for individual Addr Byte 5 */
262 #define ee_IA1 0 /*bit start for individual Addr Byte 5 */
263 #define ee_IA0 8 /*bit start for individual Addr Byte 5 */
264
265 /* Word 5: */
266 #define ee_BNC_TPE 0 /* 0=TPE */
267 #define ee_BootType 1 /* 00=None, 01=IPX, 10=ODI, 11=NDIS */
268 #define ee_BootTypeMask 0x3
269 #define ee_NumConn 3 /* Number of Connections 0= One or Two */
270 #define ee_FlashSock 4 /* Presence of Flash Socket 0= Present */
271 #define ee_PortTPE 5
272 #define ee_PortBNC 6
273 #define ee_PortAUI 7
274 #define ee_PowerMgt 10 /* 0= disabled */
275 #define ee_CP 13 /* Concurrent Processing */
276 #define ee_CPMask 0x7
277
278 /* Word 6: */
279 #define ee_Stepping 0 /* Stepping info */
280 #define ee_StepMask 0x0F
281 #define ee_BoardID 4 /* Manucaturer Board ID, reserved */
282 #define ee_BoardMask 0x0FFF
283
284 /* Word 7: */
285 #define ee_INT_TO_IRQ 0 /* int to IRQ Mapping = 0x1EB8 for Pro/10+ */
286 #define ee_FX_INT2IRQ 0x1EB8 /* the _only_ mapping allowed for FX chips */
287
288 /*..*/
289 #define ee_SIZE 0x40 /* total EEprom Size */
290 #define ee_Checksum 0xBABA /* initial and final value for adding checksum */
291
292
293 /* Card identification via EEprom: */
294 #define ee_addr_vendor 0x10 /* Word offset for EISA Vendor ID */
295 #define ee_addr_id 0x11 /* Word offset for Card ID */
296 #define ee_addr_SN 0x12 /* Serial Number */
297 #define ee_addr_CRC_8 0x14 /* CRC over last thee Bytes */
298
299
300 #define ee_vendor_intel0 0x25 /* Vendor ID Intel */
301 #define ee_vendor_intel1 0xD4
302 #define ee_id_eepro10p0 0x10 /* ID for eepro/10+ */
303 #define ee_id_eepro10p1 0x31
304
305 #define TX_TIMEOUT ((4*HZ)/10)
306
307 /* Index to functions, as function prototypes. */
308
309 static int eepro_probe1(struct net_device *dev, int autoprobe);
310 static int eepro_open(struct net_device *dev);
311 static netdev_tx_t eepro_send_packet(struct sk_buff *skb,
312 struct net_device *dev);
313 static irqreturn_t eepro_interrupt(int irq, void *dev_id);
314 static void eepro_rx(struct net_device *dev);
315 static void eepro_transmit_interrupt(struct net_device *dev);
316 static int eepro_close(struct net_device *dev);
317 static void set_multicast_list(struct net_device *dev);
318 static void eepro_tx_timeout (struct net_device *dev);
319
320 static int read_eeprom(int ioaddr, int location, struct net_device *dev);
321 static int hardware_send_packet(struct net_device *dev, void *buf, short length);
322 static int eepro_grab_irq(struct net_device *dev);
323
324 /*
325 Details of the i82595.
326
327 You will need either the datasheet or the user manual to understand what
328 is going on here. The 82595 is very different from the 82586, 82593.
329
330 The receive algorithm in eepro_rx() is just an implementation of the
331 RCV ring structure that the Intel 82595 imposes at the hardware level.
332 The receive buffer is set at 24K, and the transmit buffer is 8K. I
333 am assuming that the total buffer memory is 32K, which is true for the
334 Intel EtherExpress Pro/10. If it is less than that on a generic card,
335 the driver will be broken.
336
337 The transmit algorithm in the hardware_send_packet() is similar to the
338 one in the eepro_rx(). The transmit buffer is a ring linked list.
339 I just queue the next available packet to the end of the list. In my
340 system, the 82595 is so fast that the list seems to always contain a
341 single packet. In other systems with faster computers and more congested
342 network traffics, the ring linked list should improve performance by
343 allowing up to 8K worth of packets to be queued.
344
345 The sizes of the receive and transmit buffers can now be changed via lilo
346 or insmod. Lilo uses the appended line "ether=io,irq,debug,rx-buffer,eth0"
347 where rx-buffer is in KB unit. Modules uses the parameter mem which is
348 also in KB unit, for example "insmod io=io-address irq=0 mem=rx-buffer."
349 The receive buffer has to be more than 3K or less than 29K. Otherwise,
350 it is reset to the default of 24K, and, hence, 8K for the trasnmit
351 buffer (transmit-buffer = 32K - receive-buffer).
352
353 */
354 #define RAM_SIZE 0x8000
355
356 #define RCV_HEADER 8
357 #define RCV_DEFAULT_RAM 0x6000
358
359 #define XMT_HEADER 8
360 #define XMT_DEFAULT_RAM (RAM_SIZE - RCV_DEFAULT_RAM)
361
362 #define XMT_START_PRO RCV_DEFAULT_RAM
363 #define XMT_START_10 0x0000
364 #define RCV_START_PRO 0x0000
365 #define RCV_START_10 XMT_DEFAULT_RAM
366
367 #define RCV_DONE 0x0008
368 #define RX_OK 0x2000
369 #define RX_ERROR 0x0d81
370
371 #define TX_DONE_BIT 0x0080
372 #define TX_OK 0x2000
373 #define CHAIN_BIT 0x8000
374 #define XMT_STATUS 0x02
375 #define XMT_CHAIN 0x04
376 #define XMT_COUNT 0x06
377
378 #define BANK0_SELECT 0x00
379 #define BANK1_SELECT 0x40
380 #define BANK2_SELECT 0x80
381
382 /* Bank 0 registers */
383 #define COMMAND_REG 0x00 /* Register 0 */
384 #define MC_SETUP 0x03
385 #define XMT_CMD 0x04
386 #define DIAGNOSE_CMD 0x07
387 #define RCV_ENABLE_CMD 0x08
388 #define RCV_DISABLE_CMD 0x0a
389 #define STOP_RCV_CMD 0x0b
390 #define RESET_CMD 0x0e
391 #define POWER_DOWN_CMD 0x18
392 #define RESUME_XMT_CMD 0x1c
393 #define SEL_RESET_CMD 0x1e
394 #define STATUS_REG 0x01 /* Register 1 */
395 #define RX_INT 0x02
396 #define TX_INT 0x04
397 #define EXEC_STATUS 0x30
398 #define ID_REG 0x02 /* Register 2 */
399 #define R_ROBIN_BITS 0xc0 /* round robin counter */
400 #define ID_REG_MASK 0x2c
401 #define ID_REG_SIG 0x24
402 #define AUTO_ENABLE 0x10
403 #define INT_MASK_REG 0x03 /* Register 3 */
404 #define RX_STOP_MASK 0x01
405 #define RX_MASK 0x02
406 #define TX_MASK 0x04
407 #define EXEC_MASK 0x08
408 #define ALL_MASK 0x0f
409 #define IO_32_BIT 0x10
410 #define RCV_BAR 0x04 /* The following are word (16-bit) registers */
411 #define RCV_STOP 0x06
412
413 #define XMT_BAR_PRO 0x0a
414 #define XMT_BAR_10 0x0b
415
416 #define HOST_ADDRESS_REG 0x0c
417 #define IO_PORT 0x0e
418 #define IO_PORT_32_BIT 0x0c
419
420 /* Bank 1 registers */
421 #define REG1 0x01
422 #define WORD_WIDTH 0x02
423 #define INT_ENABLE 0x80
424 #define INT_NO_REG 0x02
425 #define RCV_LOWER_LIMIT_REG 0x08
426 #define RCV_UPPER_LIMIT_REG 0x09
427
428 #define XMT_LOWER_LIMIT_REG_PRO 0x0a
429 #define XMT_UPPER_LIMIT_REG_PRO 0x0b
430 #define XMT_LOWER_LIMIT_REG_10 0x0b
431 #define XMT_UPPER_LIMIT_REG_10 0x0a
432
433 /* Bank 2 registers */
434 #define XMT_Chain_Int 0x20 /* Interrupt at the end of the transmit chain */
435 #define XMT_Chain_ErrStop 0x40 /* Interrupt at the end of the chain even if there are errors */
436 #define RCV_Discard_BadFrame 0x80 /* Throw bad frames away, and continue to receive others */
437 #define REG2 0x02
438 #define PRMSC_Mode 0x01
439 #define Multi_IA 0x20
440 #define REG3 0x03
441 #define TPE_BIT 0x04
442 #define BNC_BIT 0x20
443 #define REG13 0x0d
444 #define FDX 0x00
445 #define A_N_ENABLE 0x02
446
447 #define I_ADD_REG0 0x04
448 #define I_ADD_REG1 0x05
449 #define I_ADD_REG2 0x06
450 #define I_ADD_REG3 0x07
451 #define I_ADD_REG4 0x08
452 #define I_ADD_REG5 0x09
453
454 #define EEPROM_REG_PRO 0x0a
455 #define EEPROM_REG_10 0x0b
456
457 #define EESK 0x01
458 #define EECS 0x02
459 #define EEDI 0x04
460 #define EEDO 0x08
461
462 /* do a full reset */
463 #define eepro_reset(ioaddr) outb(RESET_CMD, ioaddr)
464
465 /* do a nice reset */
466 #define eepro_sel_reset(ioaddr) { \
467 outb(SEL_RESET_CMD, ioaddr); \
468 SLOW_DOWN; \
469 SLOW_DOWN; \
470 }
471
472 /* disable all interrupts */
473 #define eepro_dis_int(ioaddr) outb(ALL_MASK, ioaddr + INT_MASK_REG)
474
475 /* clear all interrupts */
476 #define eepro_clear_int(ioaddr) outb(ALL_MASK, ioaddr + STATUS_REG)
477
478 /* enable tx/rx */
479 #define eepro_en_int(ioaddr) outb(ALL_MASK & ~(RX_MASK | TX_MASK), \
480 ioaddr + INT_MASK_REG)
481
482 /* enable exec event interrupt */
483 #define eepro_en_intexec(ioaddr) outb(ALL_MASK & ~(EXEC_MASK), ioaddr + INT_MASK_REG)
484
485 /* enable rx */
486 #define eepro_en_rx(ioaddr) outb(RCV_ENABLE_CMD, ioaddr)
487
488 /* disable rx */
489 #define eepro_dis_rx(ioaddr) outb(RCV_DISABLE_CMD, ioaddr)
490
491 /* switch bank */
492 #define eepro_sw2bank0(ioaddr) outb(BANK0_SELECT, ioaddr)
493 #define eepro_sw2bank1(ioaddr) outb(BANK1_SELECT, ioaddr)
494 #define eepro_sw2bank2(ioaddr) outb(BANK2_SELECT, ioaddr)
495
496 /* enable interrupt line */
497 #define eepro_en_intline(ioaddr) outb(inb(ioaddr + REG1) | INT_ENABLE,\
498 ioaddr + REG1)
499
500 /* disable interrupt line */
501 #define eepro_dis_intline(ioaddr) outb(inb(ioaddr + REG1) & 0x7f, \
502 ioaddr + REG1);
503
504 /* set diagnose flag */
505 #define eepro_diag(ioaddr) outb(DIAGNOSE_CMD, ioaddr)
506
507 /* ack for rx int */
508 #define eepro_ack_rx(ioaddr) outb (RX_INT, ioaddr + STATUS_REG)
509
510 /* ack for tx int */
511 #define eepro_ack_tx(ioaddr) outb (TX_INT, ioaddr + STATUS_REG)
512
513 /* a complete sel reset */
514 #define eepro_complete_selreset(ioaddr) { \
515 dev->stats.tx_errors++;\
516 eepro_sel_reset(ioaddr);\
517 lp->tx_end = \
518 lp->xmt_lower_limit;\
519 lp->tx_start = lp->tx_end;\
520 lp->tx_last = 0;\
521 dev->trans_start = jiffies;\
522 netif_wake_queue(dev);\
523 eepro_en_rx(ioaddr);\
524 }
525
526 /* Check for a network adaptor of this type, and return '0' if one exists.
527 If dev->base_addr == 0, probe all likely locations.
528 If dev->base_addr == 1, always return failure.
529 If dev->base_addr == 2, allocate space for the device and return success
530 (detachable devices only).
531 */
do_eepro_probe(struct net_device * dev)532 static int __init do_eepro_probe(struct net_device *dev)
533 {
534 int i;
535 int base_addr = dev->base_addr;
536 int irq = dev->irq;
537
538 #ifdef PnPWakeup
539 /* XXXX for multiple cards should this only be run once? */
540
541 /* Wakeup: */
542 #define WakeupPort 0x279
543 #define WakeupSeq {0x6A, 0xB5, 0xDA, 0xED, 0xF6, 0xFB, 0x7D, 0xBE,\
544 0xDF, 0x6F, 0x37, 0x1B, 0x0D, 0x86, 0xC3, 0x61,\
545 0xB0, 0x58, 0x2C, 0x16, 0x8B, 0x45, 0xA2, 0xD1,\
546 0xE8, 0x74, 0x3A, 0x9D, 0xCE, 0xE7, 0x73, 0x43}
547
548 {
549 unsigned short int WS[32]=WakeupSeq;
550
551 if (request_region(WakeupPort, 2, "eepro wakeup")) {
552 if (net_debug>5)
553 printk(KERN_DEBUG "Waking UP\n");
554
555 outb_p(0,WakeupPort);
556 outb_p(0,WakeupPort);
557 for (i=0; i<32; i++) {
558 outb_p(WS[i],WakeupPort);
559 if (net_debug>5) printk(KERN_DEBUG ": %#x ",WS[i]);
560 }
561
562 release_region(WakeupPort, 2);
563 } else
564 printk(KERN_WARNING "PnP wakeup region busy!\n");
565 }
566 #endif
567
568 if (base_addr > 0x1ff) /* Check a single specified location. */
569 return eepro_probe1(dev, 0);
570
571 else if (base_addr != 0) /* Don't probe at all. */
572 return -ENXIO;
573
574 for (i = 0; eepro_portlist[i]; i++) {
575 dev->base_addr = eepro_portlist[i];
576 dev->irq = irq;
577 if (eepro_probe1(dev, 1) == 0)
578 return 0;
579 }
580
581 return -ENODEV;
582 }
583
584 #ifndef MODULE
eepro_probe(int unit)585 struct net_device * __init eepro_probe(int unit)
586 {
587 struct net_device *dev = alloc_etherdev(sizeof(struct eepro_local));
588 int err;
589
590 if (!dev)
591 return ERR_PTR(-ENODEV);
592
593 sprintf(dev->name, "eth%d", unit);
594 netdev_boot_setup_check(dev);
595
596 err = do_eepro_probe(dev);
597 if (err)
598 goto out;
599 return dev;
600 out:
601 free_netdev(dev);
602 return ERR_PTR(err);
603 }
604 #endif
605
printEEPROMInfo(struct net_device * dev)606 static void __init printEEPROMInfo(struct net_device *dev)
607 {
608 struct eepro_local *lp = netdev_priv(dev);
609 int ioaddr = dev->base_addr;
610 unsigned short Word;
611 int i,j;
612
613 j = ee_Checksum;
614 for (i = 0; i < 8; i++)
615 j += lp->word[i];
616 for ( ; i < ee_SIZE; i++)
617 j += read_eeprom(ioaddr, i, dev);
618
619 printk(KERN_DEBUG "Checksum: %#x\n",j&0xffff);
620
621 Word = lp->word[0];
622 printk(KERN_DEBUG "Word0:\n");
623 printk(KERN_DEBUG " Plug 'n Pray: %d\n",GetBit(Word,ee_PnP));
624 printk(KERN_DEBUG " Buswidth: %d\n",(GetBit(Word,ee_BusWidth)+1)*8 );
625 printk(KERN_DEBUG " AutoNegotiation: %d\n",GetBit(Word,ee_AutoNeg));
626 printk(KERN_DEBUG " IO Address: %#x\n", (Word>>ee_IO0)<<4);
627
628 if (net_debug>4) {
629 Word = lp->word[1];
630 printk(KERN_DEBUG "Word1:\n");
631 printk(KERN_DEBUG " INT: %d\n", Word & ee_IntMask);
632 printk(KERN_DEBUG " LI: %d\n", GetBit(Word,ee_LI));
633 printk(KERN_DEBUG " PC: %d\n", GetBit(Word,ee_PC));
634 printk(KERN_DEBUG " TPE/AUI: %d\n", GetBit(Word,ee_TPE_AUI));
635 printk(KERN_DEBUG " Jabber: %d\n", GetBit(Word,ee_Jabber));
636 printk(KERN_DEBUG " AutoPort: %d\n", !GetBit(Word,ee_AutoPort));
637 printk(KERN_DEBUG " Duplex: %d\n", GetBit(Word,ee_Duplex));
638 }
639
640 Word = lp->word[5];
641 printk(KERN_DEBUG "Word5:\n");
642 printk(KERN_DEBUG " BNC: %d\n",GetBit(Word,ee_BNC_TPE));
643 printk(KERN_DEBUG " NumConnectors: %d\n",GetBit(Word,ee_NumConn));
644 printk(KERN_DEBUG " Has ");
645 if (GetBit(Word,ee_PortTPE)) printk(KERN_DEBUG "TPE ");
646 if (GetBit(Word,ee_PortBNC)) printk(KERN_DEBUG "BNC ");
647 if (GetBit(Word,ee_PortAUI)) printk(KERN_DEBUG "AUI ");
648 printk(KERN_DEBUG "port(s)\n");
649
650 Word = lp->word[6];
651 printk(KERN_DEBUG "Word6:\n");
652 printk(KERN_DEBUG " Stepping: %d\n",Word & ee_StepMask);
653 printk(KERN_DEBUG " BoardID: %d\n",Word>>ee_BoardID);
654
655 Word = lp->word[7];
656 printk(KERN_DEBUG "Word7:\n");
657 printk(KERN_DEBUG " INT to IRQ:\n");
658
659 for (i=0, j=0; i<15; i++)
660 if (GetBit(Word,i)) printk(KERN_DEBUG " INT%d -> IRQ %d;",j++,i);
661
662 printk(KERN_DEBUG "\n");
663 }
664
665 /* function to recalculate the limits of buffer based on rcv_ram */
eepro_recalc(struct net_device * dev)666 static void eepro_recalc (struct net_device *dev)
667 {
668 struct eepro_local * lp;
669
670 lp = netdev_priv(dev);
671 lp->xmt_ram = RAM_SIZE - lp->rcv_ram;
672
673 if (lp->eepro == LAN595FX_10ISA) {
674 lp->xmt_lower_limit = XMT_START_10;
675 lp->xmt_upper_limit = (lp->xmt_ram - 2);
676 lp->rcv_lower_limit = lp->xmt_ram;
677 lp->rcv_upper_limit = (RAM_SIZE - 2);
678 }
679 else {
680 lp->rcv_lower_limit = RCV_START_PRO;
681 lp->rcv_upper_limit = (lp->rcv_ram - 2);
682 lp->xmt_lower_limit = lp->rcv_ram;
683 lp->xmt_upper_limit = (RAM_SIZE - 2);
684 }
685 }
686
687 /* prints boot-time info */
eepro_print_info(struct net_device * dev)688 static void __init eepro_print_info (struct net_device *dev)
689 {
690 struct eepro_local * lp = netdev_priv(dev);
691 int i;
692 const char * ifmap[] = {"AUI", "10Base2", "10BaseT"};
693
694 i = inb(dev->base_addr + ID_REG);
695 printk(KERN_DEBUG " id: %#x ",i);
696 printk(" io: %#x ", (unsigned)dev->base_addr);
697
698 switch (lp->eepro) {
699 case LAN595FX_10ISA:
700 printk("%s: Intel EtherExpress 10 ISA\n at %#x,",
701 dev->name, (unsigned)dev->base_addr);
702 break;
703 case LAN595FX:
704 printk("%s: Intel EtherExpress Pro/10+ ISA\n at %#x,",
705 dev->name, (unsigned)dev->base_addr);
706 break;
707 case LAN595TX:
708 printk("%s: Intel EtherExpress Pro/10 ISA at %#x,",
709 dev->name, (unsigned)dev->base_addr);
710 break;
711 case LAN595:
712 printk("%s: Intel 82595-based lan card at %#x,",
713 dev->name, (unsigned)dev->base_addr);
714 break;
715 }
716
717 printk(" %pM", dev->dev_addr);
718
719 if (net_debug > 3)
720 printk(KERN_DEBUG ", %dK RCV buffer",
721 (int)(lp->rcv_ram)/1024);
722
723 if (dev->irq > 2)
724 printk(", IRQ %d, %s.\n", dev->irq, ifmap[dev->if_port]);
725 else
726 printk(", %s.\n", ifmap[dev->if_port]);
727
728 if (net_debug > 3) {
729 i = lp->word[5];
730 if (i & 0x2000) /* bit 13 of EEPROM word 5 */
731 printk(KERN_DEBUG "%s: Concurrent Processing is "
732 "enabled but not used!\n", dev->name);
733 }
734
735 /* Check the station address for the manufacturer's code */
736 if (net_debug>3)
737 printEEPROMInfo(dev);
738 }
739
740 static const struct ethtool_ops eepro_ethtool_ops;
741
742 static const struct net_device_ops eepro_netdev_ops = {
743 .ndo_open = eepro_open,
744 .ndo_stop = eepro_close,
745 .ndo_start_xmit = eepro_send_packet,
746 .ndo_set_multicast_list = set_multicast_list,
747 .ndo_tx_timeout = eepro_tx_timeout,
748 .ndo_change_mtu = eth_change_mtu,
749 .ndo_set_mac_address = eth_mac_addr,
750 .ndo_validate_addr = eth_validate_addr,
751 };
752
753 /* This is the real probe routine. Linux has a history of friendly device
754 probes on the ISA bus. A good device probe avoids doing writes, and
755 verifies that the correct device exists and functions. */
756
eepro_probe1(struct net_device * dev,int autoprobe)757 static int __init eepro_probe1(struct net_device *dev, int autoprobe)
758 {
759 unsigned short station_addr[3], id, counter;
760 int i;
761 struct eepro_local *lp;
762 int ioaddr = dev->base_addr;
763 int err;
764
765 /* Grab the region so we can find another board if autoIRQ fails. */
766 if (!request_region(ioaddr, EEPRO_IO_EXTENT, DRV_NAME)) {
767 if (!autoprobe)
768 printk(KERN_WARNING "EEPRO: io-port 0x%04x in use\n",
769 ioaddr);
770 return -EBUSY;
771 }
772
773 /* Now, we are going to check for the signature of the
774 ID_REG (register 2 of bank 0) */
775
776 id = inb(ioaddr + ID_REG);
777
778 if ((id & ID_REG_MASK) != ID_REG_SIG)
779 goto exit;
780
781 /* We seem to have the 82595 signature, let's
782 play with its counter (last 2 bits of
783 register 2 of bank 0) to be sure. */
784
785 counter = id & R_ROBIN_BITS;
786
787 if ((inb(ioaddr + ID_REG) & R_ROBIN_BITS) != (counter + 0x40))
788 goto exit;
789
790 lp = netdev_priv(dev);
791 memset(lp, 0, sizeof(struct eepro_local));
792 lp->xmt_bar = XMT_BAR_PRO;
793 lp->xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_PRO;
794 lp->xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_PRO;
795 lp->eeprom_reg = EEPROM_REG_PRO;
796 spin_lock_init(&lp->lock);
797
798 /* Now, get the ethernet hardware address from
799 the EEPROM */
800 station_addr[0] = read_eeprom(ioaddr, 2, dev);
801
802 /* FIXME - find another way to know that we've found
803 * an Etherexpress 10
804 */
805 if (station_addr[0] == 0x0000 || station_addr[0] == 0xffff) {
806 lp->eepro = LAN595FX_10ISA;
807 lp->eeprom_reg = EEPROM_REG_10;
808 lp->xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_10;
809 lp->xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_10;
810 lp->xmt_bar = XMT_BAR_10;
811 station_addr[0] = read_eeprom(ioaddr, 2, dev);
812 }
813
814 /* get all words at once. will be used here and for ethtool */
815 for (i = 0; i < 8; i++) {
816 lp->word[i] = read_eeprom(ioaddr, i, dev);
817 }
818 station_addr[1] = lp->word[3];
819 station_addr[2] = lp->word[4];
820
821 if (!lp->eepro) {
822 if (lp->word[7] == ee_FX_INT2IRQ)
823 lp->eepro = 2;
824 else if (station_addr[2] == SA_ADDR1)
825 lp->eepro = 1;
826 }
827
828 /* Fill in the 'dev' fields. */
829 for (i=0; i < 6; i++)
830 dev->dev_addr[i] = ((unsigned char *) station_addr)[5-i];
831
832 /* RX buffer must be more than 3K and less than 29K */
833 if (dev->mem_end < 3072 || dev->mem_end > 29696)
834 lp->rcv_ram = RCV_DEFAULT_RAM;
835
836 /* calculate {xmt,rcv}_{lower,upper}_limit */
837 eepro_recalc(dev);
838
839 if (GetBit(lp->word[5], ee_BNC_TPE))
840 dev->if_port = BNC;
841 else
842 dev->if_port = TPE;
843
844 if (dev->irq < 2 && lp->eepro != 0) {
845 /* Mask off INT number */
846 int count = lp->word[1] & 7;
847 unsigned irqMask = lp->word[7];
848
849 while (count--)
850 irqMask &= irqMask - 1;
851
852 count = ffs(irqMask);
853
854 if (count)
855 dev->irq = count - 1;
856
857 if (dev->irq < 2) {
858 printk(KERN_ERR " Duh! illegal interrupt vector stored in EEPROM.\n");
859 goto exit;
860 } else if (dev->irq == 2) {
861 dev->irq = 9;
862 }
863 }
864
865 dev->netdev_ops = &eepro_netdev_ops;
866 dev->watchdog_timeo = TX_TIMEOUT;
867 dev->ethtool_ops = &eepro_ethtool_ops;
868
869 /* print boot time info */
870 eepro_print_info(dev);
871
872 /* reset 82595 */
873 eepro_reset(ioaddr);
874
875 err = register_netdev(dev);
876 if (err)
877 goto err;
878 return 0;
879 exit:
880 err = -ENODEV;
881 err:
882 release_region(dev->base_addr, EEPRO_IO_EXTENT);
883 return err;
884 }
885
886 /* Open/initialize the board. This is called (in the current kernel)
887 sometime after booting when the 'ifconfig' program is run.
888
889 This routine should set everything up anew at each open, even
890 registers that "should" only need to be set once at boot, so that
891 there is non-reboot way to recover if something goes wrong.
892 */
893
894 static const char irqrmap[] = {-1,-1,0,1,-1,2,-1,-1,-1,0,3,4,-1,-1,-1,-1};
895 static const char irqrmap2[] = {-1,-1,4,0,1,2,-1,3,-1,4,5,6,7,-1,-1,-1};
eepro_grab_irq(struct net_device * dev)896 static int eepro_grab_irq(struct net_device *dev)
897 {
898 static const int irqlist[] = { 3, 4, 5, 7, 9, 10, 11, 12, 0 };
899 const int *irqp = irqlist;
900 int temp_reg, ioaddr = dev->base_addr;
901
902 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
903
904 /* Enable the interrupt line. */
905 eepro_en_intline(ioaddr);
906
907 /* be CAREFUL, BANK 0 now */
908 eepro_sw2bank0(ioaddr);
909
910 /* clear all interrupts */
911 eepro_clear_int(ioaddr);
912
913 /* Let EXEC event to interrupt */
914 eepro_en_intexec(ioaddr);
915
916 do {
917 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
918
919 temp_reg = inb(ioaddr + INT_NO_REG);
920 outb((temp_reg & 0xf8) | irqrmap[*irqp], ioaddr + INT_NO_REG);
921
922 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
923
924 if (request_irq (*irqp, NULL, IRQF_SHARED, "bogus", dev) != EBUSY) {
925 unsigned long irq_mask;
926 /* Twinkle the interrupt, and check if it's seen */
927 irq_mask = probe_irq_on();
928
929 eepro_diag(ioaddr); /* RESET the 82595 */
930 mdelay(20);
931
932 if (*irqp == probe_irq_off(irq_mask)) /* It's a good IRQ line */
933 break;
934
935 /* clear all interrupts */
936 eepro_clear_int(ioaddr);
937 }
938 } while (*++irqp);
939
940 eepro_sw2bank1(ioaddr); /* Switch back to Bank 1 */
941
942 /* Disable the physical interrupt line. */
943 eepro_dis_intline(ioaddr);
944
945 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
946
947 /* Mask all the interrupts. */
948 eepro_dis_int(ioaddr);
949
950 /* clear all interrupts */
951 eepro_clear_int(ioaddr);
952
953 return dev->irq;
954 }
955
eepro_open(struct net_device * dev)956 static int eepro_open(struct net_device *dev)
957 {
958 unsigned short temp_reg, old8, old9;
959 int irqMask;
960 int i, ioaddr = dev->base_addr;
961 struct eepro_local *lp = netdev_priv(dev);
962
963 if (net_debug > 3)
964 printk(KERN_DEBUG "%s: entering eepro_open routine.\n", dev->name);
965
966 irqMask = lp->word[7];
967
968 if (lp->eepro == LAN595FX_10ISA) {
969 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 3;\n");
970 }
971 else if (irqMask == ee_FX_INT2IRQ) /* INT to IRQ Mask */
972 {
973 lp->eepro = 2; /* Yes, an Intel EtherExpress Pro/10+ */
974 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 2;\n");
975 }
976
977 else if ((dev->dev_addr[0] == SA_ADDR0 &&
978 dev->dev_addr[1] == SA_ADDR1 &&
979 dev->dev_addr[2] == SA_ADDR2))
980 {
981 lp->eepro = 1;
982 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 1;\n");
983 } /* Yes, an Intel EtherExpress Pro/10 */
984
985 else lp->eepro = 0; /* No, it is a generic 82585 lan card */
986
987 /* Get the interrupt vector for the 82595 */
988 if (dev->irq < 2 && eepro_grab_irq(dev) == 0) {
989 printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq);
990 return -EAGAIN;
991 }
992
993 if (request_irq(dev->irq , eepro_interrupt, 0, dev->name, dev)) {
994 printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq);
995 return -EAGAIN;
996 }
997
998 /* Initialize the 82595. */
999
1000 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1001 temp_reg = inb(ioaddr + lp->eeprom_reg);
1002
1003 lp->stepping = temp_reg >> 5; /* Get the stepping number of the 595 */
1004
1005 if (net_debug > 3)
1006 printk(KERN_DEBUG "The stepping of the 82595 is %d\n", lp->stepping);
1007
1008 if (temp_reg & 0x10) /* Check the TurnOff Enable bit */
1009 outb(temp_reg & 0xef, ioaddr + lp->eeprom_reg);
1010 for (i=0; i < 6; i++)
1011 outb(dev->dev_addr[i] , ioaddr + I_ADD_REG0 + i);
1012
1013 temp_reg = inb(ioaddr + REG1); /* Setup Transmit Chaining */
1014 outb(temp_reg | XMT_Chain_Int | XMT_Chain_ErrStop /* and discard bad RCV frames */
1015 | RCV_Discard_BadFrame, ioaddr + REG1);
1016
1017 temp_reg = inb(ioaddr + REG2); /* Match broadcast */
1018 outb(temp_reg | 0x14, ioaddr + REG2);
1019
1020 temp_reg = inb(ioaddr + REG3);
1021 outb(temp_reg & 0x3f, ioaddr + REG3); /* clear test mode */
1022
1023 /* Set the receiving mode */
1024 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
1025
1026 /* Set the interrupt vector */
1027 temp_reg = inb(ioaddr + INT_NO_REG);
1028 if (lp->eepro == LAN595FX || lp->eepro == LAN595FX_10ISA)
1029 outb((temp_reg & 0xf8) | irqrmap2[dev->irq], ioaddr + INT_NO_REG);
1030 else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG);
1031
1032
1033 temp_reg = inb(ioaddr + INT_NO_REG);
1034 if (lp->eepro == LAN595FX || lp->eepro == LAN595FX_10ISA)
1035 outb((temp_reg & 0xf0) | irqrmap2[dev->irq] | 0x08,ioaddr+INT_NO_REG);
1036 else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG);
1037
1038 if (net_debug > 3)
1039 printk(KERN_DEBUG "eepro_open: content of INT Reg is %x\n", temp_reg);
1040
1041
1042 /* Initialize the RCV and XMT upper and lower limits */
1043 outb(lp->rcv_lower_limit >> 8, ioaddr + RCV_LOWER_LIMIT_REG);
1044 outb(lp->rcv_upper_limit >> 8, ioaddr + RCV_UPPER_LIMIT_REG);
1045 outb(lp->xmt_lower_limit >> 8, ioaddr + lp->xmt_lower_limit_reg);
1046 outb(lp->xmt_upper_limit >> 8, ioaddr + lp->xmt_upper_limit_reg);
1047
1048 /* Enable the interrupt line. */
1049 eepro_en_intline(ioaddr);
1050
1051 /* Switch back to Bank 0 */
1052 eepro_sw2bank0(ioaddr);
1053
1054 /* Let RX and TX events to interrupt */
1055 eepro_en_int(ioaddr);
1056
1057 /* clear all interrupts */
1058 eepro_clear_int(ioaddr);
1059
1060 /* Initialize RCV */
1061 outw(lp->rcv_lower_limit, ioaddr + RCV_BAR);
1062 lp->rx_start = lp->rcv_lower_limit;
1063 outw(lp->rcv_upper_limit | 0xfe, ioaddr + RCV_STOP);
1064
1065 /* Initialize XMT */
1066 outw(lp->xmt_lower_limit, ioaddr + lp->xmt_bar);
1067 lp->tx_start = lp->tx_end = lp->xmt_lower_limit;
1068 lp->tx_last = 0;
1069
1070 /* Check for the i82595TX and i82595FX */
1071 old8 = inb(ioaddr + 8);
1072 outb(~old8, ioaddr + 8);
1073
1074 if ((temp_reg = inb(ioaddr + 8)) == old8) {
1075 if (net_debug > 3)
1076 printk(KERN_DEBUG "i82595 detected!\n");
1077 lp->version = LAN595;
1078 }
1079 else {
1080 lp->version = LAN595TX;
1081 outb(old8, ioaddr + 8);
1082 old9 = inb(ioaddr + 9);
1083
1084 if (irqMask==ee_FX_INT2IRQ) {
1085 if (net_debug > 3) {
1086 printk(KERN_DEBUG "IrqMask: %#x\n",irqMask);
1087 printk(KERN_DEBUG "i82595FX detected!\n");
1088 }
1089 lp->version = LAN595FX;
1090 outb(old9, ioaddr + 9);
1091 if (dev->if_port != TPE) { /* Hopefully, this will fix the
1092 problem of using Pentiums and
1093 pro/10 w/ BNC. */
1094 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1095 temp_reg = inb(ioaddr + REG13);
1096 /* disable the full duplex mode since it is not
1097 applicable with the 10Base2 cable. */
1098 outb(temp_reg & ~(FDX | A_N_ENABLE), REG13);
1099 eepro_sw2bank0(ioaddr); /* be CAREFUL, BANK 0 now */
1100 }
1101 }
1102 else if (net_debug > 3) {
1103 printk(KERN_DEBUG "temp_reg: %#x ~old9: %#x\n",temp_reg,((~old9)&0xff));
1104 printk(KERN_DEBUG "i82595TX detected!\n");
1105 }
1106 }
1107
1108 eepro_sel_reset(ioaddr);
1109
1110 netif_start_queue(dev);
1111
1112 if (net_debug > 3)
1113 printk(KERN_DEBUG "%s: exiting eepro_open routine.\n", dev->name);
1114
1115 /* enabling rx */
1116 eepro_en_rx(ioaddr);
1117
1118 return 0;
1119 }
1120
eepro_tx_timeout(struct net_device * dev)1121 static void eepro_tx_timeout (struct net_device *dev)
1122 {
1123 struct eepro_local *lp = netdev_priv(dev);
1124 int ioaddr = dev->base_addr;
1125
1126 /* if (net_debug > 1) */
1127 printk (KERN_ERR "%s: transmit timed out, %s?\n", dev->name,
1128 "network cable problem");
1129 /* This is not a duplicate. One message for the console,
1130 one for the log file */
1131 printk (KERN_DEBUG "%s: transmit timed out, %s?\n", dev->name,
1132 "network cable problem");
1133 eepro_complete_selreset(ioaddr);
1134 }
1135
1136
eepro_send_packet(struct sk_buff * skb,struct net_device * dev)1137 static netdev_tx_t eepro_send_packet(struct sk_buff *skb,
1138 struct net_device *dev)
1139 {
1140 struct eepro_local *lp = netdev_priv(dev);
1141 unsigned long flags;
1142 int ioaddr = dev->base_addr;
1143 short length = skb->len;
1144
1145 if (net_debug > 5)
1146 printk(KERN_DEBUG "%s: entering eepro_send_packet routine.\n", dev->name);
1147
1148 if (length < ETH_ZLEN) {
1149 if (skb_padto(skb, ETH_ZLEN))
1150 return NETDEV_TX_OK;
1151 length = ETH_ZLEN;
1152 }
1153 netif_stop_queue (dev);
1154
1155 eepro_dis_int(ioaddr);
1156 spin_lock_irqsave(&lp->lock, flags);
1157
1158 {
1159 unsigned char *buf = skb->data;
1160
1161 if (hardware_send_packet(dev, buf, length))
1162 /* we won't wake queue here because we're out of space */
1163 dev->stats.tx_dropped++;
1164 else {
1165 dev->stats.tx_bytes+=skb->len;
1166 netif_wake_queue(dev);
1167 }
1168
1169 }
1170
1171 dev_kfree_skb (skb);
1172
1173 /* You might need to clean up and record Tx statistics here. */
1174 /* dev->stats.tx_aborted_errors++; */
1175
1176 if (net_debug > 5)
1177 printk(KERN_DEBUG "%s: exiting eepro_send_packet routine.\n", dev->name);
1178
1179 eepro_en_int(ioaddr);
1180 spin_unlock_irqrestore(&lp->lock, flags);
1181
1182 return NETDEV_TX_OK;
1183 }
1184
1185
1186 /* The typical workload of the driver:
1187 Handle the network interface interrupts. */
1188
1189 static irqreturn_t
eepro_interrupt(int irq,void * dev_id)1190 eepro_interrupt(int irq, void *dev_id)
1191 {
1192 struct net_device *dev = dev_id;
1193 struct eepro_local *lp;
1194 int ioaddr, status, boguscount = 20;
1195 int handled = 0;
1196
1197 lp = netdev_priv(dev);
1198
1199 spin_lock(&lp->lock);
1200
1201 if (net_debug > 5)
1202 printk(KERN_DEBUG "%s: entering eepro_interrupt routine.\n", dev->name);
1203
1204 ioaddr = dev->base_addr;
1205
1206 while (((status = inb(ioaddr + STATUS_REG)) & (RX_INT|TX_INT)) && (boguscount--))
1207 {
1208 handled = 1;
1209 if (status & RX_INT) {
1210 if (net_debug > 4)
1211 printk(KERN_DEBUG "%s: packet received interrupt.\n", dev->name);
1212
1213 eepro_dis_int(ioaddr);
1214
1215 /* Get the received packets */
1216 eepro_ack_rx(ioaddr);
1217 eepro_rx(dev);
1218
1219 eepro_en_int(ioaddr);
1220 }
1221 if (status & TX_INT) {
1222 if (net_debug > 4)
1223 printk(KERN_DEBUG "%s: packet transmit interrupt.\n", dev->name);
1224
1225
1226 eepro_dis_int(ioaddr);
1227
1228 /* Process the status of transmitted packets */
1229 eepro_ack_tx(ioaddr);
1230 eepro_transmit_interrupt(dev);
1231
1232 eepro_en_int(ioaddr);
1233 }
1234 }
1235
1236 if (net_debug > 5)
1237 printk(KERN_DEBUG "%s: exiting eepro_interrupt routine.\n", dev->name);
1238
1239 spin_unlock(&lp->lock);
1240 return IRQ_RETVAL(handled);
1241 }
1242
eepro_close(struct net_device * dev)1243 static int eepro_close(struct net_device *dev)
1244 {
1245 struct eepro_local *lp = netdev_priv(dev);
1246 int ioaddr = dev->base_addr;
1247 short temp_reg;
1248
1249 netif_stop_queue(dev);
1250
1251 eepro_sw2bank1(ioaddr); /* Switch back to Bank 1 */
1252
1253 /* Disable the physical interrupt line. */
1254 temp_reg = inb(ioaddr + REG1);
1255 outb(temp_reg & 0x7f, ioaddr + REG1);
1256
1257 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
1258
1259 /* Flush the Tx and disable Rx. */
1260 outb(STOP_RCV_CMD, ioaddr);
1261 lp->tx_start = lp->tx_end = lp->xmt_lower_limit;
1262 lp->tx_last = 0;
1263
1264 /* Mask all the interrupts. */
1265 eepro_dis_int(ioaddr);
1266
1267 /* clear all interrupts */
1268 eepro_clear_int(ioaddr);
1269
1270 /* Reset the 82595 */
1271 eepro_reset(ioaddr);
1272
1273 /* release the interrupt */
1274 free_irq(dev->irq, dev);
1275
1276 /* Update the statistics here. What statistics? */
1277
1278 return 0;
1279 }
1280
1281 /* Set or clear the multicast filter for this adaptor.
1282 */
1283 static void
set_multicast_list(struct net_device * dev)1284 set_multicast_list(struct net_device *dev)
1285 {
1286 struct eepro_local *lp = netdev_priv(dev);
1287 short ioaddr = dev->base_addr;
1288 unsigned short mode;
1289 struct netdev_hw_addr *ha;
1290 int mc_count = netdev_mc_count(dev);
1291
1292 if (dev->flags&(IFF_ALLMULTI|IFF_PROMISC) || mc_count > 63)
1293 {
1294 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1295 mode = inb(ioaddr + REG2);
1296 outb(mode | PRMSC_Mode, ioaddr + REG2);
1297 mode = inb(ioaddr + REG3);
1298 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1299 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1300 }
1301
1302 else if (mc_count == 0)
1303 {
1304 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1305 mode = inb(ioaddr + REG2);
1306 outb(mode & 0xd6, ioaddr + REG2); /* Turn off Multi-IA and PRMSC_Mode bits */
1307 mode = inb(ioaddr + REG3);
1308 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1309 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1310 }
1311
1312 else
1313 {
1314 unsigned short status, *eaddrs;
1315 int i, boguscount = 0;
1316
1317 /* Disable RX and TX interrupts. Necessary to avoid
1318 corruption of the HOST_ADDRESS_REG by interrupt
1319 service routines. */
1320 eepro_dis_int(ioaddr);
1321
1322 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1323 mode = inb(ioaddr + REG2);
1324 outb(mode | Multi_IA, ioaddr + REG2);
1325 mode = inb(ioaddr + REG3);
1326 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1327 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1328 outw(lp->tx_end, ioaddr + HOST_ADDRESS_REG);
1329 outw(MC_SETUP, ioaddr + IO_PORT);
1330 outw(0, ioaddr + IO_PORT);
1331 outw(0, ioaddr + IO_PORT);
1332 outw(6 * (mc_count + 1), ioaddr + IO_PORT);
1333
1334 netdev_for_each_mc_addr(ha, dev) {
1335 eaddrs = (unsigned short *) ha->addr;
1336 outw(*eaddrs++, ioaddr + IO_PORT);
1337 outw(*eaddrs++, ioaddr + IO_PORT);
1338 outw(*eaddrs++, ioaddr + IO_PORT);
1339 }
1340
1341 eaddrs = (unsigned short *) dev->dev_addr;
1342 outw(eaddrs[0], ioaddr + IO_PORT);
1343 outw(eaddrs[1], ioaddr + IO_PORT);
1344 outw(eaddrs[2], ioaddr + IO_PORT);
1345 outw(lp->tx_end, ioaddr + lp->xmt_bar);
1346 outb(MC_SETUP, ioaddr);
1347
1348 /* Update the transmit queue */
1349 i = lp->tx_end + XMT_HEADER + 6 * (mc_count + 1);
1350
1351 if (lp->tx_start != lp->tx_end)
1352 {
1353 /* update the next address and the chain bit in the
1354 last packet */
1355 outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG);
1356 outw(i, ioaddr + IO_PORT);
1357 outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG);
1358 status = inw(ioaddr + IO_PORT);
1359 outw(status | CHAIN_BIT, ioaddr + IO_PORT);
1360 lp->tx_end = i ;
1361 }
1362 else {
1363 lp->tx_start = lp->tx_end = i ;
1364 }
1365
1366 /* Acknowledge that the MC setup is done */
1367 do { /* We should be doing this in the eepro_interrupt()! */
1368 SLOW_DOWN;
1369 SLOW_DOWN;
1370 if (inb(ioaddr + STATUS_REG) & 0x08)
1371 {
1372 i = inb(ioaddr);
1373 outb(0x08, ioaddr + STATUS_REG);
1374
1375 if (i & 0x20) { /* command ABORTed */
1376 printk(KERN_NOTICE "%s: multicast setup failed.\n",
1377 dev->name);
1378 break;
1379 } else if ((i & 0x0f) == 0x03) { /* MC-Done */
1380 printk(KERN_DEBUG "%s: set Rx mode to %d address%s.\n",
1381 dev->name, mc_count,
1382 mc_count > 1 ? "es":"");
1383 break;
1384 }
1385 }
1386 } while (++boguscount < 100);
1387
1388 /* Re-enable RX and TX interrupts */
1389 eepro_en_int(ioaddr);
1390 }
1391 if (lp->eepro == LAN595FX_10ISA) {
1392 eepro_complete_selreset(ioaddr);
1393 }
1394 else
1395 eepro_en_rx(ioaddr);
1396 }
1397
1398 /* The horrible routine to read a word from the serial EEPROM. */
1399 /* IMPORTANT - the 82595 will be set to Bank 0 after the eeprom is read */
1400
1401 /* The delay between EEPROM clock transitions. */
1402 #define eeprom_delay() { udelay(40); }
1403 #define EE_READ_CMD (6 << 6)
1404
1405 static int
read_eeprom(int ioaddr,int location,struct net_device * dev)1406 read_eeprom(int ioaddr, int location, struct net_device *dev)
1407 {
1408 int i;
1409 unsigned short retval = 0;
1410 struct eepro_local *lp = netdev_priv(dev);
1411 short ee_addr = ioaddr + lp->eeprom_reg;
1412 int read_cmd = location | EE_READ_CMD;
1413 short ctrl_val = EECS ;
1414
1415 /* XXXX - black magic */
1416 eepro_sw2bank1(ioaddr);
1417 outb(0x00, ioaddr + STATUS_REG);
1418 /* XXXX - black magic */
1419
1420 eepro_sw2bank2(ioaddr);
1421 outb(ctrl_val, ee_addr);
1422
1423 /* Shift the read command bits out. */
1424 for (i = 8; i >= 0; i--) {
1425 short outval = (read_cmd & (1 << i)) ? ctrl_val | EEDI
1426 : ctrl_val;
1427 outb(outval, ee_addr);
1428 outb(outval | EESK, ee_addr); /* EEPROM clock tick. */
1429 eeprom_delay();
1430 outb(outval, ee_addr); /* Finish EEPROM a clock tick. */
1431 eeprom_delay();
1432 }
1433 outb(ctrl_val, ee_addr);
1434
1435 for (i = 16; i > 0; i--) {
1436 outb(ctrl_val | EESK, ee_addr); eeprom_delay();
1437 retval = (retval << 1) | ((inb(ee_addr) & EEDO) ? 1 : 0);
1438 outb(ctrl_val, ee_addr); eeprom_delay();
1439 }
1440
1441 /* Terminate the EEPROM access. */
1442 ctrl_val &= ~EECS;
1443 outb(ctrl_val | EESK, ee_addr);
1444 eeprom_delay();
1445 outb(ctrl_val, ee_addr);
1446 eeprom_delay();
1447 eepro_sw2bank0(ioaddr);
1448 return retval;
1449 }
1450
1451 static int
hardware_send_packet(struct net_device * dev,void * buf,short length)1452 hardware_send_packet(struct net_device *dev, void *buf, short length)
1453 {
1454 struct eepro_local *lp = netdev_priv(dev);
1455 short ioaddr = dev->base_addr;
1456 unsigned status, tx_available, last, end;
1457
1458 if (net_debug > 5)
1459 printk(KERN_DEBUG "%s: entering hardware_send_packet routine.\n", dev->name);
1460
1461 /* determine how much of the transmit buffer space is available */
1462 if (lp->tx_end > lp->tx_start)
1463 tx_available = lp->xmt_ram - (lp->tx_end - lp->tx_start);
1464 else if (lp->tx_end < lp->tx_start)
1465 tx_available = lp->tx_start - lp->tx_end;
1466 else tx_available = lp->xmt_ram;
1467
1468 if (((((length + 3) >> 1) << 1) + 2*XMT_HEADER) >= tx_available) {
1469 /* No space available ??? */
1470 return 1;
1471 }
1472
1473 last = lp->tx_end;
1474 end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
1475
1476 if (end >= lp->xmt_upper_limit + 2) { /* the transmit buffer is wrapped around */
1477 if ((lp->xmt_upper_limit + 2 - last) <= XMT_HEADER) {
1478 /* Arrrr!!!, must keep the xmt header together,
1479 several days were lost to chase this one down. */
1480 last = lp->xmt_lower_limit;
1481 end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
1482 }
1483 else end = lp->xmt_lower_limit + (end -
1484 lp->xmt_upper_limit + 2);
1485 }
1486
1487 outw(last, ioaddr + HOST_ADDRESS_REG);
1488 outw(XMT_CMD, ioaddr + IO_PORT);
1489 outw(0, ioaddr + IO_PORT);
1490 outw(end, ioaddr + IO_PORT);
1491 outw(length, ioaddr + IO_PORT);
1492
1493 if (lp->version == LAN595)
1494 outsw(ioaddr + IO_PORT, buf, (length + 3) >> 1);
1495 else { /* LAN595TX or LAN595FX, capable of 32-bit I/O processing */
1496 unsigned short temp = inb(ioaddr + INT_MASK_REG);
1497 outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG);
1498 outsl(ioaddr + IO_PORT_32_BIT, buf, (length + 3) >> 2);
1499 outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG);
1500 }
1501
1502 /* A dummy read to flush the DRAM write pipeline */
1503 status = inw(ioaddr + IO_PORT);
1504
1505 if (lp->tx_start == lp->tx_end) {
1506 outw(last, ioaddr + lp->xmt_bar);
1507 outb(XMT_CMD, ioaddr);
1508 lp->tx_start = last; /* I don't like to change tx_start here */
1509 }
1510 else {
1511 /* update the next address and the chain bit in the
1512 last packet */
1513
1514 if (lp->tx_end != last) {
1515 outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG);
1516 outw(last, ioaddr + IO_PORT);
1517 }
1518
1519 outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG);
1520 status = inw(ioaddr + IO_PORT);
1521 outw(status | CHAIN_BIT, ioaddr + IO_PORT);
1522
1523 /* Continue the transmit command */
1524 outb(RESUME_XMT_CMD, ioaddr);
1525 }
1526
1527 lp->tx_last = last;
1528 lp->tx_end = end;
1529
1530 if (net_debug > 5)
1531 printk(KERN_DEBUG "%s: exiting hardware_send_packet routine.\n", dev->name);
1532
1533 return 0;
1534 }
1535
1536 static void
eepro_rx(struct net_device * dev)1537 eepro_rx(struct net_device *dev)
1538 {
1539 struct eepro_local *lp = netdev_priv(dev);
1540 short ioaddr = dev->base_addr;
1541 short boguscount = 20;
1542 short rcv_car = lp->rx_start;
1543 unsigned rcv_event, rcv_status, rcv_next_frame, rcv_size;
1544
1545 if (net_debug > 5)
1546 printk(KERN_DEBUG "%s: entering eepro_rx routine.\n", dev->name);
1547
1548 /* Set the read pointer to the start of the RCV */
1549 outw(rcv_car, ioaddr + HOST_ADDRESS_REG);
1550
1551 rcv_event = inw(ioaddr + IO_PORT);
1552
1553 while (rcv_event == RCV_DONE) {
1554
1555 rcv_status = inw(ioaddr + IO_PORT);
1556 rcv_next_frame = inw(ioaddr + IO_PORT);
1557 rcv_size = inw(ioaddr + IO_PORT);
1558
1559 if ((rcv_status & (RX_OK | RX_ERROR)) == RX_OK) {
1560
1561 /* Malloc up new buffer. */
1562 struct sk_buff *skb;
1563
1564 dev->stats.rx_bytes+=rcv_size;
1565 rcv_size &= 0x3fff;
1566 skb = dev_alloc_skb(rcv_size+5);
1567 if (skb == NULL) {
1568 printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1569 dev->stats.rx_dropped++;
1570 rcv_car = lp->rx_start + RCV_HEADER + rcv_size;
1571 lp->rx_start = rcv_next_frame;
1572 outw(rcv_next_frame, ioaddr + HOST_ADDRESS_REG);
1573
1574 break;
1575 }
1576 skb_reserve(skb,2);
1577
1578 if (lp->version == LAN595)
1579 insw(ioaddr+IO_PORT, skb_put(skb,rcv_size), (rcv_size + 3) >> 1);
1580 else { /* LAN595TX or LAN595FX, capable of 32-bit I/O processing */
1581 unsigned short temp = inb(ioaddr + INT_MASK_REG);
1582 outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG);
1583 insl(ioaddr+IO_PORT_32_BIT, skb_put(skb,rcv_size),
1584 (rcv_size + 3) >> 2);
1585 outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG);
1586 }
1587
1588 skb->protocol = eth_type_trans(skb,dev);
1589 netif_rx(skb);
1590 dev->stats.rx_packets++;
1591 }
1592
1593 else { /* Not sure will ever reach here,
1594 I set the 595 to discard bad received frames */
1595 dev->stats.rx_errors++;
1596
1597 if (rcv_status & 0x0100)
1598 dev->stats.rx_over_errors++;
1599
1600 else if (rcv_status & 0x0400)
1601 dev->stats.rx_frame_errors++;
1602
1603 else if (rcv_status & 0x0800)
1604 dev->stats.rx_crc_errors++;
1605
1606 printk(KERN_DEBUG "%s: event = %#x, status = %#x, next = %#x, size = %#x\n",
1607 dev->name, rcv_event, rcv_status, rcv_next_frame, rcv_size);
1608 }
1609
1610 if (rcv_status & 0x1000)
1611 dev->stats.rx_length_errors++;
1612
1613 rcv_car = lp->rx_start + RCV_HEADER + rcv_size;
1614 lp->rx_start = rcv_next_frame;
1615
1616 if (--boguscount == 0)
1617 break;
1618
1619 outw(rcv_next_frame, ioaddr + HOST_ADDRESS_REG);
1620 rcv_event = inw(ioaddr + IO_PORT);
1621
1622 }
1623 if (rcv_car == 0)
1624 rcv_car = lp->rcv_upper_limit | 0xff;
1625
1626 outw(rcv_car - 1, ioaddr + RCV_STOP);
1627
1628 if (net_debug > 5)
1629 printk(KERN_DEBUG "%s: exiting eepro_rx routine.\n", dev->name);
1630 }
1631
1632 static void
eepro_transmit_interrupt(struct net_device * dev)1633 eepro_transmit_interrupt(struct net_device *dev)
1634 {
1635 struct eepro_local *lp = netdev_priv(dev);
1636 short ioaddr = dev->base_addr;
1637 short boguscount = 25;
1638 short xmt_status;
1639
1640 while ((lp->tx_start != lp->tx_end) && boguscount--) {
1641
1642 outw(lp->tx_start, ioaddr + HOST_ADDRESS_REG);
1643 xmt_status = inw(ioaddr+IO_PORT);
1644
1645 if (!(xmt_status & TX_DONE_BIT))
1646 break;
1647
1648 xmt_status = inw(ioaddr+IO_PORT);
1649 lp->tx_start = inw(ioaddr+IO_PORT);
1650
1651 netif_wake_queue (dev);
1652
1653 if (xmt_status & TX_OK)
1654 dev->stats.tx_packets++;
1655 else {
1656 dev->stats.tx_errors++;
1657 if (xmt_status & 0x0400) {
1658 dev->stats.tx_carrier_errors++;
1659 printk(KERN_DEBUG "%s: carrier error\n",
1660 dev->name);
1661 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1662 dev->name, xmt_status);
1663 }
1664 else {
1665 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1666 dev->name, xmt_status);
1667 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1668 dev->name, xmt_status);
1669 }
1670 }
1671 if (xmt_status & 0x000f) {
1672 dev->stats.collisions += (xmt_status & 0x000f);
1673 }
1674
1675 if ((xmt_status & 0x0040) == 0x0) {
1676 dev->stats.tx_heartbeat_errors++;
1677 }
1678 }
1679 }
1680
eepro_ethtool_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1681 static int eepro_ethtool_get_settings(struct net_device *dev,
1682 struct ethtool_cmd *cmd)
1683 {
1684 struct eepro_local *lp = netdev_priv(dev);
1685
1686 cmd->supported = SUPPORTED_10baseT_Half |
1687 SUPPORTED_10baseT_Full |
1688 SUPPORTED_Autoneg;
1689 cmd->advertising = ADVERTISED_10baseT_Half |
1690 ADVERTISED_10baseT_Full |
1691 ADVERTISED_Autoneg;
1692
1693 if (GetBit(lp->word[5], ee_PortTPE)) {
1694 cmd->supported |= SUPPORTED_TP;
1695 cmd->advertising |= ADVERTISED_TP;
1696 }
1697 if (GetBit(lp->word[5], ee_PortBNC)) {
1698 cmd->supported |= SUPPORTED_BNC;
1699 cmd->advertising |= ADVERTISED_BNC;
1700 }
1701 if (GetBit(lp->word[5], ee_PortAUI)) {
1702 cmd->supported |= SUPPORTED_AUI;
1703 cmd->advertising |= ADVERTISED_AUI;
1704 }
1705
1706 cmd->speed = SPEED_10;
1707
1708 if (dev->if_port == TPE && lp->word[1] & ee_Duplex) {
1709 cmd->duplex = DUPLEX_FULL;
1710 }
1711 else {
1712 cmd->duplex = DUPLEX_HALF;
1713 }
1714
1715 cmd->port = dev->if_port;
1716 cmd->phy_address = dev->base_addr;
1717 cmd->transceiver = XCVR_INTERNAL;
1718
1719 if (lp->word[0] & ee_AutoNeg) {
1720 cmd->autoneg = 1;
1721 }
1722
1723 return 0;
1724 }
1725
eepro_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * drvinfo)1726 static void eepro_ethtool_get_drvinfo(struct net_device *dev,
1727 struct ethtool_drvinfo *drvinfo)
1728 {
1729 strcpy(drvinfo->driver, DRV_NAME);
1730 strcpy(drvinfo->version, DRV_VERSION);
1731 sprintf(drvinfo->bus_info, "ISA 0x%lx", dev->base_addr);
1732 }
1733
1734 static const struct ethtool_ops eepro_ethtool_ops = {
1735 .get_settings = eepro_ethtool_get_settings,
1736 .get_drvinfo = eepro_ethtool_get_drvinfo,
1737 };
1738
1739 #ifdef MODULE
1740
1741 #define MAX_EEPRO 8
1742 static struct net_device *dev_eepro[MAX_EEPRO];
1743
1744 static int io[MAX_EEPRO] = {
1745 [0 ... MAX_EEPRO-1] = -1
1746 };
1747 static int irq[MAX_EEPRO];
1748 static int mem[MAX_EEPRO] = { /* Size of the rx buffer in KB */
1749 [0 ... MAX_EEPRO-1] = RCV_DEFAULT_RAM/1024
1750 };
1751 static int autodetect;
1752
1753 static int n_eepro;
1754 /* For linux 2.1.xx */
1755
1756 MODULE_AUTHOR("Pascal Dupuis and others");
1757 MODULE_DESCRIPTION("Intel i82595 ISA EtherExpressPro10/10+ driver");
1758 MODULE_LICENSE("GPL");
1759
1760 module_param_array(io, int, NULL, 0);
1761 module_param_array(irq, int, NULL, 0);
1762 module_param_array(mem, int, NULL, 0);
1763 module_param(autodetect, int, 0);
1764 MODULE_PARM_DESC(io, "EtherExpress Pro/10 I/O base address(es)");
1765 MODULE_PARM_DESC(irq, "EtherExpress Pro/10 IRQ number(s)");
1766 MODULE_PARM_DESC(mem, "EtherExpress Pro/10 Rx buffer size(es) in kB (3-29)");
1767 MODULE_PARM_DESC(autodetect, "EtherExpress Pro/10 force board(s) detection (0-1)");
1768
init_module(void)1769 int __init init_module(void)
1770 {
1771 struct net_device *dev;
1772 int i;
1773 if (io[0] == -1 && autodetect == 0) {
1774 printk(KERN_WARNING "eepro_init_module: Probe is very dangerous in ISA boards!\n");
1775 printk(KERN_WARNING "eepro_init_module: Please add \"autodetect=1\" to force probe\n");
1776 return -ENODEV;
1777 }
1778 else if (autodetect) {
1779 /* if autodetect is set then we must force detection */
1780 for (i = 0; i < MAX_EEPRO; i++) {
1781 io[i] = 0;
1782 }
1783
1784 printk(KERN_INFO "eepro_init_module: Auto-detecting boards (May God protect us...)\n");
1785 }
1786
1787 for (i = 0; i < MAX_EEPRO && io[i] != -1; i++) {
1788 dev = alloc_etherdev(sizeof(struct eepro_local));
1789 if (!dev)
1790 break;
1791
1792 dev->mem_end = mem[i];
1793 dev->base_addr = io[i];
1794 dev->irq = irq[i];
1795
1796 if (do_eepro_probe(dev) == 0) {
1797 dev_eepro[n_eepro++] = dev;
1798 continue;
1799 }
1800 free_netdev(dev);
1801 break;
1802 }
1803
1804 if (n_eepro)
1805 printk(KERN_INFO "%s", version);
1806
1807 return n_eepro ? 0 : -ENODEV;
1808 }
1809
1810 void __exit
cleanup_module(void)1811 cleanup_module(void)
1812 {
1813 int i;
1814
1815 for (i=0; i<n_eepro; i++) {
1816 struct net_device *dev = dev_eepro[i];
1817 unregister_netdev(dev);
1818 release_region(dev->base_addr, EEPRO_IO_EXTENT);
1819 free_netdev(dev);
1820 }
1821 }
1822 #endif /* MODULE */
1823