1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "hw.h"
18 #include "ar9002_phy.h"
19
ath9k_get_txgain_index(struct ath_hw * ah,struct ath9k_channel * chan,struct calDataPerFreqOpLoop * rawDatasetOpLoop,u8 * calChans,u16 availPiers,u8 * pwr,u8 * pcdacIdx)20 static void ath9k_get_txgain_index(struct ath_hw *ah,
21 struct ath9k_channel *chan,
22 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
23 u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
24 {
25 u8 pcdac, i = 0;
26 u16 idxL = 0, idxR = 0, numPiers;
27 bool match;
28 struct chan_centers centers;
29
30 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
31
32 for (numPiers = 0; numPiers < availPiers; numPiers++)
33 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
34 break;
35
36 match = ath9k_hw_get_lower_upper_index(
37 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
38 calChans, numPiers, &idxL, &idxR);
39 if (match) {
40 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
41 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
42 } else {
43 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
44 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
45 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
46 }
47
48 while (pcdac > ah->originalGain[i] &&
49 i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
50 i++;
51
52 *pcdacIdx = i;
53 }
54
ath9k_olc_get_pdadcs(struct ath_hw * ah,u32 initTxGain,int txPower,u8 * pPDADCValues)55 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
56 u32 initTxGain,
57 int txPower,
58 u8 *pPDADCValues)
59 {
60 u32 i;
61 u32 offset;
62
63 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
64 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
65 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
66 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
67
68 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
69 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
70
71 offset = txPower;
72 for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
73 if (i < offset)
74 pPDADCValues[i] = 0x0;
75 else
76 pPDADCValues[i] = 0xFF;
77 }
78
ath9k_hw_def_get_eeprom_ver(struct ath_hw * ah)79 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
80 {
81 return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
82 }
83
ath9k_hw_def_get_eeprom_rev(struct ath_hw * ah)84 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
85 {
86 return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
87 }
88
89 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
90
__ath9k_hw_def_fill_eeprom(struct ath_hw * ah)91 static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
92 {
93 struct ath_common *common = ath9k_hw_common(ah);
94 u16 *eep_data = (u16 *)&ah->eeprom.def;
95 int addr, ar5416_eep_start_loc = 0x100;
96
97 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
98 if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
99 eep_data)) {
100 ath_err(ath9k_hw_common(ah),
101 "Unable to read eeprom region\n");
102 return false;
103 }
104 eep_data++;
105 }
106 return true;
107 }
108
__ath9k_hw_usb_def_fill_eeprom(struct ath_hw * ah)109 static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
110 {
111 u16 *eep_data = (u16 *)&ah->eeprom.def;
112
113 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
114 0x100, SIZE_EEPROM_DEF);
115 return true;
116 }
117
ath9k_hw_def_fill_eeprom(struct ath_hw * ah)118 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
119 {
120 struct ath_common *common = ath9k_hw_common(ah);
121
122 if (!ath9k_hw_use_flash(ah)) {
123 ath_dbg(common, ATH_DBG_EEPROM,
124 "Reading from EEPROM, not flash\n");
125 }
126
127 if (common->bus_ops->ath_bus_type == ATH_USB)
128 return __ath9k_hw_usb_def_fill_eeprom(ah);
129 else
130 return __ath9k_hw_def_fill_eeprom(ah);
131 }
132
133 #undef SIZE_EEPROM_DEF
134
ath9k_hw_def_check_eeprom(struct ath_hw * ah)135 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
136 {
137 struct ar5416_eeprom_def *eep =
138 (struct ar5416_eeprom_def *) &ah->eeprom.def;
139 struct ath_common *common = ath9k_hw_common(ah);
140 u16 *eepdata, temp, magic, magic2;
141 u32 sum = 0, el;
142 bool need_swap = false;
143 int i, addr, size;
144
145 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
146 ath_err(common, "Reading Magic # failed\n");
147 return false;
148 }
149
150 if (!ath9k_hw_use_flash(ah)) {
151 ath_dbg(common, ATH_DBG_EEPROM,
152 "Read Magic = 0x%04X\n", magic);
153
154 if (magic != AR5416_EEPROM_MAGIC) {
155 magic2 = swab16(magic);
156
157 if (magic2 == AR5416_EEPROM_MAGIC) {
158 size = sizeof(struct ar5416_eeprom_def);
159 need_swap = true;
160 eepdata = (u16 *) (&ah->eeprom);
161
162 for (addr = 0; addr < size / sizeof(u16); addr++) {
163 temp = swab16(*eepdata);
164 *eepdata = temp;
165 eepdata++;
166 }
167 } else {
168 ath_err(common,
169 "Invalid EEPROM Magic. Endianness mismatch.\n");
170 return -EINVAL;
171 }
172 }
173 }
174
175 ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
176 need_swap ? "True" : "False");
177
178 if (need_swap)
179 el = swab16(ah->eeprom.def.baseEepHeader.length);
180 else
181 el = ah->eeprom.def.baseEepHeader.length;
182
183 if (el > sizeof(struct ar5416_eeprom_def))
184 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
185 else
186 el = el / sizeof(u16);
187
188 eepdata = (u16 *)(&ah->eeprom);
189
190 for (i = 0; i < el; i++)
191 sum ^= *eepdata++;
192
193 if (need_swap) {
194 u32 integer, j;
195 u16 word;
196
197 ath_dbg(common, ATH_DBG_EEPROM,
198 "EEPROM Endianness is not native.. Changing.\n");
199
200 word = swab16(eep->baseEepHeader.length);
201 eep->baseEepHeader.length = word;
202
203 word = swab16(eep->baseEepHeader.checksum);
204 eep->baseEepHeader.checksum = word;
205
206 word = swab16(eep->baseEepHeader.version);
207 eep->baseEepHeader.version = word;
208
209 word = swab16(eep->baseEepHeader.regDmn[0]);
210 eep->baseEepHeader.regDmn[0] = word;
211
212 word = swab16(eep->baseEepHeader.regDmn[1]);
213 eep->baseEepHeader.regDmn[1] = word;
214
215 word = swab16(eep->baseEepHeader.rfSilent);
216 eep->baseEepHeader.rfSilent = word;
217
218 word = swab16(eep->baseEepHeader.blueToothOptions);
219 eep->baseEepHeader.blueToothOptions = word;
220
221 word = swab16(eep->baseEepHeader.deviceCap);
222 eep->baseEepHeader.deviceCap = word;
223
224 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
225 struct modal_eep_header *pModal =
226 &eep->modalHeader[j];
227 integer = swab32(pModal->antCtrlCommon);
228 pModal->antCtrlCommon = integer;
229
230 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
231 integer = swab32(pModal->antCtrlChain[i]);
232 pModal->antCtrlChain[i] = integer;
233 }
234
235 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
236 word = swab16(pModal->spurChans[i].spurChan);
237 pModal->spurChans[i].spurChan = word;
238 }
239 }
240 }
241
242 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
243 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
244 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
245 sum, ah->eep_ops->get_eeprom_ver(ah));
246 return -EINVAL;
247 }
248
249 /* Enable fixup for AR_AN_TOP2 if necessary */
250 if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
251 ((eep->baseEepHeader.version & 0xff) > 0x0a) &&
252 (eep->baseEepHeader.pwdclkind == 0))
253 ah->need_an_top2_fixup = 1;
254
255 if ((common->bus_ops->ath_bus_type == ATH_USB) &&
256 (AR_SREV_9280(ah)))
257 eep->modalHeader[0].xpaBiasLvl = 0;
258
259 return 0;
260 }
261
ath9k_hw_def_get_eeprom(struct ath_hw * ah,enum eeprom_param param)262 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
263 enum eeprom_param param)
264 {
265 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
266 struct modal_eep_header *pModal = eep->modalHeader;
267 struct base_eep_header *pBase = &eep->baseEepHeader;
268
269 switch (param) {
270 case EEP_NFTHRESH_5:
271 return pModal[0].noiseFloorThreshCh[0];
272 case EEP_NFTHRESH_2:
273 return pModal[1].noiseFloorThreshCh[0];
274 case EEP_MAC_LSW:
275 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
276 case EEP_MAC_MID:
277 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
278 case EEP_MAC_MSW:
279 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
280 case EEP_REG_0:
281 return pBase->regDmn[0];
282 case EEP_REG_1:
283 return pBase->regDmn[1];
284 case EEP_OP_CAP:
285 return pBase->deviceCap;
286 case EEP_OP_MODE:
287 return pBase->opCapFlags;
288 case EEP_RF_SILENT:
289 return pBase->rfSilent;
290 case EEP_OB_5:
291 return pModal[0].ob;
292 case EEP_DB_5:
293 return pModal[0].db;
294 case EEP_OB_2:
295 return pModal[1].ob;
296 case EEP_DB_2:
297 return pModal[1].db;
298 case EEP_MINOR_REV:
299 return AR5416_VER_MASK;
300 case EEP_TX_MASK:
301 return pBase->txMask;
302 case EEP_RX_MASK:
303 return pBase->rxMask;
304 case EEP_FSTCLK_5G:
305 return pBase->fastClk5g;
306 case EEP_RXGAIN_TYPE:
307 return pBase->rxGainType;
308 case EEP_TXGAIN_TYPE:
309 return pBase->txGainType;
310 case EEP_OL_PWRCTRL:
311 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
312 return pBase->openLoopPwrCntl ? true : false;
313 else
314 return false;
315 case EEP_RC_CHAIN_MASK:
316 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
317 return pBase->rcChainMask;
318 else
319 return 0;
320 case EEP_DAC_HPWR_5G:
321 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
322 return pBase->dacHiPwrMode_5G;
323 else
324 return 0;
325 case EEP_FRAC_N_5G:
326 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
327 return pBase->frac_n_5g;
328 else
329 return 0;
330 case EEP_PWR_TABLE_OFFSET:
331 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
332 return pBase->pwr_table_offset;
333 else
334 return AR5416_PWR_TABLE_OFFSET_DB;
335 default:
336 return 0;
337 }
338 }
339
ath9k_hw_def_set_gain(struct ath_hw * ah,struct modal_eep_header * pModal,struct ar5416_eeprom_def * eep,u8 txRxAttenLocal,int regChainOffset,int i)340 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
341 struct modal_eep_header *pModal,
342 struct ar5416_eeprom_def *eep,
343 u8 txRxAttenLocal, int regChainOffset, int i)
344 {
345 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
346 txRxAttenLocal = pModal->txRxAttenCh[i];
347
348 if (AR_SREV_9280_20_OR_LATER(ah)) {
349 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
350 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
351 pModal->bswMargin[i]);
352 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
353 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
354 pModal->bswAtten[i]);
355 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
356 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
357 pModal->xatten2Margin[i]);
358 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
359 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
360 pModal->xatten2Db[i]);
361 } else {
362 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
363 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
364 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
365 | SM(pModal-> bswMargin[i],
366 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
367 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
368 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
369 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
370 | SM(pModal->bswAtten[i],
371 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
372 }
373 }
374
375 if (AR_SREV_9280_20_OR_LATER(ah)) {
376 REG_RMW_FIELD(ah,
377 AR_PHY_RXGAIN + regChainOffset,
378 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
379 REG_RMW_FIELD(ah,
380 AR_PHY_RXGAIN + regChainOffset,
381 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
382 } else {
383 REG_WRITE(ah,
384 AR_PHY_RXGAIN + regChainOffset,
385 (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
386 ~AR_PHY_RXGAIN_TXRX_ATTEN)
387 | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
388 REG_WRITE(ah,
389 AR_PHY_GAIN_2GHZ + regChainOffset,
390 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
391 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
392 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
393 }
394 }
395
ath9k_hw_def_set_board_values(struct ath_hw * ah,struct ath9k_channel * chan)396 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
397 struct ath9k_channel *chan)
398 {
399 struct modal_eep_header *pModal;
400 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
401 int i, regChainOffset;
402 u8 txRxAttenLocal;
403
404 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
405 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
406
407 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
408
409 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
410 if (AR_SREV_9280(ah)) {
411 if (i >= 2)
412 break;
413 }
414
415 if (AR_SREV_5416_20_OR_LATER(ah) &&
416 (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
417 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
418 else
419 regChainOffset = i * 0x1000;
420
421 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
422 pModal->antCtrlChain[i]);
423
424 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
425 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
426 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
427 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
428 SM(pModal->iqCalICh[i],
429 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
430 SM(pModal->iqCalQCh[i],
431 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
432
433 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
434 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
435 regChainOffset, i);
436 }
437
438 if (AR_SREV_9280_20_OR_LATER(ah)) {
439 if (IS_CHAN_2GHZ(chan)) {
440 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
441 AR_AN_RF2G1_CH0_OB,
442 AR_AN_RF2G1_CH0_OB_S,
443 pModal->ob);
444 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
445 AR_AN_RF2G1_CH0_DB,
446 AR_AN_RF2G1_CH0_DB_S,
447 pModal->db);
448 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
449 AR_AN_RF2G1_CH1_OB,
450 AR_AN_RF2G1_CH1_OB_S,
451 pModal->ob_ch1);
452 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
453 AR_AN_RF2G1_CH1_DB,
454 AR_AN_RF2G1_CH1_DB_S,
455 pModal->db_ch1);
456 } else {
457 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
458 AR_AN_RF5G1_CH0_OB5,
459 AR_AN_RF5G1_CH0_OB5_S,
460 pModal->ob);
461 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
462 AR_AN_RF5G1_CH0_DB5,
463 AR_AN_RF5G1_CH0_DB5_S,
464 pModal->db);
465 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
466 AR_AN_RF5G1_CH1_OB5,
467 AR_AN_RF5G1_CH1_OB5_S,
468 pModal->ob_ch1);
469 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
470 AR_AN_RF5G1_CH1_DB5,
471 AR_AN_RF5G1_CH1_DB5_S,
472 pModal->db_ch1);
473 }
474 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
475 AR_AN_TOP2_XPABIAS_LVL,
476 AR_AN_TOP2_XPABIAS_LVL_S,
477 pModal->xpaBiasLvl);
478 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
479 AR_AN_TOP2_LOCALBIAS,
480 AR_AN_TOP2_LOCALBIAS_S,
481 !!(pModal->lna_ctl &
482 LNA_CTL_LOCAL_BIAS));
483 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
484 !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
485 }
486
487 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
488 pModal->switchSettling);
489 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
490 pModal->adcDesiredSize);
491
492 if (!AR_SREV_9280_20_OR_LATER(ah))
493 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
494 AR_PHY_DESIRED_SZ_PGA,
495 pModal->pgaDesiredSize);
496
497 REG_WRITE(ah, AR_PHY_RF_CTL4,
498 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
499 | SM(pModal->txEndToXpaOff,
500 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
501 | SM(pModal->txFrameToXpaOn,
502 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
503 | SM(pModal->txFrameToXpaOn,
504 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
505
506 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
507 pModal->txEndToRxOn);
508
509 if (AR_SREV_9280_20_OR_LATER(ah)) {
510 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
511 pModal->thresh62);
512 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
513 AR_PHY_EXT_CCA0_THRESH62,
514 pModal->thresh62);
515 } else {
516 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
517 pModal->thresh62);
518 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
519 AR_PHY_EXT_CCA_THRESH62,
520 pModal->thresh62);
521 }
522
523 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
524 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
525 AR_PHY_TX_END_DATA_START,
526 pModal->txFrameToDataStart);
527 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
528 pModal->txFrameToPaOn);
529 }
530
531 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
532 if (IS_CHAN_HT40(chan))
533 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
534 AR_PHY_SETTLING_SWITCH,
535 pModal->swSettleHt40);
536 }
537
538 if (AR_SREV_9280_20_OR_LATER(ah) &&
539 AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
540 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
541 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
542 pModal->miscBits);
543
544
545 if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
546 if (IS_CHAN_2GHZ(chan))
547 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
548 eep->baseEepHeader.dacLpMode);
549 else if (eep->baseEepHeader.dacHiPwrMode_5G)
550 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
551 else
552 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
553 eep->baseEepHeader.dacLpMode);
554
555 udelay(100);
556
557 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
558 pModal->miscBits >> 2);
559
560 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
561 AR_PHY_TX_DESIRED_SCALE_CCK,
562 eep->baseEepHeader.desiredScaleCCK);
563 }
564 }
565
ath9k_hw_def_set_addac(struct ath_hw * ah,struct ath9k_channel * chan)566 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
567 struct ath9k_channel *chan)
568 {
569 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
570 struct modal_eep_header *pModal;
571 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
572 u8 biaslevel;
573
574 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
575 return;
576
577 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
578 return;
579
580 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
581
582 if (pModal->xpaBiasLvl != 0xff) {
583 biaslevel = pModal->xpaBiasLvl;
584 } else {
585 u16 resetFreqBin, freqBin, freqCount = 0;
586 struct chan_centers centers;
587
588 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
589
590 resetFreqBin = FREQ2FBIN(centers.synth_center,
591 IS_CHAN_2GHZ(chan));
592 freqBin = XPA_LVL_FREQ(0) & 0xff;
593 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
594
595 freqCount++;
596
597 while (freqCount < 3) {
598 if (XPA_LVL_FREQ(freqCount) == 0x0)
599 break;
600
601 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
602 if (resetFreqBin >= freqBin)
603 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
604 else
605 break;
606 freqCount++;
607 }
608 }
609
610 if (IS_CHAN_2GHZ(chan)) {
611 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
612 7, 1) & (~0x18)) | biaslevel << 3;
613 } else {
614 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
615 6, 1) & (~0xc0)) | biaslevel << 6;
616 }
617 #undef XPA_LVL_FREQ
618 }
619
ath9k_change_gain_boundary_setting(struct ath_hw * ah,u16 * gb,u16 numXpdGain,u16 pdGainOverlap_t2,int8_t pwr_table_offset,int16_t * diff)620 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
621 u16 *gb,
622 u16 numXpdGain,
623 u16 pdGainOverlap_t2,
624 int8_t pwr_table_offset,
625 int16_t *diff)
626
627 {
628 u16 k;
629
630 /* Prior to writing the boundaries or the pdadc vs. power table
631 * into the chip registers the default starting point on the pdadc
632 * vs. power table needs to be checked and the curve boundaries
633 * adjusted accordingly
634 */
635 if (AR_SREV_9280_20_OR_LATER(ah)) {
636 u16 gb_limit;
637
638 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
639 /* get the difference in dB */
640 *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
641 /* get the number of half dB steps */
642 *diff *= 2;
643 /* change the original gain boundary settings
644 * by the number of half dB steps
645 */
646 for (k = 0; k < numXpdGain; k++)
647 gb[k] = (u16)(gb[k] - *diff);
648 }
649 /* Because of a hardware limitation, ensure the gain boundary
650 * is not larger than (63 - overlap)
651 */
652 gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
653
654 for (k = 0; k < numXpdGain; k++)
655 gb[k] = (u16)min(gb_limit, gb[k]);
656 }
657
658 return *diff;
659 }
660
ath9k_adjust_pdadc_values(struct ath_hw * ah,int8_t pwr_table_offset,int16_t diff,u8 * pdadcValues)661 static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
662 int8_t pwr_table_offset,
663 int16_t diff,
664 u8 *pdadcValues)
665 {
666 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
667 u16 k;
668
669 /* If this is a board that has a pwrTableOffset that differs from
670 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
671 * pdadc vs pwr table needs to be adjusted prior to writing to the
672 * chip.
673 */
674 if (AR_SREV_9280_20_OR_LATER(ah)) {
675 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
676 /* shift the table to start at the new offset */
677 for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
678 pdadcValues[k] = pdadcValues[k + diff];
679 }
680
681 /* fill the back of the table */
682 for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
683 pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
684 }
685 }
686 }
687 #undef NUM_PDADC
688 }
689
ath9k_hw_set_def_power_cal_table(struct ath_hw * ah,struct ath9k_channel * chan,int16_t * pTxPowerIndexOffset)690 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
691 struct ath9k_channel *chan,
692 int16_t *pTxPowerIndexOffset)
693 {
694 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
695 #define SM_PDGAIN_B(x, y) \
696 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
697 struct ath_common *common = ath9k_hw_common(ah);
698 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
699 struct cal_data_per_freq *pRawDataset;
700 u8 *pCalBChans = NULL;
701 u16 pdGainOverlap_t2;
702 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
703 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
704 u16 numPiers, i, j;
705 int16_t diff = 0;
706 u16 numXpdGain, xpdMask;
707 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
708 u32 reg32, regOffset, regChainOffset;
709 int16_t modalIdx;
710 int8_t pwr_table_offset;
711
712 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
713 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
714
715 pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
716
717 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
718 AR5416_EEP_MINOR_VER_2) {
719 pdGainOverlap_t2 =
720 pEepData->modalHeader[modalIdx].pdGainOverlap;
721 } else {
722 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
723 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
724 }
725
726 if (IS_CHAN_2GHZ(chan)) {
727 pCalBChans = pEepData->calFreqPier2G;
728 numPiers = AR5416_NUM_2G_CAL_PIERS;
729 } else {
730 pCalBChans = pEepData->calFreqPier5G;
731 numPiers = AR5416_NUM_5G_CAL_PIERS;
732 }
733
734 if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
735 pRawDataset = pEepData->calPierData2G[0];
736 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
737 pRawDataset)->vpdPdg[0][0];
738 }
739
740 numXpdGain = 0;
741
742 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
743 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
744 if (numXpdGain >= AR5416_NUM_PD_GAINS)
745 break;
746 xpdGainValues[numXpdGain] =
747 (u16)(AR5416_PD_GAINS_IN_MASK - i);
748 numXpdGain++;
749 }
750 }
751
752 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
753 (numXpdGain - 1) & 0x3);
754 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
755 xpdGainValues[0]);
756 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
757 xpdGainValues[1]);
758 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
759 xpdGainValues[2]);
760
761 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
762 if (AR_SREV_5416_20_OR_LATER(ah) &&
763 (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
764 (i != 0)) {
765 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
766 } else
767 regChainOffset = i * 0x1000;
768
769 if (pEepData->baseEepHeader.txMask & (1 << i)) {
770 if (IS_CHAN_2GHZ(chan))
771 pRawDataset = pEepData->calPierData2G[i];
772 else
773 pRawDataset = pEepData->calPierData5G[i];
774
775
776 if (OLC_FOR_AR9280_20_LATER) {
777 u8 pcdacIdx;
778 u8 txPower;
779
780 ath9k_get_txgain_index(ah, chan,
781 (struct calDataPerFreqOpLoop *)pRawDataset,
782 pCalBChans, numPiers, &txPower, &pcdacIdx);
783 ath9k_olc_get_pdadcs(ah, pcdacIdx,
784 txPower/2, pdadcValues);
785 } else {
786 ath9k_hw_get_gain_boundaries_pdadcs(ah,
787 chan, pRawDataset,
788 pCalBChans, numPiers,
789 pdGainOverlap_t2,
790 gainBoundaries,
791 pdadcValues,
792 numXpdGain);
793 }
794
795 diff = ath9k_change_gain_boundary_setting(ah,
796 gainBoundaries,
797 numXpdGain,
798 pdGainOverlap_t2,
799 pwr_table_offset,
800 &diff);
801
802 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
803 if (OLC_FOR_AR9280_20_LATER) {
804 REG_WRITE(ah,
805 AR_PHY_TPCRG5 + regChainOffset,
806 SM(0x6,
807 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
808 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
809 SM_PD_GAIN(3) | SM_PD_GAIN(4));
810 } else {
811 REG_WRITE(ah,
812 AR_PHY_TPCRG5 + regChainOffset,
813 SM(pdGainOverlap_t2,
814 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
815 SM_PDGAIN_B(0, 1) |
816 SM_PDGAIN_B(1, 2) |
817 SM_PDGAIN_B(2, 3) |
818 SM_PDGAIN_B(3, 4));
819 }
820 }
821
822
823 ath9k_adjust_pdadc_values(ah, pwr_table_offset,
824 diff, pdadcValues);
825
826 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
827 for (j = 0; j < 32; j++) {
828 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
829 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
830 ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
831 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
832 REG_WRITE(ah, regOffset, reg32);
833
834 ath_dbg(common, ATH_DBG_EEPROM,
835 "PDADC (%d,%4x): %4.4x %8.8x\n",
836 i, regChainOffset, regOffset,
837 reg32);
838 ath_dbg(common, ATH_DBG_EEPROM,
839 "PDADC: Chain %d | PDADC %3d "
840 "Value %3d | PDADC %3d Value %3d | "
841 "PDADC %3d Value %3d | PDADC %3d "
842 "Value %3d |\n",
843 i, 4 * j, pdadcValues[4 * j],
844 4 * j + 1, pdadcValues[4 * j + 1],
845 4 * j + 2, pdadcValues[4 * j + 2],
846 4 * j + 3, pdadcValues[4 * j + 3]);
847
848 regOffset += 4;
849 }
850 }
851 }
852
853 *pTxPowerIndexOffset = 0;
854 #undef SM_PD_GAIN
855 #undef SM_PDGAIN_B
856 }
857
ath9k_hw_set_def_power_per_rate_table(struct ath_hw * ah,struct ath9k_channel * chan,int16_t * ratesArray,u16 cfgCtl,u16 AntennaReduction,u16 twiceMaxRegulatoryPower,u16 powerLimit)858 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
859 struct ath9k_channel *chan,
860 int16_t *ratesArray,
861 u16 cfgCtl,
862 u16 AntennaReduction,
863 u16 twiceMaxRegulatoryPower,
864 u16 powerLimit)
865 {
866 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
867 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
868
869 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
870 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
871 u16 twiceMaxEdgePower = MAX_RATE_POWER;
872 static const u16 tpScaleReductionTable[5] =
873 { 0, 3, 6, 9, MAX_RATE_POWER };
874
875 int i;
876 int16_t twiceLargestAntenna;
877 struct cal_ctl_data *rep;
878 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
879 0, { 0, 0, 0, 0}
880 };
881 struct cal_target_power_leg targetPowerOfdmExt = {
882 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
883 0, { 0, 0, 0, 0 }
884 };
885 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
886 0, {0, 0, 0, 0}
887 };
888 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
889 static const u16 ctlModesFor11a[] = {
890 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
891 };
892 static const u16 ctlModesFor11g[] = {
893 CTL_11B, CTL_11G, CTL_2GHT20,
894 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
895 };
896 u16 numCtlModes;
897 const u16 *pCtlMode;
898 u16 ctlMode, freq;
899 struct chan_centers centers;
900 int tx_chainmask;
901 u16 twiceMinEdgePower;
902
903 tx_chainmask = ah->txchainmask;
904
905 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
906
907 twiceLargestAntenna = max(
908 pEepData->modalHeader
909 [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
910 pEepData->modalHeader
911 [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
912
913 twiceLargestAntenna = max((u8)twiceLargestAntenna,
914 pEepData->modalHeader
915 [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
916
917 twiceLargestAntenna = (int16_t)min(AntennaReduction -
918 twiceLargestAntenna, 0);
919
920 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
921
922 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
923 maxRegAllowedPower -=
924 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
925 }
926
927 scaledPower = min(powerLimit, maxRegAllowedPower);
928
929 switch (ar5416_get_ntxchains(tx_chainmask)) {
930 case 1:
931 break;
932 case 2:
933 if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
934 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
935 else
936 scaledPower = 0;
937 break;
938 case 3:
939 if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
940 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
941 else
942 scaledPower = 0;
943 break;
944 }
945
946 if (IS_CHAN_2GHZ(chan)) {
947 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
948 SUB_NUM_CTL_MODES_AT_2G_40;
949 pCtlMode = ctlModesFor11g;
950
951 ath9k_hw_get_legacy_target_powers(ah, chan,
952 pEepData->calTargetPowerCck,
953 AR5416_NUM_2G_CCK_TARGET_POWERS,
954 &targetPowerCck, 4, false);
955 ath9k_hw_get_legacy_target_powers(ah, chan,
956 pEepData->calTargetPower2G,
957 AR5416_NUM_2G_20_TARGET_POWERS,
958 &targetPowerOfdm, 4, false);
959 ath9k_hw_get_target_powers(ah, chan,
960 pEepData->calTargetPower2GHT20,
961 AR5416_NUM_2G_20_TARGET_POWERS,
962 &targetPowerHt20, 8, false);
963
964 if (IS_CHAN_HT40(chan)) {
965 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
966 ath9k_hw_get_target_powers(ah, chan,
967 pEepData->calTargetPower2GHT40,
968 AR5416_NUM_2G_40_TARGET_POWERS,
969 &targetPowerHt40, 8, true);
970 ath9k_hw_get_legacy_target_powers(ah, chan,
971 pEepData->calTargetPowerCck,
972 AR5416_NUM_2G_CCK_TARGET_POWERS,
973 &targetPowerCckExt, 4, true);
974 ath9k_hw_get_legacy_target_powers(ah, chan,
975 pEepData->calTargetPower2G,
976 AR5416_NUM_2G_20_TARGET_POWERS,
977 &targetPowerOfdmExt, 4, true);
978 }
979 } else {
980 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
981 SUB_NUM_CTL_MODES_AT_5G_40;
982 pCtlMode = ctlModesFor11a;
983
984 ath9k_hw_get_legacy_target_powers(ah, chan,
985 pEepData->calTargetPower5G,
986 AR5416_NUM_5G_20_TARGET_POWERS,
987 &targetPowerOfdm, 4, false);
988 ath9k_hw_get_target_powers(ah, chan,
989 pEepData->calTargetPower5GHT20,
990 AR5416_NUM_5G_20_TARGET_POWERS,
991 &targetPowerHt20, 8, false);
992
993 if (IS_CHAN_HT40(chan)) {
994 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
995 ath9k_hw_get_target_powers(ah, chan,
996 pEepData->calTargetPower5GHT40,
997 AR5416_NUM_5G_40_TARGET_POWERS,
998 &targetPowerHt40, 8, true);
999 ath9k_hw_get_legacy_target_powers(ah, chan,
1000 pEepData->calTargetPower5G,
1001 AR5416_NUM_5G_20_TARGET_POWERS,
1002 &targetPowerOfdmExt, 4, true);
1003 }
1004 }
1005
1006 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1007 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1008 (pCtlMode[ctlMode] == CTL_2GHT40);
1009 if (isHt40CtlMode)
1010 freq = centers.synth_center;
1011 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1012 freq = centers.ext_center;
1013 else
1014 freq = centers.ctl_center;
1015
1016 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
1017 ah->eep_ops->get_eeprom_rev(ah) <= 2)
1018 twiceMaxEdgePower = MAX_RATE_POWER;
1019
1020 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1021 if ((((cfgCtl & ~CTL_MODE_M) |
1022 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1023 pEepData->ctlIndex[i]) ||
1024 (((cfgCtl & ~CTL_MODE_M) |
1025 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1026 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1027 rep = &(pEepData->ctlData[i]);
1028
1029 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1030 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1031 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1032
1033 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1034 twiceMaxEdgePower = min(twiceMaxEdgePower,
1035 twiceMinEdgePower);
1036 } else {
1037 twiceMaxEdgePower = twiceMinEdgePower;
1038 break;
1039 }
1040 }
1041 }
1042
1043 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1044
1045 switch (pCtlMode[ctlMode]) {
1046 case CTL_11B:
1047 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1048 targetPowerCck.tPow2x[i] =
1049 min((u16)targetPowerCck.tPow2x[i],
1050 minCtlPower);
1051 }
1052 break;
1053 case CTL_11A:
1054 case CTL_11G:
1055 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1056 targetPowerOfdm.tPow2x[i] =
1057 min((u16)targetPowerOfdm.tPow2x[i],
1058 minCtlPower);
1059 }
1060 break;
1061 case CTL_5GHT20:
1062 case CTL_2GHT20:
1063 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1064 targetPowerHt20.tPow2x[i] =
1065 min((u16)targetPowerHt20.tPow2x[i],
1066 minCtlPower);
1067 }
1068 break;
1069 case CTL_11B_EXT:
1070 targetPowerCckExt.tPow2x[0] = min((u16)
1071 targetPowerCckExt.tPow2x[0],
1072 minCtlPower);
1073 break;
1074 case CTL_11A_EXT:
1075 case CTL_11G_EXT:
1076 targetPowerOfdmExt.tPow2x[0] = min((u16)
1077 targetPowerOfdmExt.tPow2x[0],
1078 minCtlPower);
1079 break;
1080 case CTL_5GHT40:
1081 case CTL_2GHT40:
1082 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1083 targetPowerHt40.tPow2x[i] =
1084 min((u16)targetPowerHt40.tPow2x[i],
1085 minCtlPower);
1086 }
1087 break;
1088 default:
1089 break;
1090 }
1091 }
1092
1093 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1094 ratesArray[rate18mb] = ratesArray[rate24mb] =
1095 targetPowerOfdm.tPow2x[0];
1096 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1097 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1098 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1099 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1100
1101 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1102 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1103
1104 if (IS_CHAN_2GHZ(chan)) {
1105 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1106 ratesArray[rate2s] = ratesArray[rate2l] =
1107 targetPowerCck.tPow2x[1];
1108 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1109 targetPowerCck.tPow2x[2];
1110 ratesArray[rate11s] = ratesArray[rate11l] =
1111 targetPowerCck.tPow2x[3];
1112 }
1113 if (IS_CHAN_HT40(chan)) {
1114 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1115 ratesArray[rateHt40_0 + i] =
1116 targetPowerHt40.tPow2x[i];
1117 }
1118 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1119 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1120 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1121 if (IS_CHAN_2GHZ(chan)) {
1122 ratesArray[rateExtCck] =
1123 targetPowerCckExt.tPow2x[0];
1124 }
1125 }
1126 }
1127
ath9k_hw_def_set_txpower(struct ath_hw * ah,struct ath9k_channel * chan,u16 cfgCtl,u8 twiceAntennaReduction,u8 twiceMaxRegulatoryPower,u8 powerLimit,bool test)1128 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1129 struct ath9k_channel *chan,
1130 u16 cfgCtl,
1131 u8 twiceAntennaReduction,
1132 u8 twiceMaxRegulatoryPower,
1133 u8 powerLimit, bool test)
1134 {
1135 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1136 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1137 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1138 struct modal_eep_header *pModal =
1139 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1140 int16_t ratesArray[Ar5416RateSize];
1141 int16_t txPowerIndexOffset = 0;
1142 u8 ht40PowerIncForPdadc = 2;
1143 int i, cck_ofdm_delta = 0;
1144
1145 memset(ratesArray, 0, sizeof(ratesArray));
1146
1147 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1148 AR5416_EEP_MINOR_VER_2) {
1149 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1150 }
1151
1152 ath9k_hw_set_def_power_per_rate_table(ah, chan,
1153 &ratesArray[0], cfgCtl,
1154 twiceAntennaReduction,
1155 twiceMaxRegulatoryPower,
1156 powerLimit);
1157
1158 ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
1159
1160 regulatory->max_power_level = 0;
1161 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1162 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1163 if (ratesArray[i] > MAX_RATE_POWER)
1164 ratesArray[i] = MAX_RATE_POWER;
1165 if (ratesArray[i] > regulatory->max_power_level)
1166 regulatory->max_power_level = ratesArray[i];
1167 }
1168
1169 if (!test) {
1170 i = rate6mb;
1171
1172 if (IS_CHAN_HT40(chan))
1173 i = rateHt40_0;
1174 else if (IS_CHAN_HT20(chan))
1175 i = rateHt20_0;
1176
1177 regulatory->max_power_level = ratesArray[i];
1178 }
1179
1180 switch(ar5416_get_ntxchains(ah->txchainmask)) {
1181 case 1:
1182 break;
1183 case 2:
1184 regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
1185 break;
1186 case 3:
1187 regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
1188 break;
1189 default:
1190 ath_dbg(ath9k_hw_common(ah), ATH_DBG_EEPROM,
1191 "Invalid chainmask configuration\n");
1192 break;
1193 }
1194
1195 if (test)
1196 return;
1197
1198 if (AR_SREV_9280_20_OR_LATER(ah)) {
1199 for (i = 0; i < Ar5416RateSize; i++) {
1200 int8_t pwr_table_offset;
1201
1202 pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1203 EEP_PWR_TABLE_OFFSET);
1204 ratesArray[i] -= pwr_table_offset * 2;
1205 }
1206 }
1207
1208 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1209 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1210 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1211 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1212 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1213 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1214 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1215 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1216 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1217 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1218
1219 if (IS_CHAN_2GHZ(chan)) {
1220 if (OLC_FOR_AR9280_20_LATER) {
1221 cck_ofdm_delta = 2;
1222 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1223 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1224 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1225 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1226 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1227 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1228 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1229 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1230 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1231 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1232 } else {
1233 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1234 ATH9K_POW_SM(ratesArray[rate2s], 24)
1235 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1236 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1237 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1238 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1239 ATH9K_POW_SM(ratesArray[rate11s], 24)
1240 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1241 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1242 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1243 }
1244 }
1245
1246 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1247 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1248 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1249 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1250 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1251 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1252 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1253 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1254 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1255 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1256
1257 if (IS_CHAN_HT40(chan)) {
1258 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1259 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1260 ht40PowerIncForPdadc, 24)
1261 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1262 ht40PowerIncForPdadc, 16)
1263 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1264 ht40PowerIncForPdadc, 8)
1265 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1266 ht40PowerIncForPdadc, 0));
1267 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1268 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1269 ht40PowerIncForPdadc, 24)
1270 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1271 ht40PowerIncForPdadc, 16)
1272 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1273 ht40PowerIncForPdadc, 8)
1274 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1275 ht40PowerIncForPdadc, 0));
1276 if (OLC_FOR_AR9280_20_LATER) {
1277 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1278 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1279 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1280 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1281 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1282 } else {
1283 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1284 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1285 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1286 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1287 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1288 }
1289 }
1290
1291 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1292 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1293 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1294 }
1295
ath9k_hw_def_get_spur_channel(struct ath_hw * ah,u16 i,bool is2GHz)1296 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1297 {
1298 #define EEP_DEF_SPURCHAN \
1299 (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1300 struct ath_common *common = ath9k_hw_common(ah);
1301
1302 u16 spur_val = AR_NO_SPUR;
1303
1304 ath_dbg(common, ATH_DBG_ANI,
1305 "Getting spur idx:%d is2Ghz:%d val:%x\n",
1306 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1307
1308 switch (ah->config.spurmode) {
1309 case SPUR_DISABLE:
1310 break;
1311 case SPUR_ENABLE_IOCTL:
1312 spur_val = ah->config.spurchans[i][is2GHz];
1313 ath_dbg(common, ATH_DBG_ANI,
1314 "Getting spur val from new loc. %d\n", spur_val);
1315 break;
1316 case SPUR_ENABLE_EEPROM:
1317 spur_val = EEP_DEF_SPURCHAN;
1318 break;
1319 }
1320
1321 return spur_val;
1322
1323 #undef EEP_DEF_SPURCHAN
1324 }
1325
1326 const struct eeprom_ops eep_def_ops = {
1327 .check_eeprom = ath9k_hw_def_check_eeprom,
1328 .get_eeprom = ath9k_hw_def_get_eeprom,
1329 .fill_eeprom = ath9k_hw_def_fill_eeprom,
1330 .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
1331 .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
1332 .set_board_values = ath9k_hw_def_set_board_values,
1333 .set_addac = ath9k_hw_def_set_addac,
1334 .set_txpower = ath9k_hw_def_set_txpower,
1335 .get_spur_channel = ath9k_hw_def_get_spur_channel
1336 };
1337