1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45
46 /* lock to memory controller's control array */
47 static DEFINE_MUTEX(mem_ctls_mutex);
48 static LIST_HEAD(mc_devices);
49
50 /*
51 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
52 * apei/ghes and i7core_edac to be used at the same time.
53 */
54 static const char *edac_mc_owner;
55
error_desc_to_mci(struct edac_raw_error_desc * e)56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
57 {
58 return container_of(e, struct mem_ctl_info, error_desc);
59 }
60
edac_dimm_info_location(struct dimm_info * dimm,char * buf,unsigned int len)61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
62 unsigned int len)
63 {
64 struct mem_ctl_info *mci = dimm->mci;
65 int i, n, count = 0;
66 char *p = buf;
67
68 for (i = 0; i < mci->n_layers; i++) {
69 n = scnprintf(p, len, "%s %d ",
70 edac_layer_name[mci->layers[i].type],
71 dimm->location[i]);
72 p += n;
73 len -= n;
74 count += n;
75 }
76
77 return count;
78 }
79
80 #ifdef CONFIG_EDAC_DEBUG
81
edac_mc_dump_channel(struct rank_info * chan)82 static void edac_mc_dump_channel(struct rank_info *chan)
83 {
84 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
85 edac_dbg(4, " channel = %p\n", chan);
86 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
87 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
88 }
89
edac_mc_dump_dimm(struct dimm_info * dimm)90 static void edac_mc_dump_dimm(struct dimm_info *dimm)
91 {
92 char location[80];
93
94 if (!dimm->nr_pages)
95 return;
96
97 edac_dimm_info_location(dimm, location, sizeof(location));
98
99 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
100 dimm->mci->csbased ? "rank" : "dimm",
101 dimm->idx, location, dimm->csrow, dimm->cschannel);
102 edac_dbg(4, " dimm = %p\n", dimm);
103 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
104 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
105 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
106 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
107 }
108
edac_mc_dump_csrow(struct csrow_info * csrow)109 static void edac_mc_dump_csrow(struct csrow_info *csrow)
110 {
111 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
112 edac_dbg(4, " csrow = %p\n", csrow);
113 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
114 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
115 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
116 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
117 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
118 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
119 }
120
edac_mc_dump_mci(struct mem_ctl_info * mci)121 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
122 {
123 edac_dbg(3, "\tmci = %p\n", mci);
124 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
125 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
126 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
127 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
128 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
129 mci->nr_csrows, mci->csrows);
130 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
131 mci->tot_dimms, mci->dimms);
132 edac_dbg(3, "\tdev = %p\n", mci->pdev);
133 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
134 mci->mod_name, mci->ctl_name);
135 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
136 }
137
138 #endif /* CONFIG_EDAC_DEBUG */
139
140 const char * const edac_mem_types[] = {
141 [MEM_EMPTY] = "Empty",
142 [MEM_RESERVED] = "Reserved",
143 [MEM_UNKNOWN] = "Unknown",
144 [MEM_FPM] = "FPM",
145 [MEM_EDO] = "EDO",
146 [MEM_BEDO] = "BEDO",
147 [MEM_SDR] = "Unbuffered-SDR",
148 [MEM_RDR] = "Registered-SDR",
149 [MEM_DDR] = "Unbuffered-DDR",
150 [MEM_RDDR] = "Registered-DDR",
151 [MEM_RMBS] = "RMBS",
152 [MEM_DDR2] = "Unbuffered-DDR2",
153 [MEM_FB_DDR2] = "FullyBuffered-DDR2",
154 [MEM_RDDR2] = "Registered-DDR2",
155 [MEM_XDR] = "XDR",
156 [MEM_DDR3] = "Unbuffered-DDR3",
157 [MEM_RDDR3] = "Registered-DDR3",
158 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM",
159 [MEM_LPDDR3] = "Low-Power-DDR3-RAM",
160 [MEM_DDR4] = "Unbuffered-DDR4",
161 [MEM_RDDR4] = "Registered-DDR4",
162 [MEM_LPDDR4] = "Low-Power-DDR4-RAM",
163 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM",
164 [MEM_DDR5] = "Unbuffered-DDR5",
165 [MEM_RDDR5] = "Registered-DDR5",
166 [MEM_LRDDR5] = "Load-Reduced-DDR5-RAM",
167 [MEM_NVDIMM] = "Non-volatile-RAM",
168 [MEM_WIO2] = "Wide-IO-2",
169 [MEM_HBM2] = "High-bandwidth-memory-Gen2",
170 };
171 EXPORT_SYMBOL_GPL(edac_mem_types);
172
_edac_mc_free(struct mem_ctl_info * mci)173 static void _edac_mc_free(struct mem_ctl_info *mci)
174 {
175 put_device(&mci->dev);
176 }
177
mci_release(struct device * dev)178 static void mci_release(struct device *dev)
179 {
180 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
181 struct csrow_info *csr;
182 int i, chn, row;
183
184 if (mci->dimms) {
185 for (i = 0; i < mci->tot_dimms; i++)
186 kfree(mci->dimms[i]);
187 kfree(mci->dimms);
188 }
189
190 if (mci->csrows) {
191 for (row = 0; row < mci->nr_csrows; row++) {
192 csr = mci->csrows[row];
193 if (!csr)
194 continue;
195
196 if (csr->channels) {
197 for (chn = 0; chn < mci->num_cschannel; chn++)
198 kfree(csr->channels[chn]);
199 kfree(csr->channels);
200 }
201 kfree(csr);
202 }
203 kfree(mci->csrows);
204 }
205 kfree(mci->pvt_info);
206 kfree(mci->layers);
207 kfree(mci);
208 }
209
edac_mc_alloc_csrows(struct mem_ctl_info * mci)210 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
211 {
212 unsigned int tot_channels = mci->num_cschannel;
213 unsigned int tot_csrows = mci->nr_csrows;
214 unsigned int row, chn;
215
216 /*
217 * Alocate and fill the csrow/channels structs
218 */
219 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
220 if (!mci->csrows)
221 return -ENOMEM;
222
223 for (row = 0; row < tot_csrows; row++) {
224 struct csrow_info *csr;
225
226 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
227 if (!csr)
228 return -ENOMEM;
229
230 mci->csrows[row] = csr;
231 csr->csrow_idx = row;
232 csr->mci = mci;
233 csr->nr_channels = tot_channels;
234 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
235 GFP_KERNEL);
236 if (!csr->channels)
237 return -ENOMEM;
238
239 for (chn = 0; chn < tot_channels; chn++) {
240 struct rank_info *chan;
241
242 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
243 if (!chan)
244 return -ENOMEM;
245
246 csr->channels[chn] = chan;
247 chan->chan_idx = chn;
248 chan->csrow = csr;
249 }
250 }
251
252 return 0;
253 }
254
edac_mc_alloc_dimms(struct mem_ctl_info * mci)255 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
256 {
257 unsigned int pos[EDAC_MAX_LAYERS];
258 unsigned int row, chn, idx;
259 int layer;
260 void *p;
261
262 /*
263 * Allocate and fill the dimm structs
264 */
265 mci->dimms = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
266 if (!mci->dimms)
267 return -ENOMEM;
268
269 memset(&pos, 0, sizeof(pos));
270 row = 0;
271 chn = 0;
272 for (idx = 0; idx < mci->tot_dimms; idx++) {
273 struct dimm_info *dimm;
274 struct rank_info *chan;
275 int n, len;
276
277 chan = mci->csrows[row]->channels[chn];
278
279 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
280 if (!dimm)
281 return -ENOMEM;
282 mci->dimms[idx] = dimm;
283 dimm->mci = mci;
284 dimm->idx = idx;
285
286 /*
287 * Copy DIMM location and initialize it.
288 */
289 len = sizeof(dimm->label);
290 p = dimm->label;
291 n = scnprintf(p, len, "mc#%u", mci->mc_idx);
292 p += n;
293 len -= n;
294 for (layer = 0; layer < mci->n_layers; layer++) {
295 n = scnprintf(p, len, "%s#%u",
296 edac_layer_name[mci->layers[layer].type],
297 pos[layer]);
298 p += n;
299 len -= n;
300 dimm->location[layer] = pos[layer];
301 }
302
303 /* Link it to the csrows old API data */
304 chan->dimm = dimm;
305 dimm->csrow = row;
306 dimm->cschannel = chn;
307
308 /* Increment csrow location */
309 if (mci->layers[0].is_virt_csrow) {
310 chn++;
311 if (chn == mci->num_cschannel) {
312 chn = 0;
313 row++;
314 }
315 } else {
316 row++;
317 if (row == mci->nr_csrows) {
318 row = 0;
319 chn++;
320 }
321 }
322
323 /* Increment dimm location */
324 for (layer = mci->n_layers - 1; layer >= 0; layer--) {
325 pos[layer]++;
326 if (pos[layer] < mci->layers[layer].size)
327 break;
328 pos[layer] = 0;
329 }
330 }
331
332 return 0;
333 }
334
edac_mc_alloc(unsigned int mc_num,unsigned int n_layers,struct edac_mc_layer * layers,unsigned int sz_pvt)335 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
336 unsigned int n_layers,
337 struct edac_mc_layer *layers,
338 unsigned int sz_pvt)
339 {
340 struct mem_ctl_info *mci;
341 struct edac_mc_layer *layer;
342 unsigned int idx, tot_dimms = 1;
343 unsigned int tot_csrows = 1, tot_channels = 1;
344 bool per_rank = false;
345
346 if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
347 return NULL;
348
349 /*
350 * Calculate the total amount of dimms and csrows/cschannels while
351 * in the old API emulation mode
352 */
353 for (idx = 0; idx < n_layers; idx++) {
354 tot_dimms *= layers[idx].size;
355
356 if (layers[idx].is_virt_csrow)
357 tot_csrows *= layers[idx].size;
358 else
359 tot_channels *= layers[idx].size;
360
361 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
362 per_rank = true;
363 }
364
365 mci = kzalloc(sizeof(struct mem_ctl_info), GFP_KERNEL);
366 if (!mci)
367 return NULL;
368
369 mci->layers = kcalloc(n_layers, sizeof(struct edac_mc_layer), GFP_KERNEL);
370 if (!mci->layers)
371 goto error;
372
373 mci->pvt_info = kzalloc(sz_pvt, GFP_KERNEL);
374 if (!mci->pvt_info)
375 goto error;
376
377 mci->dev.release = mci_release;
378 device_initialize(&mci->dev);
379
380 /* setup index and various internal pointers */
381 mci->mc_idx = mc_num;
382 mci->tot_dimms = tot_dimms;
383 mci->n_layers = n_layers;
384 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
385 mci->nr_csrows = tot_csrows;
386 mci->num_cschannel = tot_channels;
387 mci->csbased = per_rank;
388
389 if (edac_mc_alloc_csrows(mci))
390 goto error;
391
392 if (edac_mc_alloc_dimms(mci))
393 goto error;
394
395 mci->op_state = OP_ALLOC;
396
397 return mci;
398
399 error:
400 _edac_mc_free(mci);
401
402 return NULL;
403 }
404 EXPORT_SYMBOL_GPL(edac_mc_alloc);
405
edac_mc_free(struct mem_ctl_info * mci)406 void edac_mc_free(struct mem_ctl_info *mci)
407 {
408 edac_dbg(1, "\n");
409
410 _edac_mc_free(mci);
411 }
412 EXPORT_SYMBOL_GPL(edac_mc_free);
413
edac_has_mcs(void)414 bool edac_has_mcs(void)
415 {
416 bool ret;
417
418 mutex_lock(&mem_ctls_mutex);
419
420 ret = list_empty(&mc_devices);
421
422 mutex_unlock(&mem_ctls_mutex);
423
424 return !ret;
425 }
426 EXPORT_SYMBOL_GPL(edac_has_mcs);
427
428 /* Caller must hold mem_ctls_mutex */
__find_mci_by_dev(struct device * dev)429 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
430 {
431 struct mem_ctl_info *mci;
432 struct list_head *item;
433
434 edac_dbg(3, "\n");
435
436 list_for_each(item, &mc_devices) {
437 mci = list_entry(item, struct mem_ctl_info, link);
438
439 if (mci->pdev == dev)
440 return mci;
441 }
442
443 return NULL;
444 }
445
446 /**
447 * find_mci_by_dev
448 *
449 * scan list of controllers looking for the one that manages
450 * the 'dev' device
451 * @dev: pointer to a struct device related with the MCI
452 */
find_mci_by_dev(struct device * dev)453 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
454 {
455 struct mem_ctl_info *ret;
456
457 mutex_lock(&mem_ctls_mutex);
458 ret = __find_mci_by_dev(dev);
459 mutex_unlock(&mem_ctls_mutex);
460
461 return ret;
462 }
463 EXPORT_SYMBOL_GPL(find_mci_by_dev);
464
465 /*
466 * edac_mc_workq_function
467 * performs the operation scheduled by a workq request
468 */
edac_mc_workq_function(struct work_struct * work_req)469 static void edac_mc_workq_function(struct work_struct *work_req)
470 {
471 struct delayed_work *d_work = to_delayed_work(work_req);
472 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
473
474 mutex_lock(&mem_ctls_mutex);
475
476 if (mci->op_state != OP_RUNNING_POLL) {
477 mutex_unlock(&mem_ctls_mutex);
478 return;
479 }
480
481 if (edac_op_state == EDAC_OPSTATE_POLL)
482 mci->edac_check(mci);
483
484 mutex_unlock(&mem_ctls_mutex);
485
486 /* Queue ourselves again. */
487 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
488 }
489
490 /*
491 * edac_mc_reset_delay_period(unsigned long value)
492 *
493 * user space has updated our poll period value, need to
494 * reset our workq delays
495 */
edac_mc_reset_delay_period(unsigned long value)496 void edac_mc_reset_delay_period(unsigned long value)
497 {
498 struct mem_ctl_info *mci;
499 struct list_head *item;
500
501 mutex_lock(&mem_ctls_mutex);
502
503 list_for_each(item, &mc_devices) {
504 mci = list_entry(item, struct mem_ctl_info, link);
505
506 if (mci->op_state == OP_RUNNING_POLL)
507 edac_mod_work(&mci->work, value);
508 }
509 mutex_unlock(&mem_ctls_mutex);
510 }
511
512
513
514 /* Return 0 on success, 1 on failure.
515 * Before calling this function, caller must
516 * assign a unique value to mci->mc_idx.
517 *
518 * locking model:
519 *
520 * called with the mem_ctls_mutex lock held
521 */
add_mc_to_global_list(struct mem_ctl_info * mci)522 static int add_mc_to_global_list(struct mem_ctl_info *mci)
523 {
524 struct list_head *item, *insert_before;
525 struct mem_ctl_info *p;
526
527 insert_before = &mc_devices;
528
529 p = __find_mci_by_dev(mci->pdev);
530 if (unlikely(p != NULL))
531 goto fail0;
532
533 list_for_each(item, &mc_devices) {
534 p = list_entry(item, struct mem_ctl_info, link);
535
536 if (p->mc_idx >= mci->mc_idx) {
537 if (unlikely(p->mc_idx == mci->mc_idx))
538 goto fail1;
539
540 insert_before = item;
541 break;
542 }
543 }
544
545 list_add_tail_rcu(&mci->link, insert_before);
546 return 0;
547
548 fail0:
549 edac_printk(KERN_WARNING, EDAC_MC,
550 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
551 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
552 return 1;
553
554 fail1:
555 edac_printk(KERN_WARNING, EDAC_MC,
556 "bug in low-level driver: attempt to assign\n"
557 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
558 return 1;
559 }
560
del_mc_from_global_list(struct mem_ctl_info * mci)561 static int del_mc_from_global_list(struct mem_ctl_info *mci)
562 {
563 list_del_rcu(&mci->link);
564
565 /* these are for safe removal of devices from global list while
566 * NMI handlers may be traversing list
567 */
568 synchronize_rcu();
569 INIT_LIST_HEAD(&mci->link);
570
571 return list_empty(&mc_devices);
572 }
573
edac_mc_find(int idx)574 struct mem_ctl_info *edac_mc_find(int idx)
575 {
576 struct mem_ctl_info *mci;
577 struct list_head *item;
578
579 mutex_lock(&mem_ctls_mutex);
580
581 list_for_each(item, &mc_devices) {
582 mci = list_entry(item, struct mem_ctl_info, link);
583 if (mci->mc_idx == idx)
584 goto unlock;
585 }
586
587 mci = NULL;
588 unlock:
589 mutex_unlock(&mem_ctls_mutex);
590 return mci;
591 }
592 EXPORT_SYMBOL(edac_mc_find);
593
edac_get_owner(void)594 const char *edac_get_owner(void)
595 {
596 return edac_mc_owner;
597 }
598 EXPORT_SYMBOL_GPL(edac_get_owner);
599
600 /* FIXME - should a warning be printed if no error detection? correction? */
edac_mc_add_mc_with_groups(struct mem_ctl_info * mci,const struct attribute_group ** groups)601 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
602 const struct attribute_group **groups)
603 {
604 int ret = -EINVAL;
605 edac_dbg(0, "\n");
606
607 #ifdef CONFIG_EDAC_DEBUG
608 if (edac_debug_level >= 3)
609 edac_mc_dump_mci(mci);
610
611 if (edac_debug_level >= 4) {
612 struct dimm_info *dimm;
613 int i;
614
615 for (i = 0; i < mci->nr_csrows; i++) {
616 struct csrow_info *csrow = mci->csrows[i];
617 u32 nr_pages = 0;
618 int j;
619
620 for (j = 0; j < csrow->nr_channels; j++)
621 nr_pages += csrow->channels[j]->dimm->nr_pages;
622 if (!nr_pages)
623 continue;
624 edac_mc_dump_csrow(csrow);
625 for (j = 0; j < csrow->nr_channels; j++)
626 if (csrow->channels[j]->dimm->nr_pages)
627 edac_mc_dump_channel(csrow->channels[j]);
628 }
629
630 mci_for_each_dimm(mci, dimm)
631 edac_mc_dump_dimm(dimm);
632 }
633 #endif
634 mutex_lock(&mem_ctls_mutex);
635
636 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
637 ret = -EPERM;
638 goto fail0;
639 }
640
641 if (add_mc_to_global_list(mci))
642 goto fail0;
643
644 /* set load time so that error rate can be tracked */
645 mci->start_time = jiffies;
646
647 mci->bus = edac_get_sysfs_subsys();
648
649 if (edac_create_sysfs_mci_device(mci, groups)) {
650 edac_mc_printk(mci, KERN_WARNING,
651 "failed to create sysfs device\n");
652 goto fail1;
653 }
654
655 if (mci->edac_check) {
656 mci->op_state = OP_RUNNING_POLL;
657
658 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
659 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
660
661 } else {
662 mci->op_state = OP_RUNNING_INTERRUPT;
663 }
664
665 /* Report action taken */
666 edac_mc_printk(mci, KERN_INFO,
667 "Giving out device to module %s controller %s: DEV %s (%s)\n",
668 mci->mod_name, mci->ctl_name, mci->dev_name,
669 edac_op_state_to_string(mci->op_state));
670
671 edac_mc_owner = mci->mod_name;
672
673 mutex_unlock(&mem_ctls_mutex);
674 return 0;
675
676 fail1:
677 del_mc_from_global_list(mci);
678
679 fail0:
680 mutex_unlock(&mem_ctls_mutex);
681 return ret;
682 }
683 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
684
edac_mc_del_mc(struct device * dev)685 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
686 {
687 struct mem_ctl_info *mci;
688
689 edac_dbg(0, "\n");
690
691 mutex_lock(&mem_ctls_mutex);
692
693 /* find the requested mci struct in the global list */
694 mci = __find_mci_by_dev(dev);
695 if (mci == NULL) {
696 mutex_unlock(&mem_ctls_mutex);
697 return NULL;
698 }
699
700 /* mark MCI offline: */
701 mci->op_state = OP_OFFLINE;
702
703 if (del_mc_from_global_list(mci))
704 edac_mc_owner = NULL;
705
706 mutex_unlock(&mem_ctls_mutex);
707
708 if (mci->edac_check)
709 edac_stop_work(&mci->work);
710
711 /* remove from sysfs */
712 edac_remove_sysfs_mci_device(mci);
713
714 edac_printk(KERN_INFO, EDAC_MC,
715 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
716 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
717
718 return mci;
719 }
720 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
721
edac_mc_scrub_block(unsigned long page,unsigned long offset,u32 size)722 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
723 u32 size)
724 {
725 struct page *pg;
726 void *virt_addr;
727 unsigned long flags = 0;
728
729 edac_dbg(3, "\n");
730
731 /* ECC error page was not in our memory. Ignore it. */
732 if (!pfn_valid(page))
733 return;
734
735 /* Find the actual page structure then map it and fix */
736 pg = pfn_to_page(page);
737
738 if (PageHighMem(pg))
739 local_irq_save(flags);
740
741 virt_addr = kmap_atomic(pg);
742
743 /* Perform architecture specific atomic scrub operation */
744 edac_atomic_scrub(virt_addr + offset, size);
745
746 /* Unmap and complete */
747 kunmap_atomic(virt_addr);
748
749 if (PageHighMem(pg))
750 local_irq_restore(flags);
751 }
752
753 /* FIXME - should return -1 */
edac_mc_find_csrow_by_page(struct mem_ctl_info * mci,unsigned long page)754 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
755 {
756 struct csrow_info **csrows = mci->csrows;
757 int row, i, j, n;
758
759 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
760 row = -1;
761
762 for (i = 0; i < mci->nr_csrows; i++) {
763 struct csrow_info *csrow = csrows[i];
764 n = 0;
765 for (j = 0; j < csrow->nr_channels; j++) {
766 struct dimm_info *dimm = csrow->channels[j]->dimm;
767 n += dimm->nr_pages;
768 }
769 if (n == 0)
770 continue;
771
772 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
773 mci->mc_idx,
774 csrow->first_page, page, csrow->last_page,
775 csrow->page_mask);
776
777 if ((page >= csrow->first_page) &&
778 (page <= csrow->last_page) &&
779 ((page & csrow->page_mask) ==
780 (csrow->first_page & csrow->page_mask))) {
781 row = i;
782 break;
783 }
784 }
785
786 if (row == -1)
787 edac_mc_printk(mci, KERN_ERR,
788 "could not look up page error address %lx\n",
789 (unsigned long)page);
790
791 return row;
792 }
793 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
794
795 const char *edac_layer_name[] = {
796 [EDAC_MC_LAYER_BRANCH] = "branch",
797 [EDAC_MC_LAYER_CHANNEL] = "channel",
798 [EDAC_MC_LAYER_SLOT] = "slot",
799 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
800 [EDAC_MC_LAYER_ALL_MEM] = "memory",
801 };
802 EXPORT_SYMBOL_GPL(edac_layer_name);
803
edac_inc_ce_error(struct edac_raw_error_desc * e)804 static void edac_inc_ce_error(struct edac_raw_error_desc *e)
805 {
806 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
807 struct mem_ctl_info *mci = error_desc_to_mci(e);
808 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
809
810 mci->ce_mc += e->error_count;
811
812 if (dimm)
813 dimm->ce_count += e->error_count;
814 else
815 mci->ce_noinfo_count += e->error_count;
816 }
817
edac_inc_ue_error(struct edac_raw_error_desc * e)818 static void edac_inc_ue_error(struct edac_raw_error_desc *e)
819 {
820 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
821 struct mem_ctl_info *mci = error_desc_to_mci(e);
822 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
823
824 mci->ue_mc += e->error_count;
825
826 if (dimm)
827 dimm->ue_count += e->error_count;
828 else
829 mci->ue_noinfo_count += e->error_count;
830 }
831
edac_ce_error(struct edac_raw_error_desc * e)832 static void edac_ce_error(struct edac_raw_error_desc *e)
833 {
834 struct mem_ctl_info *mci = error_desc_to_mci(e);
835 unsigned long remapped_page;
836
837 if (edac_mc_get_log_ce()) {
838 edac_mc_printk(mci, KERN_WARNING,
839 "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
840 e->error_count, e->msg,
841 *e->msg ? " " : "",
842 e->label, e->location, e->page_frame_number, e->offset_in_page,
843 e->grain, e->syndrome,
844 *e->other_detail ? " - " : "",
845 e->other_detail);
846 }
847
848 edac_inc_ce_error(e);
849
850 if (mci->scrub_mode == SCRUB_SW_SRC) {
851 /*
852 * Some memory controllers (called MCs below) can remap
853 * memory so that it is still available at a different
854 * address when PCI devices map into memory.
855 * MC's that can't do this, lose the memory where PCI
856 * devices are mapped. This mapping is MC-dependent
857 * and so we call back into the MC driver for it to
858 * map the MC page to a physical (CPU) page which can
859 * then be mapped to a virtual page - which can then
860 * be scrubbed.
861 */
862 remapped_page = mci->ctl_page_to_phys ?
863 mci->ctl_page_to_phys(mci, e->page_frame_number) :
864 e->page_frame_number;
865
866 edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
867 }
868 }
869
edac_ue_error(struct edac_raw_error_desc * e)870 static void edac_ue_error(struct edac_raw_error_desc *e)
871 {
872 struct mem_ctl_info *mci = error_desc_to_mci(e);
873
874 if (edac_mc_get_log_ue()) {
875 edac_mc_printk(mci, KERN_WARNING,
876 "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
877 e->error_count, e->msg,
878 *e->msg ? " " : "",
879 e->label, e->location, e->page_frame_number, e->offset_in_page,
880 e->grain,
881 *e->other_detail ? " - " : "",
882 e->other_detail);
883 }
884
885 edac_inc_ue_error(e);
886
887 if (edac_mc_get_panic_on_ue()) {
888 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
889 e->msg,
890 *e->msg ? " " : "",
891 e->label, e->location, e->page_frame_number, e->offset_in_page,
892 e->grain,
893 *e->other_detail ? " - " : "",
894 e->other_detail);
895 }
896 }
897
edac_inc_csrow(struct edac_raw_error_desc * e,int row,int chan)898 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
899 {
900 struct mem_ctl_info *mci = error_desc_to_mci(e);
901 enum hw_event_mc_err_type type = e->type;
902 u16 count = e->error_count;
903
904 if (row < 0)
905 return;
906
907 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
908
909 if (type == HW_EVENT_ERR_CORRECTED) {
910 mci->csrows[row]->ce_count += count;
911 if (chan >= 0)
912 mci->csrows[row]->channels[chan]->ce_count += count;
913 } else {
914 mci->csrows[row]->ue_count += count;
915 }
916 }
917
edac_raw_mc_handle_error(struct edac_raw_error_desc * e)918 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
919 {
920 struct mem_ctl_info *mci = error_desc_to_mci(e);
921 u8 grain_bits;
922
923 /* Sanity-check driver-supplied grain value. */
924 if (WARN_ON_ONCE(!e->grain))
925 e->grain = 1;
926
927 grain_bits = fls_long(e->grain - 1);
928
929 /* Report the error via the trace interface */
930 if (IS_ENABLED(CONFIG_RAS))
931 trace_mc_event(e->type, e->msg, e->label, e->error_count,
932 mci->mc_idx, e->top_layer, e->mid_layer,
933 e->low_layer,
934 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
935 grain_bits, e->syndrome, e->other_detail);
936
937 if (e->type == HW_EVENT_ERR_CORRECTED)
938 edac_ce_error(e);
939 else
940 edac_ue_error(e);
941 }
942 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
943
edac_mc_handle_error(const enum hw_event_mc_err_type type,struct mem_ctl_info * mci,const u16 error_count,const unsigned long page_frame_number,const unsigned long offset_in_page,const unsigned long syndrome,const int top_layer,const int mid_layer,const int low_layer,const char * msg,const char * other_detail)944 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
945 struct mem_ctl_info *mci,
946 const u16 error_count,
947 const unsigned long page_frame_number,
948 const unsigned long offset_in_page,
949 const unsigned long syndrome,
950 const int top_layer,
951 const int mid_layer,
952 const int low_layer,
953 const char *msg,
954 const char *other_detail)
955 {
956 struct dimm_info *dimm;
957 char *p, *end;
958 int row = -1, chan = -1;
959 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
960 int i, n_labels = 0;
961 struct edac_raw_error_desc *e = &mci->error_desc;
962 bool any_memory = true;
963 const char *prefix;
964
965 edac_dbg(3, "MC%d\n", mci->mc_idx);
966
967 /* Fills the error report buffer */
968 memset(e, 0, sizeof (*e));
969 e->error_count = error_count;
970 e->type = type;
971 e->top_layer = top_layer;
972 e->mid_layer = mid_layer;
973 e->low_layer = low_layer;
974 e->page_frame_number = page_frame_number;
975 e->offset_in_page = offset_in_page;
976 e->syndrome = syndrome;
977 /* need valid strings here for both: */
978 e->msg = msg ?: "";
979 e->other_detail = other_detail ?: "";
980
981 /*
982 * Check if the event report is consistent and if the memory location is
983 * known. If it is, the DIMM(s) label info will be filled and the DIMM's
984 * error counters will be incremented.
985 */
986 for (i = 0; i < mci->n_layers; i++) {
987 if (pos[i] >= (int)mci->layers[i].size) {
988
989 edac_mc_printk(mci, KERN_ERR,
990 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
991 edac_layer_name[mci->layers[i].type],
992 pos[i], mci->layers[i].size);
993 /*
994 * Instead of just returning it, let's use what's
995 * known about the error. The increment routines and
996 * the DIMM filter logic will do the right thing by
997 * pointing the likely damaged DIMMs.
998 */
999 pos[i] = -1;
1000 }
1001 if (pos[i] >= 0)
1002 any_memory = false;
1003 }
1004
1005 /*
1006 * Get the dimm label/grain that applies to the match criteria.
1007 * As the error algorithm may not be able to point to just one memory
1008 * stick, the logic here will get all possible labels that could
1009 * pottentially be affected by the error.
1010 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1011 * to have only the MC channel and the MC dimm (also called "branch")
1012 * but the channel is not known, as the memory is arranged in pairs,
1013 * where each memory belongs to a separate channel within the same
1014 * branch.
1015 */
1016 p = e->label;
1017 *p = '\0';
1018 end = p + sizeof(e->label);
1019 prefix = "";
1020
1021 mci_for_each_dimm(mci, dimm) {
1022 if (top_layer >= 0 && top_layer != dimm->location[0])
1023 continue;
1024 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1025 continue;
1026 if (low_layer >= 0 && low_layer != dimm->location[2])
1027 continue;
1028
1029 /* get the max grain, over the error match range */
1030 if (dimm->grain > e->grain)
1031 e->grain = dimm->grain;
1032
1033 /*
1034 * If the error is memory-controller wide, there's no need to
1035 * seek for the affected DIMMs because the whole channel/memory
1036 * controller/... may be affected. Also, don't show errors for
1037 * empty DIMM slots.
1038 */
1039 if (!dimm->nr_pages)
1040 continue;
1041
1042 n_labels++;
1043 if (n_labels > EDAC_MAX_LABELS) {
1044 p = e->label;
1045 *p = '\0';
1046 } else {
1047 p += scnprintf(p, end - p, "%s%s", prefix, dimm->label);
1048 prefix = OTHER_LABEL;
1049 }
1050
1051 /*
1052 * get csrow/channel of the DIMM, in order to allow
1053 * incrementing the compat API counters
1054 */
1055 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1056 mci->csbased ? "rank" : "dimm",
1057 dimm->csrow, dimm->cschannel);
1058 if (row == -1)
1059 row = dimm->csrow;
1060 else if (row >= 0 && row != dimm->csrow)
1061 row = -2;
1062
1063 if (chan == -1)
1064 chan = dimm->cschannel;
1065 else if (chan >= 0 && chan != dimm->cschannel)
1066 chan = -2;
1067 }
1068
1069 if (any_memory)
1070 strscpy(e->label, "any memory", sizeof(e->label));
1071 else if (!*e->label)
1072 strscpy(e->label, "unknown memory", sizeof(e->label));
1073
1074 edac_inc_csrow(e, row, chan);
1075
1076 /* Fill the RAM location data */
1077 p = e->location;
1078 end = p + sizeof(e->location);
1079 prefix = "";
1080
1081 for (i = 0; i < mci->n_layers; i++) {
1082 if (pos[i] < 0)
1083 continue;
1084
1085 p += scnprintf(p, end - p, "%s%s:%d", prefix,
1086 edac_layer_name[mci->layers[i].type], pos[i]);
1087 prefix = " ";
1088 }
1089
1090 edac_raw_mc_handle_error(e);
1091 }
1092 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1093