1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *	The entire API were re-written, and ported to use struct device
12  *
13  */
14 
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21 
22 #include "edac_mc.h"
23 #include "edac_module.h"
24 
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static unsigned int edac_mc_poll_msec = 1000;
30 
31 /* Getter functions for above */
edac_mc_get_log_ue(void)32 int edac_mc_get_log_ue(void)
33 {
34 	return edac_mc_log_ue;
35 }
36 
edac_mc_get_log_ce(void)37 int edac_mc_get_log_ce(void)
38 {
39 	return edac_mc_log_ce;
40 }
41 
edac_mc_get_panic_on_ue(void)42 int edac_mc_get_panic_on_ue(void)
43 {
44 	return edac_mc_panic_on_ue;
45 }
46 
47 /* this is temporary */
edac_mc_get_poll_msec(void)48 unsigned int edac_mc_get_poll_msec(void)
49 {
50 	return edac_mc_poll_msec;
51 }
52 
edac_set_poll_msec(const char * val,const struct kernel_param * kp)53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp)
54 {
55 	unsigned int i;
56 	int ret;
57 
58 	if (!val)
59 		return -EINVAL;
60 
61 	ret = kstrtouint(val, 0, &i);
62 	if (ret)
63 		return ret;
64 
65 	if (i < 1000)
66 		return -EINVAL;
67 
68 	*((unsigned int *)kp->arg) = i;
69 
70 	/* notify edac_mc engine to reset the poll period */
71 	edac_mc_reset_delay_period(i);
72 
73 	return 0;
74 }
75 
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 		 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 		 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint,
86 		  &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88 
89 static struct device *mci_pdev;
90 
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const dev_types[] = {
95 	[DEV_UNKNOWN] = "Unknown",
96 	[DEV_X1] = "x1",
97 	[DEV_X2] = "x2",
98 	[DEV_X4] = "x4",
99 	[DEV_X8] = "x8",
100 	[DEV_X16] = "x16",
101 	[DEV_X32] = "x32",
102 	[DEV_X64] = "x64"
103 };
104 
105 static const char * const edac_caps[] = {
106 	[EDAC_UNKNOWN] = "Unknown",
107 	[EDAC_NONE] = "None",
108 	[EDAC_RESERVED] = "Reserved",
109 	[EDAC_PARITY] = "PARITY",
110 	[EDAC_EC] = "EC",
111 	[EDAC_SECDED] = "SECDED",
112 	[EDAC_S2ECD2ED] = "S2ECD2ED",
113 	[EDAC_S4ECD4ED] = "S4ECD4ED",
114 	[EDAC_S8ECD8ED] = "S8ECD8ED",
115 	[EDAC_S16ECD16ED] = "S16ECD16ED"
116 };
117 
118 #ifdef CONFIG_EDAC_LEGACY_SYSFS
119 /*
120  * EDAC sysfs CSROW data structures and methods
121  */
122 
123 #define to_csrow(k) container_of(k, struct csrow_info, dev)
124 
125 /*
126  * We need it to avoid namespace conflicts between the legacy API
127  * and the per-dimm/per-rank one
128  */
129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
130 	static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
131 
132 struct dev_ch_attribute {
133 	struct device_attribute attr;
134 	unsigned int channel;
135 };
136 
137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
138 	static struct dev_ch_attribute dev_attr_legacy_##_name = \
139 		{ __ATTR(_name, _mode, _show, _store), (_var) }
140 
141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
142 
143 /* Set of more default csrow<id> attribute show/store functions */
csrow_ue_count_show(struct device * dev,struct device_attribute * mattr,char * data)144 static ssize_t csrow_ue_count_show(struct device *dev,
145 				   struct device_attribute *mattr, char *data)
146 {
147 	struct csrow_info *csrow = to_csrow(dev);
148 
149 	return sprintf(data, "%u\n", csrow->ue_count);
150 }
151 
csrow_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)152 static ssize_t csrow_ce_count_show(struct device *dev,
153 				   struct device_attribute *mattr, char *data)
154 {
155 	struct csrow_info *csrow = to_csrow(dev);
156 
157 	return sprintf(data, "%u\n", csrow->ce_count);
158 }
159 
csrow_size_show(struct device * dev,struct device_attribute * mattr,char * data)160 static ssize_t csrow_size_show(struct device *dev,
161 			       struct device_attribute *mattr, char *data)
162 {
163 	struct csrow_info *csrow = to_csrow(dev);
164 	int i;
165 	u32 nr_pages = 0;
166 
167 	for (i = 0; i < csrow->nr_channels; i++)
168 		nr_pages += csrow->channels[i]->dimm->nr_pages;
169 	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
170 }
171 
csrow_mem_type_show(struct device * dev,struct device_attribute * mattr,char * data)172 static ssize_t csrow_mem_type_show(struct device *dev,
173 				   struct device_attribute *mattr, char *data)
174 {
175 	struct csrow_info *csrow = to_csrow(dev);
176 
177 	return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]);
178 }
179 
csrow_dev_type_show(struct device * dev,struct device_attribute * mattr,char * data)180 static ssize_t csrow_dev_type_show(struct device *dev,
181 				   struct device_attribute *mattr, char *data)
182 {
183 	struct csrow_info *csrow = to_csrow(dev);
184 
185 	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
186 }
187 
csrow_edac_mode_show(struct device * dev,struct device_attribute * mattr,char * data)188 static ssize_t csrow_edac_mode_show(struct device *dev,
189 				    struct device_attribute *mattr,
190 				    char *data)
191 {
192 	struct csrow_info *csrow = to_csrow(dev);
193 
194 	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
195 }
196 
197 /* show/store functions for DIMM Label attributes */
channel_dimm_label_show(struct device * dev,struct device_attribute * mattr,char * data)198 static ssize_t channel_dimm_label_show(struct device *dev,
199 				       struct device_attribute *mattr,
200 				       char *data)
201 {
202 	struct csrow_info *csrow = to_csrow(dev);
203 	unsigned int chan = to_channel(mattr);
204 	struct rank_info *rank = csrow->channels[chan];
205 
206 	/* if field has not been initialized, there is nothing to send */
207 	if (!rank->dimm->label[0])
208 		return 0;
209 
210 	return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
211 			rank->dimm->label);
212 }
213 
channel_dimm_label_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)214 static ssize_t channel_dimm_label_store(struct device *dev,
215 					struct device_attribute *mattr,
216 					const char *data, size_t count)
217 {
218 	struct csrow_info *csrow = to_csrow(dev);
219 	unsigned int chan = to_channel(mattr);
220 	struct rank_info *rank = csrow->channels[chan];
221 	size_t copy_count = count;
222 
223 	if (count == 0)
224 		return -EINVAL;
225 
226 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
227 		copy_count -= 1;
228 
229 	if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
230 		return -EINVAL;
231 
232 	strncpy(rank->dimm->label, data, copy_count);
233 	rank->dimm->label[copy_count] = '\0';
234 
235 	return count;
236 }
237 
238 /* show function for dynamic chX_ce_count attribute */
channel_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)239 static ssize_t channel_ce_count_show(struct device *dev,
240 				     struct device_attribute *mattr, char *data)
241 {
242 	struct csrow_info *csrow = to_csrow(dev);
243 	unsigned int chan = to_channel(mattr);
244 	struct rank_info *rank = csrow->channels[chan];
245 
246 	return sprintf(data, "%u\n", rank->ce_count);
247 }
248 
249 /* cwrow<id>/attribute files */
250 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
251 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
252 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
253 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
254 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
255 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
256 
257 /* default attributes of the CSROW<id> object */
258 static struct attribute *csrow_attrs[] = {
259 	&dev_attr_legacy_dev_type.attr,
260 	&dev_attr_legacy_mem_type.attr,
261 	&dev_attr_legacy_edac_mode.attr,
262 	&dev_attr_legacy_size_mb.attr,
263 	&dev_attr_legacy_ue_count.attr,
264 	&dev_attr_legacy_ce_count.attr,
265 	NULL,
266 };
267 
268 static const struct attribute_group csrow_attr_grp = {
269 	.attrs	= csrow_attrs,
270 };
271 
272 static const struct attribute_group *csrow_attr_groups[] = {
273 	&csrow_attr_grp,
274 	NULL
275 };
276 
277 static const struct device_type csrow_attr_type = {
278 	.groups		= csrow_attr_groups,
279 };
280 
281 /*
282  * possible dynamic channel DIMM Label attribute files
283  *
284  */
285 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
286 	channel_dimm_label_show, channel_dimm_label_store, 0);
287 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
288 	channel_dimm_label_show, channel_dimm_label_store, 1);
289 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
290 	channel_dimm_label_show, channel_dimm_label_store, 2);
291 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
292 	channel_dimm_label_show, channel_dimm_label_store, 3);
293 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
294 	channel_dimm_label_show, channel_dimm_label_store, 4);
295 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
296 	channel_dimm_label_show, channel_dimm_label_store, 5);
297 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR,
298 	channel_dimm_label_show, channel_dimm_label_store, 6);
299 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR,
300 	channel_dimm_label_show, channel_dimm_label_store, 7);
301 
302 /* Total possible dynamic DIMM Label attribute file table */
303 static struct attribute *dynamic_csrow_dimm_attr[] = {
304 	&dev_attr_legacy_ch0_dimm_label.attr.attr,
305 	&dev_attr_legacy_ch1_dimm_label.attr.attr,
306 	&dev_attr_legacy_ch2_dimm_label.attr.attr,
307 	&dev_attr_legacy_ch3_dimm_label.attr.attr,
308 	&dev_attr_legacy_ch4_dimm_label.attr.attr,
309 	&dev_attr_legacy_ch5_dimm_label.attr.attr,
310 	&dev_attr_legacy_ch6_dimm_label.attr.attr,
311 	&dev_attr_legacy_ch7_dimm_label.attr.attr,
312 	NULL
313 };
314 
315 /* possible dynamic channel ce_count attribute files */
316 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
317 		   channel_ce_count_show, NULL, 0);
318 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
319 		   channel_ce_count_show, NULL, 1);
320 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
321 		   channel_ce_count_show, NULL, 2);
322 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
323 		   channel_ce_count_show, NULL, 3);
324 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
325 		   channel_ce_count_show, NULL, 4);
326 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
327 		   channel_ce_count_show, NULL, 5);
328 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO,
329 		   channel_ce_count_show, NULL, 6);
330 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO,
331 		   channel_ce_count_show, NULL, 7);
332 
333 /* Total possible dynamic ce_count attribute file table */
334 static struct attribute *dynamic_csrow_ce_count_attr[] = {
335 	&dev_attr_legacy_ch0_ce_count.attr.attr,
336 	&dev_attr_legacy_ch1_ce_count.attr.attr,
337 	&dev_attr_legacy_ch2_ce_count.attr.attr,
338 	&dev_attr_legacy_ch3_ce_count.attr.attr,
339 	&dev_attr_legacy_ch4_ce_count.attr.attr,
340 	&dev_attr_legacy_ch5_ce_count.attr.attr,
341 	&dev_attr_legacy_ch6_ce_count.attr.attr,
342 	&dev_attr_legacy_ch7_ce_count.attr.attr,
343 	NULL
344 };
345 
csrow_dev_is_visible(struct kobject * kobj,struct attribute * attr,int idx)346 static umode_t csrow_dev_is_visible(struct kobject *kobj,
347 				    struct attribute *attr, int idx)
348 {
349 	struct device *dev = kobj_to_dev(kobj);
350 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
351 
352 	if (idx >= csrow->nr_channels)
353 		return 0;
354 
355 	if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) {
356 		WARN_ONCE(1, "idx: %d\n", idx);
357 		return 0;
358 	}
359 
360 	/* Only expose populated DIMMs */
361 	if (!csrow->channels[idx]->dimm->nr_pages)
362 		return 0;
363 
364 	return attr->mode;
365 }
366 
367 
368 static const struct attribute_group csrow_dev_dimm_group = {
369 	.attrs = dynamic_csrow_dimm_attr,
370 	.is_visible = csrow_dev_is_visible,
371 };
372 
373 static const struct attribute_group csrow_dev_ce_count_group = {
374 	.attrs = dynamic_csrow_ce_count_attr,
375 	.is_visible = csrow_dev_is_visible,
376 };
377 
378 static const struct attribute_group *csrow_dev_groups[] = {
379 	&csrow_dev_dimm_group,
380 	&csrow_dev_ce_count_group,
381 	NULL
382 };
383 
csrow_release(struct device * dev)384 static void csrow_release(struct device *dev)
385 {
386 	/*
387 	 * Nothing to do, just unregister sysfs here. The mci
388 	 * device owns the data and will also release it.
389 	 */
390 }
391 
nr_pages_per_csrow(struct csrow_info * csrow)392 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
393 {
394 	int chan, nr_pages = 0;
395 
396 	for (chan = 0; chan < csrow->nr_channels; chan++)
397 		nr_pages += csrow->channels[chan]->dimm->nr_pages;
398 
399 	return nr_pages;
400 }
401 
402 /* Create a CSROW object under specifed edac_mc_device */
edac_create_csrow_object(struct mem_ctl_info * mci,struct csrow_info * csrow,int index)403 static int edac_create_csrow_object(struct mem_ctl_info *mci,
404 				    struct csrow_info *csrow, int index)
405 {
406 	int err;
407 
408 	csrow->dev.type = &csrow_attr_type;
409 	csrow->dev.groups = csrow_dev_groups;
410 	csrow->dev.release = csrow_release;
411 	device_initialize(&csrow->dev);
412 	csrow->dev.parent = &mci->dev;
413 	csrow->mci = mci;
414 	dev_set_name(&csrow->dev, "csrow%d", index);
415 	dev_set_drvdata(&csrow->dev, csrow);
416 
417 	err = device_add(&csrow->dev);
418 	if (err) {
419 		edac_dbg(1, "failure: create device %s\n", dev_name(&csrow->dev));
420 		put_device(&csrow->dev);
421 		return err;
422 	}
423 
424 	edac_dbg(0, "device %s created\n", dev_name(&csrow->dev));
425 
426 	return 0;
427 }
428 
429 /* Create a CSROW object under specifed edac_mc_device */
edac_create_csrow_objects(struct mem_ctl_info * mci)430 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
431 {
432 	int err, i;
433 	struct csrow_info *csrow;
434 
435 	for (i = 0; i < mci->nr_csrows; i++) {
436 		csrow = mci->csrows[i];
437 		if (!nr_pages_per_csrow(csrow))
438 			continue;
439 		err = edac_create_csrow_object(mci, mci->csrows[i], i);
440 		if (err < 0)
441 			goto error;
442 	}
443 	return 0;
444 
445 error:
446 	for (--i; i >= 0; i--) {
447 		if (device_is_registered(&mci->csrows[i]->dev))
448 			device_unregister(&mci->csrows[i]->dev);
449 	}
450 
451 	return err;
452 }
453 
edac_delete_csrow_objects(struct mem_ctl_info * mci)454 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
455 {
456 	int i;
457 
458 	for (i = 0; i < mci->nr_csrows; i++) {
459 		if (device_is_registered(&mci->csrows[i]->dev))
460 			device_unregister(&mci->csrows[i]->dev);
461 	}
462 }
463 
464 #endif
465 
466 /*
467  * Per-dimm (or per-rank) devices
468  */
469 
470 #define to_dimm(k) container_of(k, struct dimm_info, dev)
471 
472 /* show/store functions for DIMM Label attributes */
dimmdev_location_show(struct device * dev,struct device_attribute * mattr,char * data)473 static ssize_t dimmdev_location_show(struct device *dev,
474 				     struct device_attribute *mattr, char *data)
475 {
476 	struct dimm_info *dimm = to_dimm(dev);
477 	ssize_t count;
478 
479 	count = edac_dimm_info_location(dimm, data, PAGE_SIZE);
480 	count += scnprintf(data + count, PAGE_SIZE - count, "\n");
481 
482 	return count;
483 }
484 
dimmdev_label_show(struct device * dev,struct device_attribute * mattr,char * data)485 static ssize_t dimmdev_label_show(struct device *dev,
486 				  struct device_attribute *mattr, char *data)
487 {
488 	struct dimm_info *dimm = to_dimm(dev);
489 
490 	/* if field has not been initialized, there is nothing to send */
491 	if (!dimm->label[0])
492 		return 0;
493 
494 	return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
495 }
496 
dimmdev_label_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)497 static ssize_t dimmdev_label_store(struct device *dev,
498 				   struct device_attribute *mattr,
499 				   const char *data,
500 				   size_t count)
501 {
502 	struct dimm_info *dimm = to_dimm(dev);
503 	size_t copy_count = count;
504 
505 	if (count == 0)
506 		return -EINVAL;
507 
508 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
509 		copy_count -= 1;
510 
511 	if (copy_count == 0 || copy_count >= sizeof(dimm->label))
512 		return -EINVAL;
513 
514 	strncpy(dimm->label, data, copy_count);
515 	dimm->label[copy_count] = '\0';
516 
517 	return count;
518 }
519 
dimmdev_size_show(struct device * dev,struct device_attribute * mattr,char * data)520 static ssize_t dimmdev_size_show(struct device *dev,
521 				 struct device_attribute *mattr, char *data)
522 {
523 	struct dimm_info *dimm = to_dimm(dev);
524 
525 	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
526 }
527 
dimmdev_mem_type_show(struct device * dev,struct device_attribute * mattr,char * data)528 static ssize_t dimmdev_mem_type_show(struct device *dev,
529 				     struct device_attribute *mattr, char *data)
530 {
531 	struct dimm_info *dimm = to_dimm(dev);
532 
533 	return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]);
534 }
535 
dimmdev_dev_type_show(struct device * dev,struct device_attribute * mattr,char * data)536 static ssize_t dimmdev_dev_type_show(struct device *dev,
537 				     struct device_attribute *mattr, char *data)
538 {
539 	struct dimm_info *dimm = to_dimm(dev);
540 
541 	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
542 }
543 
dimmdev_edac_mode_show(struct device * dev,struct device_attribute * mattr,char * data)544 static ssize_t dimmdev_edac_mode_show(struct device *dev,
545 				      struct device_attribute *mattr,
546 				      char *data)
547 {
548 	struct dimm_info *dimm = to_dimm(dev);
549 
550 	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
551 }
552 
dimmdev_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)553 static ssize_t dimmdev_ce_count_show(struct device *dev,
554 				      struct device_attribute *mattr,
555 				      char *data)
556 {
557 	struct dimm_info *dimm = to_dimm(dev);
558 
559 	return sprintf(data, "%u\n", dimm->ce_count);
560 }
561 
dimmdev_ue_count_show(struct device * dev,struct device_attribute * mattr,char * data)562 static ssize_t dimmdev_ue_count_show(struct device *dev,
563 				      struct device_attribute *mattr,
564 				      char *data)
565 {
566 	struct dimm_info *dimm = to_dimm(dev);
567 
568 	return sprintf(data, "%u\n", dimm->ue_count);
569 }
570 
571 /* dimm/rank attribute files */
572 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
573 		   dimmdev_label_show, dimmdev_label_store);
574 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
575 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
576 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
577 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
578 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
579 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL);
580 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL);
581 
582 /* attributes of the dimm<id>/rank<id> object */
583 static struct attribute *dimm_attrs[] = {
584 	&dev_attr_dimm_label.attr,
585 	&dev_attr_dimm_location.attr,
586 	&dev_attr_size.attr,
587 	&dev_attr_dimm_mem_type.attr,
588 	&dev_attr_dimm_dev_type.attr,
589 	&dev_attr_dimm_edac_mode.attr,
590 	&dev_attr_dimm_ce_count.attr,
591 	&dev_attr_dimm_ue_count.attr,
592 	NULL,
593 };
594 
595 static const struct attribute_group dimm_attr_grp = {
596 	.attrs	= dimm_attrs,
597 };
598 
599 static const struct attribute_group *dimm_attr_groups[] = {
600 	&dimm_attr_grp,
601 	NULL
602 };
603 
604 static const struct device_type dimm_attr_type = {
605 	.groups		= dimm_attr_groups,
606 };
607 
dimm_release(struct device * dev)608 static void dimm_release(struct device *dev)
609 {
610 	/*
611 	 * Nothing to do, just unregister sysfs here. The mci
612 	 * device owns the data and will also release it.
613 	 */
614 }
615 
616 /* Create a DIMM object under specifed memory controller device */
edac_create_dimm_object(struct mem_ctl_info * mci,struct dimm_info * dimm)617 static int edac_create_dimm_object(struct mem_ctl_info *mci,
618 				   struct dimm_info *dimm)
619 {
620 	int err;
621 	dimm->mci = mci;
622 
623 	dimm->dev.type = &dimm_attr_type;
624 	dimm->dev.release = dimm_release;
625 	device_initialize(&dimm->dev);
626 
627 	dimm->dev.parent = &mci->dev;
628 	if (mci->csbased)
629 		dev_set_name(&dimm->dev, "rank%d", dimm->idx);
630 	else
631 		dev_set_name(&dimm->dev, "dimm%d", dimm->idx);
632 	dev_set_drvdata(&dimm->dev, dimm);
633 	pm_runtime_forbid(&mci->dev);
634 
635 	err = device_add(&dimm->dev);
636 	if (err) {
637 		edac_dbg(1, "failure: create device %s\n", dev_name(&dimm->dev));
638 		put_device(&dimm->dev);
639 		return err;
640 	}
641 
642 	if (IS_ENABLED(CONFIG_EDAC_DEBUG)) {
643 		char location[80];
644 
645 		edac_dimm_info_location(dimm, location, sizeof(location));
646 		edac_dbg(0, "device %s created at location %s\n",
647 			dev_name(&dimm->dev), location);
648 	}
649 
650 	return 0;
651 }
652 
653 /*
654  * Memory controller device
655  */
656 
657 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
658 
mci_reset_counters_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)659 static ssize_t mci_reset_counters_store(struct device *dev,
660 					struct device_attribute *mattr,
661 					const char *data, size_t count)
662 {
663 	struct mem_ctl_info *mci = to_mci(dev);
664 	struct dimm_info *dimm;
665 	int row, chan;
666 
667 	mci->ue_mc = 0;
668 	mci->ce_mc = 0;
669 	mci->ue_noinfo_count = 0;
670 	mci->ce_noinfo_count = 0;
671 
672 	for (row = 0; row < mci->nr_csrows; row++) {
673 		struct csrow_info *ri = mci->csrows[row];
674 
675 		ri->ue_count = 0;
676 		ri->ce_count = 0;
677 
678 		for (chan = 0; chan < ri->nr_channels; chan++)
679 			ri->channels[chan]->ce_count = 0;
680 	}
681 
682 	mci_for_each_dimm(mci, dimm) {
683 		dimm->ue_count = 0;
684 		dimm->ce_count = 0;
685 	}
686 
687 	mci->start_time = jiffies;
688 	return count;
689 }
690 
691 /* Memory scrubbing interface:
692  *
693  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
694  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
695  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
696  *
697  * Negative value still means that an error has occurred while setting
698  * the scrub rate.
699  */
mci_sdram_scrub_rate_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)700 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
701 					  struct device_attribute *mattr,
702 					  const char *data, size_t count)
703 {
704 	struct mem_ctl_info *mci = to_mci(dev);
705 	unsigned long bandwidth = 0;
706 	int new_bw = 0;
707 
708 	if (kstrtoul(data, 10, &bandwidth) < 0)
709 		return -EINVAL;
710 
711 	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
712 	if (new_bw < 0) {
713 		edac_printk(KERN_WARNING, EDAC_MC,
714 			    "Error setting scrub rate to: %lu\n", bandwidth);
715 		return -EINVAL;
716 	}
717 
718 	return count;
719 }
720 
721 /*
722  * ->get_sdram_scrub_rate() return value semantics same as above.
723  */
mci_sdram_scrub_rate_show(struct device * dev,struct device_attribute * mattr,char * data)724 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
725 					 struct device_attribute *mattr,
726 					 char *data)
727 {
728 	struct mem_ctl_info *mci = to_mci(dev);
729 	int bandwidth = 0;
730 
731 	bandwidth = mci->get_sdram_scrub_rate(mci);
732 	if (bandwidth < 0) {
733 		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
734 		return bandwidth;
735 	}
736 
737 	return sprintf(data, "%d\n", bandwidth);
738 }
739 
740 /* default attribute files for the MCI object */
mci_ue_count_show(struct device * dev,struct device_attribute * mattr,char * data)741 static ssize_t mci_ue_count_show(struct device *dev,
742 				 struct device_attribute *mattr,
743 				 char *data)
744 {
745 	struct mem_ctl_info *mci = to_mci(dev);
746 
747 	return sprintf(data, "%u\n", mci->ue_mc);
748 }
749 
mci_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)750 static ssize_t mci_ce_count_show(struct device *dev,
751 				 struct device_attribute *mattr,
752 				 char *data)
753 {
754 	struct mem_ctl_info *mci = to_mci(dev);
755 
756 	return sprintf(data, "%u\n", mci->ce_mc);
757 }
758 
mci_ce_noinfo_show(struct device * dev,struct device_attribute * mattr,char * data)759 static ssize_t mci_ce_noinfo_show(struct device *dev,
760 				  struct device_attribute *mattr,
761 				  char *data)
762 {
763 	struct mem_ctl_info *mci = to_mci(dev);
764 
765 	return sprintf(data, "%u\n", mci->ce_noinfo_count);
766 }
767 
mci_ue_noinfo_show(struct device * dev,struct device_attribute * mattr,char * data)768 static ssize_t mci_ue_noinfo_show(struct device *dev,
769 				  struct device_attribute *mattr,
770 				  char *data)
771 {
772 	struct mem_ctl_info *mci = to_mci(dev);
773 
774 	return sprintf(data, "%u\n", mci->ue_noinfo_count);
775 }
776 
mci_seconds_show(struct device * dev,struct device_attribute * mattr,char * data)777 static ssize_t mci_seconds_show(struct device *dev,
778 				struct device_attribute *mattr,
779 				char *data)
780 {
781 	struct mem_ctl_info *mci = to_mci(dev);
782 
783 	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
784 }
785 
mci_ctl_name_show(struct device * dev,struct device_attribute * mattr,char * data)786 static ssize_t mci_ctl_name_show(struct device *dev,
787 				 struct device_attribute *mattr,
788 				 char *data)
789 {
790 	struct mem_ctl_info *mci = to_mci(dev);
791 
792 	return sprintf(data, "%s\n", mci->ctl_name);
793 }
794 
mci_size_mb_show(struct device * dev,struct device_attribute * mattr,char * data)795 static ssize_t mci_size_mb_show(struct device *dev,
796 				struct device_attribute *mattr,
797 				char *data)
798 {
799 	struct mem_ctl_info *mci = to_mci(dev);
800 	int total_pages = 0, csrow_idx, j;
801 
802 	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
803 		struct csrow_info *csrow = mci->csrows[csrow_idx];
804 
805 		for (j = 0; j < csrow->nr_channels; j++) {
806 			struct dimm_info *dimm = csrow->channels[j]->dimm;
807 
808 			total_pages += dimm->nr_pages;
809 		}
810 	}
811 
812 	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
813 }
814 
mci_max_location_show(struct device * dev,struct device_attribute * mattr,char * data)815 static ssize_t mci_max_location_show(struct device *dev,
816 				     struct device_attribute *mattr,
817 				     char *data)
818 {
819 	struct mem_ctl_info *mci = to_mci(dev);
820 	int len = PAGE_SIZE;
821 	char *p = data;
822 	int i, n;
823 
824 	for (i = 0; i < mci->n_layers; i++) {
825 		n = scnprintf(p, len, "%s %d ",
826 			      edac_layer_name[mci->layers[i].type],
827 			      mci->layers[i].size - 1);
828 		len -= n;
829 		if (len <= 0)
830 			goto out;
831 
832 		p += n;
833 	}
834 
835 	p += scnprintf(p, len, "\n");
836 out:
837 	return p - data;
838 }
839 
840 /* default Control file */
841 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
842 
843 /* default Attribute files */
844 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
845 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
846 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
847 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
848 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
849 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
850 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
851 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
852 
853 /* memory scrubber attribute file */
854 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
855 	    mci_sdram_scrub_rate_store); /* umode set later in is_visible */
856 
857 static struct attribute *mci_attrs[] = {
858 	&dev_attr_reset_counters.attr,
859 	&dev_attr_mc_name.attr,
860 	&dev_attr_size_mb.attr,
861 	&dev_attr_seconds_since_reset.attr,
862 	&dev_attr_ue_noinfo_count.attr,
863 	&dev_attr_ce_noinfo_count.attr,
864 	&dev_attr_ue_count.attr,
865 	&dev_attr_ce_count.attr,
866 	&dev_attr_max_location.attr,
867 	&dev_attr_sdram_scrub_rate.attr,
868 	NULL
869 };
870 
mci_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)871 static umode_t mci_attr_is_visible(struct kobject *kobj,
872 				   struct attribute *attr, int idx)
873 {
874 	struct device *dev = kobj_to_dev(kobj);
875 	struct mem_ctl_info *mci = to_mci(dev);
876 	umode_t mode = 0;
877 
878 	if (attr != &dev_attr_sdram_scrub_rate.attr)
879 		return attr->mode;
880 	if (mci->get_sdram_scrub_rate)
881 		mode |= S_IRUGO;
882 	if (mci->set_sdram_scrub_rate)
883 		mode |= S_IWUSR;
884 	return mode;
885 }
886 
887 static const struct attribute_group mci_attr_grp = {
888 	.attrs	= mci_attrs,
889 	.is_visible = mci_attr_is_visible,
890 };
891 
892 static const struct attribute_group *mci_attr_groups[] = {
893 	&mci_attr_grp,
894 	NULL
895 };
896 
897 static const struct device_type mci_attr_type = {
898 	.groups		= mci_attr_groups,
899 };
900 
901 /*
902  * Create a new Memory Controller kobject instance,
903  *	mc<id> under the 'mc' directory
904  *
905  * Return:
906  *	0	Success
907  *	!0	Failure
908  */
edac_create_sysfs_mci_device(struct mem_ctl_info * mci,const struct attribute_group ** groups)909 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
910 				 const struct attribute_group **groups)
911 {
912 	struct dimm_info *dimm;
913 	int err;
914 
915 	/* get the /sys/devices/system/edac subsys reference */
916 	mci->dev.type = &mci_attr_type;
917 	mci->dev.parent = mci_pdev;
918 	mci->dev.groups = groups;
919 	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
920 	dev_set_drvdata(&mci->dev, mci);
921 	pm_runtime_forbid(&mci->dev);
922 
923 	err = device_add(&mci->dev);
924 	if (err < 0) {
925 		edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
926 		/* no put_device() here, free mci with _edac_mc_free() */
927 		return err;
928 	}
929 
930 	edac_dbg(0, "device %s created\n", dev_name(&mci->dev));
931 
932 	/*
933 	 * Create the dimm/rank devices
934 	 */
935 	mci_for_each_dimm(mci, dimm) {
936 		/* Only expose populated DIMMs */
937 		if (!dimm->nr_pages)
938 			continue;
939 
940 		err = edac_create_dimm_object(mci, dimm);
941 		if (err)
942 			goto fail;
943 	}
944 
945 #ifdef CONFIG_EDAC_LEGACY_SYSFS
946 	err = edac_create_csrow_objects(mci);
947 	if (err < 0)
948 		goto fail;
949 #endif
950 
951 	edac_create_debugfs_nodes(mci);
952 	return 0;
953 
954 fail:
955 	edac_remove_sysfs_mci_device(mci);
956 
957 	return err;
958 }
959 
960 /*
961  * remove a Memory Controller instance
962  */
edac_remove_sysfs_mci_device(struct mem_ctl_info * mci)963 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
964 {
965 	struct dimm_info *dimm;
966 
967 	if (!device_is_registered(&mci->dev))
968 		return;
969 
970 	edac_dbg(0, "\n");
971 
972 #ifdef CONFIG_EDAC_DEBUG
973 	edac_debugfs_remove_recursive(mci->debugfs);
974 #endif
975 #ifdef CONFIG_EDAC_LEGACY_SYSFS
976 	edac_delete_csrow_objects(mci);
977 #endif
978 
979 	mci_for_each_dimm(mci, dimm) {
980 		if (!device_is_registered(&dimm->dev))
981 			continue;
982 		edac_dbg(1, "unregistering device %s\n", dev_name(&dimm->dev));
983 		device_unregister(&dimm->dev);
984 	}
985 
986 	/* only remove the device, but keep mci */
987 	device_del(&mci->dev);
988 }
989 
mc_attr_release(struct device * dev)990 static void mc_attr_release(struct device *dev)
991 {
992 	/*
993 	 * There's no container structure here, as this is just the mci
994 	 * parent device, used to create the /sys/devices/mc sysfs node.
995 	 * So, there are no attributes on it.
996 	 */
997 	edac_dbg(1, "device %s released\n", dev_name(dev));
998 	kfree(dev);
999 }
1000 
1001 /*
1002  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1003  */
edac_mc_sysfs_init(void)1004 int __init edac_mc_sysfs_init(void)
1005 {
1006 	int err;
1007 
1008 	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1009 	if (!mci_pdev)
1010 		return -ENOMEM;
1011 
1012 	mci_pdev->bus = edac_get_sysfs_subsys();
1013 	mci_pdev->release = mc_attr_release;
1014 	mci_pdev->init_name = "mc";
1015 
1016 	err = device_register(mci_pdev);
1017 	if (err < 0) {
1018 		edac_dbg(1, "failure: create device %s\n", dev_name(mci_pdev));
1019 		put_device(mci_pdev);
1020 		return err;
1021 	}
1022 
1023 	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1024 
1025 	return 0;
1026 }
1027 
edac_mc_sysfs_exit(void)1028 void edac_mc_sysfs_exit(void)
1029 {
1030 	device_unregister(mci_pdev);
1031 }
1032