1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include "ecryptfs_kernel.h"
37 
38 /**
39  * request_key returned an error instead of a valid key address;
40  * determine the type of error, make appropriate log entries, and
41  * return an error code.
42  */
process_request_key_err(long err_code)43 static int process_request_key_err(long err_code)
44 {
45 	int rc = 0;
46 
47 	switch (err_code) {
48 	case -ENOKEY:
49 		ecryptfs_printk(KERN_WARNING, "No key\n");
50 		rc = -ENOENT;
51 		break;
52 	case -EKEYEXPIRED:
53 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
54 		rc = -ETIME;
55 		break;
56 	case -EKEYREVOKED:
57 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
58 		rc = -EINVAL;
59 		break;
60 	default:
61 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
62 				"[0x%.16lx]\n", err_code);
63 		rc = -EINVAL;
64 	}
65 	return rc;
66 }
67 
process_find_global_auth_tok_for_sig_err(int err_code)68 static int process_find_global_auth_tok_for_sig_err(int err_code)
69 {
70 	int rc = err_code;
71 
72 	switch (err_code) {
73 	case -ENOENT:
74 		ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
75 		break;
76 	case -EINVAL:
77 		ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
78 		break;
79 	default:
80 		rc = process_request_key_err(err_code);
81 		break;
82 	}
83 	return rc;
84 }
85 
86 /**
87  * ecryptfs_parse_packet_length
88  * @data: Pointer to memory containing length at offset
89  * @size: This function writes the decoded size to this memory
90  *        address; zero on error
91  * @length_size: The number of bytes occupied by the encoded length
92  *
93  * Returns zero on success; non-zero on error
94  */
ecryptfs_parse_packet_length(unsigned char * data,size_t * size,size_t * length_size)95 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
96 				 size_t *length_size)
97 {
98 	int rc = 0;
99 
100 	(*length_size) = 0;
101 	(*size) = 0;
102 	if (data[0] < 192) {
103 		/* One-byte length */
104 		(*size) = (unsigned char)data[0];
105 		(*length_size) = 1;
106 	} else if (data[0] < 224) {
107 		/* Two-byte length */
108 		(*size) = (((unsigned char)(data[0]) - 192) * 256);
109 		(*size) += ((unsigned char)(data[1]) + 192);
110 		(*length_size) = 2;
111 	} else if (data[0] == 255) {
112 		/* Five-byte length; we're not supposed to see this */
113 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
114 				"supported\n");
115 		rc = -EINVAL;
116 		goto out;
117 	} else {
118 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
119 		rc = -EINVAL;
120 		goto out;
121 	}
122 out:
123 	return rc;
124 }
125 
126 /**
127  * ecryptfs_write_packet_length
128  * @dest: The byte array target into which to write the length. Must
129  *        have at least 5 bytes allocated.
130  * @size: The length to write.
131  * @packet_size_length: The number of bytes used to encode the packet
132  *                      length is written to this address.
133  *
134  * Returns zero on success; non-zero on error.
135  */
ecryptfs_write_packet_length(char * dest,size_t size,size_t * packet_size_length)136 int ecryptfs_write_packet_length(char *dest, size_t size,
137 				 size_t *packet_size_length)
138 {
139 	int rc = 0;
140 
141 	if (size < 192) {
142 		dest[0] = size;
143 		(*packet_size_length) = 1;
144 	} else if (size < 65536) {
145 		dest[0] = (((size - 192) / 256) + 192);
146 		dest[1] = ((size - 192) % 256);
147 		(*packet_size_length) = 2;
148 	} else {
149 		rc = -EINVAL;
150 		ecryptfs_printk(KERN_WARNING,
151 				"Unsupported packet size: [%zd]\n", size);
152 	}
153 	return rc;
154 }
155 
156 static int
write_tag_64_packet(char * signature,struct ecryptfs_session_key * session_key,char ** packet,size_t * packet_len)157 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
158 		    char **packet, size_t *packet_len)
159 {
160 	size_t i = 0;
161 	size_t data_len;
162 	size_t packet_size_len;
163 	char *message;
164 	int rc;
165 
166 	/*
167 	 *              ***** TAG 64 Packet Format *****
168 	 *    | Content Type                       | 1 byte       |
169 	 *    | Key Identifier Size                | 1 or 2 bytes |
170 	 *    | Key Identifier                     | arbitrary    |
171 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
172 	 *    | Encrypted File Encryption Key      | arbitrary    |
173 	 */
174 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
175 		    + session_key->encrypted_key_size);
176 	*packet = kmalloc(data_len, GFP_KERNEL);
177 	message = *packet;
178 	if (!message) {
179 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
180 		rc = -ENOMEM;
181 		goto out;
182 	}
183 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
184 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
185 					  &packet_size_len);
186 	if (rc) {
187 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
188 				"header; cannot generate packet length\n");
189 		goto out;
190 	}
191 	i += packet_size_len;
192 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
193 	i += ECRYPTFS_SIG_SIZE_HEX;
194 	rc = ecryptfs_write_packet_length(&message[i],
195 					  session_key->encrypted_key_size,
196 					  &packet_size_len);
197 	if (rc) {
198 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
199 				"header; cannot generate packet length\n");
200 		goto out;
201 	}
202 	i += packet_size_len;
203 	memcpy(&message[i], session_key->encrypted_key,
204 	       session_key->encrypted_key_size);
205 	i += session_key->encrypted_key_size;
206 	*packet_len = i;
207 out:
208 	return rc;
209 }
210 
211 static int
parse_tag_65_packet(struct ecryptfs_session_key * session_key,u8 * cipher_code,struct ecryptfs_message * msg)212 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
213 		    struct ecryptfs_message *msg)
214 {
215 	size_t i = 0;
216 	char *data;
217 	size_t data_len;
218 	size_t m_size;
219 	size_t message_len;
220 	u16 checksum = 0;
221 	u16 expected_checksum = 0;
222 	int rc;
223 
224 	/*
225 	 *              ***** TAG 65 Packet Format *****
226 	 *         | Content Type             | 1 byte       |
227 	 *         | Status Indicator         | 1 byte       |
228 	 *         | File Encryption Key Size | 1 or 2 bytes |
229 	 *         | File Encryption Key      | arbitrary    |
230 	 */
231 	message_len = msg->data_len;
232 	data = msg->data;
233 	if (message_len < 4) {
234 		rc = -EIO;
235 		goto out;
236 	}
237 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
238 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
239 		rc = -EIO;
240 		goto out;
241 	}
242 	if (data[i++]) {
243 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
244 				"[%d]\n", data[i-1]);
245 		rc = -EIO;
246 		goto out;
247 	}
248 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
249 	if (rc) {
250 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
251 				"rc = [%d]\n", rc);
252 		goto out;
253 	}
254 	i += data_len;
255 	if (message_len < (i + m_size)) {
256 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
257 				"is shorter than expected\n");
258 		rc = -EIO;
259 		goto out;
260 	}
261 	if (m_size < 3) {
262 		ecryptfs_printk(KERN_ERR,
263 				"The decrypted key is not long enough to "
264 				"include a cipher code and checksum\n");
265 		rc = -EIO;
266 		goto out;
267 	}
268 	*cipher_code = data[i++];
269 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
270 	session_key->decrypted_key_size = m_size - 3;
271 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
272 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
273 				"the maximum key size [%d]\n",
274 				session_key->decrypted_key_size,
275 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
276 		rc = -EIO;
277 		goto out;
278 	}
279 	memcpy(session_key->decrypted_key, &data[i],
280 	       session_key->decrypted_key_size);
281 	i += session_key->decrypted_key_size;
282 	expected_checksum += (unsigned char)(data[i++]) << 8;
283 	expected_checksum += (unsigned char)(data[i++]);
284 	for (i = 0; i < session_key->decrypted_key_size; i++)
285 		checksum += session_key->decrypted_key[i];
286 	if (expected_checksum != checksum) {
287 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
288 				"encryption  key; expected [%x]; calculated "
289 				"[%x]\n", expected_checksum, checksum);
290 		rc = -EIO;
291 	}
292 out:
293 	return rc;
294 }
295 
296 
297 static int
write_tag_66_packet(char * signature,u8 cipher_code,struct ecryptfs_crypt_stat * crypt_stat,char ** packet,size_t * packet_len)298 write_tag_66_packet(char *signature, u8 cipher_code,
299 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
300 		    size_t *packet_len)
301 {
302 	size_t i = 0;
303 	size_t j;
304 	size_t data_len;
305 	size_t checksum = 0;
306 	size_t packet_size_len;
307 	char *message;
308 	int rc;
309 
310 	/*
311 	 *              ***** TAG 66 Packet Format *****
312 	 *         | Content Type             | 1 byte       |
313 	 *         | Key Identifier Size      | 1 or 2 bytes |
314 	 *         | Key Identifier           | arbitrary    |
315 	 *         | File Encryption Key Size | 1 or 2 bytes |
316 	 *         | File Encryption Key      | arbitrary    |
317 	 */
318 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
319 	*packet = kmalloc(data_len, GFP_KERNEL);
320 	message = *packet;
321 	if (!message) {
322 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
323 		rc = -ENOMEM;
324 		goto out;
325 	}
326 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
327 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
328 					  &packet_size_len);
329 	if (rc) {
330 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
331 				"header; cannot generate packet length\n");
332 		goto out;
333 	}
334 	i += packet_size_len;
335 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
336 	i += ECRYPTFS_SIG_SIZE_HEX;
337 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
338 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
339 					  &packet_size_len);
340 	if (rc) {
341 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
342 				"header; cannot generate packet length\n");
343 		goto out;
344 	}
345 	i += packet_size_len;
346 	message[i++] = cipher_code;
347 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
348 	i += crypt_stat->key_size;
349 	for (j = 0; j < crypt_stat->key_size; j++)
350 		checksum += crypt_stat->key[j];
351 	message[i++] = (checksum / 256) % 256;
352 	message[i++] = (checksum % 256);
353 	*packet_len = i;
354 out:
355 	return rc;
356 }
357 
358 static int
parse_tag_67_packet(struct ecryptfs_key_record * key_rec,struct ecryptfs_message * msg)359 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
360 		    struct ecryptfs_message *msg)
361 {
362 	size_t i = 0;
363 	char *data;
364 	size_t data_len;
365 	size_t message_len;
366 	int rc;
367 
368 	/*
369 	 *              ***** TAG 65 Packet Format *****
370 	 *    | Content Type                       | 1 byte       |
371 	 *    | Status Indicator                   | 1 byte       |
372 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
373 	 *    | Encrypted File Encryption Key      | arbitrary    |
374 	 */
375 	message_len = msg->data_len;
376 	data = msg->data;
377 	/* verify that everything through the encrypted FEK size is present */
378 	if (message_len < 4) {
379 		rc = -EIO;
380 		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
381 		       "message length is [%d]\n", __func__, message_len, 4);
382 		goto out;
383 	}
384 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
385 		rc = -EIO;
386 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
387 		       __func__);
388 		goto out;
389 	}
390 	if (data[i++]) {
391 		rc = -EIO;
392 		printk(KERN_ERR "%s: Status indicator has non zero "
393 		       "value [%d]\n", __func__, data[i-1]);
394 
395 		goto out;
396 	}
397 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
398 					  &data_len);
399 	if (rc) {
400 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
401 				"rc = [%d]\n", rc);
402 		goto out;
403 	}
404 	i += data_len;
405 	if (message_len < (i + key_rec->enc_key_size)) {
406 		rc = -EIO;
407 		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
408 		       __func__, message_len, (i + key_rec->enc_key_size));
409 		goto out;
410 	}
411 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
412 		rc = -EIO;
413 		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
414 		       "the maximum key size [%d]\n", __func__,
415 		       key_rec->enc_key_size,
416 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
417 		goto out;
418 	}
419 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
420 out:
421 	return rc;
422 }
423 
424 /**
425  * ecryptfs_verify_version
426  * @version: The version number to confirm
427  *
428  * Returns zero on good version; non-zero otherwise
429  */
ecryptfs_verify_version(u16 version)430 static int ecryptfs_verify_version(u16 version)
431 {
432 	int rc = 0;
433 	unsigned char major;
434 	unsigned char minor;
435 
436 	major = ((version >> 8) & 0xFF);
437 	minor = (version & 0xFF);
438 	if (major != ECRYPTFS_VERSION_MAJOR) {
439 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
440 				"Expected [%d]; got [%d]\n",
441 				ECRYPTFS_VERSION_MAJOR, major);
442 		rc = -EINVAL;
443 		goto out;
444 	}
445 	if (minor != ECRYPTFS_VERSION_MINOR) {
446 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
447 				"Expected [%d]; got [%d]\n",
448 				ECRYPTFS_VERSION_MINOR, minor);
449 		rc = -EINVAL;
450 		goto out;
451 	}
452 out:
453 	return rc;
454 }
455 
456 /**
457  * ecryptfs_verify_auth_tok_from_key
458  * @auth_tok_key: key containing the authentication token
459  * @auth_tok: authentication token
460  *
461  * Returns zero on valid auth tok; -EINVAL otherwise
462  */
463 static int
ecryptfs_verify_auth_tok_from_key(struct key * auth_tok_key,struct ecryptfs_auth_tok ** auth_tok)464 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
465 				  struct ecryptfs_auth_tok **auth_tok)
466 {
467 	int rc = 0;
468 
469 	(*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
470 	if (ecryptfs_verify_version((*auth_tok)->version)) {
471 		printk(KERN_ERR "Data structure version mismatch. Userspace "
472 		       "tools must match eCryptfs kernel module with major "
473 		       "version [%d] and minor version [%d]\n",
474 		       ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
475 		rc = -EINVAL;
476 		goto out;
477 	}
478 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
479 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
480 		printk(KERN_ERR "Invalid auth_tok structure "
481 		       "returned from key query\n");
482 		rc = -EINVAL;
483 		goto out;
484 	}
485 out:
486 	return rc;
487 }
488 
489 static int
ecryptfs_find_global_auth_tok_for_sig(struct key ** auth_tok_key,struct ecryptfs_auth_tok ** auth_tok,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * sig)490 ecryptfs_find_global_auth_tok_for_sig(
491 	struct key **auth_tok_key,
492 	struct ecryptfs_auth_tok **auth_tok,
493 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
494 {
495 	struct ecryptfs_global_auth_tok *walker;
496 	int rc = 0;
497 
498 	(*auth_tok_key) = NULL;
499 	(*auth_tok) = NULL;
500 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
501 	list_for_each_entry(walker,
502 			    &mount_crypt_stat->global_auth_tok_list,
503 			    mount_crypt_stat_list) {
504 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
505 			continue;
506 
507 		if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
508 			rc = -EINVAL;
509 			goto out;
510 		}
511 
512 		rc = key_validate(walker->global_auth_tok_key);
513 		if (rc) {
514 			if (rc == -EKEYEXPIRED)
515 				goto out;
516 			goto out_invalid_auth_tok;
517 		}
518 
519 		down_write(&(walker->global_auth_tok_key->sem));
520 		rc = ecryptfs_verify_auth_tok_from_key(
521 				walker->global_auth_tok_key, auth_tok);
522 		if (rc)
523 			goto out_invalid_auth_tok_unlock;
524 
525 		(*auth_tok_key) = walker->global_auth_tok_key;
526 		key_get(*auth_tok_key);
527 		goto out;
528 	}
529 	rc = -ENOENT;
530 	goto out;
531 out_invalid_auth_tok_unlock:
532 	up_write(&(walker->global_auth_tok_key->sem));
533 out_invalid_auth_tok:
534 	printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
535 	walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
536 	key_put(walker->global_auth_tok_key);
537 	walker->global_auth_tok_key = NULL;
538 out:
539 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
540 	return rc;
541 }
542 
543 /**
544  * ecryptfs_find_auth_tok_for_sig
545  * @auth_tok: Set to the matching auth_tok; NULL if not found
546  * @crypt_stat: inode crypt_stat crypto context
547  * @sig: Sig of auth_tok to find
548  *
549  * For now, this function simply looks at the registered auth_tok's
550  * linked off the mount_crypt_stat, so all the auth_toks that can be
551  * used must be registered at mount time. This function could
552  * potentially try a lot harder to find auth_tok's (e.g., by calling
553  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
554  * that static registration of auth_tok's will no longer be necessary.
555  *
556  * Returns zero on no error; non-zero on error
557  */
558 static int
ecryptfs_find_auth_tok_for_sig(struct key ** auth_tok_key,struct ecryptfs_auth_tok ** auth_tok,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * sig)559 ecryptfs_find_auth_tok_for_sig(
560 	struct key **auth_tok_key,
561 	struct ecryptfs_auth_tok **auth_tok,
562 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
563 	char *sig)
564 {
565 	int rc = 0;
566 
567 	rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
568 						   mount_crypt_stat, sig);
569 	if (rc == -ENOENT) {
570 		/* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
571 		 * mount_crypt_stat structure, we prevent to use auth toks that
572 		 * are not inserted through the ecryptfs_add_global_auth_tok
573 		 * function.
574 		 */
575 		if (mount_crypt_stat->flags
576 				& ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
577 			return -EINVAL;
578 
579 		rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
580 						       sig);
581 	}
582 	return rc;
583 }
584 
585 /**
586  * write_tag_70_packet can gobble a lot of stack space. We stuff most
587  * of the function's parameters in a kmalloc'd struct to help reduce
588  * eCryptfs' overall stack usage.
589  */
590 struct ecryptfs_write_tag_70_packet_silly_stack {
591 	u8 cipher_code;
592 	size_t max_packet_size;
593 	size_t packet_size_len;
594 	size_t block_aligned_filename_size;
595 	size_t block_size;
596 	size_t i;
597 	size_t j;
598 	size_t num_rand_bytes;
599 	struct mutex *tfm_mutex;
600 	char *block_aligned_filename;
601 	struct ecryptfs_auth_tok *auth_tok;
602 	struct scatterlist src_sg;
603 	struct scatterlist dst_sg;
604 	struct blkcipher_desc desc;
605 	char iv[ECRYPTFS_MAX_IV_BYTES];
606 	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
607 	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
608 	struct hash_desc hash_desc;
609 	struct scatterlist hash_sg;
610 };
611 
612 /**
613  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
614  * @filename: NULL-terminated filename string
615  *
616  * This is the simplest mechanism for achieving filename encryption in
617  * eCryptfs. It encrypts the given filename with the mount-wide
618  * filename encryption key (FNEK) and stores it in a packet to @dest,
619  * which the callee will encode and write directly into the dentry
620  * name.
621  */
622 int
ecryptfs_write_tag_70_packet(char * dest,size_t * remaining_bytes,size_t * packet_size,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * filename,size_t filename_size)623 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
624 			     size_t *packet_size,
625 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
626 			     char *filename, size_t filename_size)
627 {
628 	struct ecryptfs_write_tag_70_packet_silly_stack *s;
629 	struct key *auth_tok_key = NULL;
630 	int rc = 0;
631 
632 	s = kmalloc(sizeof(*s), GFP_KERNEL);
633 	if (!s) {
634 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
635 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
636 		rc = -ENOMEM;
637 		goto out;
638 	}
639 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
640 	(*packet_size) = 0;
641 	rc = ecryptfs_find_auth_tok_for_sig(
642 		&auth_tok_key,
643 		&s->auth_tok, mount_crypt_stat,
644 		mount_crypt_stat->global_default_fnek_sig);
645 	if (rc) {
646 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
647 		       "fnek sig [%s]; rc = [%d]\n", __func__,
648 		       mount_crypt_stat->global_default_fnek_sig, rc);
649 		goto out;
650 	}
651 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
652 		&s->desc.tfm,
653 		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
654 	if (unlikely(rc)) {
655 		printk(KERN_ERR "Internal error whilst attempting to get "
656 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
657 		       mount_crypt_stat->global_default_fn_cipher_name, rc);
658 		goto out;
659 	}
660 	mutex_lock(s->tfm_mutex);
661 	s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
662 	/* Plus one for the \0 separator between the random prefix
663 	 * and the plaintext filename */
664 	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
665 	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
666 	if ((s->block_aligned_filename_size % s->block_size) != 0) {
667 		s->num_rand_bytes += (s->block_size
668 				      - (s->block_aligned_filename_size
669 					 % s->block_size));
670 		s->block_aligned_filename_size = (s->num_rand_bytes
671 						  + filename_size);
672 	}
673 	/* Octet 0: Tag 70 identifier
674 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
675 	 *              and block-aligned encrypted filename size)
676 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
677 	 * Octet N2-N3: Cipher identifier (1 octet)
678 	 * Octets N3-N4: Block-aligned encrypted filename
679 	 *  - Consists of a minimum number of random characters, a \0
680 	 *    separator, and then the filename */
681 	s->max_packet_size = (1                   /* Tag 70 identifier */
682 			      + 3                 /* Max Tag 70 packet size */
683 			      + ECRYPTFS_SIG_SIZE /* FNEK sig */
684 			      + 1                 /* Cipher identifier */
685 			      + s->block_aligned_filename_size);
686 	if (dest == NULL) {
687 		(*packet_size) = s->max_packet_size;
688 		goto out_unlock;
689 	}
690 	if (s->max_packet_size > (*remaining_bytes)) {
691 		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
692 		       "[%zd] available\n", __func__, s->max_packet_size,
693 		       (*remaining_bytes));
694 		rc = -EINVAL;
695 		goto out_unlock;
696 	}
697 	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
698 					    GFP_KERNEL);
699 	if (!s->block_aligned_filename) {
700 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
701 		       "kzalloc [%zd] bytes\n", __func__,
702 		       s->block_aligned_filename_size);
703 		rc = -ENOMEM;
704 		goto out_unlock;
705 	}
706 	s->i = 0;
707 	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
708 	rc = ecryptfs_write_packet_length(&dest[s->i],
709 					  (ECRYPTFS_SIG_SIZE
710 					   + 1 /* Cipher code */
711 					   + s->block_aligned_filename_size),
712 					  &s->packet_size_len);
713 	if (rc) {
714 		printk(KERN_ERR "%s: Error generating tag 70 packet "
715 		       "header; cannot generate packet length; rc = [%d]\n",
716 		       __func__, rc);
717 		goto out_free_unlock;
718 	}
719 	s->i += s->packet_size_len;
720 	ecryptfs_from_hex(&dest[s->i],
721 			  mount_crypt_stat->global_default_fnek_sig,
722 			  ECRYPTFS_SIG_SIZE);
723 	s->i += ECRYPTFS_SIG_SIZE;
724 	s->cipher_code = ecryptfs_code_for_cipher_string(
725 		mount_crypt_stat->global_default_fn_cipher_name,
726 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
727 	if (s->cipher_code == 0) {
728 		printk(KERN_WARNING "%s: Unable to generate code for "
729 		       "cipher [%s] with key bytes [%zd]\n", __func__,
730 		       mount_crypt_stat->global_default_fn_cipher_name,
731 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
732 		rc = -EINVAL;
733 		goto out_free_unlock;
734 	}
735 	dest[s->i++] = s->cipher_code;
736 	/* TODO: Support other key modules than passphrase for
737 	 * filename encryption */
738 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
739 		rc = -EOPNOTSUPP;
740 		printk(KERN_INFO "%s: Filename encryption only supports "
741 		       "password tokens\n", __func__);
742 		goto out_free_unlock;
743 	}
744 	sg_init_one(
745 		&s->hash_sg,
746 		(u8 *)s->auth_tok->token.password.session_key_encryption_key,
747 		s->auth_tok->token.password.session_key_encryption_key_bytes);
748 	s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
749 	s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
750 					     CRYPTO_ALG_ASYNC);
751 	if (IS_ERR(s->hash_desc.tfm)) {
752 			rc = PTR_ERR(s->hash_desc.tfm);
753 			printk(KERN_ERR "%s: Error attempting to "
754 			       "allocate hash crypto context; rc = [%d]\n",
755 			       __func__, rc);
756 			goto out_free_unlock;
757 	}
758 	rc = crypto_hash_init(&s->hash_desc);
759 	if (rc) {
760 		printk(KERN_ERR
761 		       "%s: Error initializing crypto hash; rc = [%d]\n",
762 		       __func__, rc);
763 		goto out_release_free_unlock;
764 	}
765 	rc = crypto_hash_update(
766 		&s->hash_desc, &s->hash_sg,
767 		s->auth_tok->token.password.session_key_encryption_key_bytes);
768 	if (rc) {
769 		printk(KERN_ERR
770 		       "%s: Error updating crypto hash; rc = [%d]\n",
771 		       __func__, rc);
772 		goto out_release_free_unlock;
773 	}
774 	rc = crypto_hash_final(&s->hash_desc, s->hash);
775 	if (rc) {
776 		printk(KERN_ERR
777 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
778 		       __func__, rc);
779 		goto out_release_free_unlock;
780 	}
781 	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
782 		s->block_aligned_filename[s->j] =
783 			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
784 		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
785 		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
786 			sg_init_one(&s->hash_sg, (u8 *)s->hash,
787 				    ECRYPTFS_TAG_70_DIGEST_SIZE);
788 			rc = crypto_hash_init(&s->hash_desc);
789 			if (rc) {
790 				printk(KERN_ERR
791 				       "%s: Error initializing crypto hash; "
792 				       "rc = [%d]\n", __func__, rc);
793 				goto out_release_free_unlock;
794 			}
795 			rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
796 						ECRYPTFS_TAG_70_DIGEST_SIZE);
797 			if (rc) {
798 				printk(KERN_ERR
799 				       "%s: Error updating crypto hash; "
800 				       "rc = [%d]\n", __func__, rc);
801 				goto out_release_free_unlock;
802 			}
803 			rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
804 			if (rc) {
805 				printk(KERN_ERR
806 				       "%s: Error finalizing crypto hash; "
807 				       "rc = [%d]\n", __func__, rc);
808 				goto out_release_free_unlock;
809 			}
810 			memcpy(s->hash, s->tmp_hash,
811 			       ECRYPTFS_TAG_70_DIGEST_SIZE);
812 		}
813 		if (s->block_aligned_filename[s->j] == '\0')
814 			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
815 	}
816 	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
817 	       filename_size);
818 	rc = virt_to_scatterlist(s->block_aligned_filename,
819 				 s->block_aligned_filename_size, &s->src_sg, 1);
820 	if (rc != 1) {
821 		printk(KERN_ERR "%s: Internal error whilst attempting to "
822 		       "convert filename memory to scatterlist; "
823 		       "expected rc = 1; got rc = [%d]. "
824 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
825 		       s->block_aligned_filename_size);
826 		goto out_release_free_unlock;
827 	}
828 	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
829 				 &s->dst_sg, 1);
830 	if (rc != 1) {
831 		printk(KERN_ERR "%s: Internal error whilst attempting to "
832 		       "convert encrypted filename memory to scatterlist; "
833 		       "expected rc = 1; got rc = [%d]. "
834 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
835 		       s->block_aligned_filename_size);
836 		goto out_release_free_unlock;
837 	}
838 	/* The characters in the first block effectively do the job
839 	 * of the IV here, so we just use 0's for the IV. Note the
840 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
841 	 * >= ECRYPTFS_MAX_IV_BYTES. */
842 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
843 	s->desc.info = s->iv;
844 	rc = crypto_blkcipher_setkey(
845 		s->desc.tfm,
846 		s->auth_tok->token.password.session_key_encryption_key,
847 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
848 	if (rc < 0) {
849 		printk(KERN_ERR "%s: Error setting key for crypto context; "
850 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
851 		       "encryption_key = [0x%p]; mount_crypt_stat->"
852 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
853 		       rc,
854 		       s->auth_tok->token.password.session_key_encryption_key,
855 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
856 		goto out_release_free_unlock;
857 	}
858 	rc = crypto_blkcipher_encrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
859 					 s->block_aligned_filename_size);
860 	if (rc) {
861 		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
862 		       "rc = [%d]\n", __func__, rc);
863 		goto out_release_free_unlock;
864 	}
865 	s->i += s->block_aligned_filename_size;
866 	(*packet_size) = s->i;
867 	(*remaining_bytes) -= (*packet_size);
868 out_release_free_unlock:
869 	crypto_free_hash(s->hash_desc.tfm);
870 out_free_unlock:
871 	kzfree(s->block_aligned_filename);
872 out_unlock:
873 	mutex_unlock(s->tfm_mutex);
874 out:
875 	if (auth_tok_key) {
876 		up_write(&(auth_tok_key->sem));
877 		key_put(auth_tok_key);
878 	}
879 	kfree(s);
880 	return rc;
881 }
882 
883 struct ecryptfs_parse_tag_70_packet_silly_stack {
884 	u8 cipher_code;
885 	size_t max_packet_size;
886 	size_t packet_size_len;
887 	size_t parsed_tag_70_packet_size;
888 	size_t block_aligned_filename_size;
889 	size_t block_size;
890 	size_t i;
891 	struct mutex *tfm_mutex;
892 	char *decrypted_filename;
893 	struct ecryptfs_auth_tok *auth_tok;
894 	struct scatterlist src_sg;
895 	struct scatterlist dst_sg;
896 	struct blkcipher_desc desc;
897 	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
898 	char iv[ECRYPTFS_MAX_IV_BYTES];
899 	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
900 };
901 
902 /**
903  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
904  * @filename: This function kmalloc's the memory for the filename
905  * @filename_size: This function sets this to the amount of memory
906  *                 kmalloc'd for the filename
907  * @packet_size: This function sets this to the the number of octets
908  *               in the packet parsed
909  * @mount_crypt_stat: The mount-wide cryptographic context
910  * @data: The memory location containing the start of the tag 70
911  *        packet
912  * @max_packet_size: The maximum legal size of the packet to be parsed
913  *                   from @data
914  *
915  * Returns zero on success; non-zero otherwise
916  */
917 int
ecryptfs_parse_tag_70_packet(char ** filename,size_t * filename_size,size_t * packet_size,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * data,size_t max_packet_size)918 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
919 			     size_t *packet_size,
920 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
921 			     char *data, size_t max_packet_size)
922 {
923 	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
924 	struct key *auth_tok_key = NULL;
925 	int rc = 0;
926 
927 	(*packet_size) = 0;
928 	(*filename_size) = 0;
929 	(*filename) = NULL;
930 	s = kmalloc(sizeof(*s), GFP_KERNEL);
931 	if (!s) {
932 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
933 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
934 		rc = -ENOMEM;
935 		goto out;
936 	}
937 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
938 	if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
939 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
940 		       "at least [%d]\n", __func__, max_packet_size,
941 			(1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
942 		rc = -EINVAL;
943 		goto out;
944 	}
945 	/* Octet 0: Tag 70 identifier
946 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
947 	 *              and block-aligned encrypted filename size)
948 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
949 	 * Octet N2-N3: Cipher identifier (1 octet)
950 	 * Octets N3-N4: Block-aligned encrypted filename
951 	 *  - Consists of a minimum number of random numbers, a \0
952 	 *    separator, and then the filename */
953 	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
954 		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
955 		       "tag [0x%.2x]\n", __func__,
956 		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
957 		rc = -EINVAL;
958 		goto out;
959 	}
960 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
961 					  &s->parsed_tag_70_packet_size,
962 					  &s->packet_size_len);
963 	if (rc) {
964 		printk(KERN_WARNING "%s: Error parsing packet length; "
965 		       "rc = [%d]\n", __func__, rc);
966 		goto out;
967 	}
968 	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
969 					  - ECRYPTFS_SIG_SIZE - 1);
970 	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
971 	    > max_packet_size) {
972 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
973 		       "size is [%zd]\n", __func__, max_packet_size,
974 		       (1 + s->packet_size_len + 1
975 			+ s->block_aligned_filename_size));
976 		rc = -EINVAL;
977 		goto out;
978 	}
979 	(*packet_size) += s->packet_size_len;
980 	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
981 			ECRYPTFS_SIG_SIZE);
982 	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
983 	(*packet_size) += ECRYPTFS_SIG_SIZE;
984 	s->cipher_code = data[(*packet_size)++];
985 	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
986 	if (rc) {
987 		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
988 		       __func__, s->cipher_code);
989 		goto out;
990 	}
991 	rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
992 					    &s->auth_tok, mount_crypt_stat,
993 					    s->fnek_sig_hex);
994 	if (rc) {
995 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
996 		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
997 		       rc);
998 		goto out;
999 	}
1000 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
1001 							&s->tfm_mutex,
1002 							s->cipher_string);
1003 	if (unlikely(rc)) {
1004 		printk(KERN_ERR "Internal error whilst attempting to get "
1005 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1006 		       s->cipher_string, rc);
1007 		goto out;
1008 	}
1009 	mutex_lock(s->tfm_mutex);
1010 	rc = virt_to_scatterlist(&data[(*packet_size)],
1011 				 s->block_aligned_filename_size, &s->src_sg, 1);
1012 	if (rc != 1) {
1013 		printk(KERN_ERR "%s: Internal error whilst attempting to "
1014 		       "convert encrypted filename memory to scatterlist; "
1015 		       "expected rc = 1; got rc = [%d]. "
1016 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
1017 		       s->block_aligned_filename_size);
1018 		goto out_unlock;
1019 	}
1020 	(*packet_size) += s->block_aligned_filename_size;
1021 	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
1022 					GFP_KERNEL);
1023 	if (!s->decrypted_filename) {
1024 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
1025 		       "kmalloc [%zd] bytes\n", __func__,
1026 		       s->block_aligned_filename_size);
1027 		rc = -ENOMEM;
1028 		goto out_unlock;
1029 	}
1030 	rc = virt_to_scatterlist(s->decrypted_filename,
1031 				 s->block_aligned_filename_size, &s->dst_sg, 1);
1032 	if (rc != 1) {
1033 		printk(KERN_ERR "%s: Internal error whilst attempting to "
1034 		       "convert decrypted filename memory to scatterlist; "
1035 		       "expected rc = 1; got rc = [%d]. "
1036 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
1037 		       s->block_aligned_filename_size);
1038 		goto out_free_unlock;
1039 	}
1040 	/* The characters in the first block effectively do the job of
1041 	 * the IV here, so we just use 0's for the IV. Note the
1042 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1043 	 * >= ECRYPTFS_MAX_IV_BYTES. */
1044 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
1045 	s->desc.info = s->iv;
1046 	/* TODO: Support other key modules than passphrase for
1047 	 * filename encryption */
1048 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1049 		rc = -EOPNOTSUPP;
1050 		printk(KERN_INFO "%s: Filename encryption only supports "
1051 		       "password tokens\n", __func__);
1052 		goto out_free_unlock;
1053 	}
1054 	rc = crypto_blkcipher_setkey(
1055 		s->desc.tfm,
1056 		s->auth_tok->token.password.session_key_encryption_key,
1057 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
1058 	if (rc < 0) {
1059 		printk(KERN_ERR "%s: Error setting key for crypto context; "
1060 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
1061 		       "encryption_key = [0x%p]; mount_crypt_stat->"
1062 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1063 		       rc,
1064 		       s->auth_tok->token.password.session_key_encryption_key,
1065 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
1066 		goto out_free_unlock;
1067 	}
1068 	rc = crypto_blkcipher_decrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
1069 					 s->block_aligned_filename_size);
1070 	if (rc) {
1071 		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1072 		       "rc = [%d]\n", __func__, rc);
1073 		goto out_free_unlock;
1074 	}
1075 	s->i = 0;
1076 	while (s->decrypted_filename[s->i] != '\0'
1077 	       && s->i < s->block_aligned_filename_size)
1078 		s->i++;
1079 	if (s->i == s->block_aligned_filename_size) {
1080 		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1081 		       "find valid separator between random characters and "
1082 		       "the filename\n", __func__);
1083 		rc = -EINVAL;
1084 		goto out_free_unlock;
1085 	}
1086 	s->i++;
1087 	(*filename_size) = (s->block_aligned_filename_size - s->i);
1088 	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1089 		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1090 		       "invalid\n", __func__, (*filename_size));
1091 		rc = -EINVAL;
1092 		goto out_free_unlock;
1093 	}
1094 	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1095 	if (!(*filename)) {
1096 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
1097 		       "kmalloc [%zd] bytes\n", __func__,
1098 		       ((*filename_size) + 1));
1099 		rc = -ENOMEM;
1100 		goto out_free_unlock;
1101 	}
1102 	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1103 	(*filename)[(*filename_size)] = '\0';
1104 out_free_unlock:
1105 	kfree(s->decrypted_filename);
1106 out_unlock:
1107 	mutex_unlock(s->tfm_mutex);
1108 out:
1109 	if (rc) {
1110 		(*packet_size) = 0;
1111 		(*filename_size) = 0;
1112 		(*filename) = NULL;
1113 	}
1114 	if (auth_tok_key) {
1115 		up_write(&(auth_tok_key->sem));
1116 		key_put(auth_tok_key);
1117 	}
1118 	kfree(s);
1119 	return rc;
1120 }
1121 
1122 static int
ecryptfs_get_auth_tok_sig(char ** sig,struct ecryptfs_auth_tok * auth_tok)1123 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1124 {
1125 	int rc = 0;
1126 
1127 	(*sig) = NULL;
1128 	switch (auth_tok->token_type) {
1129 	case ECRYPTFS_PASSWORD:
1130 		(*sig) = auth_tok->token.password.signature;
1131 		break;
1132 	case ECRYPTFS_PRIVATE_KEY:
1133 		(*sig) = auth_tok->token.private_key.signature;
1134 		break;
1135 	default:
1136 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1137 		       auth_tok->token_type);
1138 		rc = -EINVAL;
1139 	}
1140 	return rc;
1141 }
1142 
1143 /**
1144  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1145  * @auth_tok: The key authentication token used to decrypt the session key
1146  * @crypt_stat: The cryptographic context
1147  *
1148  * Returns zero on success; non-zero error otherwise.
1149  */
1150 static int
decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat)1151 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1152 				  struct ecryptfs_crypt_stat *crypt_stat)
1153 {
1154 	u8 cipher_code = 0;
1155 	struct ecryptfs_msg_ctx *msg_ctx;
1156 	struct ecryptfs_message *msg = NULL;
1157 	char *auth_tok_sig;
1158 	char *payload;
1159 	size_t payload_len;
1160 	int rc;
1161 
1162 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1163 	if (rc) {
1164 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1165 		       auth_tok->token_type);
1166 		goto out;
1167 	}
1168 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1169 				 &payload, &payload_len);
1170 	if (rc) {
1171 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1172 		goto out;
1173 	}
1174 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1175 	if (rc) {
1176 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1177 				"ecryptfsd\n");
1178 		goto out;
1179 	}
1180 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1181 	if (rc) {
1182 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1183 				"from the user space daemon\n");
1184 		rc = -EIO;
1185 		goto out;
1186 	}
1187 	rc = parse_tag_65_packet(&(auth_tok->session_key),
1188 				 &cipher_code, msg);
1189 	if (rc) {
1190 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1191 		       rc);
1192 		goto out;
1193 	}
1194 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1195 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1196 	       auth_tok->session_key.decrypted_key_size);
1197 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1198 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1199 	if (rc) {
1200 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1201 				cipher_code)
1202 		goto out;
1203 	}
1204 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1205 	if (ecryptfs_verbosity > 0) {
1206 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1207 		ecryptfs_dump_hex(crypt_stat->key,
1208 				  crypt_stat->key_size);
1209 	}
1210 out:
1211 	if (msg)
1212 		kfree(msg);
1213 	return rc;
1214 }
1215 
wipe_auth_tok_list(struct list_head * auth_tok_list_head)1216 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1217 {
1218 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1219 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1220 
1221 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1222 				 auth_tok_list_head, list) {
1223 		list_del(&auth_tok_list_item->list);
1224 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1225 				auth_tok_list_item);
1226 	}
1227 }
1228 
1229 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1230 
1231 /**
1232  * parse_tag_1_packet
1233  * @crypt_stat: The cryptographic context to modify based on packet contents
1234  * @data: The raw bytes of the packet.
1235  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1236  *                 a new authentication token will be placed at the
1237  *                 end of this list for this packet.
1238  * @new_auth_tok: Pointer to a pointer to memory that this function
1239  *                allocates; sets the memory address of the pointer to
1240  *                NULL on error. This object is added to the
1241  *                auth_tok_list.
1242  * @packet_size: This function writes the size of the parsed packet
1243  *               into this memory location; zero on error.
1244  * @max_packet_size: The maximum allowable packet size
1245  *
1246  * Returns zero on success; non-zero on error.
1247  */
1248 static int
parse_tag_1_packet(struct ecryptfs_crypt_stat * crypt_stat,unsigned char * data,struct list_head * auth_tok_list,struct ecryptfs_auth_tok ** new_auth_tok,size_t * packet_size,size_t max_packet_size)1249 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1250 		   unsigned char *data, struct list_head *auth_tok_list,
1251 		   struct ecryptfs_auth_tok **new_auth_tok,
1252 		   size_t *packet_size, size_t max_packet_size)
1253 {
1254 	size_t body_size;
1255 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1256 	size_t length_size;
1257 	int rc = 0;
1258 
1259 	(*packet_size) = 0;
1260 	(*new_auth_tok) = NULL;
1261 	/**
1262 	 * This format is inspired by OpenPGP; see RFC 2440
1263 	 * packet tag 1
1264 	 *
1265 	 * Tag 1 identifier (1 byte)
1266 	 * Max Tag 1 packet size (max 3 bytes)
1267 	 * Version (1 byte)
1268 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1269 	 * Cipher identifier (1 byte)
1270 	 * Encrypted key size (arbitrary)
1271 	 *
1272 	 * 12 bytes minimum packet size
1273 	 */
1274 	if (unlikely(max_packet_size < 12)) {
1275 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1276 		rc = -EINVAL;
1277 		goto out;
1278 	}
1279 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1280 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1281 		       ECRYPTFS_TAG_1_PACKET_TYPE);
1282 		rc = -EINVAL;
1283 		goto out;
1284 	}
1285 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1286 	 * at end of function upon failure */
1287 	auth_tok_list_item =
1288 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1289 				  GFP_KERNEL);
1290 	if (!auth_tok_list_item) {
1291 		printk(KERN_ERR "Unable to allocate memory\n");
1292 		rc = -ENOMEM;
1293 		goto out;
1294 	}
1295 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1296 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1297 					  &length_size);
1298 	if (rc) {
1299 		printk(KERN_WARNING "Error parsing packet length; "
1300 		       "rc = [%d]\n", rc);
1301 		goto out_free;
1302 	}
1303 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1304 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1305 		rc = -EINVAL;
1306 		goto out_free;
1307 	}
1308 	(*packet_size) += length_size;
1309 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1310 		printk(KERN_WARNING "Packet size exceeds max\n");
1311 		rc = -EINVAL;
1312 		goto out_free;
1313 	}
1314 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1315 		printk(KERN_WARNING "Unknown version number [%d]\n",
1316 		       data[(*packet_size) - 1]);
1317 		rc = -EINVAL;
1318 		goto out_free;
1319 	}
1320 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1321 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1322 	*packet_size += ECRYPTFS_SIG_SIZE;
1323 	/* This byte is skipped because the kernel does not need to
1324 	 * know which public key encryption algorithm was used */
1325 	(*packet_size)++;
1326 	(*new_auth_tok)->session_key.encrypted_key_size =
1327 		body_size - (ECRYPTFS_SIG_SIZE + 2);
1328 	if ((*new_auth_tok)->session_key.encrypted_key_size
1329 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1330 		printk(KERN_WARNING "Tag 1 packet contains key larger "
1331 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1332 		rc = -EINVAL;
1333 		goto out;
1334 	}
1335 	memcpy((*new_auth_tok)->session_key.encrypted_key,
1336 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1337 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1338 	(*new_auth_tok)->session_key.flags &=
1339 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1340 	(*new_auth_tok)->session_key.flags |=
1341 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1342 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1343 	(*new_auth_tok)->flags = 0;
1344 	(*new_auth_tok)->session_key.flags &=
1345 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1346 	(*new_auth_tok)->session_key.flags &=
1347 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1348 	list_add(&auth_tok_list_item->list, auth_tok_list);
1349 	goto out;
1350 out_free:
1351 	(*new_auth_tok) = NULL;
1352 	memset(auth_tok_list_item, 0,
1353 	       sizeof(struct ecryptfs_auth_tok_list_item));
1354 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1355 			auth_tok_list_item);
1356 out:
1357 	if (rc)
1358 		(*packet_size) = 0;
1359 	return rc;
1360 }
1361 
1362 /**
1363  * parse_tag_3_packet
1364  * @crypt_stat: The cryptographic context to modify based on packet
1365  *              contents.
1366  * @data: The raw bytes of the packet.
1367  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1368  *                 a new authentication token will be placed at the end
1369  *                 of this list for this packet.
1370  * @new_auth_tok: Pointer to a pointer to memory that this function
1371  *                allocates; sets the memory address of the pointer to
1372  *                NULL on error. This object is added to the
1373  *                auth_tok_list.
1374  * @packet_size: This function writes the size of the parsed packet
1375  *               into this memory location; zero on error.
1376  * @max_packet_size: maximum number of bytes to parse
1377  *
1378  * Returns zero on success; non-zero on error.
1379  */
1380 static int
parse_tag_3_packet(struct ecryptfs_crypt_stat * crypt_stat,unsigned char * data,struct list_head * auth_tok_list,struct ecryptfs_auth_tok ** new_auth_tok,size_t * packet_size,size_t max_packet_size)1381 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1382 		   unsigned char *data, struct list_head *auth_tok_list,
1383 		   struct ecryptfs_auth_tok **new_auth_tok,
1384 		   size_t *packet_size, size_t max_packet_size)
1385 {
1386 	size_t body_size;
1387 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1388 	size_t length_size;
1389 	int rc = 0;
1390 
1391 	(*packet_size) = 0;
1392 	(*new_auth_tok) = NULL;
1393 	/**
1394 	 *This format is inspired by OpenPGP; see RFC 2440
1395 	 * packet tag 3
1396 	 *
1397 	 * Tag 3 identifier (1 byte)
1398 	 * Max Tag 3 packet size (max 3 bytes)
1399 	 * Version (1 byte)
1400 	 * Cipher code (1 byte)
1401 	 * S2K specifier (1 byte)
1402 	 * Hash identifier (1 byte)
1403 	 * Salt (ECRYPTFS_SALT_SIZE)
1404 	 * Hash iterations (1 byte)
1405 	 * Encrypted key (arbitrary)
1406 	 *
1407 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1408 	 */
1409 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1410 		printk(KERN_ERR "Max packet size too large\n");
1411 		rc = -EINVAL;
1412 		goto out;
1413 	}
1414 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1415 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1416 		       ECRYPTFS_TAG_3_PACKET_TYPE);
1417 		rc = -EINVAL;
1418 		goto out;
1419 	}
1420 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1421 	 * at end of function upon failure */
1422 	auth_tok_list_item =
1423 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1424 	if (!auth_tok_list_item) {
1425 		printk(KERN_ERR "Unable to allocate memory\n");
1426 		rc = -ENOMEM;
1427 		goto out;
1428 	}
1429 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1430 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1431 					  &length_size);
1432 	if (rc) {
1433 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1434 		       rc);
1435 		goto out_free;
1436 	}
1437 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1438 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1439 		rc = -EINVAL;
1440 		goto out_free;
1441 	}
1442 	(*packet_size) += length_size;
1443 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1444 		printk(KERN_ERR "Packet size exceeds max\n");
1445 		rc = -EINVAL;
1446 		goto out_free;
1447 	}
1448 	(*new_auth_tok)->session_key.encrypted_key_size =
1449 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1450 	if ((*new_auth_tok)->session_key.encrypted_key_size
1451 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1452 		printk(KERN_WARNING "Tag 3 packet contains key larger "
1453 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1454 		rc = -EINVAL;
1455 		goto out_free;
1456 	}
1457 	if (unlikely(data[(*packet_size)++] != 0x04)) {
1458 		printk(KERN_WARNING "Unknown version number [%d]\n",
1459 		       data[(*packet_size) - 1]);
1460 		rc = -EINVAL;
1461 		goto out_free;
1462 	}
1463 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1464 					    (u16)data[(*packet_size)]);
1465 	if (rc)
1466 		goto out_free;
1467 	/* A little extra work to differentiate among the AES key
1468 	 * sizes; see RFC2440 */
1469 	switch(data[(*packet_size)++]) {
1470 	case RFC2440_CIPHER_AES_192:
1471 		crypt_stat->key_size = 24;
1472 		break;
1473 	default:
1474 		crypt_stat->key_size =
1475 			(*new_auth_tok)->session_key.encrypted_key_size;
1476 	}
1477 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1478 	if (rc)
1479 		goto out_free;
1480 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1481 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1482 		rc = -ENOSYS;
1483 		goto out_free;
1484 	}
1485 	/* TODO: finish the hash mapping */
1486 	switch (data[(*packet_size)++]) {
1487 	case 0x01: /* See RFC2440 for these numbers and their mappings */
1488 		/* Choose MD5 */
1489 		memcpy((*new_auth_tok)->token.password.salt,
1490 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1491 		(*packet_size) += ECRYPTFS_SALT_SIZE;
1492 		/* This conversion was taken straight from RFC2440 */
1493 		(*new_auth_tok)->token.password.hash_iterations =
1494 			((u32) 16 + (data[(*packet_size)] & 15))
1495 				<< ((data[(*packet_size)] >> 4) + 6);
1496 		(*packet_size)++;
1497 		/* Friendly reminder:
1498 		 * (*new_auth_tok)->session_key.encrypted_key_size =
1499 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1500 		memcpy((*new_auth_tok)->session_key.encrypted_key,
1501 		       &data[(*packet_size)],
1502 		       (*new_auth_tok)->session_key.encrypted_key_size);
1503 		(*packet_size) +=
1504 			(*new_auth_tok)->session_key.encrypted_key_size;
1505 		(*new_auth_tok)->session_key.flags &=
1506 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1507 		(*new_auth_tok)->session_key.flags |=
1508 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1509 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1510 		break;
1511 	default:
1512 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1513 				"[%d]\n", data[(*packet_size) - 1]);
1514 		rc = -ENOSYS;
1515 		goto out_free;
1516 	}
1517 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1518 	/* TODO: Parametarize; we might actually want userspace to
1519 	 * decrypt the session key. */
1520 	(*new_auth_tok)->session_key.flags &=
1521 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1522 	(*new_auth_tok)->session_key.flags &=
1523 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1524 	list_add(&auth_tok_list_item->list, auth_tok_list);
1525 	goto out;
1526 out_free:
1527 	(*new_auth_tok) = NULL;
1528 	memset(auth_tok_list_item, 0,
1529 	       sizeof(struct ecryptfs_auth_tok_list_item));
1530 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1531 			auth_tok_list_item);
1532 out:
1533 	if (rc)
1534 		(*packet_size) = 0;
1535 	return rc;
1536 }
1537 
1538 /**
1539  * parse_tag_11_packet
1540  * @data: The raw bytes of the packet
1541  * @contents: This function writes the data contents of the literal
1542  *            packet into this memory location
1543  * @max_contents_bytes: The maximum number of bytes that this function
1544  *                      is allowed to write into contents
1545  * @tag_11_contents_size: This function writes the size of the parsed
1546  *                        contents into this memory location; zero on
1547  *                        error
1548  * @packet_size: This function writes the size of the parsed packet
1549  *               into this memory location; zero on error
1550  * @max_packet_size: maximum number of bytes to parse
1551  *
1552  * Returns zero on success; non-zero on error.
1553  */
1554 static int
parse_tag_11_packet(unsigned char * data,unsigned char * contents,size_t max_contents_bytes,size_t * tag_11_contents_size,size_t * packet_size,size_t max_packet_size)1555 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1556 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1557 		    size_t *packet_size, size_t max_packet_size)
1558 {
1559 	size_t body_size;
1560 	size_t length_size;
1561 	int rc = 0;
1562 
1563 	(*packet_size) = 0;
1564 	(*tag_11_contents_size) = 0;
1565 	/* This format is inspired by OpenPGP; see RFC 2440
1566 	 * packet tag 11
1567 	 *
1568 	 * Tag 11 identifier (1 byte)
1569 	 * Max Tag 11 packet size (max 3 bytes)
1570 	 * Binary format specifier (1 byte)
1571 	 * Filename length (1 byte)
1572 	 * Filename ("_CONSOLE") (8 bytes)
1573 	 * Modification date (4 bytes)
1574 	 * Literal data (arbitrary)
1575 	 *
1576 	 * We need at least 16 bytes of data for the packet to even be
1577 	 * valid.
1578 	 */
1579 	if (max_packet_size < 16) {
1580 		printk(KERN_ERR "Maximum packet size too small\n");
1581 		rc = -EINVAL;
1582 		goto out;
1583 	}
1584 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1585 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1586 		rc = -EINVAL;
1587 		goto out;
1588 	}
1589 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1590 					  &length_size);
1591 	if (rc) {
1592 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1593 		goto out;
1594 	}
1595 	if (body_size < 14) {
1596 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1597 		rc = -EINVAL;
1598 		goto out;
1599 	}
1600 	(*packet_size) += length_size;
1601 	(*tag_11_contents_size) = (body_size - 14);
1602 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1603 		printk(KERN_ERR "Packet size exceeds max\n");
1604 		rc = -EINVAL;
1605 		goto out;
1606 	}
1607 	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1608 		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1609 		       "expected size\n");
1610 		rc = -EINVAL;
1611 		goto out;
1612 	}
1613 	if (data[(*packet_size)++] != 0x62) {
1614 		printk(KERN_WARNING "Unrecognizable packet\n");
1615 		rc = -EINVAL;
1616 		goto out;
1617 	}
1618 	if (data[(*packet_size)++] != 0x08) {
1619 		printk(KERN_WARNING "Unrecognizable packet\n");
1620 		rc = -EINVAL;
1621 		goto out;
1622 	}
1623 	(*packet_size) += 12; /* Ignore filename and modification date */
1624 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1625 	(*packet_size) += (*tag_11_contents_size);
1626 out:
1627 	if (rc) {
1628 		(*packet_size) = 0;
1629 		(*tag_11_contents_size) = 0;
1630 	}
1631 	return rc;
1632 }
1633 
ecryptfs_keyring_auth_tok_for_sig(struct key ** auth_tok_key,struct ecryptfs_auth_tok ** auth_tok,char * sig)1634 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1635 				      struct ecryptfs_auth_tok **auth_tok,
1636 				      char *sig)
1637 {
1638 	int rc = 0;
1639 
1640 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1641 	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1642 		printk(KERN_ERR "Could not find key with description: [%s]\n",
1643 		       sig);
1644 		rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1645 		(*auth_tok_key) = NULL;
1646 		goto out;
1647 	}
1648 	down_write(&(*auth_tok_key)->sem);
1649 	rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1650 	if (rc) {
1651 		up_write(&(*auth_tok_key)->sem);
1652 		key_put(*auth_tok_key);
1653 		(*auth_tok_key) = NULL;
1654 		goto out;
1655 	}
1656 out:
1657 	return rc;
1658 }
1659 
1660 /**
1661  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1662  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1663  * @crypt_stat: The cryptographic context
1664  *
1665  * Returns zero on success; non-zero error otherwise
1666  */
1667 static int
decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat)1668 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1669 					 struct ecryptfs_crypt_stat *crypt_stat)
1670 {
1671 	struct scatterlist dst_sg[2];
1672 	struct scatterlist src_sg[2];
1673 	struct mutex *tfm_mutex;
1674 	struct blkcipher_desc desc = {
1675 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
1676 	};
1677 	int rc = 0;
1678 
1679 	if (unlikely(ecryptfs_verbosity > 0)) {
1680 		ecryptfs_printk(
1681 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1682 			auth_tok->token.password.session_key_encryption_key_bytes);
1683 		ecryptfs_dump_hex(
1684 			auth_tok->token.password.session_key_encryption_key,
1685 			auth_tok->token.password.session_key_encryption_key_bytes);
1686 	}
1687 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1688 							crypt_stat->cipher);
1689 	if (unlikely(rc)) {
1690 		printk(KERN_ERR "Internal error whilst attempting to get "
1691 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1692 		       crypt_stat->cipher, rc);
1693 		goto out;
1694 	}
1695 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1696 				 auth_tok->session_key.encrypted_key_size,
1697 				 src_sg, 2);
1698 	if (rc < 1 || rc > 2) {
1699 		printk(KERN_ERR "Internal error whilst attempting to convert "
1700 			"auth_tok->session_key.encrypted_key to scatterlist; "
1701 			"expected rc = 1; got rc = [%d]. "
1702 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1703 			auth_tok->session_key.encrypted_key_size);
1704 		goto out;
1705 	}
1706 	auth_tok->session_key.decrypted_key_size =
1707 		auth_tok->session_key.encrypted_key_size;
1708 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1709 				 auth_tok->session_key.decrypted_key_size,
1710 				 dst_sg, 2);
1711 	if (rc < 1 || rc > 2) {
1712 		printk(KERN_ERR "Internal error whilst attempting to convert "
1713 			"auth_tok->session_key.decrypted_key to scatterlist; "
1714 			"expected rc = 1; got rc = [%d]\n", rc);
1715 		goto out;
1716 	}
1717 	mutex_lock(tfm_mutex);
1718 	rc = crypto_blkcipher_setkey(
1719 		desc.tfm, auth_tok->token.password.session_key_encryption_key,
1720 		crypt_stat->key_size);
1721 	if (unlikely(rc < 0)) {
1722 		mutex_unlock(tfm_mutex);
1723 		printk(KERN_ERR "Error setting key for crypto context\n");
1724 		rc = -EINVAL;
1725 		goto out;
1726 	}
1727 	rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1728 				      auth_tok->session_key.encrypted_key_size);
1729 	mutex_unlock(tfm_mutex);
1730 	if (unlikely(rc)) {
1731 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1732 		goto out;
1733 	}
1734 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1735 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1736 	       auth_tok->session_key.decrypted_key_size);
1737 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1738 	if (unlikely(ecryptfs_verbosity > 0)) {
1739 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1740 				crypt_stat->key_size);
1741 		ecryptfs_dump_hex(crypt_stat->key,
1742 				  crypt_stat->key_size);
1743 	}
1744 out:
1745 	return rc;
1746 }
1747 
1748 /**
1749  * ecryptfs_parse_packet_set
1750  * @crypt_stat: The cryptographic context
1751  * @src: Virtual address of region of memory containing the packets
1752  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1753  *
1754  * Get crypt_stat to have the file's session key if the requisite key
1755  * is available to decrypt the session key.
1756  *
1757  * Returns Zero if a valid authentication token was retrieved and
1758  * processed; negative value for file not encrypted or for error
1759  * conditions.
1760  */
ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat * crypt_stat,unsigned char * src,struct dentry * ecryptfs_dentry)1761 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1762 			      unsigned char *src,
1763 			      struct dentry *ecryptfs_dentry)
1764 {
1765 	size_t i = 0;
1766 	size_t found_auth_tok;
1767 	size_t next_packet_is_auth_tok_packet;
1768 	struct list_head auth_tok_list;
1769 	struct ecryptfs_auth_tok *matching_auth_tok;
1770 	struct ecryptfs_auth_tok *candidate_auth_tok;
1771 	char *candidate_auth_tok_sig;
1772 	size_t packet_size;
1773 	struct ecryptfs_auth_tok *new_auth_tok;
1774 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1775 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1776 	size_t tag_11_contents_size;
1777 	size_t tag_11_packet_size;
1778 	struct key *auth_tok_key = NULL;
1779 	int rc = 0;
1780 
1781 	INIT_LIST_HEAD(&auth_tok_list);
1782 	/* Parse the header to find as many packets as we can; these will be
1783 	 * added the our &auth_tok_list */
1784 	next_packet_is_auth_tok_packet = 1;
1785 	while (next_packet_is_auth_tok_packet) {
1786 		size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1787 
1788 		switch (src[i]) {
1789 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1790 			rc = parse_tag_3_packet(crypt_stat,
1791 						(unsigned char *)&src[i],
1792 						&auth_tok_list, &new_auth_tok,
1793 						&packet_size, max_packet_size);
1794 			if (rc) {
1795 				ecryptfs_printk(KERN_ERR, "Error parsing "
1796 						"tag 3 packet\n");
1797 				rc = -EIO;
1798 				goto out_wipe_list;
1799 			}
1800 			i += packet_size;
1801 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1802 						 sig_tmp_space,
1803 						 ECRYPTFS_SIG_SIZE,
1804 						 &tag_11_contents_size,
1805 						 &tag_11_packet_size,
1806 						 max_packet_size);
1807 			if (rc) {
1808 				ecryptfs_printk(KERN_ERR, "No valid "
1809 						"(ecryptfs-specific) literal "
1810 						"packet containing "
1811 						"authentication token "
1812 						"signature found after "
1813 						"tag 3 packet\n");
1814 				rc = -EIO;
1815 				goto out_wipe_list;
1816 			}
1817 			i += tag_11_packet_size;
1818 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1819 				ecryptfs_printk(KERN_ERR, "Expected "
1820 						"signature of size [%d]; "
1821 						"read size [%zd]\n",
1822 						ECRYPTFS_SIG_SIZE,
1823 						tag_11_contents_size);
1824 				rc = -EIO;
1825 				goto out_wipe_list;
1826 			}
1827 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1828 					sig_tmp_space, tag_11_contents_size);
1829 			new_auth_tok->token.password.signature[
1830 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1831 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1832 			break;
1833 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1834 			rc = parse_tag_1_packet(crypt_stat,
1835 						(unsigned char *)&src[i],
1836 						&auth_tok_list, &new_auth_tok,
1837 						&packet_size, max_packet_size);
1838 			if (rc) {
1839 				ecryptfs_printk(KERN_ERR, "Error parsing "
1840 						"tag 1 packet\n");
1841 				rc = -EIO;
1842 				goto out_wipe_list;
1843 			}
1844 			i += packet_size;
1845 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1846 			break;
1847 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1848 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1849 					"(Tag 11 not allowed by itself)\n");
1850 			rc = -EIO;
1851 			goto out_wipe_list;
1852 			break;
1853 		default:
1854 			ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1855 					"of the file header; hex value of "
1856 					"character is [0x%.2x]\n", i, src[i]);
1857 			next_packet_is_auth_tok_packet = 0;
1858 		}
1859 	}
1860 	if (list_empty(&auth_tok_list)) {
1861 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1862 		       "eCryptfs file; this is not supported in this version "
1863 		       "of the eCryptfs kernel module\n");
1864 		rc = -EINVAL;
1865 		goto out;
1866 	}
1867 	/* auth_tok_list contains the set of authentication tokens
1868 	 * parsed from the metadata. We need to find a matching
1869 	 * authentication token that has the secret component(s)
1870 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1871 	 * the metadata. There may be several potential matches, but
1872 	 * just one will be sufficient to decrypt to get the FEK. */
1873 find_next_matching_auth_tok:
1874 	found_auth_tok = 0;
1875 	if (auth_tok_key) {
1876 		up_write(&(auth_tok_key->sem));
1877 		key_put(auth_tok_key);
1878 		auth_tok_key = NULL;
1879 	}
1880 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1881 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1882 		if (unlikely(ecryptfs_verbosity > 0)) {
1883 			ecryptfs_printk(KERN_DEBUG,
1884 					"Considering cadidate auth tok:\n");
1885 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1886 		}
1887 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1888 					       candidate_auth_tok);
1889 		if (rc) {
1890 			printk(KERN_ERR
1891 			       "Unrecognized candidate auth tok type: [%d]\n",
1892 			       candidate_auth_tok->token_type);
1893 			rc = -EINVAL;
1894 			goto out_wipe_list;
1895 		}
1896 		rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1897 					       &matching_auth_tok,
1898 					       crypt_stat->mount_crypt_stat,
1899 					       candidate_auth_tok_sig);
1900 		if (!rc) {
1901 			found_auth_tok = 1;
1902 			goto found_matching_auth_tok;
1903 		}
1904 	}
1905 	if (!found_auth_tok) {
1906 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1907 				"authentication token\n");
1908 		rc = -EIO;
1909 		goto out_wipe_list;
1910 	}
1911 found_matching_auth_tok:
1912 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1913 		memcpy(&(candidate_auth_tok->token.private_key),
1914 		       &(matching_auth_tok->token.private_key),
1915 		       sizeof(struct ecryptfs_private_key));
1916 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1917 						       crypt_stat);
1918 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1919 		memcpy(&(candidate_auth_tok->token.password),
1920 		       &(matching_auth_tok->token.password),
1921 		       sizeof(struct ecryptfs_password));
1922 		rc = decrypt_passphrase_encrypted_session_key(
1923 			candidate_auth_tok, crypt_stat);
1924 	}
1925 	if (rc) {
1926 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1927 
1928 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1929 				"session key for authentication token with sig "
1930 				"[%.*s]; rc = [%d]. Removing auth tok "
1931 				"candidate from the list and searching for "
1932 				"the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1933 				candidate_auth_tok_sig,	rc);
1934 		list_for_each_entry_safe(auth_tok_list_item,
1935 					 auth_tok_list_item_tmp,
1936 					 &auth_tok_list, list) {
1937 			if (candidate_auth_tok
1938 			    == &auth_tok_list_item->auth_tok) {
1939 				list_del(&auth_tok_list_item->list);
1940 				kmem_cache_free(
1941 					ecryptfs_auth_tok_list_item_cache,
1942 					auth_tok_list_item);
1943 				goto find_next_matching_auth_tok;
1944 			}
1945 		}
1946 		BUG();
1947 	}
1948 	rc = ecryptfs_compute_root_iv(crypt_stat);
1949 	if (rc) {
1950 		ecryptfs_printk(KERN_ERR, "Error computing "
1951 				"the root IV\n");
1952 		goto out_wipe_list;
1953 	}
1954 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1955 	if (rc) {
1956 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1957 				"context for cipher [%s]; rc = [%d]\n",
1958 				crypt_stat->cipher, rc);
1959 	}
1960 out_wipe_list:
1961 	wipe_auth_tok_list(&auth_tok_list);
1962 out:
1963 	if (auth_tok_key) {
1964 		up_write(&(auth_tok_key->sem));
1965 		key_put(auth_tok_key);
1966 	}
1967 	return rc;
1968 }
1969 
1970 static int
pki_encrypt_session_key(struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_key_record * key_rec)1971 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1972 			struct ecryptfs_crypt_stat *crypt_stat,
1973 			struct ecryptfs_key_record *key_rec)
1974 {
1975 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1976 	char *payload = NULL;
1977 	size_t payload_len;
1978 	struct ecryptfs_message *msg;
1979 	int rc;
1980 
1981 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1982 				 ecryptfs_code_for_cipher_string(
1983 					 crypt_stat->cipher,
1984 					 crypt_stat->key_size),
1985 				 crypt_stat, &payload, &payload_len);
1986 	if (rc) {
1987 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1988 		goto out;
1989 	}
1990 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1991 	if (rc) {
1992 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1993 				"ecryptfsd\n");
1994 		goto out;
1995 	}
1996 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1997 	if (rc) {
1998 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1999 				"from the user space daemon\n");
2000 		rc = -EIO;
2001 		goto out;
2002 	}
2003 	rc = parse_tag_67_packet(key_rec, msg);
2004 	if (rc)
2005 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
2006 	kfree(msg);
2007 out:
2008 	kfree(payload);
2009 	return rc;
2010 }
2011 /**
2012  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2013  * @dest: Buffer into which to write the packet
2014  * @remaining_bytes: Maximum number of bytes that can be writtn
2015  * @auth_tok: The authentication token used for generating the tag 1 packet
2016  * @crypt_stat: The cryptographic context
2017  * @key_rec: The key record struct for the tag 1 packet
2018  * @packet_size: This function will write the number of bytes that end
2019  *               up constituting the packet; set to zero on error
2020  *
2021  * Returns zero on success; non-zero on error.
2022  */
2023 static int
write_tag_1_packet(char * dest,size_t * remaining_bytes,struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_key_record * key_rec,size_t * packet_size)2024 write_tag_1_packet(char *dest, size_t *remaining_bytes,
2025 		   struct ecryptfs_auth_tok *auth_tok,
2026 		   struct ecryptfs_crypt_stat *crypt_stat,
2027 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2028 {
2029 	size_t i;
2030 	size_t encrypted_session_key_valid = 0;
2031 	size_t packet_size_length;
2032 	size_t max_packet_size;
2033 	int rc = 0;
2034 
2035 	(*packet_size) = 0;
2036 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2037 			  ECRYPTFS_SIG_SIZE);
2038 	encrypted_session_key_valid = 0;
2039 	for (i = 0; i < crypt_stat->key_size; i++)
2040 		encrypted_session_key_valid |=
2041 			auth_tok->session_key.encrypted_key[i];
2042 	if (encrypted_session_key_valid) {
2043 		memcpy(key_rec->enc_key,
2044 		       auth_tok->session_key.encrypted_key,
2045 		       auth_tok->session_key.encrypted_key_size);
2046 		goto encrypted_session_key_set;
2047 	}
2048 	if (auth_tok->session_key.encrypted_key_size == 0)
2049 		auth_tok->session_key.encrypted_key_size =
2050 			auth_tok->token.private_key.key_size;
2051 	rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
2052 	if (rc) {
2053 		printk(KERN_ERR "Failed to encrypt session key via a key "
2054 		       "module; rc = [%d]\n", rc);
2055 		goto out;
2056 	}
2057 	if (ecryptfs_verbosity > 0) {
2058 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2059 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2060 	}
2061 encrypted_session_key_set:
2062 	/* This format is inspired by OpenPGP; see RFC 2440
2063 	 * packet tag 1 */
2064 	max_packet_size = (1                         /* Tag 1 identifier */
2065 			   + 3                       /* Max Tag 1 packet size */
2066 			   + 1                       /* Version */
2067 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
2068 			   + 1                       /* Cipher identifier */
2069 			   + key_rec->enc_key_size); /* Encrypted key size */
2070 	if (max_packet_size > (*remaining_bytes)) {
2071 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2072 		       "need up to [%td] bytes, but there are only [%td] "
2073 		       "available\n", max_packet_size, (*remaining_bytes));
2074 		rc = -EINVAL;
2075 		goto out;
2076 	}
2077 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2078 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2079 					  (max_packet_size - 4),
2080 					  &packet_size_length);
2081 	if (rc) {
2082 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2083 				"header; cannot generate packet length\n");
2084 		goto out;
2085 	}
2086 	(*packet_size) += packet_size_length;
2087 	dest[(*packet_size)++] = 0x03; /* version 3 */
2088 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2089 	(*packet_size) += ECRYPTFS_SIG_SIZE;
2090 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2091 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2092 	       key_rec->enc_key_size);
2093 	(*packet_size) += key_rec->enc_key_size;
2094 out:
2095 	if (rc)
2096 		(*packet_size) = 0;
2097 	else
2098 		(*remaining_bytes) -= (*packet_size);
2099 	return rc;
2100 }
2101 
2102 /**
2103  * write_tag_11_packet
2104  * @dest: Target into which Tag 11 packet is to be written
2105  * @remaining_bytes: Maximum packet length
2106  * @contents: Byte array of contents to copy in
2107  * @contents_length: Number of bytes in contents
2108  * @packet_length: Length of the Tag 11 packet written; zero on error
2109  *
2110  * Returns zero on success; non-zero on error.
2111  */
2112 static int
write_tag_11_packet(char * dest,size_t * remaining_bytes,char * contents,size_t contents_length,size_t * packet_length)2113 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2114 		    size_t contents_length, size_t *packet_length)
2115 {
2116 	size_t packet_size_length;
2117 	size_t max_packet_size;
2118 	int rc = 0;
2119 
2120 	(*packet_length) = 0;
2121 	/* This format is inspired by OpenPGP; see RFC 2440
2122 	 * packet tag 11 */
2123 	max_packet_size = (1                   /* Tag 11 identifier */
2124 			   + 3                 /* Max Tag 11 packet size */
2125 			   + 1                 /* Binary format specifier */
2126 			   + 1                 /* Filename length */
2127 			   + 8                 /* Filename ("_CONSOLE") */
2128 			   + 4                 /* Modification date */
2129 			   + contents_length); /* Literal data */
2130 	if (max_packet_size > (*remaining_bytes)) {
2131 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2132 		       "need up to [%td] bytes, but there are only [%td] "
2133 		       "available\n", max_packet_size, (*remaining_bytes));
2134 		rc = -EINVAL;
2135 		goto out;
2136 	}
2137 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2138 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2139 					  (max_packet_size - 4),
2140 					  &packet_size_length);
2141 	if (rc) {
2142 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2143 		       "generate packet length. rc = [%d]\n", rc);
2144 		goto out;
2145 	}
2146 	(*packet_length) += packet_size_length;
2147 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2148 	dest[(*packet_length)++] = 8;
2149 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2150 	(*packet_length) += 8;
2151 	memset(&dest[(*packet_length)], 0x00, 4);
2152 	(*packet_length) += 4;
2153 	memcpy(&dest[(*packet_length)], contents, contents_length);
2154 	(*packet_length) += contents_length;
2155  out:
2156 	if (rc)
2157 		(*packet_length) = 0;
2158 	else
2159 		(*remaining_bytes) -= (*packet_length);
2160 	return rc;
2161 }
2162 
2163 /**
2164  * write_tag_3_packet
2165  * @dest: Buffer into which to write the packet
2166  * @remaining_bytes: Maximum number of bytes that can be written
2167  * @auth_tok: Authentication token
2168  * @crypt_stat: The cryptographic context
2169  * @key_rec: encrypted key
2170  * @packet_size: This function will write the number of bytes that end
2171  *               up constituting the packet; set to zero on error
2172  *
2173  * Returns zero on success; non-zero on error.
2174  */
2175 static int
write_tag_3_packet(char * dest,size_t * remaining_bytes,struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_key_record * key_rec,size_t * packet_size)2176 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2177 		   struct ecryptfs_auth_tok *auth_tok,
2178 		   struct ecryptfs_crypt_stat *crypt_stat,
2179 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2180 {
2181 	size_t i;
2182 	size_t encrypted_session_key_valid = 0;
2183 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2184 	struct scatterlist dst_sg[2];
2185 	struct scatterlist src_sg[2];
2186 	struct mutex *tfm_mutex = NULL;
2187 	u8 cipher_code;
2188 	size_t packet_size_length;
2189 	size_t max_packet_size;
2190 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2191 		crypt_stat->mount_crypt_stat;
2192 	struct blkcipher_desc desc = {
2193 		.tfm = NULL,
2194 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
2195 	};
2196 	int rc = 0;
2197 
2198 	(*packet_size) = 0;
2199 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2200 			  ECRYPTFS_SIG_SIZE);
2201 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2202 							crypt_stat->cipher);
2203 	if (unlikely(rc)) {
2204 		printk(KERN_ERR "Internal error whilst attempting to get "
2205 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2206 		       crypt_stat->cipher, rc);
2207 		goto out;
2208 	}
2209 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2210 		struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2211 
2212 		printk(KERN_WARNING "No key size specified at mount; "
2213 		       "defaulting to [%d]\n", alg->max_keysize);
2214 		mount_crypt_stat->global_default_cipher_key_size =
2215 			alg->max_keysize;
2216 	}
2217 	if (crypt_stat->key_size == 0)
2218 		crypt_stat->key_size =
2219 			mount_crypt_stat->global_default_cipher_key_size;
2220 	if (auth_tok->session_key.encrypted_key_size == 0)
2221 		auth_tok->session_key.encrypted_key_size =
2222 			crypt_stat->key_size;
2223 	if (crypt_stat->key_size == 24
2224 	    && strcmp("aes", crypt_stat->cipher) == 0) {
2225 		memset((crypt_stat->key + 24), 0, 8);
2226 		auth_tok->session_key.encrypted_key_size = 32;
2227 	} else
2228 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2229 	key_rec->enc_key_size =
2230 		auth_tok->session_key.encrypted_key_size;
2231 	encrypted_session_key_valid = 0;
2232 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2233 		encrypted_session_key_valid |=
2234 			auth_tok->session_key.encrypted_key[i];
2235 	if (encrypted_session_key_valid) {
2236 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2237 				"using auth_tok->session_key.encrypted_key, "
2238 				"where key_rec->enc_key_size = [%zd]\n",
2239 				key_rec->enc_key_size);
2240 		memcpy(key_rec->enc_key,
2241 		       auth_tok->session_key.encrypted_key,
2242 		       key_rec->enc_key_size);
2243 		goto encrypted_session_key_set;
2244 	}
2245 	if (auth_tok->token.password.flags &
2246 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2247 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2248 				"session key encryption key of size [%d]\n",
2249 				auth_tok->token.password.
2250 				session_key_encryption_key_bytes);
2251 		memcpy(session_key_encryption_key,
2252 		       auth_tok->token.password.session_key_encryption_key,
2253 		       crypt_stat->key_size);
2254 		ecryptfs_printk(KERN_DEBUG,
2255 				"Cached session key " "encryption key: \n");
2256 		if (ecryptfs_verbosity > 0)
2257 			ecryptfs_dump_hex(session_key_encryption_key, 16);
2258 	}
2259 	if (unlikely(ecryptfs_verbosity > 0)) {
2260 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2261 		ecryptfs_dump_hex(session_key_encryption_key, 16);
2262 	}
2263 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2264 				 src_sg, 2);
2265 	if (rc < 1 || rc > 2) {
2266 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2267 				"for crypt_stat session key; expected rc = 1; "
2268 				"got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2269 				rc, key_rec->enc_key_size);
2270 		rc = -ENOMEM;
2271 		goto out;
2272 	}
2273 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2274 				 dst_sg, 2);
2275 	if (rc < 1 || rc > 2) {
2276 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2277 				"for crypt_stat encrypted session key; "
2278 				"expected rc = 1; got rc = [%d]. "
2279 				"key_rec->enc_key_size = [%zd]\n", rc,
2280 				key_rec->enc_key_size);
2281 		rc = -ENOMEM;
2282 		goto out;
2283 	}
2284 	mutex_lock(tfm_mutex);
2285 	rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2286 				     crypt_stat->key_size);
2287 	if (rc < 0) {
2288 		mutex_unlock(tfm_mutex);
2289 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2290 				"context; rc = [%d]\n", rc);
2291 		goto out;
2292 	}
2293 	rc = 0;
2294 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2295 			crypt_stat->key_size);
2296 	rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2297 				      (*key_rec).enc_key_size);
2298 	mutex_unlock(tfm_mutex);
2299 	if (rc) {
2300 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2301 		goto out;
2302 	}
2303 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2304 	if (ecryptfs_verbosity > 0) {
2305 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2306 				key_rec->enc_key_size);
2307 		ecryptfs_dump_hex(key_rec->enc_key,
2308 				  key_rec->enc_key_size);
2309 	}
2310 encrypted_session_key_set:
2311 	/* This format is inspired by OpenPGP; see RFC 2440
2312 	 * packet tag 3 */
2313 	max_packet_size = (1                         /* Tag 3 identifier */
2314 			   + 3                       /* Max Tag 3 packet size */
2315 			   + 1                       /* Version */
2316 			   + 1                       /* Cipher code */
2317 			   + 1                       /* S2K specifier */
2318 			   + 1                       /* Hash identifier */
2319 			   + ECRYPTFS_SALT_SIZE      /* Salt */
2320 			   + 1                       /* Hash iterations */
2321 			   + key_rec->enc_key_size); /* Encrypted key size */
2322 	if (max_packet_size > (*remaining_bytes)) {
2323 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2324 		       "there are only [%td] available\n", max_packet_size,
2325 		       (*remaining_bytes));
2326 		rc = -EINVAL;
2327 		goto out;
2328 	}
2329 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2330 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2331 	 * to get the number of octets in the actual Tag 3 packet */
2332 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2333 					  (max_packet_size - 4),
2334 					  &packet_size_length);
2335 	if (rc) {
2336 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2337 		       "generate packet length. rc = [%d]\n", rc);
2338 		goto out;
2339 	}
2340 	(*packet_size) += packet_size_length;
2341 	dest[(*packet_size)++] = 0x04; /* version 4 */
2342 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2343 	 * specified with strings */
2344 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2345 						      crypt_stat->key_size);
2346 	if (cipher_code == 0) {
2347 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2348 				"cipher [%s]\n", crypt_stat->cipher);
2349 		rc = -EINVAL;
2350 		goto out;
2351 	}
2352 	dest[(*packet_size)++] = cipher_code;
2353 	dest[(*packet_size)++] = 0x03;	/* S2K */
2354 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2355 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2356 	       ECRYPTFS_SALT_SIZE);
2357 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2358 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2359 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2360 	       key_rec->enc_key_size);
2361 	(*packet_size) += key_rec->enc_key_size;
2362 out:
2363 	if (rc)
2364 		(*packet_size) = 0;
2365 	else
2366 		(*remaining_bytes) -= (*packet_size);
2367 	return rc;
2368 }
2369 
2370 struct kmem_cache *ecryptfs_key_record_cache;
2371 
2372 /**
2373  * ecryptfs_generate_key_packet_set
2374  * @dest_base: Virtual address from which to write the key record set
2375  * @crypt_stat: The cryptographic context from which the
2376  *              authentication tokens will be retrieved
2377  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2378  *                   for the global parameters
2379  * @len: The amount written
2380  * @max: The maximum amount of data allowed to be written
2381  *
2382  * Generates a key packet set and writes it to the virtual address
2383  * passed in.
2384  *
2385  * Returns zero on success; non-zero on error.
2386  */
2387 int
ecryptfs_generate_key_packet_set(char * dest_base,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry,size_t * len,size_t max)2388 ecryptfs_generate_key_packet_set(char *dest_base,
2389 				 struct ecryptfs_crypt_stat *crypt_stat,
2390 				 struct dentry *ecryptfs_dentry, size_t *len,
2391 				 size_t max)
2392 {
2393 	struct ecryptfs_auth_tok *auth_tok;
2394 	struct key *auth_tok_key = NULL;
2395 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2396 		&ecryptfs_superblock_to_private(
2397 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2398 	size_t written;
2399 	struct ecryptfs_key_record *key_rec;
2400 	struct ecryptfs_key_sig *key_sig;
2401 	int rc = 0;
2402 
2403 	(*len) = 0;
2404 	mutex_lock(&crypt_stat->keysig_list_mutex);
2405 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2406 	if (!key_rec) {
2407 		rc = -ENOMEM;
2408 		goto out;
2409 	}
2410 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2411 			    crypt_stat_list) {
2412 		memset(key_rec, 0, sizeof(*key_rec));
2413 		rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2414 							   &auth_tok,
2415 							   mount_crypt_stat,
2416 							   key_sig->keysig);
2417 		if (rc) {
2418 			printk(KERN_WARNING "Unable to retrieve auth tok with "
2419 			       "sig = [%s]\n", key_sig->keysig);
2420 			rc = process_find_global_auth_tok_for_sig_err(rc);
2421 			goto out_free;
2422 		}
2423 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2424 			rc = write_tag_3_packet((dest_base + (*len)),
2425 						&max, auth_tok,
2426 						crypt_stat, key_rec,
2427 						&written);
2428 			if (rc) {
2429 				ecryptfs_printk(KERN_WARNING, "Error "
2430 						"writing tag 3 packet\n");
2431 				goto out_free;
2432 			}
2433 			(*len) += written;
2434 			/* Write auth tok signature packet */
2435 			rc = write_tag_11_packet((dest_base + (*len)), &max,
2436 						 key_rec->sig,
2437 						 ECRYPTFS_SIG_SIZE, &written);
2438 			if (rc) {
2439 				ecryptfs_printk(KERN_ERR, "Error writing "
2440 						"auth tok signature packet\n");
2441 				goto out_free;
2442 			}
2443 			(*len) += written;
2444 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2445 			rc = write_tag_1_packet(dest_base + (*len),
2446 						&max, auth_tok,
2447 						crypt_stat, key_rec, &written);
2448 			if (rc) {
2449 				ecryptfs_printk(KERN_WARNING, "Error "
2450 						"writing tag 1 packet\n");
2451 				goto out_free;
2452 			}
2453 			(*len) += written;
2454 		} else {
2455 			ecryptfs_printk(KERN_WARNING, "Unsupported "
2456 					"authentication token type\n");
2457 			rc = -EINVAL;
2458 			goto out_free;
2459 		}
2460 		up_write(&(auth_tok_key->sem));
2461 		key_put(auth_tok_key);
2462 		auth_tok_key = NULL;
2463 	}
2464 	if (likely(max > 0)) {
2465 		dest_base[(*len)] = 0x00;
2466 	} else {
2467 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2468 		rc = -EIO;
2469 	}
2470 out_free:
2471 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2472 out:
2473 	if (rc)
2474 		(*len) = 0;
2475 	if (auth_tok_key) {
2476 		up_write(&(auth_tok_key->sem));
2477 		key_put(auth_tok_key);
2478 	}
2479 
2480 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2481 	return rc;
2482 }
2483 
2484 struct kmem_cache *ecryptfs_key_sig_cache;
2485 
ecryptfs_add_keysig(struct ecryptfs_crypt_stat * crypt_stat,char * sig)2486 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2487 {
2488 	struct ecryptfs_key_sig *new_key_sig;
2489 
2490 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2491 	if (!new_key_sig) {
2492 		printk(KERN_ERR
2493 		       "Error allocating from ecryptfs_key_sig_cache\n");
2494 		return -ENOMEM;
2495 	}
2496 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2497 	new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2498 	/* Caller must hold keysig_list_mutex */
2499 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2500 
2501 	return 0;
2502 }
2503 
2504 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2505 
2506 int
ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * sig,u32 global_auth_tok_flags)2507 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2508 			     char *sig, u32 global_auth_tok_flags)
2509 {
2510 	struct ecryptfs_global_auth_tok *new_auth_tok;
2511 	int rc = 0;
2512 
2513 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2514 					GFP_KERNEL);
2515 	if (!new_auth_tok) {
2516 		rc = -ENOMEM;
2517 		printk(KERN_ERR "Error allocating from "
2518 		       "ecryptfs_global_auth_tok_cache\n");
2519 		goto out;
2520 	}
2521 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2522 	new_auth_tok->flags = global_auth_tok_flags;
2523 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2524 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2525 	list_add(&new_auth_tok->mount_crypt_stat_list,
2526 		 &mount_crypt_stat->global_auth_tok_list);
2527 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2528 out:
2529 	return rc;
2530 }
2531 
2532