1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #include "e1000.h"
5
6 /**
7 * e1000e_get_bus_info_pcie - Get PCIe bus information
8 * @hw: pointer to the HW structure
9 *
10 * Determines and stores the system bus information for a particular
11 * network interface. The following bus information is determined and stored:
12 * bus speed, bus width, type (PCIe), and PCIe function.
13 **/
e1000e_get_bus_info_pcie(struct e1000_hw * hw)14 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
15 {
16 struct e1000_mac_info *mac = &hw->mac;
17 struct e1000_bus_info *bus = &hw->bus;
18 struct e1000_adapter *adapter = hw->adapter;
19 u16 pcie_link_status, cap_offset;
20
21 cap_offset = adapter->pdev->pcie_cap;
22 if (!cap_offset) {
23 bus->width = e1000_bus_width_unknown;
24 } else {
25 pci_read_config_word(adapter->pdev,
26 cap_offset + PCIE_LINK_STATUS,
27 &pcie_link_status);
28 bus->width = (enum e1000_bus_width)((pcie_link_status &
29 PCIE_LINK_WIDTH_MASK) >>
30 PCIE_LINK_WIDTH_SHIFT);
31 }
32
33 mac->ops.set_lan_id(hw);
34
35 return 0;
36 }
37
38 /**
39 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
40 *
41 * @hw: pointer to the HW structure
42 *
43 * Determines the LAN function id by reading memory-mapped registers
44 * and swaps the port value if requested.
45 **/
e1000_set_lan_id_multi_port_pcie(struct e1000_hw * hw)46 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
47 {
48 struct e1000_bus_info *bus = &hw->bus;
49 u32 reg;
50
51 /* The status register reports the correct function number
52 * for the device regardless of function swap state.
53 */
54 reg = er32(STATUS);
55 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
56 }
57
58 /**
59 * e1000_set_lan_id_single_port - Set LAN id for a single port device
60 * @hw: pointer to the HW structure
61 *
62 * Sets the LAN function id to zero for a single port device.
63 **/
e1000_set_lan_id_single_port(struct e1000_hw * hw)64 void e1000_set_lan_id_single_port(struct e1000_hw *hw)
65 {
66 struct e1000_bus_info *bus = &hw->bus;
67
68 bus->func = 0;
69 }
70
71 /**
72 * e1000_clear_vfta_generic - Clear VLAN filter table
73 * @hw: pointer to the HW structure
74 *
75 * Clears the register array which contains the VLAN filter table by
76 * setting all the values to 0.
77 **/
e1000_clear_vfta_generic(struct e1000_hw * hw)78 void e1000_clear_vfta_generic(struct e1000_hw *hw)
79 {
80 u32 offset;
81
82 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
83 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
84 e1e_flush();
85 }
86 }
87
88 /**
89 * e1000_write_vfta_generic - Write value to VLAN filter table
90 * @hw: pointer to the HW structure
91 * @offset: register offset in VLAN filter table
92 * @value: register value written to VLAN filter table
93 *
94 * Writes value at the given offset in the register array which stores
95 * the VLAN filter table.
96 **/
e1000_write_vfta_generic(struct e1000_hw * hw,u32 offset,u32 value)97 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
98 {
99 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
100 e1e_flush();
101 }
102
103 /**
104 * e1000e_init_rx_addrs - Initialize receive address's
105 * @hw: pointer to the HW structure
106 * @rar_count: receive address registers
107 *
108 * Setup the receive address registers by setting the base receive address
109 * register to the devices MAC address and clearing all the other receive
110 * address registers to 0.
111 **/
e1000e_init_rx_addrs(struct e1000_hw * hw,u16 rar_count)112 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
113 {
114 u32 i;
115 u8 mac_addr[ETH_ALEN] = { 0 };
116
117 /* Setup the receive address */
118 e_dbg("Programming MAC Address into RAR[0]\n");
119
120 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
121
122 /* Zero out the other (rar_entry_count - 1) receive addresses */
123 e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
124 for (i = 1; i < rar_count; i++)
125 hw->mac.ops.rar_set(hw, mac_addr, i);
126 }
127
128 /**
129 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
130 * @hw: pointer to the HW structure
131 *
132 * Checks the nvm for an alternate MAC address. An alternate MAC address
133 * can be setup by pre-boot software and must be treated like a permanent
134 * address and must override the actual permanent MAC address. If an
135 * alternate MAC address is found it is programmed into RAR0, replacing
136 * the permanent address that was installed into RAR0 by the Si on reset.
137 * This function will return SUCCESS unless it encounters an error while
138 * reading the EEPROM.
139 **/
e1000_check_alt_mac_addr_generic(struct e1000_hw * hw)140 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
141 {
142 u32 i;
143 s32 ret_val;
144 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
145 u8 alt_mac_addr[ETH_ALEN];
146
147 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
148 if (ret_val)
149 return ret_val;
150
151 /* not supported on 82573 */
152 if (hw->mac.type == e1000_82573)
153 return 0;
154
155 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
156 &nvm_alt_mac_addr_offset);
157 if (ret_val) {
158 e_dbg("NVM Read Error\n");
159 return ret_val;
160 }
161
162 if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
163 (nvm_alt_mac_addr_offset == 0x0000))
164 /* There is no Alternate MAC Address */
165 return 0;
166
167 if (hw->bus.func == E1000_FUNC_1)
168 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
169 for (i = 0; i < ETH_ALEN; i += 2) {
170 offset = nvm_alt_mac_addr_offset + (i >> 1);
171 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
172 if (ret_val) {
173 e_dbg("NVM Read Error\n");
174 return ret_val;
175 }
176
177 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
178 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
179 }
180
181 /* if multicast bit is set, the alternate address will not be used */
182 if (is_multicast_ether_addr(alt_mac_addr)) {
183 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
184 return 0;
185 }
186
187 /* We have a valid alternate MAC address, and we want to treat it the
188 * same as the normal permanent MAC address stored by the HW into the
189 * RAR. Do this by mapping this address into RAR0.
190 */
191 hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
192
193 return 0;
194 }
195
e1000e_rar_get_count_generic(struct e1000_hw * hw)196 u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
197 {
198 return hw->mac.rar_entry_count;
199 }
200
201 /**
202 * e1000e_rar_set_generic - Set receive address register
203 * @hw: pointer to the HW structure
204 * @addr: pointer to the receive address
205 * @index: receive address array register
206 *
207 * Sets the receive address array register at index to the address passed
208 * in by addr.
209 **/
e1000e_rar_set_generic(struct e1000_hw * hw,u8 * addr,u32 index)210 int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
211 {
212 u32 rar_low, rar_high;
213
214 /* HW expects these in little endian so we reverse the byte order
215 * from network order (big endian) to little endian
216 */
217 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
218 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
219
220 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
221
222 /* If MAC address zero, no need to set the AV bit */
223 if (rar_low || rar_high)
224 rar_high |= E1000_RAH_AV;
225
226 /* Some bridges will combine consecutive 32-bit writes into
227 * a single burst write, which will malfunction on some parts.
228 * The flushes avoid this.
229 */
230 ew32(RAL(index), rar_low);
231 e1e_flush();
232 ew32(RAH(index), rar_high);
233 e1e_flush();
234
235 return 0;
236 }
237
238 /**
239 * e1000_hash_mc_addr - Generate a multicast hash value
240 * @hw: pointer to the HW structure
241 * @mc_addr: pointer to a multicast address
242 *
243 * Generates a multicast address hash value which is used to determine
244 * the multicast filter table array address and new table value.
245 **/
e1000_hash_mc_addr(struct e1000_hw * hw,u8 * mc_addr)246 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
247 {
248 u32 hash_value, hash_mask;
249 u8 bit_shift = 0;
250
251 /* Register count multiplied by bits per register */
252 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
253
254 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
255 * where 0xFF would still fall within the hash mask.
256 */
257 while (hash_mask >> bit_shift != 0xFF)
258 bit_shift++;
259
260 /* The portion of the address that is used for the hash table
261 * is determined by the mc_filter_type setting.
262 * The algorithm is such that there is a total of 8 bits of shifting.
263 * The bit_shift for a mc_filter_type of 0 represents the number of
264 * left-shifts where the MSB of mc_addr[5] would still fall within
265 * the hash_mask. Case 0 does this exactly. Since there are a total
266 * of 8 bits of shifting, then mc_addr[4] will shift right the
267 * remaining number of bits. Thus 8 - bit_shift. The rest of the
268 * cases are a variation of this algorithm...essentially raising the
269 * number of bits to shift mc_addr[5] left, while still keeping the
270 * 8-bit shifting total.
271 *
272 * For example, given the following Destination MAC Address and an
273 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
274 * we can see that the bit_shift for case 0 is 4. These are the hash
275 * values resulting from each mc_filter_type...
276 * [0] [1] [2] [3] [4] [5]
277 * 01 AA 00 12 34 56
278 * LSB MSB
279 *
280 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
281 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
282 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
283 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
284 */
285 switch (hw->mac.mc_filter_type) {
286 default:
287 case 0:
288 break;
289 case 1:
290 bit_shift += 1;
291 break;
292 case 2:
293 bit_shift += 2;
294 break;
295 case 3:
296 bit_shift += 4;
297 break;
298 }
299
300 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
301 (((u16)mc_addr[5]) << bit_shift)));
302
303 return hash_value;
304 }
305
306 /**
307 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
308 * @hw: pointer to the HW structure
309 * @mc_addr_list: array of multicast addresses to program
310 * @mc_addr_count: number of multicast addresses to program
311 *
312 * Updates entire Multicast Table Array.
313 * The caller must have a packed mc_addr_list of multicast addresses.
314 **/
e1000e_update_mc_addr_list_generic(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)315 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
316 u8 *mc_addr_list, u32 mc_addr_count)
317 {
318 u32 hash_value, hash_bit, hash_reg;
319 int i;
320
321 /* clear mta_shadow */
322 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
323
324 /* update mta_shadow from mc_addr_list */
325 for (i = 0; (u32)i < mc_addr_count; i++) {
326 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
327
328 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
329 hash_bit = hash_value & 0x1F;
330
331 hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
332 mc_addr_list += (ETH_ALEN);
333 }
334
335 /* replace the entire MTA table */
336 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
337 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
338 e1e_flush();
339 }
340
341 /**
342 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
343 * @hw: pointer to the HW structure
344 *
345 * Clears the base hardware counters by reading the counter registers.
346 **/
e1000e_clear_hw_cntrs_base(struct e1000_hw * hw)347 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
348 {
349 er32(CRCERRS);
350 er32(SYMERRS);
351 er32(MPC);
352 er32(SCC);
353 er32(ECOL);
354 er32(MCC);
355 er32(LATECOL);
356 er32(COLC);
357 er32(DC);
358 er32(SEC);
359 er32(RLEC);
360 er32(XONRXC);
361 er32(XONTXC);
362 er32(XOFFRXC);
363 er32(XOFFTXC);
364 er32(FCRUC);
365 er32(GPRC);
366 er32(BPRC);
367 er32(MPRC);
368 er32(GPTC);
369 er32(GORCL);
370 er32(GORCH);
371 er32(GOTCL);
372 er32(GOTCH);
373 er32(RNBC);
374 er32(RUC);
375 er32(RFC);
376 er32(ROC);
377 er32(RJC);
378 er32(TORL);
379 er32(TORH);
380 er32(TOTL);
381 er32(TOTH);
382 er32(TPR);
383 er32(TPT);
384 er32(MPTC);
385 er32(BPTC);
386 }
387
388 /**
389 * e1000e_check_for_copper_link - Check for link (Copper)
390 * @hw: pointer to the HW structure
391 *
392 * Checks to see of the link status of the hardware has changed. If a
393 * change in link status has been detected, then we read the PHY registers
394 * to get the current speed/duplex if link exists.
395 **/
e1000e_check_for_copper_link(struct e1000_hw * hw)396 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
397 {
398 struct e1000_mac_info *mac = &hw->mac;
399 s32 ret_val;
400 bool link;
401
402 /* We only want to go out to the PHY registers to see if Auto-Neg
403 * has completed and/or if our link status has changed. The
404 * get_link_status flag is set upon receiving a Link Status
405 * Change or Rx Sequence Error interrupt.
406 */
407 if (!mac->get_link_status)
408 return 0;
409 mac->get_link_status = false;
410
411 /* First we want to see if the MII Status Register reports
412 * link. If so, then we want to get the current speed/duplex
413 * of the PHY.
414 */
415 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
416 if (ret_val || !link)
417 goto out;
418
419 /* Check if there was DownShift, must be checked
420 * immediately after link-up
421 */
422 e1000e_check_downshift(hw);
423
424 /* If we are forcing speed/duplex, then we simply return since
425 * we have already determined whether we have link or not.
426 */
427 if (!mac->autoneg)
428 return -E1000_ERR_CONFIG;
429
430 /* Auto-Neg is enabled. Auto Speed Detection takes care
431 * of MAC speed/duplex configuration. So we only need to
432 * configure Collision Distance in the MAC.
433 */
434 mac->ops.config_collision_dist(hw);
435
436 /* Configure Flow Control now that Auto-Neg has completed.
437 * First, we need to restore the desired flow control
438 * settings because we may have had to re-autoneg with a
439 * different link partner.
440 */
441 ret_val = e1000e_config_fc_after_link_up(hw);
442 if (ret_val)
443 e_dbg("Error configuring flow control\n");
444
445 return ret_val;
446
447 out:
448 mac->get_link_status = true;
449 return ret_val;
450 }
451
452 /**
453 * e1000e_check_for_fiber_link - Check for link (Fiber)
454 * @hw: pointer to the HW structure
455 *
456 * Checks for link up on the hardware. If link is not up and we have
457 * a signal, then we need to force link up.
458 **/
e1000e_check_for_fiber_link(struct e1000_hw * hw)459 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
460 {
461 struct e1000_mac_info *mac = &hw->mac;
462 u32 rxcw;
463 u32 ctrl;
464 u32 status;
465 s32 ret_val;
466
467 ctrl = er32(CTRL);
468 status = er32(STATUS);
469 rxcw = er32(RXCW);
470
471 /* If we don't have link (auto-negotiation failed or link partner
472 * cannot auto-negotiate), the cable is plugged in (we have signal),
473 * and our link partner is not trying to auto-negotiate with us (we
474 * are receiving idles or data), we need to force link up. We also
475 * need to give auto-negotiation time to complete, in case the cable
476 * was just plugged in. The autoneg_failed flag does this.
477 */
478 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
479 if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
480 !(rxcw & E1000_RXCW_C)) {
481 if (!mac->autoneg_failed) {
482 mac->autoneg_failed = true;
483 return 0;
484 }
485 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
486
487 /* Disable auto-negotiation in the TXCW register */
488 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
489
490 /* Force link-up and also force full-duplex. */
491 ctrl = er32(CTRL);
492 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
493 ew32(CTRL, ctrl);
494
495 /* Configure Flow Control after forcing link up. */
496 ret_val = e1000e_config_fc_after_link_up(hw);
497 if (ret_val) {
498 e_dbg("Error configuring flow control\n");
499 return ret_val;
500 }
501 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
502 /* If we are forcing link and we are receiving /C/ ordered
503 * sets, re-enable auto-negotiation in the TXCW register
504 * and disable forced link in the Device Control register
505 * in an attempt to auto-negotiate with our link partner.
506 */
507 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
508 ew32(TXCW, mac->txcw);
509 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
510
511 mac->serdes_has_link = true;
512 }
513
514 return 0;
515 }
516
517 /**
518 * e1000e_check_for_serdes_link - Check for link (Serdes)
519 * @hw: pointer to the HW structure
520 *
521 * Checks for link up on the hardware. If link is not up and we have
522 * a signal, then we need to force link up.
523 **/
e1000e_check_for_serdes_link(struct e1000_hw * hw)524 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
525 {
526 struct e1000_mac_info *mac = &hw->mac;
527 u32 rxcw;
528 u32 ctrl;
529 u32 status;
530 s32 ret_val;
531
532 ctrl = er32(CTRL);
533 status = er32(STATUS);
534 rxcw = er32(RXCW);
535
536 /* If we don't have link (auto-negotiation failed or link partner
537 * cannot auto-negotiate), and our link partner is not trying to
538 * auto-negotiate with us (we are receiving idles or data),
539 * we need to force link up. We also need to give auto-negotiation
540 * time to complete.
541 */
542 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
543 if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
544 if (!mac->autoneg_failed) {
545 mac->autoneg_failed = true;
546 return 0;
547 }
548 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
549
550 /* Disable auto-negotiation in the TXCW register */
551 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
552
553 /* Force link-up and also force full-duplex. */
554 ctrl = er32(CTRL);
555 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
556 ew32(CTRL, ctrl);
557
558 /* Configure Flow Control after forcing link up. */
559 ret_val = e1000e_config_fc_after_link_up(hw);
560 if (ret_val) {
561 e_dbg("Error configuring flow control\n");
562 return ret_val;
563 }
564 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
565 /* If we are forcing link and we are receiving /C/ ordered
566 * sets, re-enable auto-negotiation in the TXCW register
567 * and disable forced link in the Device Control register
568 * in an attempt to auto-negotiate with our link partner.
569 */
570 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
571 ew32(TXCW, mac->txcw);
572 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
573
574 mac->serdes_has_link = true;
575 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
576 /* If we force link for non-auto-negotiation switch, check
577 * link status based on MAC synchronization for internal
578 * serdes media type.
579 */
580 /* SYNCH bit and IV bit are sticky. */
581 usleep_range(10, 20);
582 rxcw = er32(RXCW);
583 if (rxcw & E1000_RXCW_SYNCH) {
584 if (!(rxcw & E1000_RXCW_IV)) {
585 mac->serdes_has_link = true;
586 e_dbg("SERDES: Link up - forced.\n");
587 }
588 } else {
589 mac->serdes_has_link = false;
590 e_dbg("SERDES: Link down - force failed.\n");
591 }
592 }
593
594 if (E1000_TXCW_ANE & er32(TXCW)) {
595 status = er32(STATUS);
596 if (status & E1000_STATUS_LU) {
597 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
598 usleep_range(10, 20);
599 rxcw = er32(RXCW);
600 if (rxcw & E1000_RXCW_SYNCH) {
601 if (!(rxcw & E1000_RXCW_IV)) {
602 mac->serdes_has_link = true;
603 e_dbg("SERDES: Link up - autoneg completed successfully.\n");
604 } else {
605 mac->serdes_has_link = false;
606 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
607 }
608 } else {
609 mac->serdes_has_link = false;
610 e_dbg("SERDES: Link down - no sync.\n");
611 }
612 } else {
613 mac->serdes_has_link = false;
614 e_dbg("SERDES: Link down - autoneg failed\n");
615 }
616 }
617
618 return 0;
619 }
620
621 /**
622 * e1000_set_default_fc_generic - Set flow control default values
623 * @hw: pointer to the HW structure
624 *
625 * Read the EEPROM for the default values for flow control and store the
626 * values.
627 **/
e1000_set_default_fc_generic(struct e1000_hw * hw)628 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
629 {
630 s32 ret_val;
631 u16 nvm_data;
632
633 /* Read and store word 0x0F of the EEPROM. This word contains bits
634 * that determine the hardware's default PAUSE (flow control) mode,
635 * a bit that determines whether the HW defaults to enabling or
636 * disabling auto-negotiation, and the direction of the
637 * SW defined pins. If there is no SW over-ride of the flow
638 * control setting, then the variable hw->fc will
639 * be initialized based on a value in the EEPROM.
640 */
641 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
642
643 if (ret_val) {
644 e_dbg("NVM Read Error\n");
645 return ret_val;
646 }
647
648 if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
649 hw->fc.requested_mode = e1000_fc_none;
650 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
651 hw->fc.requested_mode = e1000_fc_tx_pause;
652 else
653 hw->fc.requested_mode = e1000_fc_full;
654
655 return 0;
656 }
657
658 /**
659 * e1000e_setup_link_generic - Setup flow control and link settings
660 * @hw: pointer to the HW structure
661 *
662 * Determines which flow control settings to use, then configures flow
663 * control. Calls the appropriate media-specific link configuration
664 * function. Assuming the adapter has a valid link partner, a valid link
665 * should be established. Assumes the hardware has previously been reset
666 * and the transmitter and receiver are not enabled.
667 **/
e1000e_setup_link_generic(struct e1000_hw * hw)668 s32 e1000e_setup_link_generic(struct e1000_hw *hw)
669 {
670 s32 ret_val;
671
672 /* In the case of the phy reset being blocked, we already have a link.
673 * We do not need to set it up again.
674 */
675 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
676 return 0;
677
678 /* If requested flow control is set to default, set flow control
679 * based on the EEPROM flow control settings.
680 */
681 if (hw->fc.requested_mode == e1000_fc_default) {
682 ret_val = e1000_set_default_fc_generic(hw);
683 if (ret_val)
684 return ret_val;
685 }
686
687 /* Save off the requested flow control mode for use later. Depending
688 * on the link partner's capabilities, we may or may not use this mode.
689 */
690 hw->fc.current_mode = hw->fc.requested_mode;
691
692 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
693
694 /* Call the necessary media_type subroutine to configure the link. */
695 ret_val = hw->mac.ops.setup_physical_interface(hw);
696 if (ret_val)
697 return ret_val;
698
699 /* Initialize the flow control address, type, and PAUSE timer
700 * registers to their default values. This is done even if flow
701 * control is disabled, because it does not hurt anything to
702 * initialize these registers.
703 */
704 e_dbg("Initializing the Flow Control address, type and timer regs\n");
705 ew32(FCT, FLOW_CONTROL_TYPE);
706 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
707 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
708
709 ew32(FCTTV, hw->fc.pause_time);
710
711 return e1000e_set_fc_watermarks(hw);
712 }
713
714 /**
715 * e1000_commit_fc_settings_generic - Configure flow control
716 * @hw: pointer to the HW structure
717 *
718 * Write the flow control settings to the Transmit Config Word Register (TXCW)
719 * base on the flow control settings in e1000_mac_info.
720 **/
e1000_commit_fc_settings_generic(struct e1000_hw * hw)721 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
722 {
723 struct e1000_mac_info *mac = &hw->mac;
724 u32 txcw;
725
726 /* Check for a software override of the flow control settings, and
727 * setup the device accordingly. If auto-negotiation is enabled, then
728 * software will have to set the "PAUSE" bits to the correct value in
729 * the Transmit Config Word Register (TXCW) and re-start auto-
730 * negotiation. However, if auto-negotiation is disabled, then
731 * software will have to manually configure the two flow control enable
732 * bits in the CTRL register.
733 *
734 * The possible values of the "fc" parameter are:
735 * 0: Flow control is completely disabled
736 * 1: Rx flow control is enabled (we can receive pause frames,
737 * but not send pause frames).
738 * 2: Tx flow control is enabled (we can send pause frames but we
739 * do not support receiving pause frames).
740 * 3: Both Rx and Tx flow control (symmetric) are enabled.
741 */
742 switch (hw->fc.current_mode) {
743 case e1000_fc_none:
744 /* Flow control completely disabled by a software over-ride. */
745 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
746 break;
747 case e1000_fc_rx_pause:
748 /* Rx Flow control is enabled and Tx Flow control is disabled
749 * by a software over-ride. Since there really isn't a way to
750 * advertise that we are capable of Rx Pause ONLY, we will
751 * advertise that we support both symmetric and asymmetric Rx
752 * PAUSE. Later, we will disable the adapter's ability to send
753 * PAUSE frames.
754 */
755 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
756 break;
757 case e1000_fc_tx_pause:
758 /* Tx Flow control is enabled, and Rx Flow control is disabled,
759 * by a software over-ride.
760 */
761 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
762 break;
763 case e1000_fc_full:
764 /* Flow control (both Rx and Tx) is enabled by a software
765 * over-ride.
766 */
767 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
768 break;
769 default:
770 e_dbg("Flow control param set incorrectly\n");
771 return -E1000_ERR_CONFIG;
772 }
773
774 ew32(TXCW, txcw);
775 mac->txcw = txcw;
776
777 return 0;
778 }
779
780 /**
781 * e1000_poll_fiber_serdes_link_generic - Poll for link up
782 * @hw: pointer to the HW structure
783 *
784 * Polls for link up by reading the status register, if link fails to come
785 * up with auto-negotiation, then the link is forced if a signal is detected.
786 **/
e1000_poll_fiber_serdes_link_generic(struct e1000_hw * hw)787 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
788 {
789 struct e1000_mac_info *mac = &hw->mac;
790 u32 i, status;
791 s32 ret_val;
792
793 /* If we have a signal (the cable is plugged in, or assumed true for
794 * serdes media) then poll for a "Link-Up" indication in the Device
795 * Status Register. Time-out if a link isn't seen in 500 milliseconds
796 * seconds (Auto-negotiation should complete in less than 500
797 * milliseconds even if the other end is doing it in SW).
798 */
799 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
800 usleep_range(10000, 11000);
801 status = er32(STATUS);
802 if (status & E1000_STATUS_LU)
803 break;
804 }
805 if (i == FIBER_LINK_UP_LIMIT) {
806 e_dbg("Never got a valid link from auto-neg!!!\n");
807 mac->autoneg_failed = true;
808 /* AutoNeg failed to achieve a link, so we'll call
809 * mac->check_for_link. This routine will force the
810 * link up if we detect a signal. This will allow us to
811 * communicate with non-autonegotiating link partners.
812 */
813 ret_val = mac->ops.check_for_link(hw);
814 if (ret_val) {
815 e_dbg("Error while checking for link\n");
816 return ret_val;
817 }
818 mac->autoneg_failed = false;
819 } else {
820 mac->autoneg_failed = false;
821 e_dbg("Valid Link Found\n");
822 }
823
824 return 0;
825 }
826
827 /**
828 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
829 * @hw: pointer to the HW structure
830 *
831 * Configures collision distance and flow control for fiber and serdes
832 * links. Upon successful setup, poll for link.
833 **/
e1000e_setup_fiber_serdes_link(struct e1000_hw * hw)834 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
835 {
836 u32 ctrl;
837 s32 ret_val;
838
839 ctrl = er32(CTRL);
840
841 /* Take the link out of reset */
842 ctrl &= ~E1000_CTRL_LRST;
843
844 hw->mac.ops.config_collision_dist(hw);
845
846 ret_val = e1000_commit_fc_settings_generic(hw);
847 if (ret_val)
848 return ret_val;
849
850 /* Since auto-negotiation is enabled, take the link out of reset (the
851 * link will be in reset, because we previously reset the chip). This
852 * will restart auto-negotiation. If auto-negotiation is successful
853 * then the link-up status bit will be set and the flow control enable
854 * bits (RFCE and TFCE) will be set according to their negotiated value.
855 */
856 e_dbg("Auto-negotiation enabled\n");
857
858 ew32(CTRL, ctrl);
859 e1e_flush();
860 usleep_range(1000, 2000);
861
862 /* For these adapters, the SW definable pin 1 is set when the optics
863 * detect a signal. If we have a signal, then poll for a "Link-Up"
864 * indication.
865 */
866 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
867 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
868 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
869 } else {
870 e_dbg("No signal detected\n");
871 }
872
873 return ret_val;
874 }
875
876 /**
877 * e1000e_config_collision_dist_generic - Configure collision distance
878 * @hw: pointer to the HW structure
879 *
880 * Configures the collision distance to the default value and is used
881 * during link setup.
882 **/
e1000e_config_collision_dist_generic(struct e1000_hw * hw)883 void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
884 {
885 u32 tctl;
886
887 tctl = er32(TCTL);
888
889 tctl &= ~E1000_TCTL_COLD;
890 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
891
892 ew32(TCTL, tctl);
893 e1e_flush();
894 }
895
896 /**
897 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
898 * @hw: pointer to the HW structure
899 *
900 * Sets the flow control high/low threshold (watermark) registers. If
901 * flow control XON frame transmission is enabled, then set XON frame
902 * transmission as well.
903 **/
e1000e_set_fc_watermarks(struct e1000_hw * hw)904 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
905 {
906 u32 fcrtl = 0, fcrth = 0;
907
908 /* Set the flow control receive threshold registers. Normally,
909 * these registers will be set to a default threshold that may be
910 * adjusted later by the driver's runtime code. However, if the
911 * ability to transmit pause frames is not enabled, then these
912 * registers will be set to 0.
913 */
914 if (hw->fc.current_mode & e1000_fc_tx_pause) {
915 /* We need to set up the Receive Threshold high and low water
916 * marks as well as (optionally) enabling the transmission of
917 * XON frames.
918 */
919 fcrtl = hw->fc.low_water;
920 if (hw->fc.send_xon)
921 fcrtl |= E1000_FCRTL_XONE;
922
923 fcrth = hw->fc.high_water;
924 }
925 ew32(FCRTL, fcrtl);
926 ew32(FCRTH, fcrth);
927
928 return 0;
929 }
930
931 /**
932 * e1000e_force_mac_fc - Force the MAC's flow control settings
933 * @hw: pointer to the HW structure
934 *
935 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
936 * device control register to reflect the adapter settings. TFCE and RFCE
937 * need to be explicitly set by software when a copper PHY is used because
938 * autonegotiation is managed by the PHY rather than the MAC. Software must
939 * also configure these bits when link is forced on a fiber connection.
940 **/
e1000e_force_mac_fc(struct e1000_hw * hw)941 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
942 {
943 u32 ctrl;
944
945 ctrl = er32(CTRL);
946
947 /* Because we didn't get link via the internal auto-negotiation
948 * mechanism (we either forced link or we got link via PHY
949 * auto-neg), we have to manually enable/disable transmit an
950 * receive flow control.
951 *
952 * The "Case" statement below enables/disable flow control
953 * according to the "hw->fc.current_mode" parameter.
954 *
955 * The possible values of the "fc" parameter are:
956 * 0: Flow control is completely disabled
957 * 1: Rx flow control is enabled (we can receive pause
958 * frames but not send pause frames).
959 * 2: Tx flow control is enabled (we can send pause frames
960 * frames but we do not receive pause frames).
961 * 3: Both Rx and Tx flow control (symmetric) is enabled.
962 * other: No other values should be possible at this point.
963 */
964 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
965
966 switch (hw->fc.current_mode) {
967 case e1000_fc_none:
968 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
969 break;
970 case e1000_fc_rx_pause:
971 ctrl &= (~E1000_CTRL_TFCE);
972 ctrl |= E1000_CTRL_RFCE;
973 break;
974 case e1000_fc_tx_pause:
975 ctrl &= (~E1000_CTRL_RFCE);
976 ctrl |= E1000_CTRL_TFCE;
977 break;
978 case e1000_fc_full:
979 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
980 break;
981 default:
982 e_dbg("Flow control param set incorrectly\n");
983 return -E1000_ERR_CONFIG;
984 }
985
986 ew32(CTRL, ctrl);
987
988 return 0;
989 }
990
991 /**
992 * e1000e_config_fc_after_link_up - Configures flow control after link
993 * @hw: pointer to the HW structure
994 *
995 * Checks the status of auto-negotiation after link up to ensure that the
996 * speed and duplex were not forced. If the link needed to be forced, then
997 * flow control needs to be forced also. If auto-negotiation is enabled
998 * and did not fail, then we configure flow control based on our link
999 * partner.
1000 **/
e1000e_config_fc_after_link_up(struct e1000_hw * hw)1001 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1002 {
1003 struct e1000_mac_info *mac = &hw->mac;
1004 s32 ret_val = 0;
1005 u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1006 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1007 u16 speed, duplex;
1008
1009 /* Check for the case where we have fiber media and auto-neg failed
1010 * so we had to force link. In this case, we need to force the
1011 * configuration of the MAC to match the "fc" parameter.
1012 */
1013 if (mac->autoneg_failed) {
1014 if (hw->phy.media_type == e1000_media_type_fiber ||
1015 hw->phy.media_type == e1000_media_type_internal_serdes)
1016 ret_val = e1000e_force_mac_fc(hw);
1017 } else {
1018 if (hw->phy.media_type == e1000_media_type_copper)
1019 ret_val = e1000e_force_mac_fc(hw);
1020 }
1021
1022 if (ret_val) {
1023 e_dbg("Error forcing flow control settings\n");
1024 return ret_val;
1025 }
1026
1027 /* Check for the case where we have copper media and auto-neg is
1028 * enabled. In this case, we need to check and see if Auto-Neg
1029 * has completed, and if so, how the PHY and link partner has
1030 * flow control configured.
1031 */
1032 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1033 /* Read the MII Status Register and check to see if AutoNeg
1034 * has completed. We read this twice because this reg has
1035 * some "sticky" (latched) bits.
1036 */
1037 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1038 if (ret_val)
1039 return ret_val;
1040 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1041 if (ret_val)
1042 return ret_val;
1043
1044 if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1045 e_dbg("Copper PHY and Auto Neg has not completed.\n");
1046 return ret_val;
1047 }
1048
1049 /* The AutoNeg process has completed, so we now need to
1050 * read both the Auto Negotiation Advertisement
1051 * Register (Address 4) and the Auto_Negotiation Base
1052 * Page Ability Register (Address 5) to determine how
1053 * flow control was negotiated.
1054 */
1055 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1056 if (ret_val)
1057 return ret_val;
1058 ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1059 if (ret_val)
1060 return ret_val;
1061
1062 /* Two bits in the Auto Negotiation Advertisement Register
1063 * (Address 4) and two bits in the Auto Negotiation Base
1064 * Page Ability Register (Address 5) determine flow control
1065 * for both the PHY and the link partner. The following
1066 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1067 * 1999, describes these PAUSE resolution bits and how flow
1068 * control is determined based upon these settings.
1069 * NOTE: DC = Don't Care
1070 *
1071 * LOCAL DEVICE | LINK PARTNER
1072 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1073 *-------|---------|-------|---------|--------------------
1074 * 0 | 0 | DC | DC | e1000_fc_none
1075 * 0 | 1 | 0 | DC | e1000_fc_none
1076 * 0 | 1 | 1 | 0 | e1000_fc_none
1077 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1078 * 1 | 0 | 0 | DC | e1000_fc_none
1079 * 1 | DC | 1 | DC | e1000_fc_full
1080 * 1 | 1 | 0 | 0 | e1000_fc_none
1081 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1082 *
1083 * Are both PAUSE bits set to 1? If so, this implies
1084 * Symmetric Flow Control is enabled at both ends. The
1085 * ASM_DIR bits are irrelevant per the spec.
1086 *
1087 * For Symmetric Flow Control:
1088 *
1089 * LOCAL DEVICE | LINK PARTNER
1090 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1091 *-------|---------|-------|---------|--------------------
1092 * 1 | DC | 1 | DC | E1000_fc_full
1093 *
1094 */
1095 if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1096 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1097 /* Now we need to check if the user selected Rx ONLY
1098 * of pause frames. In this case, we had to advertise
1099 * FULL flow control because we could not advertise Rx
1100 * ONLY. Hence, we must now check to see if we need to
1101 * turn OFF the TRANSMISSION of PAUSE frames.
1102 */
1103 if (hw->fc.requested_mode == e1000_fc_full) {
1104 hw->fc.current_mode = e1000_fc_full;
1105 e_dbg("Flow Control = FULL.\n");
1106 } else {
1107 hw->fc.current_mode = e1000_fc_rx_pause;
1108 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1109 }
1110 }
1111 /* For receiving PAUSE frames ONLY.
1112 *
1113 * LOCAL DEVICE | LINK PARTNER
1114 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1115 *-------|---------|-------|---------|--------------------
1116 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1117 */
1118 else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1119 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1120 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1121 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1122 hw->fc.current_mode = e1000_fc_tx_pause;
1123 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1124 }
1125 /* For transmitting PAUSE frames ONLY.
1126 *
1127 * LOCAL DEVICE | LINK PARTNER
1128 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1129 *-------|---------|-------|---------|--------------------
1130 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1131 */
1132 else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1133 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1134 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1135 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1136 hw->fc.current_mode = e1000_fc_rx_pause;
1137 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1138 } else {
1139 /* Per the IEEE spec, at this point flow control
1140 * should be disabled.
1141 */
1142 hw->fc.current_mode = e1000_fc_none;
1143 e_dbg("Flow Control = NONE.\n");
1144 }
1145
1146 /* Now we need to do one last check... If we auto-
1147 * negotiated to HALF DUPLEX, flow control should not be
1148 * enabled per IEEE 802.3 spec.
1149 */
1150 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1151 if (ret_val) {
1152 e_dbg("Error getting link speed and duplex\n");
1153 return ret_val;
1154 }
1155
1156 if (duplex == HALF_DUPLEX)
1157 hw->fc.current_mode = e1000_fc_none;
1158
1159 /* Now we call a subroutine to actually force the MAC
1160 * controller to use the correct flow control settings.
1161 */
1162 ret_val = e1000e_force_mac_fc(hw);
1163 if (ret_val) {
1164 e_dbg("Error forcing flow control settings\n");
1165 return ret_val;
1166 }
1167 }
1168
1169 /* Check for the case where we have SerDes media and auto-neg is
1170 * enabled. In this case, we need to check and see if Auto-Neg
1171 * has completed, and if so, how the PHY and link partner has
1172 * flow control configured.
1173 */
1174 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1175 mac->autoneg) {
1176 /* Read the PCS_LSTS and check to see if AutoNeg
1177 * has completed.
1178 */
1179 pcs_status_reg = er32(PCS_LSTAT);
1180
1181 if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1182 e_dbg("PCS Auto Neg has not completed.\n");
1183 return ret_val;
1184 }
1185
1186 /* The AutoNeg process has completed, so we now need to
1187 * read both the Auto Negotiation Advertisement
1188 * Register (PCS_ANADV) and the Auto_Negotiation Base
1189 * Page Ability Register (PCS_LPAB) to determine how
1190 * flow control was negotiated.
1191 */
1192 pcs_adv_reg = er32(PCS_ANADV);
1193 pcs_lp_ability_reg = er32(PCS_LPAB);
1194
1195 /* Two bits in the Auto Negotiation Advertisement Register
1196 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1197 * Page Ability Register (PCS_LPAB) determine flow control
1198 * for both the PHY and the link partner. The following
1199 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1200 * 1999, describes these PAUSE resolution bits and how flow
1201 * control is determined based upon these settings.
1202 * NOTE: DC = Don't Care
1203 *
1204 * LOCAL DEVICE | LINK PARTNER
1205 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1206 *-------|---------|-------|---------|--------------------
1207 * 0 | 0 | DC | DC | e1000_fc_none
1208 * 0 | 1 | 0 | DC | e1000_fc_none
1209 * 0 | 1 | 1 | 0 | e1000_fc_none
1210 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1211 * 1 | 0 | 0 | DC | e1000_fc_none
1212 * 1 | DC | 1 | DC | e1000_fc_full
1213 * 1 | 1 | 0 | 0 | e1000_fc_none
1214 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1215 *
1216 * Are both PAUSE bits set to 1? If so, this implies
1217 * Symmetric Flow Control is enabled at both ends. The
1218 * ASM_DIR bits are irrelevant per the spec.
1219 *
1220 * For Symmetric Flow Control:
1221 *
1222 * LOCAL DEVICE | LINK PARTNER
1223 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1224 *-------|---------|-------|---------|--------------------
1225 * 1 | DC | 1 | DC | e1000_fc_full
1226 *
1227 */
1228 if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1229 (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1230 /* Now we need to check if the user selected Rx ONLY
1231 * of pause frames. In this case, we had to advertise
1232 * FULL flow control because we could not advertise Rx
1233 * ONLY. Hence, we must now check to see if we need to
1234 * turn OFF the TRANSMISSION of PAUSE frames.
1235 */
1236 if (hw->fc.requested_mode == e1000_fc_full) {
1237 hw->fc.current_mode = e1000_fc_full;
1238 e_dbg("Flow Control = FULL.\n");
1239 } else {
1240 hw->fc.current_mode = e1000_fc_rx_pause;
1241 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1242 }
1243 }
1244 /* For receiving PAUSE frames ONLY.
1245 *
1246 * LOCAL DEVICE | LINK PARTNER
1247 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1248 *-------|---------|-------|---------|--------------------
1249 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1250 */
1251 else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1252 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1253 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1254 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1255 hw->fc.current_mode = e1000_fc_tx_pause;
1256 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1257 }
1258 /* For transmitting PAUSE frames ONLY.
1259 *
1260 * LOCAL DEVICE | LINK PARTNER
1261 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1262 *-------|---------|-------|---------|--------------------
1263 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1264 */
1265 else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1266 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1267 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1268 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1269 hw->fc.current_mode = e1000_fc_rx_pause;
1270 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1271 } else {
1272 /* Per the IEEE spec, at this point flow control
1273 * should be disabled.
1274 */
1275 hw->fc.current_mode = e1000_fc_none;
1276 e_dbg("Flow Control = NONE.\n");
1277 }
1278
1279 /* Now we call a subroutine to actually force the MAC
1280 * controller to use the correct flow control settings.
1281 */
1282 pcs_ctrl_reg = er32(PCS_LCTL);
1283 pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1284 ew32(PCS_LCTL, pcs_ctrl_reg);
1285
1286 ret_val = e1000e_force_mac_fc(hw);
1287 if (ret_val) {
1288 e_dbg("Error forcing flow control settings\n");
1289 return ret_val;
1290 }
1291 }
1292
1293 return 0;
1294 }
1295
1296 /**
1297 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1298 * @hw: pointer to the HW structure
1299 * @speed: stores the current speed
1300 * @duplex: stores the current duplex
1301 *
1302 * Read the status register for the current speed/duplex and store the current
1303 * speed and duplex for copper connections.
1304 **/
e1000e_get_speed_and_duplex_copper(struct e1000_hw * hw,u16 * speed,u16 * duplex)1305 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1306 u16 *duplex)
1307 {
1308 u32 status;
1309
1310 status = er32(STATUS);
1311 if (status & E1000_STATUS_SPEED_1000)
1312 *speed = SPEED_1000;
1313 else if (status & E1000_STATUS_SPEED_100)
1314 *speed = SPEED_100;
1315 else
1316 *speed = SPEED_10;
1317
1318 if (status & E1000_STATUS_FD)
1319 *duplex = FULL_DUPLEX;
1320 else
1321 *duplex = HALF_DUPLEX;
1322
1323 e_dbg("%u Mbps, %s Duplex\n",
1324 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1325 *duplex == FULL_DUPLEX ? "Full" : "Half");
1326
1327 return 0;
1328 }
1329
1330 /**
1331 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1332 * @hw: pointer to the HW structure
1333 * @speed: stores the current speed
1334 * @duplex: stores the current duplex
1335 *
1336 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1337 * for fiber/serdes links.
1338 **/
e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused * hw,u16 * speed,u16 * duplex)1339 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1340 *hw, u16 *speed, u16 *duplex)
1341 {
1342 *speed = SPEED_1000;
1343 *duplex = FULL_DUPLEX;
1344
1345 return 0;
1346 }
1347
1348 /**
1349 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1350 * @hw: pointer to the HW structure
1351 *
1352 * Acquire the HW semaphore to access the PHY or NVM
1353 **/
e1000e_get_hw_semaphore(struct e1000_hw * hw)1354 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1355 {
1356 u32 swsm;
1357 s32 timeout = hw->nvm.word_size + 1;
1358 s32 i = 0;
1359
1360 /* Get the SW semaphore */
1361 while (i < timeout) {
1362 swsm = er32(SWSM);
1363 if (!(swsm & E1000_SWSM_SMBI))
1364 break;
1365
1366 udelay(100);
1367 i++;
1368 }
1369
1370 if (i == timeout) {
1371 e_dbg("Driver can't access device - SMBI bit is set.\n");
1372 return -E1000_ERR_NVM;
1373 }
1374
1375 /* Get the FW semaphore. */
1376 for (i = 0; i < timeout; i++) {
1377 swsm = er32(SWSM);
1378 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1379
1380 /* Semaphore acquired if bit latched */
1381 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1382 break;
1383
1384 udelay(100);
1385 }
1386
1387 if (i == timeout) {
1388 /* Release semaphores */
1389 e1000e_put_hw_semaphore(hw);
1390 e_dbg("Driver can't access the NVM\n");
1391 return -E1000_ERR_NVM;
1392 }
1393
1394 return 0;
1395 }
1396
1397 /**
1398 * e1000e_put_hw_semaphore - Release hardware semaphore
1399 * @hw: pointer to the HW structure
1400 *
1401 * Release hardware semaphore used to access the PHY or NVM
1402 **/
e1000e_put_hw_semaphore(struct e1000_hw * hw)1403 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1404 {
1405 u32 swsm;
1406
1407 swsm = er32(SWSM);
1408 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1409 ew32(SWSM, swsm);
1410 }
1411
1412 /**
1413 * e1000e_get_auto_rd_done - Check for auto read completion
1414 * @hw: pointer to the HW structure
1415 *
1416 * Check EEPROM for Auto Read done bit.
1417 **/
e1000e_get_auto_rd_done(struct e1000_hw * hw)1418 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1419 {
1420 s32 i = 0;
1421
1422 while (i < AUTO_READ_DONE_TIMEOUT) {
1423 if (er32(EECD) & E1000_EECD_AUTO_RD)
1424 break;
1425 usleep_range(1000, 2000);
1426 i++;
1427 }
1428
1429 if (i == AUTO_READ_DONE_TIMEOUT) {
1430 e_dbg("Auto read by HW from NVM has not completed.\n");
1431 return -E1000_ERR_RESET;
1432 }
1433
1434 return 0;
1435 }
1436
1437 /**
1438 * e1000e_valid_led_default - Verify a valid default LED config
1439 * @hw: pointer to the HW structure
1440 * @data: pointer to the NVM (EEPROM)
1441 *
1442 * Read the EEPROM for the current default LED configuration. If the
1443 * LED configuration is not valid, set to a valid LED configuration.
1444 **/
e1000e_valid_led_default(struct e1000_hw * hw,u16 * data)1445 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1446 {
1447 s32 ret_val;
1448
1449 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1450 if (ret_val) {
1451 e_dbg("NVM Read Error\n");
1452 return ret_val;
1453 }
1454
1455 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1456 *data = ID_LED_DEFAULT;
1457
1458 return 0;
1459 }
1460
1461 /**
1462 * e1000e_id_led_init_generic -
1463 * @hw: pointer to the HW structure
1464 *
1465 **/
e1000e_id_led_init_generic(struct e1000_hw * hw)1466 s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1467 {
1468 struct e1000_mac_info *mac = &hw->mac;
1469 s32 ret_val;
1470 const u32 ledctl_mask = 0x000000FF;
1471 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1472 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1473 u16 data, i, temp;
1474 const u16 led_mask = 0x0F;
1475
1476 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1477 if (ret_val)
1478 return ret_val;
1479
1480 mac->ledctl_default = er32(LEDCTL);
1481 mac->ledctl_mode1 = mac->ledctl_default;
1482 mac->ledctl_mode2 = mac->ledctl_default;
1483
1484 for (i = 0; i < 4; i++) {
1485 temp = (data >> (i << 2)) & led_mask;
1486 switch (temp) {
1487 case ID_LED_ON1_DEF2:
1488 case ID_LED_ON1_ON2:
1489 case ID_LED_ON1_OFF2:
1490 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1491 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1492 break;
1493 case ID_LED_OFF1_DEF2:
1494 case ID_LED_OFF1_ON2:
1495 case ID_LED_OFF1_OFF2:
1496 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1497 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1498 break;
1499 default:
1500 /* Do nothing */
1501 break;
1502 }
1503 switch (temp) {
1504 case ID_LED_DEF1_ON2:
1505 case ID_LED_ON1_ON2:
1506 case ID_LED_OFF1_ON2:
1507 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1508 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1509 break;
1510 case ID_LED_DEF1_OFF2:
1511 case ID_LED_ON1_OFF2:
1512 case ID_LED_OFF1_OFF2:
1513 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1514 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1515 break;
1516 default:
1517 /* Do nothing */
1518 break;
1519 }
1520 }
1521
1522 return 0;
1523 }
1524
1525 /**
1526 * e1000e_setup_led_generic - Configures SW controllable LED
1527 * @hw: pointer to the HW structure
1528 *
1529 * This prepares the SW controllable LED for use and saves the current state
1530 * of the LED so it can be later restored.
1531 **/
e1000e_setup_led_generic(struct e1000_hw * hw)1532 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1533 {
1534 u32 ledctl;
1535
1536 if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1537 return -E1000_ERR_CONFIG;
1538
1539 if (hw->phy.media_type == e1000_media_type_fiber) {
1540 ledctl = er32(LEDCTL);
1541 hw->mac.ledctl_default = ledctl;
1542 /* Turn off LED0 */
1543 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1544 E1000_LEDCTL_LED0_MODE_MASK);
1545 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1546 E1000_LEDCTL_LED0_MODE_SHIFT);
1547 ew32(LEDCTL, ledctl);
1548 } else if (hw->phy.media_type == e1000_media_type_copper) {
1549 ew32(LEDCTL, hw->mac.ledctl_mode1);
1550 }
1551
1552 return 0;
1553 }
1554
1555 /**
1556 * e1000e_cleanup_led_generic - Set LED config to default operation
1557 * @hw: pointer to the HW structure
1558 *
1559 * Remove the current LED configuration and set the LED configuration
1560 * to the default value, saved from the EEPROM.
1561 **/
e1000e_cleanup_led_generic(struct e1000_hw * hw)1562 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1563 {
1564 ew32(LEDCTL, hw->mac.ledctl_default);
1565 return 0;
1566 }
1567
1568 /**
1569 * e1000e_blink_led_generic - Blink LED
1570 * @hw: pointer to the HW structure
1571 *
1572 * Blink the LEDs which are set to be on.
1573 **/
e1000e_blink_led_generic(struct e1000_hw * hw)1574 s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1575 {
1576 u32 ledctl_blink = 0;
1577 u32 i;
1578
1579 if (hw->phy.media_type == e1000_media_type_fiber) {
1580 /* always blink LED0 for PCI-E fiber */
1581 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1582 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1583 } else {
1584 /* Set the blink bit for each LED that's "on" (0x0E)
1585 * (or "off" if inverted) in ledctl_mode2. The blink
1586 * logic in hardware only works when mode is set to "on"
1587 * so it must be changed accordingly when the mode is
1588 * "off" and inverted.
1589 */
1590 ledctl_blink = hw->mac.ledctl_mode2;
1591 for (i = 0; i < 32; i += 8) {
1592 u32 mode = (hw->mac.ledctl_mode2 >> i) &
1593 E1000_LEDCTL_LED0_MODE_MASK;
1594 u32 led_default = hw->mac.ledctl_default >> i;
1595
1596 if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1597 (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1598 ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1599 (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1600 ledctl_blink &=
1601 ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1602 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1603 E1000_LEDCTL_MODE_LED_ON) << i;
1604 }
1605 }
1606 }
1607
1608 ew32(LEDCTL, ledctl_blink);
1609
1610 return 0;
1611 }
1612
1613 /**
1614 * e1000e_led_on_generic - Turn LED on
1615 * @hw: pointer to the HW structure
1616 *
1617 * Turn LED on.
1618 **/
e1000e_led_on_generic(struct e1000_hw * hw)1619 s32 e1000e_led_on_generic(struct e1000_hw *hw)
1620 {
1621 u32 ctrl;
1622
1623 switch (hw->phy.media_type) {
1624 case e1000_media_type_fiber:
1625 ctrl = er32(CTRL);
1626 ctrl &= ~E1000_CTRL_SWDPIN0;
1627 ctrl |= E1000_CTRL_SWDPIO0;
1628 ew32(CTRL, ctrl);
1629 break;
1630 case e1000_media_type_copper:
1631 ew32(LEDCTL, hw->mac.ledctl_mode2);
1632 break;
1633 default:
1634 break;
1635 }
1636
1637 return 0;
1638 }
1639
1640 /**
1641 * e1000e_led_off_generic - Turn LED off
1642 * @hw: pointer to the HW structure
1643 *
1644 * Turn LED off.
1645 **/
e1000e_led_off_generic(struct e1000_hw * hw)1646 s32 e1000e_led_off_generic(struct e1000_hw *hw)
1647 {
1648 u32 ctrl;
1649
1650 switch (hw->phy.media_type) {
1651 case e1000_media_type_fiber:
1652 ctrl = er32(CTRL);
1653 ctrl |= E1000_CTRL_SWDPIN0;
1654 ctrl |= E1000_CTRL_SWDPIO0;
1655 ew32(CTRL, ctrl);
1656 break;
1657 case e1000_media_type_copper:
1658 ew32(LEDCTL, hw->mac.ledctl_mode1);
1659 break;
1660 default:
1661 break;
1662 }
1663
1664 return 0;
1665 }
1666
1667 /**
1668 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1669 * @hw: pointer to the HW structure
1670 * @no_snoop: bitmap of snoop events
1671 *
1672 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1673 **/
e1000e_set_pcie_no_snoop(struct e1000_hw * hw,u32 no_snoop)1674 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1675 {
1676 u32 gcr;
1677
1678 if (no_snoop) {
1679 gcr = er32(GCR);
1680 gcr &= ~(PCIE_NO_SNOOP_ALL);
1681 gcr |= no_snoop;
1682 ew32(GCR, gcr);
1683 }
1684 }
1685
1686 /**
1687 * e1000e_disable_pcie_master - Disables PCI-express master access
1688 * @hw: pointer to the HW structure
1689 *
1690 * Returns 0 if successful, else returns -10
1691 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1692 * the master requests to be disabled.
1693 *
1694 * Disables PCI-Express master access and verifies there are no pending
1695 * requests.
1696 **/
e1000e_disable_pcie_master(struct e1000_hw * hw)1697 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1698 {
1699 u32 ctrl;
1700 s32 timeout = MASTER_DISABLE_TIMEOUT;
1701
1702 ctrl = er32(CTRL);
1703 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1704 ew32(CTRL, ctrl);
1705
1706 while (timeout) {
1707 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1708 break;
1709 usleep_range(100, 200);
1710 timeout--;
1711 }
1712
1713 if (!timeout) {
1714 e_dbg("Master requests are pending.\n");
1715 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1716 }
1717
1718 return 0;
1719 }
1720
1721 /**
1722 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1723 * @hw: pointer to the HW structure
1724 *
1725 * Reset the Adaptive Interframe Spacing throttle to default values.
1726 **/
e1000e_reset_adaptive(struct e1000_hw * hw)1727 void e1000e_reset_adaptive(struct e1000_hw *hw)
1728 {
1729 struct e1000_mac_info *mac = &hw->mac;
1730
1731 if (!mac->adaptive_ifs) {
1732 e_dbg("Not in Adaptive IFS mode!\n");
1733 return;
1734 }
1735
1736 mac->current_ifs_val = 0;
1737 mac->ifs_min_val = IFS_MIN;
1738 mac->ifs_max_val = IFS_MAX;
1739 mac->ifs_step_size = IFS_STEP;
1740 mac->ifs_ratio = IFS_RATIO;
1741
1742 mac->in_ifs_mode = false;
1743 ew32(AIT, 0);
1744 }
1745
1746 /**
1747 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1748 * @hw: pointer to the HW structure
1749 *
1750 * Update the Adaptive Interframe Spacing Throttle value based on the
1751 * time between transmitted packets and time between collisions.
1752 **/
e1000e_update_adaptive(struct e1000_hw * hw)1753 void e1000e_update_adaptive(struct e1000_hw *hw)
1754 {
1755 struct e1000_mac_info *mac = &hw->mac;
1756
1757 if (!mac->adaptive_ifs) {
1758 e_dbg("Not in Adaptive IFS mode!\n");
1759 return;
1760 }
1761
1762 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1763 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1764 mac->in_ifs_mode = true;
1765 if (mac->current_ifs_val < mac->ifs_max_val) {
1766 if (!mac->current_ifs_val)
1767 mac->current_ifs_val = mac->ifs_min_val;
1768 else
1769 mac->current_ifs_val +=
1770 mac->ifs_step_size;
1771 ew32(AIT, mac->current_ifs_val);
1772 }
1773 }
1774 } else {
1775 if (mac->in_ifs_mode &&
1776 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1777 mac->current_ifs_val = 0;
1778 mac->in_ifs_mode = false;
1779 ew32(AIT, 0);
1780 }
1781 }
1782 }
1783