1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
28 #include <linux/suspend.h>
29
30 #include "e1000.h"
31
32 char e1000e_driver_name[] = "e1000e";
33
34 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
35 static int debug = -1;
36 module_param(debug, int, 0);
37 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38
39 static const struct e1000_info *e1000_info_tbl[] = {
40 [board_82571] = &e1000_82571_info,
41 [board_82572] = &e1000_82572_info,
42 [board_82573] = &e1000_82573_info,
43 [board_82574] = &e1000_82574_info,
44 [board_82583] = &e1000_82583_info,
45 [board_80003es2lan] = &e1000_es2_info,
46 [board_ich8lan] = &e1000_ich8_info,
47 [board_ich9lan] = &e1000_ich9_info,
48 [board_ich10lan] = &e1000_ich10_info,
49 [board_pchlan] = &e1000_pch_info,
50 [board_pch2lan] = &e1000_pch2_info,
51 [board_pch_lpt] = &e1000_pch_lpt_info,
52 [board_pch_spt] = &e1000_pch_spt_info,
53 [board_pch_cnp] = &e1000_pch_cnp_info,
54 [board_pch_tgp] = &e1000_pch_tgp_info,
55 [board_pch_adp] = &e1000_pch_adp_info,
56 };
57
58 struct e1000_reg_info {
59 u32 ofs;
60 char *name;
61 };
62
63 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
64 /* General Registers */
65 {E1000_CTRL, "CTRL"},
66 {E1000_STATUS, "STATUS"},
67 {E1000_CTRL_EXT, "CTRL_EXT"},
68
69 /* Interrupt Registers */
70 {E1000_ICR, "ICR"},
71
72 /* Rx Registers */
73 {E1000_RCTL, "RCTL"},
74 {E1000_RDLEN(0), "RDLEN"},
75 {E1000_RDH(0), "RDH"},
76 {E1000_RDT(0), "RDT"},
77 {E1000_RDTR, "RDTR"},
78 {E1000_RXDCTL(0), "RXDCTL"},
79 {E1000_ERT, "ERT"},
80 {E1000_RDBAL(0), "RDBAL"},
81 {E1000_RDBAH(0), "RDBAH"},
82 {E1000_RDFH, "RDFH"},
83 {E1000_RDFT, "RDFT"},
84 {E1000_RDFHS, "RDFHS"},
85 {E1000_RDFTS, "RDFTS"},
86 {E1000_RDFPC, "RDFPC"},
87
88 /* Tx Registers */
89 {E1000_TCTL, "TCTL"},
90 {E1000_TDBAL(0), "TDBAL"},
91 {E1000_TDBAH(0), "TDBAH"},
92 {E1000_TDLEN(0), "TDLEN"},
93 {E1000_TDH(0), "TDH"},
94 {E1000_TDT(0), "TDT"},
95 {E1000_TIDV, "TIDV"},
96 {E1000_TXDCTL(0), "TXDCTL"},
97 {E1000_TADV, "TADV"},
98 {E1000_TARC(0), "TARC"},
99 {E1000_TDFH, "TDFH"},
100 {E1000_TDFT, "TDFT"},
101 {E1000_TDFHS, "TDFHS"},
102 {E1000_TDFTS, "TDFTS"},
103 {E1000_TDFPC, "TDFPC"},
104
105 /* List Terminator */
106 {0, NULL}
107 };
108
109 /**
110 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
111 * @hw: pointer to the HW structure
112 *
113 * When updating the MAC CSR registers, the Manageability Engine (ME) could
114 * be accessing the registers at the same time. Normally, this is handled in
115 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
116 * accesses later than it should which could result in the register to have
117 * an incorrect value. Workaround this by checking the FWSM register which
118 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
119 * and try again a number of times.
120 **/
__ew32_prepare(struct e1000_hw * hw)121 static void __ew32_prepare(struct e1000_hw *hw)
122 {
123 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
124
125 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
126 udelay(50);
127 }
128
__ew32(struct e1000_hw * hw,unsigned long reg,u32 val)129 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
130 {
131 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
132 __ew32_prepare(hw);
133
134 writel(val, hw->hw_addr + reg);
135 }
136
137 /**
138 * e1000_regdump - register printout routine
139 * @hw: pointer to the HW structure
140 * @reginfo: pointer to the register info table
141 **/
e1000_regdump(struct e1000_hw * hw,struct e1000_reg_info * reginfo)142 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
143 {
144 int n = 0;
145 char rname[16];
146 u32 regs[8];
147
148 switch (reginfo->ofs) {
149 case E1000_RXDCTL(0):
150 for (n = 0; n < 2; n++)
151 regs[n] = __er32(hw, E1000_RXDCTL(n));
152 break;
153 case E1000_TXDCTL(0):
154 for (n = 0; n < 2; n++)
155 regs[n] = __er32(hw, E1000_TXDCTL(n));
156 break;
157 case E1000_TARC(0):
158 for (n = 0; n < 2; n++)
159 regs[n] = __er32(hw, E1000_TARC(n));
160 break;
161 default:
162 pr_info("%-15s %08x\n",
163 reginfo->name, __er32(hw, reginfo->ofs));
164 return;
165 }
166
167 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
168 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
169 }
170
e1000e_dump_ps_pages(struct e1000_adapter * adapter,struct e1000_buffer * bi)171 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
172 struct e1000_buffer *bi)
173 {
174 int i;
175 struct e1000_ps_page *ps_page;
176
177 for (i = 0; i < adapter->rx_ps_pages; i++) {
178 ps_page = &bi->ps_pages[i];
179
180 if (ps_page->page) {
181 pr_info("packet dump for ps_page %d:\n", i);
182 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
183 16, 1, page_address(ps_page->page),
184 PAGE_SIZE, true);
185 }
186 }
187 }
188
189 /**
190 * e1000e_dump - Print registers, Tx-ring and Rx-ring
191 * @adapter: board private structure
192 **/
e1000e_dump(struct e1000_adapter * adapter)193 static void e1000e_dump(struct e1000_adapter *adapter)
194 {
195 struct net_device *netdev = adapter->netdev;
196 struct e1000_hw *hw = &adapter->hw;
197 struct e1000_reg_info *reginfo;
198 struct e1000_ring *tx_ring = adapter->tx_ring;
199 struct e1000_tx_desc *tx_desc;
200 struct my_u0 {
201 __le64 a;
202 __le64 b;
203 } *u0;
204 struct e1000_buffer *buffer_info;
205 struct e1000_ring *rx_ring = adapter->rx_ring;
206 union e1000_rx_desc_packet_split *rx_desc_ps;
207 union e1000_rx_desc_extended *rx_desc;
208 struct my_u1 {
209 __le64 a;
210 __le64 b;
211 __le64 c;
212 __le64 d;
213 } *u1;
214 u32 staterr;
215 int i = 0;
216
217 if (!netif_msg_hw(adapter))
218 return;
219
220 /* Print netdevice Info */
221 if (netdev) {
222 dev_info(&adapter->pdev->dev, "Net device Info\n");
223 pr_info("Device Name state trans_start\n");
224 pr_info("%-15s %016lX %016lX\n", netdev->name,
225 netdev->state, dev_trans_start(netdev));
226 }
227
228 /* Print Registers */
229 dev_info(&adapter->pdev->dev, "Register Dump\n");
230 pr_info(" Register Name Value\n");
231 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
232 reginfo->name; reginfo++) {
233 e1000_regdump(hw, reginfo);
234 }
235
236 /* Print Tx Ring Summary */
237 if (!netdev || !netif_running(netdev))
238 return;
239
240 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
241 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
242 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
243 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
244 0, tx_ring->next_to_use, tx_ring->next_to_clean,
245 (unsigned long long)buffer_info->dma,
246 buffer_info->length,
247 buffer_info->next_to_watch,
248 (unsigned long long)buffer_info->time_stamp);
249
250 /* Print Tx Ring */
251 if (!netif_msg_tx_done(adapter))
252 goto rx_ring_summary;
253
254 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
255
256 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
257 *
258 * Legacy Transmit Descriptor
259 * +--------------------------------------------------------------+
260 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
261 * +--------------------------------------------------------------+
262 * 8 | Special | CSS | Status | CMD | CSO | Length |
263 * +--------------------------------------------------------------+
264 * 63 48 47 36 35 32 31 24 23 16 15 0
265 *
266 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
267 * 63 48 47 40 39 32 31 16 15 8 7 0
268 * +----------------------------------------------------------------+
269 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
270 * +----------------------------------------------------------------+
271 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
272 * +----------------------------------------------------------------+
273 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
274 *
275 * Extended Data Descriptor (DTYP=0x1)
276 * +----------------------------------------------------------------+
277 * 0 | Buffer Address [63:0] |
278 * +----------------------------------------------------------------+
279 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
280 * +----------------------------------------------------------------+
281 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
282 */
283 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
284 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
285 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
286 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
287 const char *next_desc;
288 tx_desc = E1000_TX_DESC(*tx_ring, i);
289 buffer_info = &tx_ring->buffer_info[i];
290 u0 = (struct my_u0 *)tx_desc;
291 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
292 next_desc = " NTC/U";
293 else if (i == tx_ring->next_to_use)
294 next_desc = " NTU";
295 else if (i == tx_ring->next_to_clean)
296 next_desc = " NTC";
297 else
298 next_desc = "";
299 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
300 (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
301 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
302 i,
303 (unsigned long long)le64_to_cpu(u0->a),
304 (unsigned long long)le64_to_cpu(u0->b),
305 (unsigned long long)buffer_info->dma,
306 buffer_info->length, buffer_info->next_to_watch,
307 (unsigned long long)buffer_info->time_stamp,
308 buffer_info->skb, next_desc);
309
310 if (netif_msg_pktdata(adapter) && buffer_info->skb)
311 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
312 16, 1, buffer_info->skb->data,
313 buffer_info->skb->len, true);
314 }
315
316 /* Print Rx Ring Summary */
317 rx_ring_summary:
318 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
319 pr_info("Queue [NTU] [NTC]\n");
320 pr_info(" %5d %5X %5X\n",
321 0, rx_ring->next_to_use, rx_ring->next_to_clean);
322
323 /* Print Rx Ring */
324 if (!netif_msg_rx_status(adapter))
325 return;
326
327 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
328 switch (adapter->rx_ps_pages) {
329 case 1:
330 case 2:
331 case 3:
332 /* [Extended] Packet Split Receive Descriptor Format
333 *
334 * +-----------------------------------------------------+
335 * 0 | Buffer Address 0 [63:0] |
336 * +-----------------------------------------------------+
337 * 8 | Buffer Address 1 [63:0] |
338 * +-----------------------------------------------------+
339 * 16 | Buffer Address 2 [63:0] |
340 * +-----------------------------------------------------+
341 * 24 | Buffer Address 3 [63:0] |
342 * +-----------------------------------------------------+
343 */
344 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
345 /* [Extended] Receive Descriptor (Write-Back) Format
346 *
347 * 63 48 47 32 31 13 12 8 7 4 3 0
348 * +------------------------------------------------------+
349 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
350 * | Checksum | Ident | | Queue | | Type |
351 * +------------------------------------------------------+
352 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
353 * +------------------------------------------------------+
354 * 63 48 47 32 31 20 19 0
355 */
356 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
357 for (i = 0; i < rx_ring->count; i++) {
358 const char *next_desc;
359 buffer_info = &rx_ring->buffer_info[i];
360 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
361 u1 = (struct my_u1 *)rx_desc_ps;
362 staterr =
363 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
364
365 if (i == rx_ring->next_to_use)
366 next_desc = " NTU";
367 else if (i == rx_ring->next_to_clean)
368 next_desc = " NTC";
369 else
370 next_desc = "";
371
372 if (staterr & E1000_RXD_STAT_DD) {
373 /* Descriptor Done */
374 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
375 "RWB", i,
376 (unsigned long long)le64_to_cpu(u1->a),
377 (unsigned long long)le64_to_cpu(u1->b),
378 (unsigned long long)le64_to_cpu(u1->c),
379 (unsigned long long)le64_to_cpu(u1->d),
380 buffer_info->skb, next_desc);
381 } else {
382 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
383 "R ", i,
384 (unsigned long long)le64_to_cpu(u1->a),
385 (unsigned long long)le64_to_cpu(u1->b),
386 (unsigned long long)le64_to_cpu(u1->c),
387 (unsigned long long)le64_to_cpu(u1->d),
388 (unsigned long long)buffer_info->dma,
389 buffer_info->skb, next_desc);
390
391 if (netif_msg_pktdata(adapter))
392 e1000e_dump_ps_pages(adapter,
393 buffer_info);
394 }
395 }
396 break;
397 default:
398 case 0:
399 /* Extended Receive Descriptor (Read) Format
400 *
401 * +-----------------------------------------------------+
402 * 0 | Buffer Address [63:0] |
403 * +-----------------------------------------------------+
404 * 8 | Reserved |
405 * +-----------------------------------------------------+
406 */
407 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
408 /* Extended Receive Descriptor (Write-Back) Format
409 *
410 * 63 48 47 32 31 24 23 4 3 0
411 * +------------------------------------------------------+
412 * | RSS Hash | | | |
413 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
414 * | Packet | IP | | | Type |
415 * | Checksum | Ident | | | |
416 * +------------------------------------------------------+
417 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
418 * +------------------------------------------------------+
419 * 63 48 47 32 31 20 19 0
420 */
421 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
422
423 for (i = 0; i < rx_ring->count; i++) {
424 const char *next_desc;
425
426 buffer_info = &rx_ring->buffer_info[i];
427 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
428 u1 = (struct my_u1 *)rx_desc;
429 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
430
431 if (i == rx_ring->next_to_use)
432 next_desc = " NTU";
433 else if (i == rx_ring->next_to_clean)
434 next_desc = " NTC";
435 else
436 next_desc = "";
437
438 if (staterr & E1000_RXD_STAT_DD) {
439 /* Descriptor Done */
440 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
441 "RWB", i,
442 (unsigned long long)le64_to_cpu(u1->a),
443 (unsigned long long)le64_to_cpu(u1->b),
444 buffer_info->skb, next_desc);
445 } else {
446 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
447 "R ", i,
448 (unsigned long long)le64_to_cpu(u1->a),
449 (unsigned long long)le64_to_cpu(u1->b),
450 (unsigned long long)buffer_info->dma,
451 buffer_info->skb, next_desc);
452
453 if (netif_msg_pktdata(adapter) &&
454 buffer_info->skb)
455 print_hex_dump(KERN_INFO, "",
456 DUMP_PREFIX_ADDRESS, 16,
457 1,
458 buffer_info->skb->data,
459 adapter->rx_buffer_len,
460 true);
461 }
462 }
463 }
464 }
465
466 /**
467 * e1000_desc_unused - calculate if we have unused descriptors
468 * @ring: pointer to ring struct to perform calculation on
469 **/
e1000_desc_unused(struct e1000_ring * ring)470 static int e1000_desc_unused(struct e1000_ring *ring)
471 {
472 if (ring->next_to_clean > ring->next_to_use)
473 return ring->next_to_clean - ring->next_to_use - 1;
474
475 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
476 }
477
478 /**
479 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
480 * @adapter: board private structure
481 * @hwtstamps: time stamp structure to update
482 * @systim: unsigned 64bit system time value.
483 *
484 * Convert the system time value stored in the RX/TXSTMP registers into a
485 * hwtstamp which can be used by the upper level time stamping functions.
486 *
487 * The 'systim_lock' spinlock is used to protect the consistency of the
488 * system time value. This is needed because reading the 64 bit time
489 * value involves reading two 32 bit registers. The first read latches the
490 * value.
491 **/
e1000e_systim_to_hwtstamp(struct e1000_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)492 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
493 struct skb_shared_hwtstamps *hwtstamps,
494 u64 systim)
495 {
496 u64 ns;
497 unsigned long flags;
498
499 spin_lock_irqsave(&adapter->systim_lock, flags);
500 ns = timecounter_cyc2time(&adapter->tc, systim);
501 spin_unlock_irqrestore(&adapter->systim_lock, flags);
502
503 memset(hwtstamps, 0, sizeof(*hwtstamps));
504 hwtstamps->hwtstamp = ns_to_ktime(ns);
505 }
506
507 /**
508 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
509 * @adapter: board private structure
510 * @status: descriptor extended error and status field
511 * @skb: particular skb to include time stamp
512 *
513 * If the time stamp is valid, convert it into the timecounter ns value
514 * and store that result into the shhwtstamps structure which is passed
515 * up the network stack.
516 **/
e1000e_rx_hwtstamp(struct e1000_adapter * adapter,u32 status,struct sk_buff * skb)517 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
518 struct sk_buff *skb)
519 {
520 struct e1000_hw *hw = &adapter->hw;
521 u64 rxstmp;
522
523 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
524 !(status & E1000_RXDEXT_STATERR_TST) ||
525 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
526 return;
527
528 /* The Rx time stamp registers contain the time stamp. No other
529 * received packet will be time stamped until the Rx time stamp
530 * registers are read. Because only one packet can be time stamped
531 * at a time, the register values must belong to this packet and
532 * therefore none of the other additional attributes need to be
533 * compared.
534 */
535 rxstmp = (u64)er32(RXSTMPL);
536 rxstmp |= (u64)er32(RXSTMPH) << 32;
537 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
538
539 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
540 }
541
542 /**
543 * e1000_receive_skb - helper function to handle Rx indications
544 * @adapter: board private structure
545 * @netdev: pointer to netdev struct
546 * @staterr: descriptor extended error and status field as written by hardware
547 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
548 * @skb: pointer to sk_buff to be indicated to stack
549 **/
e1000_receive_skb(struct e1000_adapter * adapter,struct net_device * netdev,struct sk_buff * skb,u32 staterr,__le16 vlan)550 static void e1000_receive_skb(struct e1000_adapter *adapter,
551 struct net_device *netdev, struct sk_buff *skb,
552 u32 staterr, __le16 vlan)
553 {
554 u16 tag = le16_to_cpu(vlan);
555
556 e1000e_rx_hwtstamp(adapter, staterr, skb);
557
558 skb->protocol = eth_type_trans(skb, netdev);
559
560 if (staterr & E1000_RXD_STAT_VP)
561 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
562
563 napi_gro_receive(&adapter->napi, skb);
564 }
565
566 /**
567 * e1000_rx_checksum - Receive Checksum Offload
568 * @adapter: board private structure
569 * @status_err: receive descriptor status and error fields
570 * @skb: socket buffer with received data
571 **/
e1000_rx_checksum(struct e1000_adapter * adapter,u32 status_err,struct sk_buff * skb)572 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
573 struct sk_buff *skb)
574 {
575 u16 status = (u16)status_err;
576 u8 errors = (u8)(status_err >> 24);
577
578 skb_checksum_none_assert(skb);
579
580 /* Rx checksum disabled */
581 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
582 return;
583
584 /* Ignore Checksum bit is set */
585 if (status & E1000_RXD_STAT_IXSM)
586 return;
587
588 /* TCP/UDP checksum error bit or IP checksum error bit is set */
589 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
590 /* let the stack verify checksum errors */
591 adapter->hw_csum_err++;
592 return;
593 }
594
595 /* TCP/UDP Checksum has not been calculated */
596 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
597 return;
598
599 /* It must be a TCP or UDP packet with a valid checksum */
600 skb->ip_summed = CHECKSUM_UNNECESSARY;
601 adapter->hw_csum_good++;
602 }
603
e1000e_update_rdt_wa(struct e1000_ring * rx_ring,unsigned int i)604 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
605 {
606 struct e1000_adapter *adapter = rx_ring->adapter;
607 struct e1000_hw *hw = &adapter->hw;
608
609 __ew32_prepare(hw);
610 writel(i, rx_ring->tail);
611
612 if (unlikely(i != readl(rx_ring->tail))) {
613 u32 rctl = er32(RCTL);
614
615 ew32(RCTL, rctl & ~E1000_RCTL_EN);
616 e_err("ME firmware caused invalid RDT - resetting\n");
617 schedule_work(&adapter->reset_task);
618 }
619 }
620
e1000e_update_tdt_wa(struct e1000_ring * tx_ring,unsigned int i)621 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
622 {
623 struct e1000_adapter *adapter = tx_ring->adapter;
624 struct e1000_hw *hw = &adapter->hw;
625
626 __ew32_prepare(hw);
627 writel(i, tx_ring->tail);
628
629 if (unlikely(i != readl(tx_ring->tail))) {
630 u32 tctl = er32(TCTL);
631
632 ew32(TCTL, tctl & ~E1000_TCTL_EN);
633 e_err("ME firmware caused invalid TDT - resetting\n");
634 schedule_work(&adapter->reset_task);
635 }
636 }
637
638 /**
639 * e1000_alloc_rx_buffers - Replace used receive buffers
640 * @rx_ring: Rx descriptor ring
641 * @cleaned_count: number to reallocate
642 * @gfp: flags for allocation
643 **/
e1000_alloc_rx_buffers(struct e1000_ring * rx_ring,int cleaned_count,gfp_t gfp)644 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
645 int cleaned_count, gfp_t gfp)
646 {
647 struct e1000_adapter *adapter = rx_ring->adapter;
648 struct net_device *netdev = adapter->netdev;
649 struct pci_dev *pdev = adapter->pdev;
650 union e1000_rx_desc_extended *rx_desc;
651 struct e1000_buffer *buffer_info;
652 struct sk_buff *skb;
653 unsigned int i;
654 unsigned int bufsz = adapter->rx_buffer_len;
655
656 i = rx_ring->next_to_use;
657 buffer_info = &rx_ring->buffer_info[i];
658
659 while (cleaned_count--) {
660 skb = buffer_info->skb;
661 if (skb) {
662 skb_trim(skb, 0);
663 goto map_skb;
664 }
665
666 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
667 if (!skb) {
668 /* Better luck next round */
669 adapter->alloc_rx_buff_failed++;
670 break;
671 }
672
673 buffer_info->skb = skb;
674 map_skb:
675 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
676 adapter->rx_buffer_len,
677 DMA_FROM_DEVICE);
678 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
679 dev_err(&pdev->dev, "Rx DMA map failed\n");
680 adapter->rx_dma_failed++;
681 break;
682 }
683
684 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
685 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
686
687 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
688 /* Force memory writes to complete before letting h/w
689 * know there are new descriptors to fetch. (Only
690 * applicable for weak-ordered memory model archs,
691 * such as IA-64).
692 */
693 wmb();
694 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
695 e1000e_update_rdt_wa(rx_ring, i);
696 else
697 writel(i, rx_ring->tail);
698 }
699 i++;
700 if (i == rx_ring->count)
701 i = 0;
702 buffer_info = &rx_ring->buffer_info[i];
703 }
704
705 rx_ring->next_to_use = i;
706 }
707
708 /**
709 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
710 * @rx_ring: Rx descriptor ring
711 * @cleaned_count: number to reallocate
712 * @gfp: flags for allocation
713 **/
e1000_alloc_rx_buffers_ps(struct e1000_ring * rx_ring,int cleaned_count,gfp_t gfp)714 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
715 int cleaned_count, gfp_t gfp)
716 {
717 struct e1000_adapter *adapter = rx_ring->adapter;
718 struct net_device *netdev = adapter->netdev;
719 struct pci_dev *pdev = adapter->pdev;
720 union e1000_rx_desc_packet_split *rx_desc;
721 struct e1000_buffer *buffer_info;
722 struct e1000_ps_page *ps_page;
723 struct sk_buff *skb;
724 unsigned int i, j;
725
726 i = rx_ring->next_to_use;
727 buffer_info = &rx_ring->buffer_info[i];
728
729 while (cleaned_count--) {
730 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
731
732 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
733 ps_page = &buffer_info->ps_pages[j];
734 if (j >= adapter->rx_ps_pages) {
735 /* all unused desc entries get hw null ptr */
736 rx_desc->read.buffer_addr[j + 1] =
737 ~cpu_to_le64(0);
738 continue;
739 }
740 if (!ps_page->page) {
741 ps_page->page = alloc_page(gfp);
742 if (!ps_page->page) {
743 adapter->alloc_rx_buff_failed++;
744 goto no_buffers;
745 }
746 ps_page->dma = dma_map_page(&pdev->dev,
747 ps_page->page,
748 0, PAGE_SIZE,
749 DMA_FROM_DEVICE);
750 if (dma_mapping_error(&pdev->dev,
751 ps_page->dma)) {
752 dev_err(&adapter->pdev->dev,
753 "Rx DMA page map failed\n");
754 adapter->rx_dma_failed++;
755 goto no_buffers;
756 }
757 }
758 /* Refresh the desc even if buffer_addrs
759 * didn't change because each write-back
760 * erases this info.
761 */
762 rx_desc->read.buffer_addr[j + 1] =
763 cpu_to_le64(ps_page->dma);
764 }
765
766 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
767 gfp);
768
769 if (!skb) {
770 adapter->alloc_rx_buff_failed++;
771 break;
772 }
773
774 buffer_info->skb = skb;
775 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
776 adapter->rx_ps_bsize0,
777 DMA_FROM_DEVICE);
778 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
779 dev_err(&pdev->dev, "Rx DMA map failed\n");
780 adapter->rx_dma_failed++;
781 /* cleanup skb */
782 dev_kfree_skb_any(skb);
783 buffer_info->skb = NULL;
784 break;
785 }
786
787 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
788
789 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
790 /* Force memory writes to complete before letting h/w
791 * know there are new descriptors to fetch. (Only
792 * applicable for weak-ordered memory model archs,
793 * such as IA-64).
794 */
795 wmb();
796 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
797 e1000e_update_rdt_wa(rx_ring, i << 1);
798 else
799 writel(i << 1, rx_ring->tail);
800 }
801
802 i++;
803 if (i == rx_ring->count)
804 i = 0;
805 buffer_info = &rx_ring->buffer_info[i];
806 }
807
808 no_buffers:
809 rx_ring->next_to_use = i;
810 }
811
812 /**
813 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
814 * @rx_ring: Rx descriptor ring
815 * @cleaned_count: number of buffers to allocate this pass
816 * @gfp: flags for allocation
817 **/
818
e1000_alloc_jumbo_rx_buffers(struct e1000_ring * rx_ring,int cleaned_count,gfp_t gfp)819 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
820 int cleaned_count, gfp_t gfp)
821 {
822 struct e1000_adapter *adapter = rx_ring->adapter;
823 struct net_device *netdev = adapter->netdev;
824 struct pci_dev *pdev = adapter->pdev;
825 union e1000_rx_desc_extended *rx_desc;
826 struct e1000_buffer *buffer_info;
827 struct sk_buff *skb;
828 unsigned int i;
829 unsigned int bufsz = 256 - 16; /* for skb_reserve */
830
831 i = rx_ring->next_to_use;
832 buffer_info = &rx_ring->buffer_info[i];
833
834 while (cleaned_count--) {
835 skb = buffer_info->skb;
836 if (skb) {
837 skb_trim(skb, 0);
838 goto check_page;
839 }
840
841 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
842 if (unlikely(!skb)) {
843 /* Better luck next round */
844 adapter->alloc_rx_buff_failed++;
845 break;
846 }
847
848 buffer_info->skb = skb;
849 check_page:
850 /* allocate a new page if necessary */
851 if (!buffer_info->page) {
852 buffer_info->page = alloc_page(gfp);
853 if (unlikely(!buffer_info->page)) {
854 adapter->alloc_rx_buff_failed++;
855 break;
856 }
857 }
858
859 if (!buffer_info->dma) {
860 buffer_info->dma = dma_map_page(&pdev->dev,
861 buffer_info->page, 0,
862 PAGE_SIZE,
863 DMA_FROM_DEVICE);
864 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
865 adapter->alloc_rx_buff_failed++;
866 break;
867 }
868 }
869
870 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
871 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
872
873 if (unlikely(++i == rx_ring->count))
874 i = 0;
875 buffer_info = &rx_ring->buffer_info[i];
876 }
877
878 if (likely(rx_ring->next_to_use != i)) {
879 rx_ring->next_to_use = i;
880 if (unlikely(i-- == 0))
881 i = (rx_ring->count - 1);
882
883 /* Force memory writes to complete before letting h/w
884 * know there are new descriptors to fetch. (Only
885 * applicable for weak-ordered memory model archs,
886 * such as IA-64).
887 */
888 wmb();
889 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
890 e1000e_update_rdt_wa(rx_ring, i);
891 else
892 writel(i, rx_ring->tail);
893 }
894 }
895
e1000_rx_hash(struct net_device * netdev,__le32 rss,struct sk_buff * skb)896 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
897 struct sk_buff *skb)
898 {
899 if (netdev->features & NETIF_F_RXHASH)
900 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
901 }
902
903 /**
904 * e1000_clean_rx_irq - Send received data up the network stack
905 * @rx_ring: Rx descriptor ring
906 * @work_done: output parameter for indicating completed work
907 * @work_to_do: how many packets we can clean
908 *
909 * the return value indicates whether actual cleaning was done, there
910 * is no guarantee that everything was cleaned
911 **/
e1000_clean_rx_irq(struct e1000_ring * rx_ring,int * work_done,int work_to_do)912 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
913 int work_to_do)
914 {
915 struct e1000_adapter *adapter = rx_ring->adapter;
916 struct net_device *netdev = adapter->netdev;
917 struct pci_dev *pdev = adapter->pdev;
918 struct e1000_hw *hw = &adapter->hw;
919 union e1000_rx_desc_extended *rx_desc, *next_rxd;
920 struct e1000_buffer *buffer_info, *next_buffer;
921 u32 length, staterr;
922 unsigned int i;
923 int cleaned_count = 0;
924 bool cleaned = false;
925 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
926
927 i = rx_ring->next_to_clean;
928 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
929 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
930 buffer_info = &rx_ring->buffer_info[i];
931
932 while (staterr & E1000_RXD_STAT_DD) {
933 struct sk_buff *skb;
934
935 if (*work_done >= work_to_do)
936 break;
937 (*work_done)++;
938 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
939
940 skb = buffer_info->skb;
941 buffer_info->skb = NULL;
942
943 prefetch(skb->data - NET_IP_ALIGN);
944
945 i++;
946 if (i == rx_ring->count)
947 i = 0;
948 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
949 prefetch(next_rxd);
950
951 next_buffer = &rx_ring->buffer_info[i];
952
953 cleaned = true;
954 cleaned_count++;
955 dma_unmap_single(&pdev->dev, buffer_info->dma,
956 adapter->rx_buffer_len, DMA_FROM_DEVICE);
957 buffer_info->dma = 0;
958
959 length = le16_to_cpu(rx_desc->wb.upper.length);
960
961 /* !EOP means multiple descriptors were used to store a single
962 * packet, if that's the case we need to toss it. In fact, we
963 * need to toss every packet with the EOP bit clear and the
964 * next frame that _does_ have the EOP bit set, as it is by
965 * definition only a frame fragment
966 */
967 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
968 adapter->flags2 |= FLAG2_IS_DISCARDING;
969
970 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
971 /* All receives must fit into a single buffer */
972 e_dbg("Receive packet consumed multiple buffers\n");
973 /* recycle */
974 buffer_info->skb = skb;
975 if (staterr & E1000_RXD_STAT_EOP)
976 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
977 goto next_desc;
978 }
979
980 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
981 !(netdev->features & NETIF_F_RXALL))) {
982 /* recycle */
983 buffer_info->skb = skb;
984 goto next_desc;
985 }
986
987 /* adjust length to remove Ethernet CRC */
988 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
989 /* If configured to store CRC, don't subtract FCS,
990 * but keep the FCS bytes out of the total_rx_bytes
991 * counter
992 */
993 if (netdev->features & NETIF_F_RXFCS)
994 total_rx_bytes -= 4;
995 else
996 length -= 4;
997 }
998
999 total_rx_bytes += length;
1000 total_rx_packets++;
1001
1002 /* code added for copybreak, this should improve
1003 * performance for small packets with large amounts
1004 * of reassembly being done in the stack
1005 */
1006 if (length < copybreak) {
1007 struct sk_buff *new_skb =
1008 napi_alloc_skb(&adapter->napi, length);
1009 if (new_skb) {
1010 skb_copy_to_linear_data_offset(new_skb,
1011 -NET_IP_ALIGN,
1012 (skb->data -
1013 NET_IP_ALIGN),
1014 (length +
1015 NET_IP_ALIGN));
1016 /* save the skb in buffer_info as good */
1017 buffer_info->skb = skb;
1018 skb = new_skb;
1019 }
1020 /* else just continue with the old one */
1021 }
1022 /* end copybreak code */
1023 skb_put(skb, length);
1024
1025 /* Receive Checksum Offload */
1026 e1000_rx_checksum(adapter, staterr, skb);
1027
1028 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1029
1030 e1000_receive_skb(adapter, netdev, skb, staterr,
1031 rx_desc->wb.upper.vlan);
1032
1033 next_desc:
1034 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1035
1036 /* return some buffers to hardware, one at a time is too slow */
1037 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1038 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1039 GFP_ATOMIC);
1040 cleaned_count = 0;
1041 }
1042
1043 /* use prefetched values */
1044 rx_desc = next_rxd;
1045 buffer_info = next_buffer;
1046
1047 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1048 }
1049 rx_ring->next_to_clean = i;
1050
1051 cleaned_count = e1000_desc_unused(rx_ring);
1052 if (cleaned_count)
1053 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1054
1055 adapter->total_rx_bytes += total_rx_bytes;
1056 adapter->total_rx_packets += total_rx_packets;
1057 return cleaned;
1058 }
1059
e1000_put_txbuf(struct e1000_ring * tx_ring,struct e1000_buffer * buffer_info,bool drop)1060 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1061 struct e1000_buffer *buffer_info,
1062 bool drop)
1063 {
1064 struct e1000_adapter *adapter = tx_ring->adapter;
1065
1066 if (buffer_info->dma) {
1067 if (buffer_info->mapped_as_page)
1068 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1069 buffer_info->length, DMA_TO_DEVICE);
1070 else
1071 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1072 buffer_info->length, DMA_TO_DEVICE);
1073 buffer_info->dma = 0;
1074 }
1075 if (buffer_info->skb) {
1076 if (drop)
1077 dev_kfree_skb_any(buffer_info->skb);
1078 else
1079 dev_consume_skb_any(buffer_info->skb);
1080 buffer_info->skb = NULL;
1081 }
1082 buffer_info->time_stamp = 0;
1083 }
1084
e1000_print_hw_hang(struct work_struct * work)1085 static void e1000_print_hw_hang(struct work_struct *work)
1086 {
1087 struct e1000_adapter *adapter = container_of(work,
1088 struct e1000_adapter,
1089 print_hang_task);
1090 struct net_device *netdev = adapter->netdev;
1091 struct e1000_ring *tx_ring = adapter->tx_ring;
1092 unsigned int i = tx_ring->next_to_clean;
1093 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1094 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1095 struct e1000_hw *hw = &adapter->hw;
1096 u16 phy_status, phy_1000t_status, phy_ext_status;
1097 u16 pci_status;
1098
1099 if (test_bit(__E1000_DOWN, &adapter->state))
1100 return;
1101
1102 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1103 /* May be block on write-back, flush and detect again
1104 * flush pending descriptor writebacks to memory
1105 */
1106 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1107 /* execute the writes immediately */
1108 e1e_flush();
1109 /* Due to rare timing issues, write to TIDV again to ensure
1110 * the write is successful
1111 */
1112 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1113 /* execute the writes immediately */
1114 e1e_flush();
1115 adapter->tx_hang_recheck = true;
1116 return;
1117 }
1118 adapter->tx_hang_recheck = false;
1119
1120 if (er32(TDH(0)) == er32(TDT(0))) {
1121 e_dbg("false hang detected, ignoring\n");
1122 return;
1123 }
1124
1125 /* Real hang detected */
1126 netif_stop_queue(netdev);
1127
1128 e1e_rphy(hw, MII_BMSR, &phy_status);
1129 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1130 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1131
1132 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1133
1134 /* detected Hardware unit hang */
1135 e_err("Detected Hardware Unit Hang:\n"
1136 " TDH <%x>\n"
1137 " TDT <%x>\n"
1138 " next_to_use <%x>\n"
1139 " next_to_clean <%x>\n"
1140 "buffer_info[next_to_clean]:\n"
1141 " time_stamp <%lx>\n"
1142 " next_to_watch <%x>\n"
1143 " jiffies <%lx>\n"
1144 " next_to_watch.status <%x>\n"
1145 "MAC Status <%x>\n"
1146 "PHY Status <%x>\n"
1147 "PHY 1000BASE-T Status <%x>\n"
1148 "PHY Extended Status <%x>\n"
1149 "PCI Status <%x>\n",
1150 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1151 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1152 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1153 phy_status, phy_1000t_status, phy_ext_status, pci_status);
1154
1155 e1000e_dump(adapter);
1156
1157 /* Suggest workaround for known h/w issue */
1158 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1159 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1160 }
1161
1162 /**
1163 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1164 * @work: pointer to work struct
1165 *
1166 * This work function polls the TSYNCTXCTL valid bit to determine when a
1167 * timestamp has been taken for the current stored skb. The timestamp must
1168 * be for this skb because only one such packet is allowed in the queue.
1169 */
e1000e_tx_hwtstamp_work(struct work_struct * work)1170 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1171 {
1172 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1173 tx_hwtstamp_work);
1174 struct e1000_hw *hw = &adapter->hw;
1175
1176 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1177 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1178 struct skb_shared_hwtstamps shhwtstamps;
1179 u64 txstmp;
1180
1181 txstmp = er32(TXSTMPL);
1182 txstmp |= (u64)er32(TXSTMPH) << 32;
1183
1184 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1185
1186 /* Clear the global tx_hwtstamp_skb pointer and force writes
1187 * prior to notifying the stack of a Tx timestamp.
1188 */
1189 adapter->tx_hwtstamp_skb = NULL;
1190 wmb(); /* force write prior to skb_tstamp_tx */
1191
1192 skb_tstamp_tx(skb, &shhwtstamps);
1193 dev_consume_skb_any(skb);
1194 } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1195 + adapter->tx_timeout_factor * HZ)) {
1196 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1197 adapter->tx_hwtstamp_skb = NULL;
1198 adapter->tx_hwtstamp_timeouts++;
1199 e_warn("clearing Tx timestamp hang\n");
1200 } else {
1201 /* reschedule to check later */
1202 schedule_work(&adapter->tx_hwtstamp_work);
1203 }
1204 }
1205
1206 /**
1207 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1208 * @tx_ring: Tx descriptor ring
1209 *
1210 * the return value indicates whether actual cleaning was done, there
1211 * is no guarantee that everything was cleaned
1212 **/
e1000_clean_tx_irq(struct e1000_ring * tx_ring)1213 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1214 {
1215 struct e1000_adapter *adapter = tx_ring->adapter;
1216 struct net_device *netdev = adapter->netdev;
1217 struct e1000_hw *hw = &adapter->hw;
1218 struct e1000_tx_desc *tx_desc, *eop_desc;
1219 struct e1000_buffer *buffer_info;
1220 unsigned int i, eop;
1221 unsigned int count = 0;
1222 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1223 unsigned int bytes_compl = 0, pkts_compl = 0;
1224
1225 i = tx_ring->next_to_clean;
1226 eop = tx_ring->buffer_info[i].next_to_watch;
1227 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1228
1229 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1230 (count < tx_ring->count)) {
1231 bool cleaned = false;
1232
1233 dma_rmb(); /* read buffer_info after eop_desc */
1234 for (; !cleaned; count++) {
1235 tx_desc = E1000_TX_DESC(*tx_ring, i);
1236 buffer_info = &tx_ring->buffer_info[i];
1237 cleaned = (i == eop);
1238
1239 if (cleaned) {
1240 total_tx_packets += buffer_info->segs;
1241 total_tx_bytes += buffer_info->bytecount;
1242 if (buffer_info->skb) {
1243 bytes_compl += buffer_info->skb->len;
1244 pkts_compl++;
1245 }
1246 }
1247
1248 e1000_put_txbuf(tx_ring, buffer_info, false);
1249 tx_desc->upper.data = 0;
1250
1251 i++;
1252 if (i == tx_ring->count)
1253 i = 0;
1254 }
1255
1256 if (i == tx_ring->next_to_use)
1257 break;
1258 eop = tx_ring->buffer_info[i].next_to_watch;
1259 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1260 }
1261
1262 tx_ring->next_to_clean = i;
1263
1264 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1265
1266 #define TX_WAKE_THRESHOLD 32
1267 if (count && netif_carrier_ok(netdev) &&
1268 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1269 /* Make sure that anybody stopping the queue after this
1270 * sees the new next_to_clean.
1271 */
1272 smp_mb();
1273
1274 if (netif_queue_stopped(netdev) &&
1275 !(test_bit(__E1000_DOWN, &adapter->state))) {
1276 netif_wake_queue(netdev);
1277 ++adapter->restart_queue;
1278 }
1279 }
1280
1281 if (adapter->detect_tx_hung) {
1282 /* Detect a transmit hang in hardware, this serializes the
1283 * check with the clearing of time_stamp and movement of i
1284 */
1285 adapter->detect_tx_hung = false;
1286 if (tx_ring->buffer_info[i].time_stamp &&
1287 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1288 + (adapter->tx_timeout_factor * HZ)) &&
1289 !(er32(STATUS) & E1000_STATUS_TXOFF))
1290 schedule_work(&adapter->print_hang_task);
1291 else
1292 adapter->tx_hang_recheck = false;
1293 }
1294 adapter->total_tx_bytes += total_tx_bytes;
1295 adapter->total_tx_packets += total_tx_packets;
1296 return count < tx_ring->count;
1297 }
1298
1299 /**
1300 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1301 * @rx_ring: Rx descriptor ring
1302 * @work_done: output parameter for indicating completed work
1303 * @work_to_do: how many packets we can clean
1304 *
1305 * the return value indicates whether actual cleaning was done, there
1306 * is no guarantee that everything was cleaned
1307 **/
e1000_clean_rx_irq_ps(struct e1000_ring * rx_ring,int * work_done,int work_to_do)1308 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1309 int work_to_do)
1310 {
1311 struct e1000_adapter *adapter = rx_ring->adapter;
1312 struct e1000_hw *hw = &adapter->hw;
1313 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1314 struct net_device *netdev = adapter->netdev;
1315 struct pci_dev *pdev = adapter->pdev;
1316 struct e1000_buffer *buffer_info, *next_buffer;
1317 struct e1000_ps_page *ps_page;
1318 struct sk_buff *skb;
1319 unsigned int i, j;
1320 u32 length, staterr;
1321 int cleaned_count = 0;
1322 bool cleaned = false;
1323 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1324
1325 i = rx_ring->next_to_clean;
1326 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1327 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1328 buffer_info = &rx_ring->buffer_info[i];
1329
1330 while (staterr & E1000_RXD_STAT_DD) {
1331 if (*work_done >= work_to_do)
1332 break;
1333 (*work_done)++;
1334 skb = buffer_info->skb;
1335 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1336
1337 /* in the packet split case this is header only */
1338 prefetch(skb->data - NET_IP_ALIGN);
1339
1340 i++;
1341 if (i == rx_ring->count)
1342 i = 0;
1343 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1344 prefetch(next_rxd);
1345
1346 next_buffer = &rx_ring->buffer_info[i];
1347
1348 cleaned = true;
1349 cleaned_count++;
1350 dma_unmap_single(&pdev->dev, buffer_info->dma,
1351 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1352 buffer_info->dma = 0;
1353
1354 /* see !EOP comment in other Rx routine */
1355 if (!(staterr & E1000_RXD_STAT_EOP))
1356 adapter->flags2 |= FLAG2_IS_DISCARDING;
1357
1358 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1359 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1360 dev_kfree_skb_irq(skb);
1361 if (staterr & E1000_RXD_STAT_EOP)
1362 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1363 goto next_desc;
1364 }
1365
1366 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1367 !(netdev->features & NETIF_F_RXALL))) {
1368 dev_kfree_skb_irq(skb);
1369 goto next_desc;
1370 }
1371
1372 length = le16_to_cpu(rx_desc->wb.middle.length0);
1373
1374 if (!length) {
1375 e_dbg("Last part of the packet spanning multiple descriptors\n");
1376 dev_kfree_skb_irq(skb);
1377 goto next_desc;
1378 }
1379
1380 /* Good Receive */
1381 skb_put(skb, length);
1382
1383 {
1384 /* this looks ugly, but it seems compiler issues make
1385 * it more efficient than reusing j
1386 */
1387 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1388
1389 /* page alloc/put takes too long and effects small
1390 * packet throughput, so unsplit small packets and
1391 * save the alloc/put only valid in softirq (napi)
1392 * context to call kmap_*
1393 */
1394 if (l1 && (l1 <= copybreak) &&
1395 ((length + l1) <= adapter->rx_ps_bsize0)) {
1396 u8 *vaddr;
1397
1398 ps_page = &buffer_info->ps_pages[0];
1399
1400 /* there is no documentation about how to call
1401 * kmap_atomic, so we can't hold the mapping
1402 * very long
1403 */
1404 dma_sync_single_for_cpu(&pdev->dev,
1405 ps_page->dma,
1406 PAGE_SIZE,
1407 DMA_FROM_DEVICE);
1408 vaddr = kmap_atomic(ps_page->page);
1409 memcpy(skb_tail_pointer(skb), vaddr, l1);
1410 kunmap_atomic(vaddr);
1411 dma_sync_single_for_device(&pdev->dev,
1412 ps_page->dma,
1413 PAGE_SIZE,
1414 DMA_FROM_DEVICE);
1415
1416 /* remove the CRC */
1417 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1418 if (!(netdev->features & NETIF_F_RXFCS))
1419 l1 -= 4;
1420 }
1421
1422 skb_put(skb, l1);
1423 goto copydone;
1424 } /* if */
1425 }
1426
1427 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1428 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1429 if (!length)
1430 break;
1431
1432 ps_page = &buffer_info->ps_pages[j];
1433 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1434 DMA_FROM_DEVICE);
1435 ps_page->dma = 0;
1436 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1437 ps_page->page = NULL;
1438 skb->len += length;
1439 skb->data_len += length;
1440 skb->truesize += PAGE_SIZE;
1441 }
1442
1443 /* strip the ethernet crc, problem is we're using pages now so
1444 * this whole operation can get a little cpu intensive
1445 */
1446 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1447 if (!(netdev->features & NETIF_F_RXFCS))
1448 pskb_trim(skb, skb->len - 4);
1449 }
1450
1451 copydone:
1452 total_rx_bytes += skb->len;
1453 total_rx_packets++;
1454
1455 e1000_rx_checksum(adapter, staterr, skb);
1456
1457 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1458
1459 if (rx_desc->wb.upper.header_status &
1460 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1461 adapter->rx_hdr_split++;
1462
1463 e1000_receive_skb(adapter, netdev, skb, staterr,
1464 rx_desc->wb.middle.vlan);
1465
1466 next_desc:
1467 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1468 buffer_info->skb = NULL;
1469
1470 /* return some buffers to hardware, one at a time is too slow */
1471 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1472 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1473 GFP_ATOMIC);
1474 cleaned_count = 0;
1475 }
1476
1477 /* use prefetched values */
1478 rx_desc = next_rxd;
1479 buffer_info = next_buffer;
1480
1481 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1482 }
1483 rx_ring->next_to_clean = i;
1484
1485 cleaned_count = e1000_desc_unused(rx_ring);
1486 if (cleaned_count)
1487 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1488
1489 adapter->total_rx_bytes += total_rx_bytes;
1490 adapter->total_rx_packets += total_rx_packets;
1491 return cleaned;
1492 }
1493
e1000_consume_page(struct e1000_buffer * bi,struct sk_buff * skb,u16 length)1494 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1495 u16 length)
1496 {
1497 bi->page = NULL;
1498 skb->len += length;
1499 skb->data_len += length;
1500 skb->truesize += PAGE_SIZE;
1501 }
1502
1503 /**
1504 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1505 * @rx_ring: Rx descriptor ring
1506 * @work_done: output parameter for indicating completed work
1507 * @work_to_do: how many packets we can clean
1508 *
1509 * the return value indicates whether actual cleaning was done, there
1510 * is no guarantee that everything was cleaned
1511 **/
e1000_clean_jumbo_rx_irq(struct e1000_ring * rx_ring,int * work_done,int work_to_do)1512 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1513 int work_to_do)
1514 {
1515 struct e1000_adapter *adapter = rx_ring->adapter;
1516 struct net_device *netdev = adapter->netdev;
1517 struct pci_dev *pdev = adapter->pdev;
1518 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1519 struct e1000_buffer *buffer_info, *next_buffer;
1520 u32 length, staterr;
1521 unsigned int i;
1522 int cleaned_count = 0;
1523 bool cleaned = false;
1524 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1525 struct skb_shared_info *shinfo;
1526
1527 i = rx_ring->next_to_clean;
1528 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1529 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1530 buffer_info = &rx_ring->buffer_info[i];
1531
1532 while (staterr & E1000_RXD_STAT_DD) {
1533 struct sk_buff *skb;
1534
1535 if (*work_done >= work_to_do)
1536 break;
1537 (*work_done)++;
1538 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1539
1540 skb = buffer_info->skb;
1541 buffer_info->skb = NULL;
1542
1543 ++i;
1544 if (i == rx_ring->count)
1545 i = 0;
1546 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1547 prefetch(next_rxd);
1548
1549 next_buffer = &rx_ring->buffer_info[i];
1550
1551 cleaned = true;
1552 cleaned_count++;
1553 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1554 DMA_FROM_DEVICE);
1555 buffer_info->dma = 0;
1556
1557 length = le16_to_cpu(rx_desc->wb.upper.length);
1558
1559 /* errors is only valid for DD + EOP descriptors */
1560 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1561 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1562 !(netdev->features & NETIF_F_RXALL)))) {
1563 /* recycle both page and skb */
1564 buffer_info->skb = skb;
1565 /* an error means any chain goes out the window too */
1566 if (rx_ring->rx_skb_top)
1567 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1568 rx_ring->rx_skb_top = NULL;
1569 goto next_desc;
1570 }
1571 #define rxtop (rx_ring->rx_skb_top)
1572 if (!(staterr & E1000_RXD_STAT_EOP)) {
1573 /* this descriptor is only the beginning (or middle) */
1574 if (!rxtop) {
1575 /* this is the beginning of a chain */
1576 rxtop = skb;
1577 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1578 0, length);
1579 } else {
1580 /* this is the middle of a chain */
1581 shinfo = skb_shinfo(rxtop);
1582 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1583 buffer_info->page, 0,
1584 length);
1585 /* re-use the skb, only consumed the page */
1586 buffer_info->skb = skb;
1587 }
1588 e1000_consume_page(buffer_info, rxtop, length);
1589 goto next_desc;
1590 } else {
1591 if (rxtop) {
1592 /* end of the chain */
1593 shinfo = skb_shinfo(rxtop);
1594 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1595 buffer_info->page, 0,
1596 length);
1597 /* re-use the current skb, we only consumed the
1598 * page
1599 */
1600 buffer_info->skb = skb;
1601 skb = rxtop;
1602 rxtop = NULL;
1603 e1000_consume_page(buffer_info, skb, length);
1604 } else {
1605 /* no chain, got EOP, this buf is the packet
1606 * copybreak to save the put_page/alloc_page
1607 */
1608 if (length <= copybreak &&
1609 skb_tailroom(skb) >= length) {
1610 u8 *vaddr;
1611 vaddr = kmap_atomic(buffer_info->page);
1612 memcpy(skb_tail_pointer(skb), vaddr,
1613 length);
1614 kunmap_atomic(vaddr);
1615 /* re-use the page, so don't erase
1616 * buffer_info->page
1617 */
1618 skb_put(skb, length);
1619 } else {
1620 skb_fill_page_desc(skb, 0,
1621 buffer_info->page, 0,
1622 length);
1623 e1000_consume_page(buffer_info, skb,
1624 length);
1625 }
1626 }
1627 }
1628
1629 /* Receive Checksum Offload */
1630 e1000_rx_checksum(adapter, staterr, skb);
1631
1632 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1633
1634 /* probably a little skewed due to removing CRC */
1635 total_rx_bytes += skb->len;
1636 total_rx_packets++;
1637
1638 /* eth type trans needs skb->data to point to something */
1639 if (!pskb_may_pull(skb, ETH_HLEN)) {
1640 e_err("pskb_may_pull failed.\n");
1641 dev_kfree_skb_irq(skb);
1642 goto next_desc;
1643 }
1644
1645 e1000_receive_skb(adapter, netdev, skb, staterr,
1646 rx_desc->wb.upper.vlan);
1647
1648 next_desc:
1649 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1650
1651 /* return some buffers to hardware, one at a time is too slow */
1652 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1653 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1654 GFP_ATOMIC);
1655 cleaned_count = 0;
1656 }
1657
1658 /* use prefetched values */
1659 rx_desc = next_rxd;
1660 buffer_info = next_buffer;
1661
1662 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1663 }
1664 rx_ring->next_to_clean = i;
1665
1666 cleaned_count = e1000_desc_unused(rx_ring);
1667 if (cleaned_count)
1668 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1669
1670 adapter->total_rx_bytes += total_rx_bytes;
1671 adapter->total_rx_packets += total_rx_packets;
1672 return cleaned;
1673 }
1674
1675 /**
1676 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1677 * @rx_ring: Rx descriptor ring
1678 **/
e1000_clean_rx_ring(struct e1000_ring * rx_ring)1679 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1680 {
1681 struct e1000_adapter *adapter = rx_ring->adapter;
1682 struct e1000_buffer *buffer_info;
1683 struct e1000_ps_page *ps_page;
1684 struct pci_dev *pdev = adapter->pdev;
1685 unsigned int i, j;
1686
1687 /* Free all the Rx ring sk_buffs */
1688 for (i = 0; i < rx_ring->count; i++) {
1689 buffer_info = &rx_ring->buffer_info[i];
1690 if (buffer_info->dma) {
1691 if (adapter->clean_rx == e1000_clean_rx_irq)
1692 dma_unmap_single(&pdev->dev, buffer_info->dma,
1693 adapter->rx_buffer_len,
1694 DMA_FROM_DEVICE);
1695 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1696 dma_unmap_page(&pdev->dev, buffer_info->dma,
1697 PAGE_SIZE, DMA_FROM_DEVICE);
1698 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1699 dma_unmap_single(&pdev->dev, buffer_info->dma,
1700 adapter->rx_ps_bsize0,
1701 DMA_FROM_DEVICE);
1702 buffer_info->dma = 0;
1703 }
1704
1705 if (buffer_info->page) {
1706 put_page(buffer_info->page);
1707 buffer_info->page = NULL;
1708 }
1709
1710 if (buffer_info->skb) {
1711 dev_kfree_skb(buffer_info->skb);
1712 buffer_info->skb = NULL;
1713 }
1714
1715 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1716 ps_page = &buffer_info->ps_pages[j];
1717 if (!ps_page->page)
1718 break;
1719 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1720 DMA_FROM_DEVICE);
1721 ps_page->dma = 0;
1722 put_page(ps_page->page);
1723 ps_page->page = NULL;
1724 }
1725 }
1726
1727 /* there also may be some cached data from a chained receive */
1728 if (rx_ring->rx_skb_top) {
1729 dev_kfree_skb(rx_ring->rx_skb_top);
1730 rx_ring->rx_skb_top = NULL;
1731 }
1732
1733 /* Zero out the descriptor ring */
1734 memset(rx_ring->desc, 0, rx_ring->size);
1735
1736 rx_ring->next_to_clean = 0;
1737 rx_ring->next_to_use = 0;
1738 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1739 }
1740
e1000e_downshift_workaround(struct work_struct * work)1741 static void e1000e_downshift_workaround(struct work_struct *work)
1742 {
1743 struct e1000_adapter *adapter = container_of(work,
1744 struct e1000_adapter,
1745 downshift_task);
1746
1747 if (test_bit(__E1000_DOWN, &adapter->state))
1748 return;
1749
1750 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1751 }
1752
1753 /**
1754 * e1000_intr_msi - Interrupt Handler
1755 * @irq: interrupt number
1756 * @data: pointer to a network interface device structure
1757 **/
e1000_intr_msi(int __always_unused irq,void * data)1758 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1759 {
1760 struct net_device *netdev = data;
1761 struct e1000_adapter *adapter = netdev_priv(netdev);
1762 struct e1000_hw *hw = &adapter->hw;
1763 u32 icr = er32(ICR);
1764
1765 /* read ICR disables interrupts using IAM */
1766 if (icr & E1000_ICR_LSC) {
1767 hw->mac.get_link_status = true;
1768 /* ICH8 workaround-- Call gig speed drop workaround on cable
1769 * disconnect (LSC) before accessing any PHY registers
1770 */
1771 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1772 (!(er32(STATUS) & E1000_STATUS_LU)))
1773 schedule_work(&adapter->downshift_task);
1774
1775 /* 80003ES2LAN workaround-- For packet buffer work-around on
1776 * link down event; disable receives here in the ISR and reset
1777 * adapter in watchdog
1778 */
1779 if (netif_carrier_ok(netdev) &&
1780 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1781 /* disable receives */
1782 u32 rctl = er32(RCTL);
1783
1784 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1785 adapter->flags |= FLAG_RESTART_NOW;
1786 }
1787 /* guard against interrupt when we're going down */
1788 if (!test_bit(__E1000_DOWN, &adapter->state))
1789 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1790 }
1791
1792 /* Reset on uncorrectable ECC error */
1793 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1794 u32 pbeccsts = er32(PBECCSTS);
1795
1796 adapter->corr_errors +=
1797 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1798 adapter->uncorr_errors +=
1799 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1800 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1801
1802 /* Do the reset outside of interrupt context */
1803 schedule_work(&adapter->reset_task);
1804
1805 /* return immediately since reset is imminent */
1806 return IRQ_HANDLED;
1807 }
1808
1809 if (napi_schedule_prep(&adapter->napi)) {
1810 adapter->total_tx_bytes = 0;
1811 adapter->total_tx_packets = 0;
1812 adapter->total_rx_bytes = 0;
1813 adapter->total_rx_packets = 0;
1814 __napi_schedule(&adapter->napi);
1815 }
1816
1817 return IRQ_HANDLED;
1818 }
1819
1820 /**
1821 * e1000_intr - Interrupt Handler
1822 * @irq: interrupt number
1823 * @data: pointer to a network interface device structure
1824 **/
e1000_intr(int __always_unused irq,void * data)1825 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1826 {
1827 struct net_device *netdev = data;
1828 struct e1000_adapter *adapter = netdev_priv(netdev);
1829 struct e1000_hw *hw = &adapter->hw;
1830 u32 rctl, icr = er32(ICR);
1831
1832 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1833 return IRQ_NONE; /* Not our interrupt */
1834
1835 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1836 * not set, then the adapter didn't send an interrupt
1837 */
1838 if (!(icr & E1000_ICR_INT_ASSERTED))
1839 return IRQ_NONE;
1840
1841 /* Interrupt Auto-Mask...upon reading ICR,
1842 * interrupts are masked. No need for the
1843 * IMC write
1844 */
1845
1846 if (icr & E1000_ICR_LSC) {
1847 hw->mac.get_link_status = true;
1848 /* ICH8 workaround-- Call gig speed drop workaround on cable
1849 * disconnect (LSC) before accessing any PHY registers
1850 */
1851 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1852 (!(er32(STATUS) & E1000_STATUS_LU)))
1853 schedule_work(&adapter->downshift_task);
1854
1855 /* 80003ES2LAN workaround--
1856 * For packet buffer work-around on link down event;
1857 * disable receives here in the ISR and
1858 * reset adapter in watchdog
1859 */
1860 if (netif_carrier_ok(netdev) &&
1861 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1862 /* disable receives */
1863 rctl = er32(RCTL);
1864 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1865 adapter->flags |= FLAG_RESTART_NOW;
1866 }
1867 /* guard against interrupt when we're going down */
1868 if (!test_bit(__E1000_DOWN, &adapter->state))
1869 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1870 }
1871
1872 /* Reset on uncorrectable ECC error */
1873 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1874 u32 pbeccsts = er32(PBECCSTS);
1875
1876 adapter->corr_errors +=
1877 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1878 adapter->uncorr_errors +=
1879 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1880 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1881
1882 /* Do the reset outside of interrupt context */
1883 schedule_work(&adapter->reset_task);
1884
1885 /* return immediately since reset is imminent */
1886 return IRQ_HANDLED;
1887 }
1888
1889 if (napi_schedule_prep(&adapter->napi)) {
1890 adapter->total_tx_bytes = 0;
1891 adapter->total_tx_packets = 0;
1892 adapter->total_rx_bytes = 0;
1893 adapter->total_rx_packets = 0;
1894 __napi_schedule(&adapter->napi);
1895 }
1896
1897 return IRQ_HANDLED;
1898 }
1899
e1000_msix_other(int __always_unused irq,void * data)1900 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1901 {
1902 struct net_device *netdev = data;
1903 struct e1000_adapter *adapter = netdev_priv(netdev);
1904 struct e1000_hw *hw = &adapter->hw;
1905 u32 icr = er32(ICR);
1906
1907 if (icr & adapter->eiac_mask)
1908 ew32(ICS, (icr & adapter->eiac_mask));
1909
1910 if (icr & E1000_ICR_LSC) {
1911 hw->mac.get_link_status = true;
1912 /* guard against interrupt when we're going down */
1913 if (!test_bit(__E1000_DOWN, &adapter->state))
1914 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1915 }
1916
1917 if (!test_bit(__E1000_DOWN, &adapter->state))
1918 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1919
1920 return IRQ_HANDLED;
1921 }
1922
e1000_intr_msix_tx(int __always_unused irq,void * data)1923 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1924 {
1925 struct net_device *netdev = data;
1926 struct e1000_adapter *adapter = netdev_priv(netdev);
1927 struct e1000_hw *hw = &adapter->hw;
1928 struct e1000_ring *tx_ring = adapter->tx_ring;
1929
1930 adapter->total_tx_bytes = 0;
1931 adapter->total_tx_packets = 0;
1932
1933 if (!e1000_clean_tx_irq(tx_ring))
1934 /* Ring was not completely cleaned, so fire another interrupt */
1935 ew32(ICS, tx_ring->ims_val);
1936
1937 if (!test_bit(__E1000_DOWN, &adapter->state))
1938 ew32(IMS, adapter->tx_ring->ims_val);
1939
1940 return IRQ_HANDLED;
1941 }
1942
e1000_intr_msix_rx(int __always_unused irq,void * data)1943 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1944 {
1945 struct net_device *netdev = data;
1946 struct e1000_adapter *adapter = netdev_priv(netdev);
1947 struct e1000_ring *rx_ring = adapter->rx_ring;
1948
1949 /* Write the ITR value calculated at the end of the
1950 * previous interrupt.
1951 */
1952 if (rx_ring->set_itr) {
1953 u32 itr = rx_ring->itr_val ?
1954 1000000000 / (rx_ring->itr_val * 256) : 0;
1955
1956 writel(itr, rx_ring->itr_register);
1957 rx_ring->set_itr = 0;
1958 }
1959
1960 if (napi_schedule_prep(&adapter->napi)) {
1961 adapter->total_rx_bytes = 0;
1962 adapter->total_rx_packets = 0;
1963 __napi_schedule(&adapter->napi);
1964 }
1965 return IRQ_HANDLED;
1966 }
1967
1968 /**
1969 * e1000_configure_msix - Configure MSI-X hardware
1970 * @adapter: board private structure
1971 *
1972 * e1000_configure_msix sets up the hardware to properly
1973 * generate MSI-X interrupts.
1974 **/
e1000_configure_msix(struct e1000_adapter * adapter)1975 static void e1000_configure_msix(struct e1000_adapter *adapter)
1976 {
1977 struct e1000_hw *hw = &adapter->hw;
1978 struct e1000_ring *rx_ring = adapter->rx_ring;
1979 struct e1000_ring *tx_ring = adapter->tx_ring;
1980 int vector = 0;
1981 u32 ctrl_ext, ivar = 0;
1982
1983 adapter->eiac_mask = 0;
1984
1985 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1986 if (hw->mac.type == e1000_82574) {
1987 u32 rfctl = er32(RFCTL);
1988
1989 rfctl |= E1000_RFCTL_ACK_DIS;
1990 ew32(RFCTL, rfctl);
1991 }
1992
1993 /* Configure Rx vector */
1994 rx_ring->ims_val = E1000_IMS_RXQ0;
1995 adapter->eiac_mask |= rx_ring->ims_val;
1996 if (rx_ring->itr_val)
1997 writel(1000000000 / (rx_ring->itr_val * 256),
1998 rx_ring->itr_register);
1999 else
2000 writel(1, rx_ring->itr_register);
2001 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2002
2003 /* Configure Tx vector */
2004 tx_ring->ims_val = E1000_IMS_TXQ0;
2005 vector++;
2006 if (tx_ring->itr_val)
2007 writel(1000000000 / (tx_ring->itr_val * 256),
2008 tx_ring->itr_register);
2009 else
2010 writel(1, tx_ring->itr_register);
2011 adapter->eiac_mask |= tx_ring->ims_val;
2012 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2013
2014 /* set vector for Other Causes, e.g. link changes */
2015 vector++;
2016 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2017 if (rx_ring->itr_val)
2018 writel(1000000000 / (rx_ring->itr_val * 256),
2019 hw->hw_addr + E1000_EITR_82574(vector));
2020 else
2021 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2022
2023 /* Cause Tx interrupts on every write back */
2024 ivar |= BIT(31);
2025
2026 ew32(IVAR, ivar);
2027
2028 /* enable MSI-X PBA support */
2029 ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2030 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2031 ew32(CTRL_EXT, ctrl_ext);
2032 e1e_flush();
2033 }
2034
e1000e_reset_interrupt_capability(struct e1000_adapter * adapter)2035 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2036 {
2037 if (adapter->msix_entries) {
2038 pci_disable_msix(adapter->pdev);
2039 kfree(adapter->msix_entries);
2040 adapter->msix_entries = NULL;
2041 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2042 pci_disable_msi(adapter->pdev);
2043 adapter->flags &= ~FLAG_MSI_ENABLED;
2044 }
2045 }
2046
2047 /**
2048 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2049 * @adapter: board private structure
2050 *
2051 * Attempt to configure interrupts using the best available
2052 * capabilities of the hardware and kernel.
2053 **/
e1000e_set_interrupt_capability(struct e1000_adapter * adapter)2054 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2055 {
2056 int err;
2057 int i;
2058
2059 switch (adapter->int_mode) {
2060 case E1000E_INT_MODE_MSIX:
2061 if (adapter->flags & FLAG_HAS_MSIX) {
2062 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2063 adapter->msix_entries = kcalloc(adapter->num_vectors,
2064 sizeof(struct
2065 msix_entry),
2066 GFP_KERNEL);
2067 if (adapter->msix_entries) {
2068 struct e1000_adapter *a = adapter;
2069
2070 for (i = 0; i < adapter->num_vectors; i++)
2071 adapter->msix_entries[i].entry = i;
2072
2073 err = pci_enable_msix_range(a->pdev,
2074 a->msix_entries,
2075 a->num_vectors,
2076 a->num_vectors);
2077 if (err > 0)
2078 return;
2079 }
2080 /* MSI-X failed, so fall through and try MSI */
2081 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2082 e1000e_reset_interrupt_capability(adapter);
2083 }
2084 adapter->int_mode = E1000E_INT_MODE_MSI;
2085 fallthrough;
2086 case E1000E_INT_MODE_MSI:
2087 if (!pci_enable_msi(adapter->pdev)) {
2088 adapter->flags |= FLAG_MSI_ENABLED;
2089 } else {
2090 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2091 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2092 }
2093 fallthrough;
2094 case E1000E_INT_MODE_LEGACY:
2095 /* Don't do anything; this is the system default */
2096 break;
2097 }
2098
2099 /* store the number of vectors being used */
2100 adapter->num_vectors = 1;
2101 }
2102
2103 /**
2104 * e1000_request_msix - Initialize MSI-X interrupts
2105 * @adapter: board private structure
2106 *
2107 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2108 * kernel.
2109 **/
e1000_request_msix(struct e1000_adapter * adapter)2110 static int e1000_request_msix(struct e1000_adapter *adapter)
2111 {
2112 struct net_device *netdev = adapter->netdev;
2113 int err = 0, vector = 0;
2114
2115 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2116 snprintf(adapter->rx_ring->name,
2117 sizeof(adapter->rx_ring->name) - 1,
2118 "%.14s-rx-0", netdev->name);
2119 else
2120 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2121 err = request_irq(adapter->msix_entries[vector].vector,
2122 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2123 netdev);
2124 if (err)
2125 return err;
2126 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2127 E1000_EITR_82574(vector);
2128 adapter->rx_ring->itr_val = adapter->itr;
2129 vector++;
2130
2131 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2132 snprintf(adapter->tx_ring->name,
2133 sizeof(adapter->tx_ring->name) - 1,
2134 "%.14s-tx-0", netdev->name);
2135 else
2136 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2137 err = request_irq(adapter->msix_entries[vector].vector,
2138 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2139 netdev);
2140 if (err)
2141 return err;
2142 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2143 E1000_EITR_82574(vector);
2144 adapter->tx_ring->itr_val = adapter->itr;
2145 vector++;
2146
2147 err = request_irq(adapter->msix_entries[vector].vector,
2148 e1000_msix_other, 0, netdev->name, netdev);
2149 if (err)
2150 return err;
2151
2152 e1000_configure_msix(adapter);
2153
2154 return 0;
2155 }
2156
2157 /**
2158 * e1000_request_irq - initialize interrupts
2159 * @adapter: board private structure
2160 *
2161 * Attempts to configure interrupts using the best available
2162 * capabilities of the hardware and kernel.
2163 **/
e1000_request_irq(struct e1000_adapter * adapter)2164 static int e1000_request_irq(struct e1000_adapter *adapter)
2165 {
2166 struct net_device *netdev = adapter->netdev;
2167 int err;
2168
2169 if (adapter->msix_entries) {
2170 err = e1000_request_msix(adapter);
2171 if (!err)
2172 return err;
2173 /* fall back to MSI */
2174 e1000e_reset_interrupt_capability(adapter);
2175 adapter->int_mode = E1000E_INT_MODE_MSI;
2176 e1000e_set_interrupt_capability(adapter);
2177 }
2178 if (adapter->flags & FLAG_MSI_ENABLED) {
2179 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2180 netdev->name, netdev);
2181 if (!err)
2182 return err;
2183
2184 /* fall back to legacy interrupt */
2185 e1000e_reset_interrupt_capability(adapter);
2186 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2187 }
2188
2189 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2190 netdev->name, netdev);
2191 if (err)
2192 e_err("Unable to allocate interrupt, Error: %d\n", err);
2193
2194 return err;
2195 }
2196
e1000_free_irq(struct e1000_adapter * adapter)2197 static void e1000_free_irq(struct e1000_adapter *adapter)
2198 {
2199 struct net_device *netdev = adapter->netdev;
2200
2201 if (adapter->msix_entries) {
2202 int vector = 0;
2203
2204 free_irq(adapter->msix_entries[vector].vector, netdev);
2205 vector++;
2206
2207 free_irq(adapter->msix_entries[vector].vector, netdev);
2208 vector++;
2209
2210 /* Other Causes interrupt vector */
2211 free_irq(adapter->msix_entries[vector].vector, netdev);
2212 return;
2213 }
2214
2215 free_irq(adapter->pdev->irq, netdev);
2216 }
2217
2218 /**
2219 * e1000_irq_disable - Mask off interrupt generation on the NIC
2220 * @adapter: board private structure
2221 **/
e1000_irq_disable(struct e1000_adapter * adapter)2222 static void e1000_irq_disable(struct e1000_adapter *adapter)
2223 {
2224 struct e1000_hw *hw = &adapter->hw;
2225
2226 ew32(IMC, ~0);
2227 if (adapter->msix_entries)
2228 ew32(EIAC_82574, 0);
2229 e1e_flush();
2230
2231 if (adapter->msix_entries) {
2232 int i;
2233
2234 for (i = 0; i < adapter->num_vectors; i++)
2235 synchronize_irq(adapter->msix_entries[i].vector);
2236 } else {
2237 synchronize_irq(adapter->pdev->irq);
2238 }
2239 }
2240
2241 /**
2242 * e1000_irq_enable - Enable default interrupt generation settings
2243 * @adapter: board private structure
2244 **/
e1000_irq_enable(struct e1000_adapter * adapter)2245 static void e1000_irq_enable(struct e1000_adapter *adapter)
2246 {
2247 struct e1000_hw *hw = &adapter->hw;
2248
2249 if (adapter->msix_entries) {
2250 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2251 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2252 IMS_OTHER_MASK);
2253 } else if (hw->mac.type >= e1000_pch_lpt) {
2254 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2255 } else {
2256 ew32(IMS, IMS_ENABLE_MASK);
2257 }
2258 e1e_flush();
2259 }
2260
2261 /**
2262 * e1000e_get_hw_control - get control of the h/w from f/w
2263 * @adapter: address of board private structure
2264 *
2265 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2266 * For ASF and Pass Through versions of f/w this means that
2267 * the driver is loaded. For AMT version (only with 82573)
2268 * of the f/w this means that the network i/f is open.
2269 **/
e1000e_get_hw_control(struct e1000_adapter * adapter)2270 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2271 {
2272 struct e1000_hw *hw = &adapter->hw;
2273 u32 ctrl_ext;
2274 u32 swsm;
2275
2276 /* Let firmware know the driver has taken over */
2277 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2278 swsm = er32(SWSM);
2279 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2280 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2281 ctrl_ext = er32(CTRL_EXT);
2282 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2283 }
2284 }
2285
2286 /**
2287 * e1000e_release_hw_control - release control of the h/w to f/w
2288 * @adapter: address of board private structure
2289 *
2290 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2291 * For ASF and Pass Through versions of f/w this means that the
2292 * driver is no longer loaded. For AMT version (only with 82573) i
2293 * of the f/w this means that the network i/f is closed.
2294 *
2295 **/
e1000e_release_hw_control(struct e1000_adapter * adapter)2296 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2297 {
2298 struct e1000_hw *hw = &adapter->hw;
2299 u32 ctrl_ext;
2300 u32 swsm;
2301
2302 /* Let firmware taken over control of h/w */
2303 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2304 swsm = er32(SWSM);
2305 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2306 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2307 ctrl_ext = er32(CTRL_EXT);
2308 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2309 }
2310 }
2311
2312 /**
2313 * e1000_alloc_ring_dma - allocate memory for a ring structure
2314 * @adapter: board private structure
2315 * @ring: ring struct for which to allocate dma
2316 **/
e1000_alloc_ring_dma(struct e1000_adapter * adapter,struct e1000_ring * ring)2317 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2318 struct e1000_ring *ring)
2319 {
2320 struct pci_dev *pdev = adapter->pdev;
2321
2322 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2323 GFP_KERNEL);
2324 if (!ring->desc)
2325 return -ENOMEM;
2326
2327 return 0;
2328 }
2329
2330 /**
2331 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2332 * @tx_ring: Tx descriptor ring
2333 *
2334 * Return 0 on success, negative on failure
2335 **/
e1000e_setup_tx_resources(struct e1000_ring * tx_ring)2336 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2337 {
2338 struct e1000_adapter *adapter = tx_ring->adapter;
2339 int err = -ENOMEM, size;
2340
2341 size = sizeof(struct e1000_buffer) * tx_ring->count;
2342 tx_ring->buffer_info = vzalloc(size);
2343 if (!tx_ring->buffer_info)
2344 goto err;
2345
2346 /* round up to nearest 4K */
2347 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2348 tx_ring->size = ALIGN(tx_ring->size, 4096);
2349
2350 err = e1000_alloc_ring_dma(adapter, tx_ring);
2351 if (err)
2352 goto err;
2353
2354 tx_ring->next_to_use = 0;
2355 tx_ring->next_to_clean = 0;
2356
2357 return 0;
2358 err:
2359 vfree(tx_ring->buffer_info);
2360 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2361 return err;
2362 }
2363
2364 /**
2365 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2366 * @rx_ring: Rx descriptor ring
2367 *
2368 * Returns 0 on success, negative on failure
2369 **/
e1000e_setup_rx_resources(struct e1000_ring * rx_ring)2370 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2371 {
2372 struct e1000_adapter *adapter = rx_ring->adapter;
2373 struct e1000_buffer *buffer_info;
2374 int i, size, desc_len, err = -ENOMEM;
2375
2376 size = sizeof(struct e1000_buffer) * rx_ring->count;
2377 rx_ring->buffer_info = vzalloc(size);
2378 if (!rx_ring->buffer_info)
2379 goto err;
2380
2381 for (i = 0; i < rx_ring->count; i++) {
2382 buffer_info = &rx_ring->buffer_info[i];
2383 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2384 sizeof(struct e1000_ps_page),
2385 GFP_KERNEL);
2386 if (!buffer_info->ps_pages)
2387 goto err_pages;
2388 }
2389
2390 desc_len = sizeof(union e1000_rx_desc_packet_split);
2391
2392 /* Round up to nearest 4K */
2393 rx_ring->size = rx_ring->count * desc_len;
2394 rx_ring->size = ALIGN(rx_ring->size, 4096);
2395
2396 err = e1000_alloc_ring_dma(adapter, rx_ring);
2397 if (err)
2398 goto err_pages;
2399
2400 rx_ring->next_to_clean = 0;
2401 rx_ring->next_to_use = 0;
2402 rx_ring->rx_skb_top = NULL;
2403
2404 return 0;
2405
2406 err_pages:
2407 for (i = 0; i < rx_ring->count; i++) {
2408 buffer_info = &rx_ring->buffer_info[i];
2409 kfree(buffer_info->ps_pages);
2410 }
2411 err:
2412 vfree(rx_ring->buffer_info);
2413 e_err("Unable to allocate memory for the receive descriptor ring\n");
2414 return err;
2415 }
2416
2417 /**
2418 * e1000_clean_tx_ring - Free Tx Buffers
2419 * @tx_ring: Tx descriptor ring
2420 **/
e1000_clean_tx_ring(struct e1000_ring * tx_ring)2421 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2422 {
2423 struct e1000_adapter *adapter = tx_ring->adapter;
2424 struct e1000_buffer *buffer_info;
2425 unsigned long size;
2426 unsigned int i;
2427
2428 for (i = 0; i < tx_ring->count; i++) {
2429 buffer_info = &tx_ring->buffer_info[i];
2430 e1000_put_txbuf(tx_ring, buffer_info, false);
2431 }
2432
2433 netdev_reset_queue(adapter->netdev);
2434 size = sizeof(struct e1000_buffer) * tx_ring->count;
2435 memset(tx_ring->buffer_info, 0, size);
2436
2437 memset(tx_ring->desc, 0, tx_ring->size);
2438
2439 tx_ring->next_to_use = 0;
2440 tx_ring->next_to_clean = 0;
2441 }
2442
2443 /**
2444 * e1000e_free_tx_resources - Free Tx Resources per Queue
2445 * @tx_ring: Tx descriptor ring
2446 *
2447 * Free all transmit software resources
2448 **/
e1000e_free_tx_resources(struct e1000_ring * tx_ring)2449 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2450 {
2451 struct e1000_adapter *adapter = tx_ring->adapter;
2452 struct pci_dev *pdev = adapter->pdev;
2453
2454 e1000_clean_tx_ring(tx_ring);
2455
2456 vfree(tx_ring->buffer_info);
2457 tx_ring->buffer_info = NULL;
2458
2459 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2460 tx_ring->dma);
2461 tx_ring->desc = NULL;
2462 }
2463
2464 /**
2465 * e1000e_free_rx_resources - Free Rx Resources
2466 * @rx_ring: Rx descriptor ring
2467 *
2468 * Free all receive software resources
2469 **/
e1000e_free_rx_resources(struct e1000_ring * rx_ring)2470 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2471 {
2472 struct e1000_adapter *adapter = rx_ring->adapter;
2473 struct pci_dev *pdev = adapter->pdev;
2474 int i;
2475
2476 e1000_clean_rx_ring(rx_ring);
2477
2478 for (i = 0; i < rx_ring->count; i++)
2479 kfree(rx_ring->buffer_info[i].ps_pages);
2480
2481 vfree(rx_ring->buffer_info);
2482 rx_ring->buffer_info = NULL;
2483
2484 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2485 rx_ring->dma);
2486 rx_ring->desc = NULL;
2487 }
2488
2489 /**
2490 * e1000_update_itr - update the dynamic ITR value based on statistics
2491 * @itr_setting: current adapter->itr
2492 * @packets: the number of packets during this measurement interval
2493 * @bytes: the number of bytes during this measurement interval
2494 *
2495 * Stores a new ITR value based on packets and byte
2496 * counts during the last interrupt. The advantage of per interrupt
2497 * computation is faster updates and more accurate ITR for the current
2498 * traffic pattern. Constants in this function were computed
2499 * based on theoretical maximum wire speed and thresholds were set based
2500 * on testing data as well as attempting to minimize response time
2501 * while increasing bulk throughput. This functionality is controlled
2502 * by the InterruptThrottleRate module parameter.
2503 **/
e1000_update_itr(u16 itr_setting,int packets,int bytes)2504 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2505 {
2506 unsigned int retval = itr_setting;
2507
2508 if (packets == 0)
2509 return itr_setting;
2510
2511 switch (itr_setting) {
2512 case lowest_latency:
2513 /* handle TSO and jumbo frames */
2514 if (bytes / packets > 8000)
2515 retval = bulk_latency;
2516 else if ((packets < 5) && (bytes > 512))
2517 retval = low_latency;
2518 break;
2519 case low_latency: /* 50 usec aka 20000 ints/s */
2520 if (bytes > 10000) {
2521 /* this if handles the TSO accounting */
2522 if (bytes / packets > 8000)
2523 retval = bulk_latency;
2524 else if ((packets < 10) || ((bytes / packets) > 1200))
2525 retval = bulk_latency;
2526 else if ((packets > 35))
2527 retval = lowest_latency;
2528 } else if (bytes / packets > 2000) {
2529 retval = bulk_latency;
2530 } else if (packets <= 2 && bytes < 512) {
2531 retval = lowest_latency;
2532 }
2533 break;
2534 case bulk_latency: /* 250 usec aka 4000 ints/s */
2535 if (bytes > 25000) {
2536 if (packets > 35)
2537 retval = low_latency;
2538 } else if (bytes < 6000) {
2539 retval = low_latency;
2540 }
2541 break;
2542 }
2543
2544 return retval;
2545 }
2546
e1000_set_itr(struct e1000_adapter * adapter)2547 static void e1000_set_itr(struct e1000_adapter *adapter)
2548 {
2549 u16 current_itr;
2550 u32 new_itr = adapter->itr;
2551
2552 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2553 if (adapter->link_speed != SPEED_1000) {
2554 new_itr = 4000;
2555 goto set_itr_now;
2556 }
2557
2558 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2559 new_itr = 0;
2560 goto set_itr_now;
2561 }
2562
2563 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2564 adapter->total_tx_packets,
2565 adapter->total_tx_bytes);
2566 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2567 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2568 adapter->tx_itr = low_latency;
2569
2570 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2571 adapter->total_rx_packets,
2572 adapter->total_rx_bytes);
2573 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2574 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2575 adapter->rx_itr = low_latency;
2576
2577 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2578
2579 /* counts and packets in update_itr are dependent on these numbers */
2580 switch (current_itr) {
2581 case lowest_latency:
2582 new_itr = 70000;
2583 break;
2584 case low_latency:
2585 new_itr = 20000; /* aka hwitr = ~200 */
2586 break;
2587 case bulk_latency:
2588 new_itr = 4000;
2589 break;
2590 default:
2591 break;
2592 }
2593
2594 set_itr_now:
2595 if (new_itr != adapter->itr) {
2596 /* this attempts to bias the interrupt rate towards Bulk
2597 * by adding intermediate steps when interrupt rate is
2598 * increasing
2599 */
2600 new_itr = new_itr > adapter->itr ?
2601 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2602 adapter->itr = new_itr;
2603 adapter->rx_ring->itr_val = new_itr;
2604 if (adapter->msix_entries)
2605 adapter->rx_ring->set_itr = 1;
2606 else
2607 e1000e_write_itr(adapter, new_itr);
2608 }
2609 }
2610
2611 /**
2612 * e1000e_write_itr - write the ITR value to the appropriate registers
2613 * @adapter: address of board private structure
2614 * @itr: new ITR value to program
2615 *
2616 * e1000e_write_itr determines if the adapter is in MSI-X mode
2617 * and, if so, writes the EITR registers with the ITR value.
2618 * Otherwise, it writes the ITR value into the ITR register.
2619 **/
e1000e_write_itr(struct e1000_adapter * adapter,u32 itr)2620 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2621 {
2622 struct e1000_hw *hw = &adapter->hw;
2623 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2624
2625 if (adapter->msix_entries) {
2626 int vector;
2627
2628 for (vector = 0; vector < adapter->num_vectors; vector++)
2629 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2630 } else {
2631 ew32(ITR, new_itr);
2632 }
2633 }
2634
2635 /**
2636 * e1000_alloc_queues - Allocate memory for all rings
2637 * @adapter: board private structure to initialize
2638 **/
e1000_alloc_queues(struct e1000_adapter * adapter)2639 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2640 {
2641 int size = sizeof(struct e1000_ring);
2642
2643 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2644 if (!adapter->tx_ring)
2645 goto err;
2646 adapter->tx_ring->count = adapter->tx_ring_count;
2647 adapter->tx_ring->adapter = adapter;
2648
2649 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2650 if (!adapter->rx_ring)
2651 goto err;
2652 adapter->rx_ring->count = adapter->rx_ring_count;
2653 adapter->rx_ring->adapter = adapter;
2654
2655 return 0;
2656 err:
2657 e_err("Unable to allocate memory for queues\n");
2658 kfree(adapter->rx_ring);
2659 kfree(adapter->tx_ring);
2660 return -ENOMEM;
2661 }
2662
2663 /**
2664 * e1000e_poll - NAPI Rx polling callback
2665 * @napi: struct associated with this polling callback
2666 * @budget: number of packets driver is allowed to process this poll
2667 **/
e1000e_poll(struct napi_struct * napi,int budget)2668 static int e1000e_poll(struct napi_struct *napi, int budget)
2669 {
2670 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2671 napi);
2672 struct e1000_hw *hw = &adapter->hw;
2673 struct net_device *poll_dev = adapter->netdev;
2674 int tx_cleaned = 1, work_done = 0;
2675
2676 adapter = netdev_priv(poll_dev);
2677
2678 if (!adapter->msix_entries ||
2679 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2680 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2681
2682 adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2683
2684 if (!tx_cleaned || work_done == budget)
2685 return budget;
2686
2687 /* Exit the polling mode, but don't re-enable interrupts if stack might
2688 * poll us due to busy-polling
2689 */
2690 if (likely(napi_complete_done(napi, work_done))) {
2691 if (adapter->itr_setting & 3)
2692 e1000_set_itr(adapter);
2693 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2694 if (adapter->msix_entries)
2695 ew32(IMS, adapter->rx_ring->ims_val);
2696 else
2697 e1000_irq_enable(adapter);
2698 }
2699 }
2700
2701 return work_done;
2702 }
2703
e1000_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)2704 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2705 __always_unused __be16 proto, u16 vid)
2706 {
2707 struct e1000_adapter *adapter = netdev_priv(netdev);
2708 struct e1000_hw *hw = &adapter->hw;
2709 u32 vfta, index;
2710
2711 /* don't update vlan cookie if already programmed */
2712 if ((adapter->hw.mng_cookie.status &
2713 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2714 (vid == adapter->mng_vlan_id))
2715 return 0;
2716
2717 /* add VID to filter table */
2718 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2719 index = (vid >> 5) & 0x7F;
2720 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2721 vfta |= BIT((vid & 0x1F));
2722 hw->mac.ops.write_vfta(hw, index, vfta);
2723 }
2724
2725 set_bit(vid, adapter->active_vlans);
2726
2727 return 0;
2728 }
2729
e1000_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)2730 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2731 __always_unused __be16 proto, u16 vid)
2732 {
2733 struct e1000_adapter *adapter = netdev_priv(netdev);
2734 struct e1000_hw *hw = &adapter->hw;
2735 u32 vfta, index;
2736
2737 if ((adapter->hw.mng_cookie.status &
2738 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2739 (vid == adapter->mng_vlan_id)) {
2740 /* release control to f/w */
2741 e1000e_release_hw_control(adapter);
2742 return 0;
2743 }
2744
2745 /* remove VID from filter table */
2746 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2747 index = (vid >> 5) & 0x7F;
2748 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2749 vfta &= ~BIT((vid & 0x1F));
2750 hw->mac.ops.write_vfta(hw, index, vfta);
2751 }
2752
2753 clear_bit(vid, adapter->active_vlans);
2754
2755 return 0;
2756 }
2757
2758 /**
2759 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2760 * @adapter: board private structure to initialize
2761 **/
e1000e_vlan_filter_disable(struct e1000_adapter * adapter)2762 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2763 {
2764 struct net_device *netdev = adapter->netdev;
2765 struct e1000_hw *hw = &adapter->hw;
2766 u32 rctl;
2767
2768 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2769 /* disable VLAN receive filtering */
2770 rctl = er32(RCTL);
2771 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2772 ew32(RCTL, rctl);
2773
2774 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2775 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2776 adapter->mng_vlan_id);
2777 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2778 }
2779 }
2780 }
2781
2782 /**
2783 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2784 * @adapter: board private structure to initialize
2785 **/
e1000e_vlan_filter_enable(struct e1000_adapter * adapter)2786 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2787 {
2788 struct e1000_hw *hw = &adapter->hw;
2789 u32 rctl;
2790
2791 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2792 /* enable VLAN receive filtering */
2793 rctl = er32(RCTL);
2794 rctl |= E1000_RCTL_VFE;
2795 rctl &= ~E1000_RCTL_CFIEN;
2796 ew32(RCTL, rctl);
2797 }
2798 }
2799
2800 /**
2801 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2802 * @adapter: board private structure to initialize
2803 **/
e1000e_vlan_strip_disable(struct e1000_adapter * adapter)2804 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2805 {
2806 struct e1000_hw *hw = &adapter->hw;
2807 u32 ctrl;
2808
2809 /* disable VLAN tag insert/strip */
2810 ctrl = er32(CTRL);
2811 ctrl &= ~E1000_CTRL_VME;
2812 ew32(CTRL, ctrl);
2813 }
2814
2815 /**
2816 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2817 * @adapter: board private structure to initialize
2818 **/
e1000e_vlan_strip_enable(struct e1000_adapter * adapter)2819 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2820 {
2821 struct e1000_hw *hw = &adapter->hw;
2822 u32 ctrl;
2823
2824 /* enable VLAN tag insert/strip */
2825 ctrl = er32(CTRL);
2826 ctrl |= E1000_CTRL_VME;
2827 ew32(CTRL, ctrl);
2828 }
2829
e1000_update_mng_vlan(struct e1000_adapter * adapter)2830 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2831 {
2832 struct net_device *netdev = adapter->netdev;
2833 u16 vid = adapter->hw.mng_cookie.vlan_id;
2834 u16 old_vid = adapter->mng_vlan_id;
2835
2836 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2837 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2838 adapter->mng_vlan_id = vid;
2839 }
2840
2841 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2842 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2843 }
2844
e1000_restore_vlan(struct e1000_adapter * adapter)2845 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2846 {
2847 u16 vid;
2848
2849 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2850
2851 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2852 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2853 }
2854
e1000_init_manageability_pt(struct e1000_adapter * adapter)2855 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2856 {
2857 struct e1000_hw *hw = &adapter->hw;
2858 u32 manc, manc2h, mdef, i, j;
2859
2860 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2861 return;
2862
2863 manc = er32(MANC);
2864
2865 /* enable receiving management packets to the host. this will probably
2866 * generate destination unreachable messages from the host OS, but
2867 * the packets will be handled on SMBUS
2868 */
2869 manc |= E1000_MANC_EN_MNG2HOST;
2870 manc2h = er32(MANC2H);
2871
2872 switch (hw->mac.type) {
2873 default:
2874 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2875 break;
2876 case e1000_82574:
2877 case e1000_82583:
2878 /* Check if IPMI pass-through decision filter already exists;
2879 * if so, enable it.
2880 */
2881 for (i = 0, j = 0; i < 8; i++) {
2882 mdef = er32(MDEF(i));
2883
2884 /* Ignore filters with anything other than IPMI ports */
2885 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886 continue;
2887
2888 /* Enable this decision filter in MANC2H */
2889 if (mdef)
2890 manc2h |= BIT(i);
2891
2892 j |= mdef;
2893 }
2894
2895 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2896 break;
2897
2898 /* Create new decision filter in an empty filter */
2899 for (i = 0, j = 0; i < 8; i++)
2900 if (er32(MDEF(i)) == 0) {
2901 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2902 E1000_MDEF_PORT_664));
2903 manc2h |= BIT(1);
2904 j++;
2905 break;
2906 }
2907
2908 if (!j)
2909 e_warn("Unable to create IPMI pass-through filter\n");
2910 break;
2911 }
2912
2913 ew32(MANC2H, manc2h);
2914 ew32(MANC, manc);
2915 }
2916
2917 /**
2918 * e1000_configure_tx - Configure Transmit Unit after Reset
2919 * @adapter: board private structure
2920 *
2921 * Configure the Tx unit of the MAC after a reset.
2922 **/
e1000_configure_tx(struct e1000_adapter * adapter)2923 static void e1000_configure_tx(struct e1000_adapter *adapter)
2924 {
2925 struct e1000_hw *hw = &adapter->hw;
2926 struct e1000_ring *tx_ring = adapter->tx_ring;
2927 u64 tdba;
2928 u32 tdlen, tctl, tarc;
2929
2930 /* Setup the HW Tx Head and Tail descriptor pointers */
2931 tdba = tx_ring->dma;
2932 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2933 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2934 ew32(TDBAH(0), (tdba >> 32));
2935 ew32(TDLEN(0), tdlen);
2936 ew32(TDH(0), 0);
2937 ew32(TDT(0), 0);
2938 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2939 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2940
2941 writel(0, tx_ring->head);
2942 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2943 e1000e_update_tdt_wa(tx_ring, 0);
2944 else
2945 writel(0, tx_ring->tail);
2946
2947 /* Set the Tx Interrupt Delay register */
2948 ew32(TIDV, adapter->tx_int_delay);
2949 /* Tx irq moderation */
2950 ew32(TADV, adapter->tx_abs_int_delay);
2951
2952 if (adapter->flags2 & FLAG2_DMA_BURST) {
2953 u32 txdctl = er32(TXDCTL(0));
2954
2955 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2956 E1000_TXDCTL_WTHRESH);
2957 /* set up some performance related parameters to encourage the
2958 * hardware to use the bus more efficiently in bursts, depends
2959 * on the tx_int_delay to be enabled,
2960 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2961 * hthresh = 1 ==> prefetch when one or more available
2962 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2963 * BEWARE: this seems to work but should be considered first if
2964 * there are Tx hangs or other Tx related bugs
2965 */
2966 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2967 ew32(TXDCTL(0), txdctl);
2968 }
2969 /* erratum work around: set txdctl the same for both queues */
2970 ew32(TXDCTL(1), er32(TXDCTL(0)));
2971
2972 /* Program the Transmit Control Register */
2973 tctl = er32(TCTL);
2974 tctl &= ~E1000_TCTL_CT;
2975 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2976 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2977
2978 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2979 tarc = er32(TARC(0));
2980 /* set the speed mode bit, we'll clear it if we're not at
2981 * gigabit link later
2982 */
2983 #define SPEED_MODE_BIT BIT(21)
2984 tarc |= SPEED_MODE_BIT;
2985 ew32(TARC(0), tarc);
2986 }
2987
2988 /* errata: program both queues to unweighted RR */
2989 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2990 tarc = er32(TARC(0));
2991 tarc |= 1;
2992 ew32(TARC(0), tarc);
2993 tarc = er32(TARC(1));
2994 tarc |= 1;
2995 ew32(TARC(1), tarc);
2996 }
2997
2998 /* Setup Transmit Descriptor Settings for eop descriptor */
2999 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3000
3001 /* only set IDE if we are delaying interrupts using the timers */
3002 if (adapter->tx_int_delay)
3003 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3004
3005 /* enable Report Status bit */
3006 adapter->txd_cmd |= E1000_TXD_CMD_RS;
3007
3008 ew32(TCTL, tctl);
3009
3010 hw->mac.ops.config_collision_dist(hw);
3011
3012 /* SPT and KBL Si errata workaround to avoid data corruption */
3013 if (hw->mac.type == e1000_pch_spt) {
3014 u32 reg_val;
3015
3016 reg_val = er32(IOSFPC);
3017 reg_val |= E1000_RCTL_RDMTS_HEX;
3018 ew32(IOSFPC, reg_val);
3019
3020 reg_val = er32(TARC(0));
3021 /* SPT and KBL Si errata workaround to avoid Tx hang.
3022 * Dropping the number of outstanding requests from
3023 * 3 to 2 in order to avoid a buffer overrun.
3024 */
3025 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3026 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3027 ew32(TARC(0), reg_val);
3028 }
3029 }
3030
3031 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3032 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3033
3034 /**
3035 * e1000_setup_rctl - configure the receive control registers
3036 * @adapter: Board private structure
3037 **/
e1000_setup_rctl(struct e1000_adapter * adapter)3038 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3039 {
3040 struct e1000_hw *hw = &adapter->hw;
3041 u32 rctl, rfctl;
3042 u32 pages = 0;
3043
3044 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3045 * If jumbo frames not set, program related MAC/PHY registers
3046 * to h/w defaults
3047 */
3048 if (hw->mac.type >= e1000_pch2lan) {
3049 s32 ret_val;
3050
3051 if (adapter->netdev->mtu > ETH_DATA_LEN)
3052 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3053 else
3054 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3055
3056 if (ret_val)
3057 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3058 }
3059
3060 /* Program MC offset vector base */
3061 rctl = er32(RCTL);
3062 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3063 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3064 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3065 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3066
3067 /* Do not Store bad packets */
3068 rctl &= ~E1000_RCTL_SBP;
3069
3070 /* Enable Long Packet receive */
3071 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3072 rctl &= ~E1000_RCTL_LPE;
3073 else
3074 rctl |= E1000_RCTL_LPE;
3075
3076 /* Some systems expect that the CRC is included in SMBUS traffic. The
3077 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3078 * host memory when this is enabled
3079 */
3080 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3081 rctl |= E1000_RCTL_SECRC;
3082
3083 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3084 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3085 u16 phy_data;
3086
3087 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3088 phy_data &= 0xfff8;
3089 phy_data |= BIT(2);
3090 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3091
3092 e1e_rphy(hw, 22, &phy_data);
3093 phy_data &= 0x0fff;
3094 phy_data |= BIT(14);
3095 e1e_wphy(hw, 0x10, 0x2823);
3096 e1e_wphy(hw, 0x11, 0x0003);
3097 e1e_wphy(hw, 22, phy_data);
3098 }
3099
3100 /* Setup buffer sizes */
3101 rctl &= ~E1000_RCTL_SZ_4096;
3102 rctl |= E1000_RCTL_BSEX;
3103 switch (adapter->rx_buffer_len) {
3104 case 2048:
3105 default:
3106 rctl |= E1000_RCTL_SZ_2048;
3107 rctl &= ~E1000_RCTL_BSEX;
3108 break;
3109 case 4096:
3110 rctl |= E1000_RCTL_SZ_4096;
3111 break;
3112 case 8192:
3113 rctl |= E1000_RCTL_SZ_8192;
3114 break;
3115 case 16384:
3116 rctl |= E1000_RCTL_SZ_16384;
3117 break;
3118 }
3119
3120 /* Enable Extended Status in all Receive Descriptors */
3121 rfctl = er32(RFCTL);
3122 rfctl |= E1000_RFCTL_EXTEN;
3123 ew32(RFCTL, rfctl);
3124
3125 /* 82571 and greater support packet-split where the protocol
3126 * header is placed in skb->data and the packet data is
3127 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3128 * In the case of a non-split, skb->data is linearly filled,
3129 * followed by the page buffers. Therefore, skb->data is
3130 * sized to hold the largest protocol header.
3131 *
3132 * allocations using alloc_page take too long for regular MTU
3133 * so only enable packet split for jumbo frames
3134 *
3135 * Using pages when the page size is greater than 16k wastes
3136 * a lot of memory, since we allocate 3 pages at all times
3137 * per packet.
3138 */
3139 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3140 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3141 adapter->rx_ps_pages = pages;
3142 else
3143 adapter->rx_ps_pages = 0;
3144
3145 if (adapter->rx_ps_pages) {
3146 u32 psrctl = 0;
3147
3148 /* Enable Packet split descriptors */
3149 rctl |= E1000_RCTL_DTYP_PS;
3150
3151 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3152
3153 switch (adapter->rx_ps_pages) {
3154 case 3:
3155 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3156 fallthrough;
3157 case 2:
3158 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3159 fallthrough;
3160 case 1:
3161 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3162 break;
3163 }
3164
3165 ew32(PSRCTL, psrctl);
3166 }
3167
3168 /* This is useful for sniffing bad packets. */
3169 if (adapter->netdev->features & NETIF_F_RXALL) {
3170 /* UPE and MPE will be handled by normal PROMISC logic
3171 * in e1000e_set_rx_mode
3172 */
3173 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3174 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3175 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3176
3177 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3178 E1000_RCTL_DPF | /* Allow filtered pause */
3179 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3180 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3181 * and that breaks VLANs.
3182 */
3183 }
3184
3185 ew32(RCTL, rctl);
3186 /* just started the receive unit, no need to restart */
3187 adapter->flags &= ~FLAG_RESTART_NOW;
3188 }
3189
3190 /**
3191 * e1000_configure_rx - Configure Receive Unit after Reset
3192 * @adapter: board private structure
3193 *
3194 * Configure the Rx unit of the MAC after a reset.
3195 **/
e1000_configure_rx(struct e1000_adapter * adapter)3196 static void e1000_configure_rx(struct e1000_adapter *adapter)
3197 {
3198 struct e1000_hw *hw = &adapter->hw;
3199 struct e1000_ring *rx_ring = adapter->rx_ring;
3200 u64 rdba;
3201 u32 rdlen, rctl, rxcsum, ctrl_ext;
3202
3203 if (adapter->rx_ps_pages) {
3204 /* this is a 32 byte descriptor */
3205 rdlen = rx_ring->count *
3206 sizeof(union e1000_rx_desc_packet_split);
3207 adapter->clean_rx = e1000_clean_rx_irq_ps;
3208 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3209 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3210 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3211 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3212 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3213 } else {
3214 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3215 adapter->clean_rx = e1000_clean_rx_irq;
3216 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3217 }
3218
3219 /* disable receives while setting up the descriptors */
3220 rctl = er32(RCTL);
3221 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3222 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3223 e1e_flush();
3224 usleep_range(10000, 11000);
3225
3226 if (adapter->flags2 & FLAG2_DMA_BURST) {
3227 /* set the writeback threshold (only takes effect if the RDTR
3228 * is set). set GRAN=1 and write back up to 0x4 worth, and
3229 * enable prefetching of 0x20 Rx descriptors
3230 * granularity = 01
3231 * wthresh = 04,
3232 * hthresh = 04,
3233 * pthresh = 0x20
3234 */
3235 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3236 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3237 }
3238
3239 /* set the Receive Delay Timer Register */
3240 ew32(RDTR, adapter->rx_int_delay);
3241
3242 /* irq moderation */
3243 ew32(RADV, adapter->rx_abs_int_delay);
3244 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3245 e1000e_write_itr(adapter, adapter->itr);
3246
3247 ctrl_ext = er32(CTRL_EXT);
3248 /* Auto-Mask interrupts upon ICR access */
3249 ctrl_ext |= E1000_CTRL_EXT_IAME;
3250 ew32(IAM, 0xffffffff);
3251 ew32(CTRL_EXT, ctrl_ext);
3252 e1e_flush();
3253
3254 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3255 * the Base and Length of the Rx Descriptor Ring
3256 */
3257 rdba = rx_ring->dma;
3258 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3259 ew32(RDBAH(0), (rdba >> 32));
3260 ew32(RDLEN(0), rdlen);
3261 ew32(RDH(0), 0);
3262 ew32(RDT(0), 0);
3263 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3264 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3265
3266 writel(0, rx_ring->head);
3267 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3268 e1000e_update_rdt_wa(rx_ring, 0);
3269 else
3270 writel(0, rx_ring->tail);
3271
3272 /* Enable Receive Checksum Offload for TCP and UDP */
3273 rxcsum = er32(RXCSUM);
3274 if (adapter->netdev->features & NETIF_F_RXCSUM)
3275 rxcsum |= E1000_RXCSUM_TUOFL;
3276 else
3277 rxcsum &= ~E1000_RXCSUM_TUOFL;
3278 ew32(RXCSUM, rxcsum);
3279
3280 /* With jumbo frames, excessive C-state transition latencies result
3281 * in dropped transactions.
3282 */
3283 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3284 u32 lat =
3285 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3286 adapter->max_frame_size) * 8 / 1000;
3287
3288 if (adapter->flags & FLAG_IS_ICH) {
3289 u32 rxdctl = er32(RXDCTL(0));
3290
3291 ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3292 }
3293
3294 dev_info(&adapter->pdev->dev,
3295 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3296 cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3297 } else {
3298 cpu_latency_qos_update_request(&adapter->pm_qos_req,
3299 PM_QOS_DEFAULT_VALUE);
3300 }
3301
3302 /* Enable Receives */
3303 ew32(RCTL, rctl);
3304 }
3305
3306 /**
3307 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3308 * @netdev: network interface device structure
3309 *
3310 * Writes multicast address list to the MTA hash table.
3311 * Returns: -ENOMEM on failure
3312 * 0 on no addresses written
3313 * X on writing X addresses to MTA
3314 */
e1000e_write_mc_addr_list(struct net_device * netdev)3315 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3316 {
3317 struct e1000_adapter *adapter = netdev_priv(netdev);
3318 struct e1000_hw *hw = &adapter->hw;
3319 struct netdev_hw_addr *ha;
3320 u8 *mta_list;
3321 int i;
3322
3323 if (netdev_mc_empty(netdev)) {
3324 /* nothing to program, so clear mc list */
3325 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3326 return 0;
3327 }
3328
3329 mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3330 if (!mta_list)
3331 return -ENOMEM;
3332
3333 /* update_mc_addr_list expects a packed array of only addresses. */
3334 i = 0;
3335 netdev_for_each_mc_addr(ha, netdev)
3336 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3337
3338 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3339 kfree(mta_list);
3340
3341 return netdev_mc_count(netdev);
3342 }
3343
3344 /**
3345 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3346 * @netdev: network interface device structure
3347 *
3348 * Writes unicast address list to the RAR table.
3349 * Returns: -ENOMEM on failure/insufficient address space
3350 * 0 on no addresses written
3351 * X on writing X addresses to the RAR table
3352 **/
e1000e_write_uc_addr_list(struct net_device * netdev)3353 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3354 {
3355 struct e1000_adapter *adapter = netdev_priv(netdev);
3356 struct e1000_hw *hw = &adapter->hw;
3357 unsigned int rar_entries;
3358 int count = 0;
3359
3360 rar_entries = hw->mac.ops.rar_get_count(hw);
3361
3362 /* save a rar entry for our hardware address */
3363 rar_entries--;
3364
3365 /* save a rar entry for the LAA workaround */
3366 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3367 rar_entries--;
3368
3369 /* return ENOMEM indicating insufficient memory for addresses */
3370 if (netdev_uc_count(netdev) > rar_entries)
3371 return -ENOMEM;
3372
3373 if (!netdev_uc_empty(netdev) && rar_entries) {
3374 struct netdev_hw_addr *ha;
3375
3376 /* write the addresses in reverse order to avoid write
3377 * combining
3378 */
3379 netdev_for_each_uc_addr(ha, netdev) {
3380 int ret_val;
3381
3382 if (!rar_entries)
3383 break;
3384 ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3385 if (ret_val < 0)
3386 return -ENOMEM;
3387 count++;
3388 }
3389 }
3390
3391 /* zero out the remaining RAR entries not used above */
3392 for (; rar_entries > 0; rar_entries--) {
3393 ew32(RAH(rar_entries), 0);
3394 ew32(RAL(rar_entries), 0);
3395 }
3396 e1e_flush();
3397
3398 return count;
3399 }
3400
3401 /**
3402 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3403 * @netdev: network interface device structure
3404 *
3405 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3406 * address list or the network interface flags are updated. This routine is
3407 * responsible for configuring the hardware for proper unicast, multicast,
3408 * promiscuous mode, and all-multi behavior.
3409 **/
e1000e_set_rx_mode(struct net_device * netdev)3410 static void e1000e_set_rx_mode(struct net_device *netdev)
3411 {
3412 struct e1000_adapter *adapter = netdev_priv(netdev);
3413 struct e1000_hw *hw = &adapter->hw;
3414 u32 rctl;
3415
3416 if (pm_runtime_suspended(netdev->dev.parent))
3417 return;
3418
3419 /* Check for Promiscuous and All Multicast modes */
3420 rctl = er32(RCTL);
3421
3422 /* clear the affected bits */
3423 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3424
3425 if (netdev->flags & IFF_PROMISC) {
3426 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3427 /* Do not hardware filter VLANs in promisc mode */
3428 e1000e_vlan_filter_disable(adapter);
3429 } else {
3430 int count;
3431
3432 if (netdev->flags & IFF_ALLMULTI) {
3433 rctl |= E1000_RCTL_MPE;
3434 } else {
3435 /* Write addresses to the MTA, if the attempt fails
3436 * then we should just turn on promiscuous mode so
3437 * that we can at least receive multicast traffic
3438 */
3439 count = e1000e_write_mc_addr_list(netdev);
3440 if (count < 0)
3441 rctl |= E1000_RCTL_MPE;
3442 }
3443 e1000e_vlan_filter_enable(adapter);
3444 /* Write addresses to available RAR registers, if there is not
3445 * sufficient space to store all the addresses then enable
3446 * unicast promiscuous mode
3447 */
3448 count = e1000e_write_uc_addr_list(netdev);
3449 if (count < 0)
3450 rctl |= E1000_RCTL_UPE;
3451 }
3452
3453 ew32(RCTL, rctl);
3454
3455 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3456 e1000e_vlan_strip_enable(adapter);
3457 else
3458 e1000e_vlan_strip_disable(adapter);
3459 }
3460
e1000e_setup_rss_hash(struct e1000_adapter * adapter)3461 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3462 {
3463 struct e1000_hw *hw = &adapter->hw;
3464 u32 mrqc, rxcsum;
3465 u32 rss_key[10];
3466 int i;
3467
3468 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3469 for (i = 0; i < 10; i++)
3470 ew32(RSSRK(i), rss_key[i]);
3471
3472 /* Direct all traffic to queue 0 */
3473 for (i = 0; i < 32; i++)
3474 ew32(RETA(i), 0);
3475
3476 /* Disable raw packet checksumming so that RSS hash is placed in
3477 * descriptor on writeback.
3478 */
3479 rxcsum = er32(RXCSUM);
3480 rxcsum |= E1000_RXCSUM_PCSD;
3481
3482 ew32(RXCSUM, rxcsum);
3483
3484 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3485 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3486 E1000_MRQC_RSS_FIELD_IPV6 |
3487 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3488 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3489
3490 ew32(MRQC, mrqc);
3491 }
3492
3493 /**
3494 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3495 * @adapter: board private structure
3496 * @timinca: pointer to returned time increment attributes
3497 *
3498 * Get attributes for incrementing the System Time Register SYSTIML/H at
3499 * the default base frequency, and set the cyclecounter shift value.
3500 **/
e1000e_get_base_timinca(struct e1000_adapter * adapter,u32 * timinca)3501 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3502 {
3503 struct e1000_hw *hw = &adapter->hw;
3504 u32 incvalue, incperiod, shift;
3505
3506 /* Make sure clock is enabled on I217/I218/I219 before checking
3507 * the frequency
3508 */
3509 if ((hw->mac.type >= e1000_pch_lpt) &&
3510 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3511 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3512 u32 fextnvm7 = er32(FEXTNVM7);
3513
3514 if (!(fextnvm7 & BIT(0))) {
3515 ew32(FEXTNVM7, fextnvm7 | BIT(0));
3516 e1e_flush();
3517 }
3518 }
3519
3520 switch (hw->mac.type) {
3521 case e1000_pch2lan:
3522 /* Stable 96MHz frequency */
3523 incperiod = INCPERIOD_96MHZ;
3524 incvalue = INCVALUE_96MHZ;
3525 shift = INCVALUE_SHIFT_96MHZ;
3526 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3527 break;
3528 case e1000_pch_lpt:
3529 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3530 /* Stable 96MHz frequency */
3531 incperiod = INCPERIOD_96MHZ;
3532 incvalue = INCVALUE_96MHZ;
3533 shift = INCVALUE_SHIFT_96MHZ;
3534 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3535 } else {
3536 /* Stable 25MHz frequency */
3537 incperiod = INCPERIOD_25MHZ;
3538 incvalue = INCVALUE_25MHZ;
3539 shift = INCVALUE_SHIFT_25MHZ;
3540 adapter->cc.shift = shift;
3541 }
3542 break;
3543 case e1000_pch_spt:
3544 /* Stable 24MHz frequency */
3545 incperiod = INCPERIOD_24MHZ;
3546 incvalue = INCVALUE_24MHZ;
3547 shift = INCVALUE_SHIFT_24MHZ;
3548 adapter->cc.shift = shift;
3549 break;
3550 case e1000_pch_cnp:
3551 case e1000_pch_tgp:
3552 case e1000_pch_adp:
3553 case e1000_pch_mtp:
3554 case e1000_pch_lnp:
3555 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3556 /* Stable 24MHz frequency */
3557 incperiod = INCPERIOD_24MHZ;
3558 incvalue = INCVALUE_24MHZ;
3559 shift = INCVALUE_SHIFT_24MHZ;
3560 adapter->cc.shift = shift;
3561 } else {
3562 /* Stable 38400KHz frequency */
3563 incperiod = INCPERIOD_38400KHZ;
3564 incvalue = INCVALUE_38400KHZ;
3565 shift = INCVALUE_SHIFT_38400KHZ;
3566 adapter->cc.shift = shift;
3567 }
3568 break;
3569 case e1000_82574:
3570 case e1000_82583:
3571 /* Stable 25MHz frequency */
3572 incperiod = INCPERIOD_25MHZ;
3573 incvalue = INCVALUE_25MHZ;
3574 shift = INCVALUE_SHIFT_25MHZ;
3575 adapter->cc.shift = shift;
3576 break;
3577 default:
3578 return -EINVAL;
3579 }
3580
3581 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3582 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3583
3584 return 0;
3585 }
3586
3587 /**
3588 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3589 * @adapter: board private structure
3590 * @config: timestamp configuration
3591 *
3592 * Outgoing time stamping can be enabled and disabled. Play nice and
3593 * disable it when requested, although it shouldn't cause any overhead
3594 * when no packet needs it. At most one packet in the queue may be
3595 * marked for time stamping, otherwise it would be impossible to tell
3596 * for sure to which packet the hardware time stamp belongs.
3597 *
3598 * Incoming time stamping has to be configured via the hardware filters.
3599 * Not all combinations are supported, in particular event type has to be
3600 * specified. Matching the kind of event packet is not supported, with the
3601 * exception of "all V2 events regardless of level 2 or 4".
3602 **/
e1000e_config_hwtstamp(struct e1000_adapter * adapter,struct hwtstamp_config * config)3603 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3604 struct hwtstamp_config *config)
3605 {
3606 struct e1000_hw *hw = &adapter->hw;
3607 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3608 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3609 u32 rxmtrl = 0;
3610 u16 rxudp = 0;
3611 bool is_l4 = false;
3612 bool is_l2 = false;
3613 u32 regval;
3614
3615 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3616 return -EINVAL;
3617
3618 switch (config->tx_type) {
3619 case HWTSTAMP_TX_OFF:
3620 tsync_tx_ctl = 0;
3621 break;
3622 case HWTSTAMP_TX_ON:
3623 break;
3624 default:
3625 return -ERANGE;
3626 }
3627
3628 switch (config->rx_filter) {
3629 case HWTSTAMP_FILTER_NONE:
3630 tsync_rx_ctl = 0;
3631 break;
3632 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3633 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3634 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3635 is_l4 = true;
3636 break;
3637 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3638 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3639 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3640 is_l4 = true;
3641 break;
3642 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3643 /* Also time stamps V2 L2 Path Delay Request/Response */
3644 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3645 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3646 is_l2 = true;
3647 break;
3648 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3649 /* Also time stamps V2 L2 Path Delay Request/Response. */
3650 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3651 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3652 is_l2 = true;
3653 break;
3654 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3655 /* Hardware cannot filter just V2 L4 Sync messages */
3656 fallthrough;
3657 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3658 /* Also time stamps V2 Path Delay Request/Response. */
3659 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3660 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3661 is_l2 = true;
3662 is_l4 = true;
3663 break;
3664 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3665 /* Hardware cannot filter just V2 L4 Delay Request messages */
3666 fallthrough;
3667 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3668 /* Also time stamps V2 Path Delay Request/Response. */
3669 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3670 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3671 is_l2 = true;
3672 is_l4 = true;
3673 break;
3674 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3675 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3676 /* Hardware cannot filter just V2 L4 or L2 Event messages */
3677 fallthrough;
3678 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3679 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3680 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3681 is_l2 = true;
3682 is_l4 = true;
3683 break;
3684 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3685 /* For V1, the hardware can only filter Sync messages or
3686 * Delay Request messages but not both so fall-through to
3687 * time stamp all packets.
3688 */
3689 fallthrough;
3690 case HWTSTAMP_FILTER_NTP_ALL:
3691 case HWTSTAMP_FILTER_ALL:
3692 is_l2 = true;
3693 is_l4 = true;
3694 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3695 config->rx_filter = HWTSTAMP_FILTER_ALL;
3696 break;
3697 default:
3698 return -ERANGE;
3699 }
3700
3701 adapter->hwtstamp_config = *config;
3702
3703 /* enable/disable Tx h/w time stamping */
3704 regval = er32(TSYNCTXCTL);
3705 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3706 regval |= tsync_tx_ctl;
3707 ew32(TSYNCTXCTL, regval);
3708 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3709 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3710 e_err("Timesync Tx Control register not set as expected\n");
3711 return -EAGAIN;
3712 }
3713
3714 /* enable/disable Rx h/w time stamping */
3715 regval = er32(TSYNCRXCTL);
3716 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3717 regval |= tsync_rx_ctl;
3718 ew32(TSYNCRXCTL, regval);
3719 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3720 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3721 (regval & (E1000_TSYNCRXCTL_ENABLED |
3722 E1000_TSYNCRXCTL_TYPE_MASK))) {
3723 e_err("Timesync Rx Control register not set as expected\n");
3724 return -EAGAIN;
3725 }
3726
3727 /* L2: define ethertype filter for time stamped packets */
3728 if (is_l2)
3729 rxmtrl |= ETH_P_1588;
3730
3731 /* define which PTP packets get time stamped */
3732 ew32(RXMTRL, rxmtrl);
3733
3734 /* Filter by destination port */
3735 if (is_l4) {
3736 rxudp = PTP_EV_PORT;
3737 cpu_to_be16s(&rxudp);
3738 }
3739 ew32(RXUDP, rxudp);
3740
3741 e1e_flush();
3742
3743 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3744 er32(RXSTMPH);
3745 er32(TXSTMPH);
3746
3747 return 0;
3748 }
3749
3750 /**
3751 * e1000_configure - configure the hardware for Rx and Tx
3752 * @adapter: private board structure
3753 **/
e1000_configure(struct e1000_adapter * adapter)3754 static void e1000_configure(struct e1000_adapter *adapter)
3755 {
3756 struct e1000_ring *rx_ring = adapter->rx_ring;
3757
3758 e1000e_set_rx_mode(adapter->netdev);
3759
3760 e1000_restore_vlan(adapter);
3761 e1000_init_manageability_pt(adapter);
3762
3763 e1000_configure_tx(adapter);
3764
3765 if (adapter->netdev->features & NETIF_F_RXHASH)
3766 e1000e_setup_rss_hash(adapter);
3767 e1000_setup_rctl(adapter);
3768 e1000_configure_rx(adapter);
3769 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3770 }
3771
3772 /**
3773 * e1000e_power_up_phy - restore link in case the phy was powered down
3774 * @adapter: address of board private structure
3775 *
3776 * The phy may be powered down to save power and turn off link when the
3777 * driver is unloaded and wake on lan is not enabled (among others)
3778 * *** this routine MUST be followed by a call to e1000e_reset ***
3779 **/
e1000e_power_up_phy(struct e1000_adapter * adapter)3780 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3781 {
3782 if (adapter->hw.phy.ops.power_up)
3783 adapter->hw.phy.ops.power_up(&adapter->hw);
3784
3785 adapter->hw.mac.ops.setup_link(&adapter->hw);
3786 }
3787
3788 /**
3789 * e1000_power_down_phy - Power down the PHY
3790 * @adapter: board private structure
3791 *
3792 * Power down the PHY so no link is implied when interface is down.
3793 * The PHY cannot be powered down if management or WoL is active.
3794 */
e1000_power_down_phy(struct e1000_adapter * adapter)3795 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3796 {
3797 if (adapter->hw.phy.ops.power_down)
3798 adapter->hw.phy.ops.power_down(&adapter->hw);
3799 }
3800
3801 /**
3802 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3803 * @adapter: board private structure
3804 *
3805 * We want to clear all pending descriptors from the TX ring.
3806 * zeroing happens when the HW reads the regs. We assign the ring itself as
3807 * the data of the next descriptor. We don't care about the data we are about
3808 * to reset the HW.
3809 */
e1000_flush_tx_ring(struct e1000_adapter * adapter)3810 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3811 {
3812 struct e1000_hw *hw = &adapter->hw;
3813 struct e1000_ring *tx_ring = adapter->tx_ring;
3814 struct e1000_tx_desc *tx_desc = NULL;
3815 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3816 u16 size = 512;
3817
3818 tctl = er32(TCTL);
3819 ew32(TCTL, tctl | E1000_TCTL_EN);
3820 tdt = er32(TDT(0));
3821 BUG_ON(tdt != tx_ring->next_to_use);
3822 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3823 tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3824
3825 tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3826 tx_desc->upper.data = 0;
3827 /* flush descriptors to memory before notifying the HW */
3828 wmb();
3829 tx_ring->next_to_use++;
3830 if (tx_ring->next_to_use == tx_ring->count)
3831 tx_ring->next_to_use = 0;
3832 ew32(TDT(0), tx_ring->next_to_use);
3833 usleep_range(200, 250);
3834 }
3835
3836 /**
3837 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3838 * @adapter: board private structure
3839 *
3840 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3841 */
e1000_flush_rx_ring(struct e1000_adapter * adapter)3842 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3843 {
3844 u32 rctl, rxdctl;
3845 struct e1000_hw *hw = &adapter->hw;
3846
3847 rctl = er32(RCTL);
3848 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3849 e1e_flush();
3850 usleep_range(100, 150);
3851
3852 rxdctl = er32(RXDCTL(0));
3853 /* zero the lower 14 bits (prefetch and host thresholds) */
3854 rxdctl &= 0xffffc000;
3855
3856 /* update thresholds: prefetch threshold to 31, host threshold to 1
3857 * and make sure the granularity is "descriptors" and not "cache lines"
3858 */
3859 rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3860
3861 ew32(RXDCTL(0), rxdctl);
3862 /* momentarily enable the RX ring for the changes to take effect */
3863 ew32(RCTL, rctl | E1000_RCTL_EN);
3864 e1e_flush();
3865 usleep_range(100, 150);
3866 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3867 }
3868
3869 /**
3870 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3871 * @adapter: board private structure
3872 *
3873 * In i219, the descriptor rings must be emptied before resetting the HW
3874 * or before changing the device state to D3 during runtime (runtime PM).
3875 *
3876 * Failure to do this will cause the HW to enter a unit hang state which can
3877 * only be released by PCI reset on the device
3878 *
3879 */
3880
e1000_flush_desc_rings(struct e1000_adapter * adapter)3881 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3882 {
3883 u16 hang_state;
3884 u32 fext_nvm11, tdlen;
3885 struct e1000_hw *hw = &adapter->hw;
3886
3887 /* First, disable MULR fix in FEXTNVM11 */
3888 fext_nvm11 = er32(FEXTNVM11);
3889 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3890 ew32(FEXTNVM11, fext_nvm11);
3891 /* do nothing if we're not in faulty state, or if the queue is empty */
3892 tdlen = er32(TDLEN(0));
3893 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3894 &hang_state);
3895 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3896 return;
3897 e1000_flush_tx_ring(adapter);
3898 /* recheck, maybe the fault is caused by the rx ring */
3899 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3900 &hang_state);
3901 if (hang_state & FLUSH_DESC_REQUIRED)
3902 e1000_flush_rx_ring(adapter);
3903 }
3904
3905 /**
3906 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3907 * @adapter: board private structure
3908 *
3909 * When the MAC is reset, all hardware bits for timesync will be reset to the
3910 * default values. This function will restore the settings last in place.
3911 * Since the clock SYSTIME registers are reset, we will simply restore the
3912 * cyclecounter to the kernel real clock time.
3913 **/
e1000e_systim_reset(struct e1000_adapter * adapter)3914 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3915 {
3916 struct ptp_clock_info *info = &adapter->ptp_clock_info;
3917 struct e1000_hw *hw = &adapter->hw;
3918 unsigned long flags;
3919 u32 timinca;
3920 s32 ret_val;
3921
3922 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3923 return;
3924
3925 if (info->adjfreq) {
3926 /* restore the previous ptp frequency delta */
3927 ret_val = info->adjfreq(info, adapter->ptp_delta);
3928 } else {
3929 /* set the default base frequency if no adjustment possible */
3930 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3931 if (!ret_val)
3932 ew32(TIMINCA, timinca);
3933 }
3934
3935 if (ret_val) {
3936 dev_warn(&adapter->pdev->dev,
3937 "Failed to restore TIMINCA clock rate delta: %d\n",
3938 ret_val);
3939 return;
3940 }
3941
3942 /* reset the systim ns time counter */
3943 spin_lock_irqsave(&adapter->systim_lock, flags);
3944 timecounter_init(&adapter->tc, &adapter->cc,
3945 ktime_to_ns(ktime_get_real()));
3946 spin_unlock_irqrestore(&adapter->systim_lock, flags);
3947
3948 /* restore the previous hwtstamp configuration settings */
3949 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3950 }
3951
3952 /**
3953 * e1000e_reset - bring the hardware into a known good state
3954 * @adapter: board private structure
3955 *
3956 * This function boots the hardware and enables some settings that
3957 * require a configuration cycle of the hardware - those cannot be
3958 * set/changed during runtime. After reset the device needs to be
3959 * properly configured for Rx, Tx etc.
3960 */
e1000e_reset(struct e1000_adapter * adapter)3961 void e1000e_reset(struct e1000_adapter *adapter)
3962 {
3963 struct e1000_mac_info *mac = &adapter->hw.mac;
3964 struct e1000_fc_info *fc = &adapter->hw.fc;
3965 struct e1000_hw *hw = &adapter->hw;
3966 u32 tx_space, min_tx_space, min_rx_space;
3967 u32 pba = adapter->pba;
3968 u16 hwm;
3969
3970 /* reset Packet Buffer Allocation to default */
3971 ew32(PBA, pba);
3972
3973 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3974 /* To maintain wire speed transmits, the Tx FIFO should be
3975 * large enough to accommodate two full transmit packets,
3976 * rounded up to the next 1KB and expressed in KB. Likewise,
3977 * the Rx FIFO should be large enough to accommodate at least
3978 * one full receive packet and is similarly rounded up and
3979 * expressed in KB.
3980 */
3981 pba = er32(PBA);
3982 /* upper 16 bits has Tx packet buffer allocation size in KB */
3983 tx_space = pba >> 16;
3984 /* lower 16 bits has Rx packet buffer allocation size in KB */
3985 pba &= 0xffff;
3986 /* the Tx fifo also stores 16 bytes of information about the Tx
3987 * but don't include ethernet FCS because hardware appends it
3988 */
3989 min_tx_space = (adapter->max_frame_size +
3990 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3991 min_tx_space = ALIGN(min_tx_space, 1024);
3992 min_tx_space >>= 10;
3993 /* software strips receive CRC, so leave room for it */
3994 min_rx_space = adapter->max_frame_size;
3995 min_rx_space = ALIGN(min_rx_space, 1024);
3996 min_rx_space >>= 10;
3997
3998 /* If current Tx allocation is less than the min Tx FIFO size,
3999 * and the min Tx FIFO size is less than the current Rx FIFO
4000 * allocation, take space away from current Rx allocation
4001 */
4002 if ((tx_space < min_tx_space) &&
4003 ((min_tx_space - tx_space) < pba)) {
4004 pba -= min_tx_space - tx_space;
4005
4006 /* if short on Rx space, Rx wins and must trump Tx
4007 * adjustment
4008 */
4009 if (pba < min_rx_space)
4010 pba = min_rx_space;
4011 }
4012
4013 ew32(PBA, pba);
4014 }
4015
4016 /* flow control settings
4017 *
4018 * The high water mark must be low enough to fit one full frame
4019 * (or the size used for early receive) above it in the Rx FIFO.
4020 * Set it to the lower of:
4021 * - 90% of the Rx FIFO size, and
4022 * - the full Rx FIFO size minus one full frame
4023 */
4024 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4025 fc->pause_time = 0xFFFF;
4026 else
4027 fc->pause_time = E1000_FC_PAUSE_TIME;
4028 fc->send_xon = true;
4029 fc->current_mode = fc->requested_mode;
4030
4031 switch (hw->mac.type) {
4032 case e1000_ich9lan:
4033 case e1000_ich10lan:
4034 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4035 pba = 14;
4036 ew32(PBA, pba);
4037 fc->high_water = 0x2800;
4038 fc->low_water = fc->high_water - 8;
4039 break;
4040 }
4041 fallthrough;
4042 default:
4043 hwm = min(((pba << 10) * 9 / 10),
4044 ((pba << 10) - adapter->max_frame_size));
4045
4046 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4047 fc->low_water = fc->high_water - 8;
4048 break;
4049 case e1000_pchlan:
4050 /* Workaround PCH LOM adapter hangs with certain network
4051 * loads. If hangs persist, try disabling Tx flow control.
4052 */
4053 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4054 fc->high_water = 0x3500;
4055 fc->low_water = 0x1500;
4056 } else {
4057 fc->high_water = 0x5000;
4058 fc->low_water = 0x3000;
4059 }
4060 fc->refresh_time = 0x1000;
4061 break;
4062 case e1000_pch2lan:
4063 case e1000_pch_lpt:
4064 case e1000_pch_spt:
4065 case e1000_pch_cnp:
4066 case e1000_pch_tgp:
4067 case e1000_pch_adp:
4068 case e1000_pch_mtp:
4069 case e1000_pch_lnp:
4070 fc->refresh_time = 0xFFFF;
4071 fc->pause_time = 0xFFFF;
4072
4073 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4074 fc->high_water = 0x05C20;
4075 fc->low_water = 0x05048;
4076 break;
4077 }
4078
4079 pba = 14;
4080 ew32(PBA, pba);
4081 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4082 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4083 break;
4084 }
4085
4086 /* Alignment of Tx data is on an arbitrary byte boundary with the
4087 * maximum size per Tx descriptor limited only to the transmit
4088 * allocation of the packet buffer minus 96 bytes with an upper
4089 * limit of 24KB due to receive synchronization limitations.
4090 */
4091 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4092 24 << 10);
4093
4094 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4095 * fit in receive buffer.
4096 */
4097 if (adapter->itr_setting & 0x3) {
4098 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4099 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4100 dev_info(&adapter->pdev->dev,
4101 "Interrupt Throttle Rate off\n");
4102 adapter->flags2 |= FLAG2_DISABLE_AIM;
4103 e1000e_write_itr(adapter, 0);
4104 }
4105 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4106 dev_info(&adapter->pdev->dev,
4107 "Interrupt Throttle Rate on\n");
4108 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4109 adapter->itr = 20000;
4110 e1000e_write_itr(adapter, adapter->itr);
4111 }
4112 }
4113
4114 if (hw->mac.type >= e1000_pch_spt)
4115 e1000_flush_desc_rings(adapter);
4116 /* Allow time for pending master requests to run */
4117 mac->ops.reset_hw(hw);
4118
4119 /* For parts with AMT enabled, let the firmware know
4120 * that the network interface is in control
4121 */
4122 if (adapter->flags & FLAG_HAS_AMT)
4123 e1000e_get_hw_control(adapter);
4124
4125 ew32(WUC, 0);
4126
4127 if (mac->ops.init_hw(hw))
4128 e_err("Hardware Error\n");
4129
4130 e1000_update_mng_vlan(adapter);
4131
4132 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4133 ew32(VET, ETH_P_8021Q);
4134
4135 e1000e_reset_adaptive(hw);
4136
4137 /* restore systim and hwtstamp settings */
4138 e1000e_systim_reset(adapter);
4139
4140 /* Set EEE advertisement as appropriate */
4141 if (adapter->flags2 & FLAG2_HAS_EEE) {
4142 s32 ret_val;
4143 u16 adv_addr;
4144
4145 switch (hw->phy.type) {
4146 case e1000_phy_82579:
4147 adv_addr = I82579_EEE_ADVERTISEMENT;
4148 break;
4149 case e1000_phy_i217:
4150 adv_addr = I217_EEE_ADVERTISEMENT;
4151 break;
4152 default:
4153 dev_err(&adapter->pdev->dev,
4154 "Invalid PHY type setting EEE advertisement\n");
4155 return;
4156 }
4157
4158 ret_val = hw->phy.ops.acquire(hw);
4159 if (ret_val) {
4160 dev_err(&adapter->pdev->dev,
4161 "EEE advertisement - unable to acquire PHY\n");
4162 return;
4163 }
4164
4165 e1000_write_emi_reg_locked(hw, adv_addr,
4166 hw->dev_spec.ich8lan.eee_disable ?
4167 0 : adapter->eee_advert);
4168
4169 hw->phy.ops.release(hw);
4170 }
4171
4172 if (!netif_running(adapter->netdev) &&
4173 !test_bit(__E1000_TESTING, &adapter->state))
4174 e1000_power_down_phy(adapter);
4175
4176 e1000_get_phy_info(hw);
4177
4178 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4179 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4180 u16 phy_data = 0;
4181 /* speed up time to link by disabling smart power down, ignore
4182 * the return value of this function because there is nothing
4183 * different we would do if it failed
4184 */
4185 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4186 phy_data &= ~IGP02E1000_PM_SPD;
4187 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4188 }
4189 if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4190 u32 reg;
4191
4192 /* Fextnvm7 @ 0xe4[2] = 1 */
4193 reg = er32(FEXTNVM7);
4194 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4195 ew32(FEXTNVM7, reg);
4196 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4197 reg = er32(FEXTNVM9);
4198 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4199 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4200 ew32(FEXTNVM9, reg);
4201 }
4202
4203 }
4204
4205 /**
4206 * e1000e_trigger_lsc - trigger an LSC interrupt
4207 * @adapter:
4208 *
4209 * Fire a link status change interrupt to start the watchdog.
4210 **/
e1000e_trigger_lsc(struct e1000_adapter * adapter)4211 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4212 {
4213 struct e1000_hw *hw = &adapter->hw;
4214
4215 if (adapter->msix_entries)
4216 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4217 else
4218 ew32(ICS, E1000_ICS_LSC);
4219 }
4220
e1000e_up(struct e1000_adapter * adapter)4221 void e1000e_up(struct e1000_adapter *adapter)
4222 {
4223 /* hardware has been reset, we need to reload some things */
4224 e1000_configure(adapter);
4225
4226 clear_bit(__E1000_DOWN, &adapter->state);
4227
4228 if (adapter->msix_entries)
4229 e1000_configure_msix(adapter);
4230 e1000_irq_enable(adapter);
4231
4232 /* Tx queue started by watchdog timer when link is up */
4233
4234 e1000e_trigger_lsc(adapter);
4235 }
4236
e1000e_flush_descriptors(struct e1000_adapter * adapter)4237 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4238 {
4239 struct e1000_hw *hw = &adapter->hw;
4240
4241 if (!(adapter->flags2 & FLAG2_DMA_BURST))
4242 return;
4243
4244 /* flush pending descriptor writebacks to memory */
4245 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4246 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4247
4248 /* execute the writes immediately */
4249 e1e_flush();
4250
4251 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4252 * write is successful
4253 */
4254 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4255 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4256
4257 /* execute the writes immediately */
4258 e1e_flush();
4259 }
4260
4261 static void e1000e_update_stats(struct e1000_adapter *adapter);
4262
4263 /**
4264 * e1000e_down - quiesce the device and optionally reset the hardware
4265 * @adapter: board private structure
4266 * @reset: boolean flag to reset the hardware or not
4267 */
e1000e_down(struct e1000_adapter * adapter,bool reset)4268 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4269 {
4270 struct net_device *netdev = adapter->netdev;
4271 struct e1000_hw *hw = &adapter->hw;
4272 u32 tctl, rctl;
4273
4274 /* signal that we're down so the interrupt handler does not
4275 * reschedule our watchdog timer
4276 */
4277 set_bit(__E1000_DOWN, &adapter->state);
4278
4279 netif_carrier_off(netdev);
4280
4281 /* disable receives in the hardware */
4282 rctl = er32(RCTL);
4283 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4284 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4285 /* flush and sleep below */
4286
4287 netif_stop_queue(netdev);
4288
4289 /* disable transmits in the hardware */
4290 tctl = er32(TCTL);
4291 tctl &= ~E1000_TCTL_EN;
4292 ew32(TCTL, tctl);
4293
4294 /* flush both disables and wait for them to finish */
4295 e1e_flush();
4296 usleep_range(10000, 11000);
4297
4298 e1000_irq_disable(adapter);
4299
4300 napi_synchronize(&adapter->napi);
4301
4302 del_timer_sync(&adapter->watchdog_timer);
4303 del_timer_sync(&adapter->phy_info_timer);
4304
4305 spin_lock(&adapter->stats64_lock);
4306 e1000e_update_stats(adapter);
4307 spin_unlock(&adapter->stats64_lock);
4308
4309 e1000e_flush_descriptors(adapter);
4310
4311 adapter->link_speed = 0;
4312 adapter->link_duplex = 0;
4313
4314 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4315 if ((hw->mac.type >= e1000_pch2lan) &&
4316 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4317 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4318 e_dbg("failed to disable jumbo frame workaround mode\n");
4319
4320 if (!pci_channel_offline(adapter->pdev)) {
4321 if (reset)
4322 e1000e_reset(adapter);
4323 else if (hw->mac.type >= e1000_pch_spt)
4324 e1000_flush_desc_rings(adapter);
4325 }
4326 e1000_clean_tx_ring(adapter->tx_ring);
4327 e1000_clean_rx_ring(adapter->rx_ring);
4328 }
4329
e1000e_reinit_locked(struct e1000_adapter * adapter)4330 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4331 {
4332 might_sleep();
4333 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4334 usleep_range(1000, 1100);
4335 e1000e_down(adapter, true);
4336 e1000e_up(adapter);
4337 clear_bit(__E1000_RESETTING, &adapter->state);
4338 }
4339
4340 /**
4341 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4342 * @hw: pointer to the HW structure
4343 * @systim: PHC time value read, sanitized and returned
4344 * @sts: structure to hold system time before and after reading SYSTIML,
4345 * may be NULL
4346 *
4347 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4348 * check to see that the time is incrementing at a reasonable
4349 * rate and is a multiple of incvalue.
4350 **/
e1000e_sanitize_systim(struct e1000_hw * hw,u64 systim,struct ptp_system_timestamp * sts)4351 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4352 struct ptp_system_timestamp *sts)
4353 {
4354 u64 time_delta, rem, temp;
4355 u64 systim_next;
4356 u32 incvalue;
4357 int i;
4358
4359 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4360 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4361 /* latch SYSTIMH on read of SYSTIML */
4362 ptp_read_system_prets(sts);
4363 systim_next = (u64)er32(SYSTIML);
4364 ptp_read_system_postts(sts);
4365 systim_next |= (u64)er32(SYSTIMH) << 32;
4366
4367 time_delta = systim_next - systim;
4368 temp = time_delta;
4369 /* VMWare users have seen incvalue of zero, don't div / 0 */
4370 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4371
4372 systim = systim_next;
4373
4374 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4375 break;
4376 }
4377
4378 return systim;
4379 }
4380
4381 /**
4382 * e1000e_read_systim - read SYSTIM register
4383 * @adapter: board private structure
4384 * @sts: structure which will contain system time before and after reading
4385 * SYSTIML, may be NULL
4386 **/
e1000e_read_systim(struct e1000_adapter * adapter,struct ptp_system_timestamp * sts)4387 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4388 struct ptp_system_timestamp *sts)
4389 {
4390 struct e1000_hw *hw = &adapter->hw;
4391 u32 systimel, systimel_2, systimeh;
4392 u64 systim;
4393 /* SYSTIMH latching upon SYSTIML read does not work well.
4394 * This means that if SYSTIML overflows after we read it but before
4395 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4396 * will experience a huge non linear increment in the systime value
4397 * to fix that we test for overflow and if true, we re-read systime.
4398 */
4399 ptp_read_system_prets(sts);
4400 systimel = er32(SYSTIML);
4401 ptp_read_system_postts(sts);
4402 systimeh = er32(SYSTIMH);
4403 /* Is systimel is so large that overflow is possible? */
4404 if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4405 ptp_read_system_prets(sts);
4406 systimel_2 = er32(SYSTIML);
4407 ptp_read_system_postts(sts);
4408 if (systimel > systimel_2) {
4409 /* There was an overflow, read again SYSTIMH, and use
4410 * systimel_2
4411 */
4412 systimeh = er32(SYSTIMH);
4413 systimel = systimel_2;
4414 }
4415 }
4416 systim = (u64)systimel;
4417 systim |= (u64)systimeh << 32;
4418
4419 if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4420 systim = e1000e_sanitize_systim(hw, systim, sts);
4421
4422 return systim;
4423 }
4424
4425 /**
4426 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4427 * @cc: cyclecounter structure
4428 **/
e1000e_cyclecounter_read(const struct cyclecounter * cc)4429 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4430 {
4431 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4432 cc);
4433
4434 return e1000e_read_systim(adapter, NULL);
4435 }
4436
4437 /**
4438 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4439 * @adapter: board private structure to initialize
4440 *
4441 * e1000_sw_init initializes the Adapter private data structure.
4442 * Fields are initialized based on PCI device information and
4443 * OS network device settings (MTU size).
4444 **/
e1000_sw_init(struct e1000_adapter * adapter)4445 static int e1000_sw_init(struct e1000_adapter *adapter)
4446 {
4447 struct net_device *netdev = adapter->netdev;
4448
4449 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4450 adapter->rx_ps_bsize0 = 128;
4451 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4452 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4453 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4454 adapter->rx_ring_count = E1000_DEFAULT_RXD;
4455
4456 spin_lock_init(&adapter->stats64_lock);
4457
4458 e1000e_set_interrupt_capability(adapter);
4459
4460 if (e1000_alloc_queues(adapter))
4461 return -ENOMEM;
4462
4463 /* Setup hardware time stamping cyclecounter */
4464 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4465 adapter->cc.read = e1000e_cyclecounter_read;
4466 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4467 adapter->cc.mult = 1;
4468 /* cc.shift set in e1000e_get_base_tininca() */
4469
4470 spin_lock_init(&adapter->systim_lock);
4471 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4472 }
4473
4474 /* Explicitly disable IRQ since the NIC can be in any state. */
4475 e1000_irq_disable(adapter);
4476
4477 set_bit(__E1000_DOWN, &adapter->state);
4478 return 0;
4479 }
4480
4481 /**
4482 * e1000_intr_msi_test - Interrupt Handler
4483 * @irq: interrupt number
4484 * @data: pointer to a network interface device structure
4485 **/
e1000_intr_msi_test(int __always_unused irq,void * data)4486 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4487 {
4488 struct net_device *netdev = data;
4489 struct e1000_adapter *adapter = netdev_priv(netdev);
4490 struct e1000_hw *hw = &adapter->hw;
4491 u32 icr = er32(ICR);
4492
4493 e_dbg("icr is %08X\n", icr);
4494 if (icr & E1000_ICR_RXSEQ) {
4495 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4496 /* Force memory writes to complete before acknowledging the
4497 * interrupt is handled.
4498 */
4499 wmb();
4500 }
4501
4502 return IRQ_HANDLED;
4503 }
4504
4505 /**
4506 * e1000_test_msi_interrupt - Returns 0 for successful test
4507 * @adapter: board private struct
4508 *
4509 * code flow taken from tg3.c
4510 **/
e1000_test_msi_interrupt(struct e1000_adapter * adapter)4511 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4512 {
4513 struct net_device *netdev = adapter->netdev;
4514 struct e1000_hw *hw = &adapter->hw;
4515 int err;
4516
4517 /* poll_enable hasn't been called yet, so don't need disable */
4518 /* clear any pending events */
4519 er32(ICR);
4520
4521 /* free the real vector and request a test handler */
4522 e1000_free_irq(adapter);
4523 e1000e_reset_interrupt_capability(adapter);
4524
4525 /* Assume that the test fails, if it succeeds then the test
4526 * MSI irq handler will unset this flag
4527 */
4528 adapter->flags |= FLAG_MSI_TEST_FAILED;
4529
4530 err = pci_enable_msi(adapter->pdev);
4531 if (err)
4532 goto msi_test_failed;
4533
4534 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4535 netdev->name, netdev);
4536 if (err) {
4537 pci_disable_msi(adapter->pdev);
4538 goto msi_test_failed;
4539 }
4540
4541 /* Force memory writes to complete before enabling and firing an
4542 * interrupt.
4543 */
4544 wmb();
4545
4546 e1000_irq_enable(adapter);
4547
4548 /* fire an unusual interrupt on the test handler */
4549 ew32(ICS, E1000_ICS_RXSEQ);
4550 e1e_flush();
4551 msleep(100);
4552
4553 e1000_irq_disable(adapter);
4554
4555 rmb(); /* read flags after interrupt has been fired */
4556
4557 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4558 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4559 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4560 } else {
4561 e_dbg("MSI interrupt test succeeded!\n");
4562 }
4563
4564 free_irq(adapter->pdev->irq, netdev);
4565 pci_disable_msi(adapter->pdev);
4566
4567 msi_test_failed:
4568 e1000e_set_interrupt_capability(adapter);
4569 return e1000_request_irq(adapter);
4570 }
4571
4572 /**
4573 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4574 * @adapter: board private struct
4575 *
4576 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4577 **/
e1000_test_msi(struct e1000_adapter * adapter)4578 static int e1000_test_msi(struct e1000_adapter *adapter)
4579 {
4580 int err;
4581 u16 pci_cmd;
4582
4583 if (!(adapter->flags & FLAG_MSI_ENABLED))
4584 return 0;
4585
4586 /* disable SERR in case the MSI write causes a master abort */
4587 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4588 if (pci_cmd & PCI_COMMAND_SERR)
4589 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4590 pci_cmd & ~PCI_COMMAND_SERR);
4591
4592 err = e1000_test_msi_interrupt(adapter);
4593
4594 /* re-enable SERR */
4595 if (pci_cmd & PCI_COMMAND_SERR) {
4596 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4597 pci_cmd |= PCI_COMMAND_SERR;
4598 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4599 }
4600
4601 return err;
4602 }
4603
4604 /**
4605 * e1000e_open - Called when a network interface is made active
4606 * @netdev: network interface device structure
4607 *
4608 * Returns 0 on success, negative value on failure
4609 *
4610 * The open entry point is called when a network interface is made
4611 * active by the system (IFF_UP). At this point all resources needed
4612 * for transmit and receive operations are allocated, the interrupt
4613 * handler is registered with the OS, the watchdog timer is started,
4614 * and the stack is notified that the interface is ready.
4615 **/
e1000e_open(struct net_device * netdev)4616 int e1000e_open(struct net_device *netdev)
4617 {
4618 struct e1000_adapter *adapter = netdev_priv(netdev);
4619 struct e1000_hw *hw = &adapter->hw;
4620 struct pci_dev *pdev = adapter->pdev;
4621 int err;
4622
4623 /* disallow open during test */
4624 if (test_bit(__E1000_TESTING, &adapter->state))
4625 return -EBUSY;
4626
4627 pm_runtime_get_sync(&pdev->dev);
4628
4629 netif_carrier_off(netdev);
4630 netif_stop_queue(netdev);
4631
4632 /* allocate transmit descriptors */
4633 err = e1000e_setup_tx_resources(adapter->tx_ring);
4634 if (err)
4635 goto err_setup_tx;
4636
4637 /* allocate receive descriptors */
4638 err = e1000e_setup_rx_resources(adapter->rx_ring);
4639 if (err)
4640 goto err_setup_rx;
4641
4642 /* If AMT is enabled, let the firmware know that the network
4643 * interface is now open and reset the part to a known state.
4644 */
4645 if (adapter->flags & FLAG_HAS_AMT) {
4646 e1000e_get_hw_control(adapter);
4647 e1000e_reset(adapter);
4648 }
4649
4650 e1000e_power_up_phy(adapter);
4651
4652 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4653 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4654 e1000_update_mng_vlan(adapter);
4655
4656 /* DMA latency requirement to workaround jumbo issue */
4657 cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4658
4659 /* before we allocate an interrupt, we must be ready to handle it.
4660 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4661 * as soon as we call pci_request_irq, so we have to setup our
4662 * clean_rx handler before we do so.
4663 */
4664 e1000_configure(adapter);
4665
4666 err = e1000_request_irq(adapter);
4667 if (err)
4668 goto err_req_irq;
4669
4670 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4671 * ignore e1000e MSI messages, which means we need to test our MSI
4672 * interrupt now
4673 */
4674 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4675 err = e1000_test_msi(adapter);
4676 if (err) {
4677 e_err("Interrupt allocation failed\n");
4678 goto err_req_irq;
4679 }
4680 }
4681
4682 /* From here on the code is the same as e1000e_up() */
4683 clear_bit(__E1000_DOWN, &adapter->state);
4684
4685 napi_enable(&adapter->napi);
4686
4687 e1000_irq_enable(adapter);
4688
4689 adapter->tx_hang_recheck = false;
4690
4691 hw->mac.get_link_status = true;
4692 pm_runtime_put(&pdev->dev);
4693
4694 e1000e_trigger_lsc(adapter);
4695
4696 return 0;
4697
4698 err_req_irq:
4699 cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4700 e1000e_release_hw_control(adapter);
4701 e1000_power_down_phy(adapter);
4702 e1000e_free_rx_resources(adapter->rx_ring);
4703 err_setup_rx:
4704 e1000e_free_tx_resources(adapter->tx_ring);
4705 err_setup_tx:
4706 e1000e_reset(adapter);
4707 pm_runtime_put_sync(&pdev->dev);
4708
4709 return err;
4710 }
4711
4712 /**
4713 * e1000e_close - Disables a network interface
4714 * @netdev: network interface device structure
4715 *
4716 * Returns 0, this is not allowed to fail
4717 *
4718 * The close entry point is called when an interface is de-activated
4719 * by the OS. The hardware is still under the drivers control, but
4720 * needs to be disabled. A global MAC reset is issued to stop the
4721 * hardware, and all transmit and receive resources are freed.
4722 **/
e1000e_close(struct net_device * netdev)4723 int e1000e_close(struct net_device *netdev)
4724 {
4725 struct e1000_adapter *adapter = netdev_priv(netdev);
4726 struct pci_dev *pdev = adapter->pdev;
4727 int count = E1000_CHECK_RESET_COUNT;
4728
4729 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4730 usleep_range(10000, 11000);
4731
4732 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4733
4734 pm_runtime_get_sync(&pdev->dev);
4735
4736 if (netif_device_present(netdev)) {
4737 e1000e_down(adapter, true);
4738 e1000_free_irq(adapter);
4739
4740 /* Link status message must follow this format */
4741 netdev_info(netdev, "NIC Link is Down\n");
4742 }
4743
4744 napi_disable(&adapter->napi);
4745
4746 e1000e_free_tx_resources(adapter->tx_ring);
4747 e1000e_free_rx_resources(adapter->rx_ring);
4748
4749 /* kill manageability vlan ID if supported, but not if a vlan with
4750 * the same ID is registered on the host OS (let 8021q kill it)
4751 */
4752 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4753 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4754 adapter->mng_vlan_id);
4755
4756 /* If AMT is enabled, let the firmware know that the network
4757 * interface is now closed
4758 */
4759 if ((adapter->flags & FLAG_HAS_AMT) &&
4760 !test_bit(__E1000_TESTING, &adapter->state))
4761 e1000e_release_hw_control(adapter);
4762
4763 cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4764
4765 pm_runtime_put_sync(&pdev->dev);
4766
4767 return 0;
4768 }
4769
4770 /**
4771 * e1000_set_mac - Change the Ethernet Address of the NIC
4772 * @netdev: network interface device structure
4773 * @p: pointer to an address structure
4774 *
4775 * Returns 0 on success, negative on failure
4776 **/
e1000_set_mac(struct net_device * netdev,void * p)4777 static int e1000_set_mac(struct net_device *netdev, void *p)
4778 {
4779 struct e1000_adapter *adapter = netdev_priv(netdev);
4780 struct e1000_hw *hw = &adapter->hw;
4781 struct sockaddr *addr = p;
4782
4783 if (!is_valid_ether_addr(addr->sa_data))
4784 return -EADDRNOTAVAIL;
4785
4786 eth_hw_addr_set(netdev, addr->sa_data);
4787 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4788
4789 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4790
4791 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4792 /* activate the work around */
4793 e1000e_set_laa_state_82571(&adapter->hw, 1);
4794
4795 /* Hold a copy of the LAA in RAR[14] This is done so that
4796 * between the time RAR[0] gets clobbered and the time it
4797 * gets fixed (in e1000_watchdog), the actual LAA is in one
4798 * of the RARs and no incoming packets directed to this port
4799 * are dropped. Eventually the LAA will be in RAR[0] and
4800 * RAR[14]
4801 */
4802 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4803 adapter->hw.mac.rar_entry_count - 1);
4804 }
4805
4806 return 0;
4807 }
4808
4809 /**
4810 * e1000e_update_phy_task - work thread to update phy
4811 * @work: pointer to our work struct
4812 *
4813 * this worker thread exists because we must acquire a
4814 * semaphore to read the phy, which we could msleep while
4815 * waiting for it, and we can't msleep in a timer.
4816 **/
e1000e_update_phy_task(struct work_struct * work)4817 static void e1000e_update_phy_task(struct work_struct *work)
4818 {
4819 struct e1000_adapter *adapter = container_of(work,
4820 struct e1000_adapter,
4821 update_phy_task);
4822 struct e1000_hw *hw = &adapter->hw;
4823
4824 if (test_bit(__E1000_DOWN, &adapter->state))
4825 return;
4826
4827 e1000_get_phy_info(hw);
4828
4829 /* Enable EEE on 82579 after link up */
4830 if (hw->phy.type >= e1000_phy_82579)
4831 e1000_set_eee_pchlan(hw);
4832 }
4833
4834 /**
4835 * e1000_update_phy_info - timre call-back to update PHY info
4836 * @t: pointer to timer_list containing private info adapter
4837 *
4838 * Need to wait a few seconds after link up to get diagnostic information from
4839 * the phy
4840 **/
e1000_update_phy_info(struct timer_list * t)4841 static void e1000_update_phy_info(struct timer_list *t)
4842 {
4843 struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4844
4845 if (test_bit(__E1000_DOWN, &adapter->state))
4846 return;
4847
4848 schedule_work(&adapter->update_phy_task);
4849 }
4850
4851 /**
4852 * e1000e_update_phy_stats - Update the PHY statistics counters
4853 * @adapter: board private structure
4854 *
4855 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4856 **/
e1000e_update_phy_stats(struct e1000_adapter * adapter)4857 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4858 {
4859 struct e1000_hw *hw = &adapter->hw;
4860 s32 ret_val;
4861 u16 phy_data;
4862
4863 ret_val = hw->phy.ops.acquire(hw);
4864 if (ret_val)
4865 return;
4866
4867 /* A page set is expensive so check if already on desired page.
4868 * If not, set to the page with the PHY status registers.
4869 */
4870 hw->phy.addr = 1;
4871 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4872 &phy_data);
4873 if (ret_val)
4874 goto release;
4875 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4876 ret_val = hw->phy.ops.set_page(hw,
4877 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4878 if (ret_val)
4879 goto release;
4880 }
4881
4882 /* Single Collision Count */
4883 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4884 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4885 if (!ret_val)
4886 adapter->stats.scc += phy_data;
4887
4888 /* Excessive Collision Count */
4889 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4890 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4891 if (!ret_val)
4892 adapter->stats.ecol += phy_data;
4893
4894 /* Multiple Collision Count */
4895 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4896 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4897 if (!ret_val)
4898 adapter->stats.mcc += phy_data;
4899
4900 /* Late Collision Count */
4901 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4902 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4903 if (!ret_val)
4904 adapter->stats.latecol += phy_data;
4905
4906 /* Collision Count - also used for adaptive IFS */
4907 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4908 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4909 if (!ret_val)
4910 hw->mac.collision_delta = phy_data;
4911
4912 /* Defer Count */
4913 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4914 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4915 if (!ret_val)
4916 adapter->stats.dc += phy_data;
4917
4918 /* Transmit with no CRS */
4919 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4920 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4921 if (!ret_val)
4922 adapter->stats.tncrs += phy_data;
4923
4924 release:
4925 hw->phy.ops.release(hw);
4926 }
4927
4928 /**
4929 * e1000e_update_stats - Update the board statistics counters
4930 * @adapter: board private structure
4931 **/
e1000e_update_stats(struct e1000_adapter * adapter)4932 static void e1000e_update_stats(struct e1000_adapter *adapter)
4933 {
4934 struct net_device *netdev = adapter->netdev;
4935 struct e1000_hw *hw = &adapter->hw;
4936 struct pci_dev *pdev = adapter->pdev;
4937
4938 /* Prevent stats update while adapter is being reset, or if the pci
4939 * connection is down.
4940 */
4941 if (adapter->link_speed == 0)
4942 return;
4943 if (pci_channel_offline(pdev))
4944 return;
4945
4946 adapter->stats.crcerrs += er32(CRCERRS);
4947 adapter->stats.gprc += er32(GPRC);
4948 adapter->stats.gorc += er32(GORCL);
4949 er32(GORCH); /* Clear gorc */
4950 adapter->stats.bprc += er32(BPRC);
4951 adapter->stats.mprc += er32(MPRC);
4952 adapter->stats.roc += er32(ROC);
4953
4954 adapter->stats.mpc += er32(MPC);
4955
4956 /* Half-duplex statistics */
4957 if (adapter->link_duplex == HALF_DUPLEX) {
4958 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4959 e1000e_update_phy_stats(adapter);
4960 } else {
4961 adapter->stats.scc += er32(SCC);
4962 adapter->stats.ecol += er32(ECOL);
4963 adapter->stats.mcc += er32(MCC);
4964 adapter->stats.latecol += er32(LATECOL);
4965 adapter->stats.dc += er32(DC);
4966
4967 hw->mac.collision_delta = er32(COLC);
4968
4969 if ((hw->mac.type != e1000_82574) &&
4970 (hw->mac.type != e1000_82583))
4971 adapter->stats.tncrs += er32(TNCRS);
4972 }
4973 adapter->stats.colc += hw->mac.collision_delta;
4974 }
4975
4976 adapter->stats.xonrxc += er32(XONRXC);
4977 adapter->stats.xontxc += er32(XONTXC);
4978 adapter->stats.xoffrxc += er32(XOFFRXC);
4979 adapter->stats.xofftxc += er32(XOFFTXC);
4980 adapter->stats.gptc += er32(GPTC);
4981 adapter->stats.gotc += er32(GOTCL);
4982 er32(GOTCH); /* Clear gotc */
4983 adapter->stats.rnbc += er32(RNBC);
4984 adapter->stats.ruc += er32(RUC);
4985
4986 adapter->stats.mptc += er32(MPTC);
4987 adapter->stats.bptc += er32(BPTC);
4988
4989 /* used for adaptive IFS */
4990
4991 hw->mac.tx_packet_delta = er32(TPT);
4992 adapter->stats.tpt += hw->mac.tx_packet_delta;
4993
4994 adapter->stats.algnerrc += er32(ALGNERRC);
4995 adapter->stats.rxerrc += er32(RXERRC);
4996 adapter->stats.cexterr += er32(CEXTERR);
4997 adapter->stats.tsctc += er32(TSCTC);
4998 adapter->stats.tsctfc += er32(TSCTFC);
4999
5000 /* Fill out the OS statistics structure */
5001 netdev->stats.multicast = adapter->stats.mprc;
5002 netdev->stats.collisions = adapter->stats.colc;
5003
5004 /* Rx Errors */
5005
5006 /* RLEC on some newer hardware can be incorrect so build
5007 * our own version based on RUC and ROC
5008 */
5009 netdev->stats.rx_errors = adapter->stats.rxerrc +
5010 adapter->stats.crcerrs + adapter->stats.algnerrc +
5011 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5012 netdev->stats.rx_length_errors = adapter->stats.ruc +
5013 adapter->stats.roc;
5014 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5015 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5016 netdev->stats.rx_missed_errors = adapter->stats.mpc;
5017
5018 /* Tx Errors */
5019 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5020 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5021 netdev->stats.tx_window_errors = adapter->stats.latecol;
5022 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5023
5024 /* Tx Dropped needs to be maintained elsewhere */
5025
5026 /* Management Stats */
5027 adapter->stats.mgptc += er32(MGTPTC);
5028 adapter->stats.mgprc += er32(MGTPRC);
5029 adapter->stats.mgpdc += er32(MGTPDC);
5030
5031 /* Correctable ECC Errors */
5032 if (hw->mac.type >= e1000_pch_lpt) {
5033 u32 pbeccsts = er32(PBECCSTS);
5034
5035 adapter->corr_errors +=
5036 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5037 adapter->uncorr_errors +=
5038 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5039 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5040 }
5041 }
5042
5043 /**
5044 * e1000_phy_read_status - Update the PHY register status snapshot
5045 * @adapter: board private structure
5046 **/
e1000_phy_read_status(struct e1000_adapter * adapter)5047 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5048 {
5049 struct e1000_hw *hw = &adapter->hw;
5050 struct e1000_phy_regs *phy = &adapter->phy_regs;
5051
5052 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5053 (er32(STATUS) & E1000_STATUS_LU) &&
5054 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5055 int ret_val;
5056
5057 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5058 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5059 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5060 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5061 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5062 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5063 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5064 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5065 if (ret_val)
5066 e_warn("Error reading PHY register\n");
5067 } else {
5068 /* Do not read PHY registers if link is not up
5069 * Set values to typical power-on defaults
5070 */
5071 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5072 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5073 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5074 BMSR_ERCAP);
5075 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5076 ADVERTISE_ALL | ADVERTISE_CSMA);
5077 phy->lpa = 0;
5078 phy->expansion = EXPANSION_ENABLENPAGE;
5079 phy->ctrl1000 = ADVERTISE_1000FULL;
5080 phy->stat1000 = 0;
5081 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5082 }
5083 }
5084
e1000_print_link_info(struct e1000_adapter * adapter)5085 static void e1000_print_link_info(struct e1000_adapter *adapter)
5086 {
5087 struct e1000_hw *hw = &adapter->hw;
5088 u32 ctrl = er32(CTRL);
5089
5090 /* Link status message must follow this format for user tools */
5091 netdev_info(adapter->netdev,
5092 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5093 adapter->link_speed,
5094 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5095 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5096 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5097 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5098 }
5099
e1000e_has_link(struct e1000_adapter * adapter)5100 static bool e1000e_has_link(struct e1000_adapter *adapter)
5101 {
5102 struct e1000_hw *hw = &adapter->hw;
5103 bool link_active = false;
5104 s32 ret_val = 0;
5105
5106 /* get_link_status is set on LSC (link status) interrupt or
5107 * Rx sequence error interrupt. get_link_status will stay
5108 * true until the check_for_link establishes link
5109 * for copper adapters ONLY
5110 */
5111 switch (hw->phy.media_type) {
5112 case e1000_media_type_copper:
5113 if (hw->mac.get_link_status) {
5114 ret_val = hw->mac.ops.check_for_link(hw);
5115 link_active = !hw->mac.get_link_status;
5116 } else {
5117 link_active = true;
5118 }
5119 break;
5120 case e1000_media_type_fiber:
5121 ret_val = hw->mac.ops.check_for_link(hw);
5122 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5123 break;
5124 case e1000_media_type_internal_serdes:
5125 ret_val = hw->mac.ops.check_for_link(hw);
5126 link_active = hw->mac.serdes_has_link;
5127 break;
5128 default:
5129 case e1000_media_type_unknown:
5130 break;
5131 }
5132
5133 if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5134 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5135 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5136 e_info("Gigabit has been disabled, downgrading speed\n");
5137 }
5138
5139 return link_active;
5140 }
5141
e1000e_enable_receives(struct e1000_adapter * adapter)5142 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5143 {
5144 /* make sure the receive unit is started */
5145 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5146 (adapter->flags & FLAG_RESTART_NOW)) {
5147 struct e1000_hw *hw = &adapter->hw;
5148 u32 rctl = er32(RCTL);
5149
5150 ew32(RCTL, rctl | E1000_RCTL_EN);
5151 adapter->flags &= ~FLAG_RESTART_NOW;
5152 }
5153 }
5154
e1000e_check_82574_phy_workaround(struct e1000_adapter * adapter)5155 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5156 {
5157 struct e1000_hw *hw = &adapter->hw;
5158
5159 /* With 82574 controllers, PHY needs to be checked periodically
5160 * for hung state and reset, if two calls return true
5161 */
5162 if (e1000_check_phy_82574(hw))
5163 adapter->phy_hang_count++;
5164 else
5165 adapter->phy_hang_count = 0;
5166
5167 if (adapter->phy_hang_count > 1) {
5168 adapter->phy_hang_count = 0;
5169 e_dbg("PHY appears hung - resetting\n");
5170 schedule_work(&adapter->reset_task);
5171 }
5172 }
5173
5174 /**
5175 * e1000_watchdog - Timer Call-back
5176 * @t: pointer to timer_list containing private info adapter
5177 **/
e1000_watchdog(struct timer_list * t)5178 static void e1000_watchdog(struct timer_list *t)
5179 {
5180 struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5181
5182 /* Do the rest outside of interrupt context */
5183 schedule_work(&adapter->watchdog_task);
5184
5185 /* TODO: make this use queue_delayed_work() */
5186 }
5187
e1000_watchdog_task(struct work_struct * work)5188 static void e1000_watchdog_task(struct work_struct *work)
5189 {
5190 struct e1000_adapter *adapter = container_of(work,
5191 struct e1000_adapter,
5192 watchdog_task);
5193 struct net_device *netdev = adapter->netdev;
5194 struct e1000_mac_info *mac = &adapter->hw.mac;
5195 struct e1000_phy_info *phy = &adapter->hw.phy;
5196 struct e1000_ring *tx_ring = adapter->tx_ring;
5197 u32 dmoff_exit_timeout = 100, tries = 0;
5198 struct e1000_hw *hw = &adapter->hw;
5199 u32 link, tctl, pcim_state;
5200
5201 if (test_bit(__E1000_DOWN, &adapter->state))
5202 return;
5203
5204 link = e1000e_has_link(adapter);
5205 if ((netif_carrier_ok(netdev)) && link) {
5206 /* Cancel scheduled suspend requests. */
5207 pm_runtime_resume(netdev->dev.parent);
5208
5209 e1000e_enable_receives(adapter);
5210 goto link_up;
5211 }
5212
5213 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5214 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5215 e1000_update_mng_vlan(adapter);
5216
5217 if (link) {
5218 if (!netif_carrier_ok(netdev)) {
5219 bool txb2b = true;
5220
5221 /* Cancel scheduled suspend requests. */
5222 pm_runtime_resume(netdev->dev.parent);
5223
5224 /* Checking if MAC is in DMoff state*/
5225 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5226 pcim_state = er32(STATUS);
5227 while (pcim_state & E1000_STATUS_PCIM_STATE) {
5228 if (tries++ == dmoff_exit_timeout) {
5229 e_dbg("Error in exiting dmoff\n");
5230 break;
5231 }
5232 usleep_range(10000, 20000);
5233 pcim_state = er32(STATUS);
5234
5235 /* Checking if MAC exited DMoff state */
5236 if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5237 e1000_phy_hw_reset(&adapter->hw);
5238 }
5239 }
5240
5241 /* update snapshot of PHY registers on LSC */
5242 e1000_phy_read_status(adapter);
5243 mac->ops.get_link_up_info(&adapter->hw,
5244 &adapter->link_speed,
5245 &adapter->link_duplex);
5246 e1000_print_link_info(adapter);
5247
5248 /* check if SmartSpeed worked */
5249 e1000e_check_downshift(hw);
5250 if (phy->speed_downgraded)
5251 netdev_warn(netdev,
5252 "Link Speed was downgraded by SmartSpeed\n");
5253
5254 /* On supported PHYs, check for duplex mismatch only
5255 * if link has autonegotiated at 10/100 half
5256 */
5257 if ((hw->phy.type == e1000_phy_igp_3 ||
5258 hw->phy.type == e1000_phy_bm) &&
5259 hw->mac.autoneg &&
5260 (adapter->link_speed == SPEED_10 ||
5261 adapter->link_speed == SPEED_100) &&
5262 (adapter->link_duplex == HALF_DUPLEX)) {
5263 u16 autoneg_exp;
5264
5265 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5266
5267 if (!(autoneg_exp & EXPANSION_NWAY))
5268 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5269 }
5270
5271 /* adjust timeout factor according to speed/duplex */
5272 adapter->tx_timeout_factor = 1;
5273 switch (adapter->link_speed) {
5274 case SPEED_10:
5275 txb2b = false;
5276 adapter->tx_timeout_factor = 16;
5277 break;
5278 case SPEED_100:
5279 txb2b = false;
5280 adapter->tx_timeout_factor = 10;
5281 break;
5282 }
5283
5284 /* workaround: re-program speed mode bit after
5285 * link-up event
5286 */
5287 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5288 !txb2b) {
5289 u32 tarc0;
5290
5291 tarc0 = er32(TARC(0));
5292 tarc0 &= ~SPEED_MODE_BIT;
5293 ew32(TARC(0), tarc0);
5294 }
5295
5296 /* disable TSO for pcie and 10/100 speeds, to avoid
5297 * some hardware issues
5298 */
5299 if (!(adapter->flags & FLAG_TSO_FORCE)) {
5300 switch (adapter->link_speed) {
5301 case SPEED_10:
5302 case SPEED_100:
5303 e_info("10/100 speed: disabling TSO\n");
5304 netdev->features &= ~NETIF_F_TSO;
5305 netdev->features &= ~NETIF_F_TSO6;
5306 break;
5307 case SPEED_1000:
5308 netdev->features |= NETIF_F_TSO;
5309 netdev->features |= NETIF_F_TSO6;
5310 break;
5311 default:
5312 /* oops */
5313 break;
5314 }
5315 if (hw->mac.type == e1000_pch_spt) {
5316 netdev->features &= ~NETIF_F_TSO;
5317 netdev->features &= ~NETIF_F_TSO6;
5318 }
5319 }
5320
5321 /* enable transmits in the hardware, need to do this
5322 * after setting TARC(0)
5323 */
5324 tctl = er32(TCTL);
5325 tctl |= E1000_TCTL_EN;
5326 ew32(TCTL, tctl);
5327
5328 /* Perform any post-link-up configuration before
5329 * reporting link up.
5330 */
5331 if (phy->ops.cfg_on_link_up)
5332 phy->ops.cfg_on_link_up(hw);
5333
5334 netif_wake_queue(netdev);
5335 netif_carrier_on(netdev);
5336
5337 if (!test_bit(__E1000_DOWN, &adapter->state))
5338 mod_timer(&adapter->phy_info_timer,
5339 round_jiffies(jiffies + 2 * HZ));
5340 }
5341 } else {
5342 if (netif_carrier_ok(netdev)) {
5343 adapter->link_speed = 0;
5344 adapter->link_duplex = 0;
5345 /* Link status message must follow this format */
5346 netdev_info(netdev, "NIC Link is Down\n");
5347 netif_carrier_off(netdev);
5348 netif_stop_queue(netdev);
5349 if (!test_bit(__E1000_DOWN, &adapter->state))
5350 mod_timer(&adapter->phy_info_timer,
5351 round_jiffies(jiffies + 2 * HZ));
5352
5353 /* 8000ES2LAN requires a Rx packet buffer work-around
5354 * on link down event; reset the controller to flush
5355 * the Rx packet buffer.
5356 */
5357 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5358 adapter->flags |= FLAG_RESTART_NOW;
5359 else
5360 pm_schedule_suspend(netdev->dev.parent,
5361 LINK_TIMEOUT);
5362 }
5363 }
5364
5365 link_up:
5366 spin_lock(&adapter->stats64_lock);
5367 e1000e_update_stats(adapter);
5368
5369 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5370 adapter->tpt_old = adapter->stats.tpt;
5371 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5372 adapter->colc_old = adapter->stats.colc;
5373
5374 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5375 adapter->gorc_old = adapter->stats.gorc;
5376 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5377 adapter->gotc_old = adapter->stats.gotc;
5378 spin_unlock(&adapter->stats64_lock);
5379
5380 /* If the link is lost the controller stops DMA, but
5381 * if there is queued Tx work it cannot be done. So
5382 * reset the controller to flush the Tx packet buffers.
5383 */
5384 if (!netif_carrier_ok(netdev) &&
5385 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5386 adapter->flags |= FLAG_RESTART_NOW;
5387
5388 /* If reset is necessary, do it outside of interrupt context. */
5389 if (adapter->flags & FLAG_RESTART_NOW) {
5390 schedule_work(&adapter->reset_task);
5391 /* return immediately since reset is imminent */
5392 return;
5393 }
5394
5395 e1000e_update_adaptive(&adapter->hw);
5396
5397 /* Simple mode for Interrupt Throttle Rate (ITR) */
5398 if (adapter->itr_setting == 4) {
5399 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5400 * Total asymmetrical Tx or Rx gets ITR=8000;
5401 * everyone else is between 2000-8000.
5402 */
5403 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5404 u32 dif = (adapter->gotc > adapter->gorc ?
5405 adapter->gotc - adapter->gorc :
5406 adapter->gorc - adapter->gotc) / 10000;
5407 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5408
5409 e1000e_write_itr(adapter, itr);
5410 }
5411
5412 /* Cause software interrupt to ensure Rx ring is cleaned */
5413 if (adapter->msix_entries)
5414 ew32(ICS, adapter->rx_ring->ims_val);
5415 else
5416 ew32(ICS, E1000_ICS_RXDMT0);
5417
5418 /* flush pending descriptors to memory before detecting Tx hang */
5419 e1000e_flush_descriptors(adapter);
5420
5421 /* Force detection of hung controller every watchdog period */
5422 adapter->detect_tx_hung = true;
5423
5424 /* With 82571 controllers, LAA may be overwritten due to controller
5425 * reset from the other port. Set the appropriate LAA in RAR[0]
5426 */
5427 if (e1000e_get_laa_state_82571(hw))
5428 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5429
5430 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5431 e1000e_check_82574_phy_workaround(adapter);
5432
5433 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5434 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5435 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5436 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5437 er32(RXSTMPH);
5438 adapter->rx_hwtstamp_cleared++;
5439 } else {
5440 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5441 }
5442 }
5443
5444 /* Reset the timer */
5445 if (!test_bit(__E1000_DOWN, &adapter->state))
5446 mod_timer(&adapter->watchdog_timer,
5447 round_jiffies(jiffies + 2 * HZ));
5448 }
5449
5450 #define E1000_TX_FLAGS_CSUM 0x00000001
5451 #define E1000_TX_FLAGS_VLAN 0x00000002
5452 #define E1000_TX_FLAGS_TSO 0x00000004
5453 #define E1000_TX_FLAGS_IPV4 0x00000008
5454 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5455 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5456 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5457 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5458
e1000_tso(struct e1000_ring * tx_ring,struct sk_buff * skb,__be16 protocol)5459 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5460 __be16 protocol)
5461 {
5462 struct e1000_context_desc *context_desc;
5463 struct e1000_buffer *buffer_info;
5464 unsigned int i;
5465 u32 cmd_length = 0;
5466 u16 ipcse = 0, mss;
5467 u8 ipcss, ipcso, tucss, tucso, hdr_len;
5468 int err;
5469
5470 if (!skb_is_gso(skb))
5471 return 0;
5472
5473 err = skb_cow_head(skb, 0);
5474 if (err < 0)
5475 return err;
5476
5477 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5478 mss = skb_shinfo(skb)->gso_size;
5479 if (protocol == htons(ETH_P_IP)) {
5480 struct iphdr *iph = ip_hdr(skb);
5481 iph->tot_len = 0;
5482 iph->check = 0;
5483 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5484 0, IPPROTO_TCP, 0);
5485 cmd_length = E1000_TXD_CMD_IP;
5486 ipcse = skb_transport_offset(skb) - 1;
5487 } else if (skb_is_gso_v6(skb)) {
5488 tcp_v6_gso_csum_prep(skb);
5489 ipcse = 0;
5490 }
5491 ipcss = skb_network_offset(skb);
5492 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5493 tucss = skb_transport_offset(skb);
5494 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5495
5496 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5497 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5498
5499 i = tx_ring->next_to_use;
5500 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5501 buffer_info = &tx_ring->buffer_info[i];
5502
5503 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5504 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5505 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5506 context_desc->upper_setup.tcp_fields.tucss = tucss;
5507 context_desc->upper_setup.tcp_fields.tucso = tucso;
5508 context_desc->upper_setup.tcp_fields.tucse = 0;
5509 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5510 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5511 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5512
5513 buffer_info->time_stamp = jiffies;
5514 buffer_info->next_to_watch = i;
5515
5516 i++;
5517 if (i == tx_ring->count)
5518 i = 0;
5519 tx_ring->next_to_use = i;
5520
5521 return 1;
5522 }
5523
e1000_tx_csum(struct e1000_ring * tx_ring,struct sk_buff * skb,__be16 protocol)5524 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5525 __be16 protocol)
5526 {
5527 struct e1000_adapter *adapter = tx_ring->adapter;
5528 struct e1000_context_desc *context_desc;
5529 struct e1000_buffer *buffer_info;
5530 unsigned int i;
5531 u8 css;
5532 u32 cmd_len = E1000_TXD_CMD_DEXT;
5533
5534 if (skb->ip_summed != CHECKSUM_PARTIAL)
5535 return false;
5536
5537 switch (protocol) {
5538 case cpu_to_be16(ETH_P_IP):
5539 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5540 cmd_len |= E1000_TXD_CMD_TCP;
5541 break;
5542 case cpu_to_be16(ETH_P_IPV6):
5543 /* XXX not handling all IPV6 headers */
5544 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5545 cmd_len |= E1000_TXD_CMD_TCP;
5546 break;
5547 default:
5548 if (unlikely(net_ratelimit()))
5549 e_warn("checksum_partial proto=%x!\n",
5550 be16_to_cpu(protocol));
5551 break;
5552 }
5553
5554 css = skb_checksum_start_offset(skb);
5555
5556 i = tx_ring->next_to_use;
5557 buffer_info = &tx_ring->buffer_info[i];
5558 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5559
5560 context_desc->lower_setup.ip_config = 0;
5561 context_desc->upper_setup.tcp_fields.tucss = css;
5562 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5563 context_desc->upper_setup.tcp_fields.tucse = 0;
5564 context_desc->tcp_seg_setup.data = 0;
5565 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5566
5567 buffer_info->time_stamp = jiffies;
5568 buffer_info->next_to_watch = i;
5569
5570 i++;
5571 if (i == tx_ring->count)
5572 i = 0;
5573 tx_ring->next_to_use = i;
5574
5575 return true;
5576 }
5577
e1000_tx_map(struct e1000_ring * tx_ring,struct sk_buff * skb,unsigned int first,unsigned int max_per_txd,unsigned int nr_frags)5578 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5579 unsigned int first, unsigned int max_per_txd,
5580 unsigned int nr_frags)
5581 {
5582 struct e1000_adapter *adapter = tx_ring->adapter;
5583 struct pci_dev *pdev = adapter->pdev;
5584 struct e1000_buffer *buffer_info;
5585 unsigned int len = skb_headlen(skb);
5586 unsigned int offset = 0, size, count = 0, i;
5587 unsigned int f, bytecount, segs;
5588
5589 i = tx_ring->next_to_use;
5590
5591 while (len) {
5592 buffer_info = &tx_ring->buffer_info[i];
5593 size = min(len, max_per_txd);
5594
5595 buffer_info->length = size;
5596 buffer_info->time_stamp = jiffies;
5597 buffer_info->next_to_watch = i;
5598 buffer_info->dma = dma_map_single(&pdev->dev,
5599 skb->data + offset,
5600 size, DMA_TO_DEVICE);
5601 buffer_info->mapped_as_page = false;
5602 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5603 goto dma_error;
5604
5605 len -= size;
5606 offset += size;
5607 count++;
5608
5609 if (len) {
5610 i++;
5611 if (i == tx_ring->count)
5612 i = 0;
5613 }
5614 }
5615
5616 for (f = 0; f < nr_frags; f++) {
5617 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5618
5619 len = skb_frag_size(frag);
5620 offset = 0;
5621
5622 while (len) {
5623 i++;
5624 if (i == tx_ring->count)
5625 i = 0;
5626
5627 buffer_info = &tx_ring->buffer_info[i];
5628 size = min(len, max_per_txd);
5629
5630 buffer_info->length = size;
5631 buffer_info->time_stamp = jiffies;
5632 buffer_info->next_to_watch = i;
5633 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5634 offset, size,
5635 DMA_TO_DEVICE);
5636 buffer_info->mapped_as_page = true;
5637 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5638 goto dma_error;
5639
5640 len -= size;
5641 offset += size;
5642 count++;
5643 }
5644 }
5645
5646 segs = skb_shinfo(skb)->gso_segs ? : 1;
5647 /* multiply data chunks by size of headers */
5648 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5649
5650 tx_ring->buffer_info[i].skb = skb;
5651 tx_ring->buffer_info[i].segs = segs;
5652 tx_ring->buffer_info[i].bytecount = bytecount;
5653 tx_ring->buffer_info[first].next_to_watch = i;
5654
5655 return count;
5656
5657 dma_error:
5658 dev_err(&pdev->dev, "Tx DMA map failed\n");
5659 buffer_info->dma = 0;
5660 if (count)
5661 count--;
5662
5663 while (count--) {
5664 if (i == 0)
5665 i += tx_ring->count;
5666 i--;
5667 buffer_info = &tx_ring->buffer_info[i];
5668 e1000_put_txbuf(tx_ring, buffer_info, true);
5669 }
5670
5671 return 0;
5672 }
5673
e1000_tx_queue(struct e1000_ring * tx_ring,int tx_flags,int count)5674 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5675 {
5676 struct e1000_adapter *adapter = tx_ring->adapter;
5677 struct e1000_tx_desc *tx_desc = NULL;
5678 struct e1000_buffer *buffer_info;
5679 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5680 unsigned int i;
5681
5682 if (tx_flags & E1000_TX_FLAGS_TSO) {
5683 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5684 E1000_TXD_CMD_TSE;
5685 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5686
5687 if (tx_flags & E1000_TX_FLAGS_IPV4)
5688 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5689 }
5690
5691 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5692 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5693 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5694 }
5695
5696 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5697 txd_lower |= E1000_TXD_CMD_VLE;
5698 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5699 }
5700
5701 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5702 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5703
5704 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5705 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5706 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5707 }
5708
5709 i = tx_ring->next_to_use;
5710
5711 do {
5712 buffer_info = &tx_ring->buffer_info[i];
5713 tx_desc = E1000_TX_DESC(*tx_ring, i);
5714 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5715 tx_desc->lower.data = cpu_to_le32(txd_lower |
5716 buffer_info->length);
5717 tx_desc->upper.data = cpu_to_le32(txd_upper);
5718
5719 i++;
5720 if (i == tx_ring->count)
5721 i = 0;
5722 } while (--count > 0);
5723
5724 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5725
5726 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5727 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5728 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5729
5730 /* Force memory writes to complete before letting h/w
5731 * know there are new descriptors to fetch. (Only
5732 * applicable for weak-ordered memory model archs,
5733 * such as IA-64).
5734 */
5735 wmb();
5736
5737 tx_ring->next_to_use = i;
5738 }
5739
5740 #define MINIMUM_DHCP_PACKET_SIZE 282
e1000_transfer_dhcp_info(struct e1000_adapter * adapter,struct sk_buff * skb)5741 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5742 struct sk_buff *skb)
5743 {
5744 struct e1000_hw *hw = &adapter->hw;
5745 u16 length, offset;
5746
5747 if (skb_vlan_tag_present(skb) &&
5748 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5749 (adapter->hw.mng_cookie.status &
5750 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5751 return 0;
5752
5753 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5754 return 0;
5755
5756 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5757 return 0;
5758
5759 {
5760 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5761 struct udphdr *udp;
5762
5763 if (ip->protocol != IPPROTO_UDP)
5764 return 0;
5765
5766 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5767 if (ntohs(udp->dest) != 67)
5768 return 0;
5769
5770 offset = (u8 *)udp + 8 - skb->data;
5771 length = skb->len - offset;
5772 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5773 }
5774
5775 return 0;
5776 }
5777
__e1000_maybe_stop_tx(struct e1000_ring * tx_ring,int size)5778 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5779 {
5780 struct e1000_adapter *adapter = tx_ring->adapter;
5781
5782 netif_stop_queue(adapter->netdev);
5783 /* Herbert's original patch had:
5784 * smp_mb__after_netif_stop_queue();
5785 * but since that doesn't exist yet, just open code it.
5786 */
5787 smp_mb();
5788
5789 /* We need to check again in a case another CPU has just
5790 * made room available.
5791 */
5792 if (e1000_desc_unused(tx_ring) < size)
5793 return -EBUSY;
5794
5795 /* A reprieve! */
5796 netif_start_queue(adapter->netdev);
5797 ++adapter->restart_queue;
5798 return 0;
5799 }
5800
e1000_maybe_stop_tx(struct e1000_ring * tx_ring,int size)5801 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5802 {
5803 BUG_ON(size > tx_ring->count);
5804
5805 if (e1000_desc_unused(tx_ring) >= size)
5806 return 0;
5807 return __e1000_maybe_stop_tx(tx_ring, size);
5808 }
5809
e1000_xmit_frame(struct sk_buff * skb,struct net_device * netdev)5810 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5811 struct net_device *netdev)
5812 {
5813 struct e1000_adapter *adapter = netdev_priv(netdev);
5814 struct e1000_ring *tx_ring = adapter->tx_ring;
5815 unsigned int first;
5816 unsigned int tx_flags = 0;
5817 unsigned int len = skb_headlen(skb);
5818 unsigned int nr_frags;
5819 unsigned int mss;
5820 int count = 0;
5821 int tso;
5822 unsigned int f;
5823 __be16 protocol = vlan_get_protocol(skb);
5824
5825 if (test_bit(__E1000_DOWN, &adapter->state)) {
5826 dev_kfree_skb_any(skb);
5827 return NETDEV_TX_OK;
5828 }
5829
5830 if (skb->len <= 0) {
5831 dev_kfree_skb_any(skb);
5832 return NETDEV_TX_OK;
5833 }
5834
5835 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5836 * pad skb in order to meet this minimum size requirement
5837 */
5838 if (skb_put_padto(skb, 17))
5839 return NETDEV_TX_OK;
5840
5841 mss = skb_shinfo(skb)->gso_size;
5842 if (mss) {
5843 u8 hdr_len;
5844
5845 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5846 * points to just header, pull a few bytes of payload from
5847 * frags into skb->data
5848 */
5849 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5850 /* we do this workaround for ES2LAN, but it is un-necessary,
5851 * avoiding it could save a lot of cycles
5852 */
5853 if (skb->data_len && (hdr_len == len)) {
5854 unsigned int pull_size;
5855
5856 pull_size = min_t(unsigned int, 4, skb->data_len);
5857 if (!__pskb_pull_tail(skb, pull_size)) {
5858 e_err("__pskb_pull_tail failed.\n");
5859 dev_kfree_skb_any(skb);
5860 return NETDEV_TX_OK;
5861 }
5862 len = skb_headlen(skb);
5863 }
5864 }
5865
5866 /* reserve a descriptor for the offload context */
5867 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5868 count++;
5869 count++;
5870
5871 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5872
5873 nr_frags = skb_shinfo(skb)->nr_frags;
5874 for (f = 0; f < nr_frags; f++)
5875 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5876 adapter->tx_fifo_limit);
5877
5878 if (adapter->hw.mac.tx_pkt_filtering)
5879 e1000_transfer_dhcp_info(adapter, skb);
5880
5881 /* need: count + 2 desc gap to keep tail from touching
5882 * head, otherwise try next time
5883 */
5884 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5885 return NETDEV_TX_BUSY;
5886
5887 if (skb_vlan_tag_present(skb)) {
5888 tx_flags |= E1000_TX_FLAGS_VLAN;
5889 tx_flags |= (skb_vlan_tag_get(skb) <<
5890 E1000_TX_FLAGS_VLAN_SHIFT);
5891 }
5892
5893 first = tx_ring->next_to_use;
5894
5895 tso = e1000_tso(tx_ring, skb, protocol);
5896 if (tso < 0) {
5897 dev_kfree_skb_any(skb);
5898 return NETDEV_TX_OK;
5899 }
5900
5901 if (tso)
5902 tx_flags |= E1000_TX_FLAGS_TSO;
5903 else if (e1000_tx_csum(tx_ring, skb, protocol))
5904 tx_flags |= E1000_TX_FLAGS_CSUM;
5905
5906 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5907 * 82571 hardware supports TSO capabilities for IPv6 as well...
5908 * no longer assume, we must.
5909 */
5910 if (protocol == htons(ETH_P_IP))
5911 tx_flags |= E1000_TX_FLAGS_IPV4;
5912
5913 if (unlikely(skb->no_fcs))
5914 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5915
5916 /* if count is 0 then mapping error has occurred */
5917 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5918 nr_frags);
5919 if (count) {
5920 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5921 (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5922 if (!adapter->tx_hwtstamp_skb) {
5923 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5924 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5925 adapter->tx_hwtstamp_skb = skb_get(skb);
5926 adapter->tx_hwtstamp_start = jiffies;
5927 schedule_work(&adapter->tx_hwtstamp_work);
5928 } else {
5929 adapter->tx_hwtstamp_skipped++;
5930 }
5931 }
5932
5933 skb_tx_timestamp(skb);
5934
5935 netdev_sent_queue(netdev, skb->len);
5936 e1000_tx_queue(tx_ring, tx_flags, count);
5937 /* Make sure there is space in the ring for the next send. */
5938 e1000_maybe_stop_tx(tx_ring,
5939 (MAX_SKB_FRAGS *
5940 DIV_ROUND_UP(PAGE_SIZE,
5941 adapter->tx_fifo_limit) + 2));
5942
5943 if (!netdev_xmit_more() ||
5944 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5945 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5946 e1000e_update_tdt_wa(tx_ring,
5947 tx_ring->next_to_use);
5948 else
5949 writel(tx_ring->next_to_use, tx_ring->tail);
5950 }
5951 } else {
5952 dev_kfree_skb_any(skb);
5953 tx_ring->buffer_info[first].time_stamp = 0;
5954 tx_ring->next_to_use = first;
5955 }
5956
5957 return NETDEV_TX_OK;
5958 }
5959
5960 /**
5961 * e1000_tx_timeout - Respond to a Tx Hang
5962 * @netdev: network interface device structure
5963 * @txqueue: index of the hung queue (unused)
5964 **/
e1000_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)5965 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5966 {
5967 struct e1000_adapter *adapter = netdev_priv(netdev);
5968
5969 /* Do the reset outside of interrupt context */
5970 adapter->tx_timeout_count++;
5971 schedule_work(&adapter->reset_task);
5972 }
5973
e1000_reset_task(struct work_struct * work)5974 static void e1000_reset_task(struct work_struct *work)
5975 {
5976 struct e1000_adapter *adapter;
5977 adapter = container_of(work, struct e1000_adapter, reset_task);
5978
5979 rtnl_lock();
5980 /* don't run the task if already down */
5981 if (test_bit(__E1000_DOWN, &adapter->state)) {
5982 rtnl_unlock();
5983 return;
5984 }
5985
5986 if (!(adapter->flags & FLAG_RESTART_NOW)) {
5987 e1000e_dump(adapter);
5988 e_err("Reset adapter unexpectedly\n");
5989 }
5990 e1000e_reinit_locked(adapter);
5991 rtnl_unlock();
5992 }
5993
5994 /**
5995 * e1000e_get_stats64 - Get System Network Statistics
5996 * @netdev: network interface device structure
5997 * @stats: rtnl_link_stats64 pointer
5998 *
5999 * Returns the address of the device statistics structure.
6000 **/
e1000e_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6001 void e1000e_get_stats64(struct net_device *netdev,
6002 struct rtnl_link_stats64 *stats)
6003 {
6004 struct e1000_adapter *adapter = netdev_priv(netdev);
6005
6006 spin_lock(&adapter->stats64_lock);
6007 e1000e_update_stats(adapter);
6008 /* Fill out the OS statistics structure */
6009 stats->rx_bytes = adapter->stats.gorc;
6010 stats->rx_packets = adapter->stats.gprc;
6011 stats->tx_bytes = adapter->stats.gotc;
6012 stats->tx_packets = adapter->stats.gptc;
6013 stats->multicast = adapter->stats.mprc;
6014 stats->collisions = adapter->stats.colc;
6015
6016 /* Rx Errors */
6017
6018 /* RLEC on some newer hardware can be incorrect so build
6019 * our own version based on RUC and ROC
6020 */
6021 stats->rx_errors = adapter->stats.rxerrc +
6022 adapter->stats.crcerrs + adapter->stats.algnerrc +
6023 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6024 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6025 stats->rx_crc_errors = adapter->stats.crcerrs;
6026 stats->rx_frame_errors = adapter->stats.algnerrc;
6027 stats->rx_missed_errors = adapter->stats.mpc;
6028
6029 /* Tx Errors */
6030 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6031 stats->tx_aborted_errors = adapter->stats.ecol;
6032 stats->tx_window_errors = adapter->stats.latecol;
6033 stats->tx_carrier_errors = adapter->stats.tncrs;
6034
6035 /* Tx Dropped needs to be maintained elsewhere */
6036
6037 spin_unlock(&adapter->stats64_lock);
6038 }
6039
6040 /**
6041 * e1000_change_mtu - Change the Maximum Transfer Unit
6042 * @netdev: network interface device structure
6043 * @new_mtu: new value for maximum frame size
6044 *
6045 * Returns 0 on success, negative on failure
6046 **/
e1000_change_mtu(struct net_device * netdev,int new_mtu)6047 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6048 {
6049 struct e1000_adapter *adapter = netdev_priv(netdev);
6050 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6051
6052 /* Jumbo frame support */
6053 if ((new_mtu > ETH_DATA_LEN) &&
6054 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6055 e_err("Jumbo Frames not supported.\n");
6056 return -EINVAL;
6057 }
6058
6059 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6060 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6061 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6062 (new_mtu > ETH_DATA_LEN)) {
6063 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6064 return -EINVAL;
6065 }
6066
6067 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6068 usleep_range(1000, 1100);
6069 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6070 adapter->max_frame_size = max_frame;
6071 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6072 netdev->mtu, new_mtu);
6073 netdev->mtu = new_mtu;
6074
6075 pm_runtime_get_sync(netdev->dev.parent);
6076
6077 if (netif_running(netdev))
6078 e1000e_down(adapter, true);
6079
6080 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6081 * means we reserve 2 more, this pushes us to allocate from the next
6082 * larger slab size.
6083 * i.e. RXBUFFER_2048 --> size-4096 slab
6084 * However with the new *_jumbo_rx* routines, jumbo receives will use
6085 * fragmented skbs
6086 */
6087
6088 if (max_frame <= 2048)
6089 adapter->rx_buffer_len = 2048;
6090 else
6091 adapter->rx_buffer_len = 4096;
6092
6093 /* adjust allocation if LPE protects us, and we aren't using SBP */
6094 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6095 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6096
6097 if (netif_running(netdev))
6098 e1000e_up(adapter);
6099 else
6100 e1000e_reset(adapter);
6101
6102 pm_runtime_put_sync(netdev->dev.parent);
6103
6104 clear_bit(__E1000_RESETTING, &adapter->state);
6105
6106 return 0;
6107 }
6108
e1000_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6109 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6110 int cmd)
6111 {
6112 struct e1000_adapter *adapter = netdev_priv(netdev);
6113 struct mii_ioctl_data *data = if_mii(ifr);
6114
6115 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6116 return -EOPNOTSUPP;
6117
6118 switch (cmd) {
6119 case SIOCGMIIPHY:
6120 data->phy_id = adapter->hw.phy.addr;
6121 break;
6122 case SIOCGMIIREG:
6123 e1000_phy_read_status(adapter);
6124
6125 switch (data->reg_num & 0x1F) {
6126 case MII_BMCR:
6127 data->val_out = adapter->phy_regs.bmcr;
6128 break;
6129 case MII_BMSR:
6130 data->val_out = adapter->phy_regs.bmsr;
6131 break;
6132 case MII_PHYSID1:
6133 data->val_out = (adapter->hw.phy.id >> 16);
6134 break;
6135 case MII_PHYSID2:
6136 data->val_out = (adapter->hw.phy.id & 0xFFFF);
6137 break;
6138 case MII_ADVERTISE:
6139 data->val_out = adapter->phy_regs.advertise;
6140 break;
6141 case MII_LPA:
6142 data->val_out = adapter->phy_regs.lpa;
6143 break;
6144 case MII_EXPANSION:
6145 data->val_out = adapter->phy_regs.expansion;
6146 break;
6147 case MII_CTRL1000:
6148 data->val_out = adapter->phy_regs.ctrl1000;
6149 break;
6150 case MII_STAT1000:
6151 data->val_out = adapter->phy_regs.stat1000;
6152 break;
6153 case MII_ESTATUS:
6154 data->val_out = adapter->phy_regs.estatus;
6155 break;
6156 default:
6157 return -EIO;
6158 }
6159 break;
6160 case SIOCSMIIREG:
6161 default:
6162 return -EOPNOTSUPP;
6163 }
6164 return 0;
6165 }
6166
6167 /**
6168 * e1000e_hwtstamp_set - control hardware time stamping
6169 * @netdev: network interface device structure
6170 * @ifr: interface request
6171 *
6172 * Outgoing time stamping can be enabled and disabled. Play nice and
6173 * disable it when requested, although it shouldn't cause any overhead
6174 * when no packet needs it. At most one packet in the queue may be
6175 * marked for time stamping, otherwise it would be impossible to tell
6176 * for sure to which packet the hardware time stamp belongs.
6177 *
6178 * Incoming time stamping has to be configured via the hardware filters.
6179 * Not all combinations are supported, in particular event type has to be
6180 * specified. Matching the kind of event packet is not supported, with the
6181 * exception of "all V2 events regardless of level 2 or 4".
6182 **/
e1000e_hwtstamp_set(struct net_device * netdev,struct ifreq * ifr)6183 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6184 {
6185 struct e1000_adapter *adapter = netdev_priv(netdev);
6186 struct hwtstamp_config config;
6187 int ret_val;
6188
6189 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6190 return -EFAULT;
6191
6192 ret_val = e1000e_config_hwtstamp(adapter, &config);
6193 if (ret_val)
6194 return ret_val;
6195
6196 switch (config.rx_filter) {
6197 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6198 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6199 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6200 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6201 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6202 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6203 /* With V2 type filters which specify a Sync or Delay Request,
6204 * Path Delay Request/Response messages are also time stamped
6205 * by hardware so notify the caller the requested packets plus
6206 * some others are time stamped.
6207 */
6208 config.rx_filter = HWTSTAMP_FILTER_SOME;
6209 break;
6210 default:
6211 break;
6212 }
6213
6214 return copy_to_user(ifr->ifr_data, &config,
6215 sizeof(config)) ? -EFAULT : 0;
6216 }
6217
e1000e_hwtstamp_get(struct net_device * netdev,struct ifreq * ifr)6218 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6219 {
6220 struct e1000_adapter *adapter = netdev_priv(netdev);
6221
6222 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6223 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6224 }
6225
e1000_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6226 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6227 {
6228 switch (cmd) {
6229 case SIOCGMIIPHY:
6230 case SIOCGMIIREG:
6231 case SIOCSMIIREG:
6232 return e1000_mii_ioctl(netdev, ifr, cmd);
6233 case SIOCSHWTSTAMP:
6234 return e1000e_hwtstamp_set(netdev, ifr);
6235 case SIOCGHWTSTAMP:
6236 return e1000e_hwtstamp_get(netdev, ifr);
6237 default:
6238 return -EOPNOTSUPP;
6239 }
6240 }
6241
e1000_init_phy_wakeup(struct e1000_adapter * adapter,u32 wufc)6242 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6243 {
6244 struct e1000_hw *hw = &adapter->hw;
6245 u32 i, mac_reg, wuc;
6246 u16 phy_reg, wuc_enable;
6247 int retval;
6248
6249 /* copy MAC RARs to PHY RARs */
6250 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6251
6252 retval = hw->phy.ops.acquire(hw);
6253 if (retval) {
6254 e_err("Could not acquire PHY\n");
6255 return retval;
6256 }
6257
6258 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6259 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6260 if (retval)
6261 goto release;
6262
6263 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6264 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6265 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6266 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6267 (u16)(mac_reg & 0xFFFF));
6268 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6269 (u16)((mac_reg >> 16) & 0xFFFF));
6270 }
6271
6272 /* configure PHY Rx Control register */
6273 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6274 mac_reg = er32(RCTL);
6275 if (mac_reg & E1000_RCTL_UPE)
6276 phy_reg |= BM_RCTL_UPE;
6277 if (mac_reg & E1000_RCTL_MPE)
6278 phy_reg |= BM_RCTL_MPE;
6279 phy_reg &= ~(BM_RCTL_MO_MASK);
6280 if (mac_reg & E1000_RCTL_MO_3)
6281 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6282 << BM_RCTL_MO_SHIFT);
6283 if (mac_reg & E1000_RCTL_BAM)
6284 phy_reg |= BM_RCTL_BAM;
6285 if (mac_reg & E1000_RCTL_PMCF)
6286 phy_reg |= BM_RCTL_PMCF;
6287 mac_reg = er32(CTRL);
6288 if (mac_reg & E1000_CTRL_RFCE)
6289 phy_reg |= BM_RCTL_RFCE;
6290 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6291
6292 wuc = E1000_WUC_PME_EN;
6293 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6294 wuc |= E1000_WUC_APME;
6295
6296 /* enable PHY wakeup in MAC register */
6297 ew32(WUFC, wufc);
6298 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6299 E1000_WUC_PME_STATUS | wuc));
6300
6301 /* configure and enable PHY wakeup in PHY registers */
6302 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6303 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6304
6305 /* activate PHY wakeup */
6306 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6307 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6308 if (retval)
6309 e_err("Could not set PHY Host Wakeup bit\n");
6310 release:
6311 hw->phy.ops.release(hw);
6312
6313 return retval;
6314 }
6315
e1000e_flush_lpic(struct pci_dev * pdev)6316 static void e1000e_flush_lpic(struct pci_dev *pdev)
6317 {
6318 struct net_device *netdev = pci_get_drvdata(pdev);
6319 struct e1000_adapter *adapter = netdev_priv(netdev);
6320 struct e1000_hw *hw = &adapter->hw;
6321 u32 ret_val;
6322
6323 pm_runtime_get_sync(netdev->dev.parent);
6324
6325 ret_val = hw->phy.ops.acquire(hw);
6326 if (ret_val)
6327 goto fl_out;
6328
6329 pr_info("EEE TX LPI TIMER: %08X\n",
6330 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6331
6332 hw->phy.ops.release(hw);
6333
6334 fl_out:
6335 pm_runtime_put_sync(netdev->dev.parent);
6336 }
6337
6338 /* S0ix implementation */
e1000e_s0ix_entry_flow(struct e1000_adapter * adapter)6339 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6340 {
6341 struct e1000_hw *hw = &adapter->hw;
6342 u32 mac_data;
6343 u16 phy_data;
6344
6345 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6346 hw->mac.type >= e1000_pch_adp) {
6347 /* Request ME configure the device for S0ix */
6348 mac_data = er32(H2ME);
6349 mac_data |= E1000_H2ME_START_DPG;
6350 mac_data &= ~E1000_H2ME_EXIT_DPG;
6351 ew32(H2ME, mac_data);
6352 } else {
6353 /* Request driver configure the device to S0ix */
6354 /* Disable the periodic inband message,
6355 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6356 */
6357 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6358 phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6359 phy_data |= BIT(10);
6360 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6361
6362 /* Make sure we don't exit K1 every time a new packet arrives
6363 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6364 */
6365 e1e_rphy(hw, I217_CGFREG, &phy_data);
6366 phy_data |= BIT(5);
6367 e1e_wphy(hw, I217_CGFREG, phy_data);
6368
6369 /* Change the MAC/PHY interface to SMBus
6370 * Force the SMBus in PHY page769_23[0] = 1
6371 * Force the SMBus in MAC CTRL_EXT[11] = 1
6372 */
6373 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6374 phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6375 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6376 mac_data = er32(CTRL_EXT);
6377 mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6378 ew32(CTRL_EXT, mac_data);
6379
6380 /* DFT control: PHY bit: page769_20[0] = 1
6381 * page769_20[7] - PHY PLL stop
6382 * page769_20[8] - PHY go to the electrical idle
6383 * page769_20[9] - PHY serdes disable
6384 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6385 */
6386 e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6387 phy_data |= BIT(0);
6388 phy_data |= BIT(7);
6389 phy_data |= BIT(8);
6390 phy_data |= BIT(9);
6391 e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6392
6393 mac_data = er32(EXTCNF_CTRL);
6394 mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6395 ew32(EXTCNF_CTRL, mac_data);
6396
6397 /* Enable the Dynamic Power Gating in the MAC */
6398 mac_data = er32(FEXTNVM7);
6399 mac_data |= BIT(22);
6400 ew32(FEXTNVM7, mac_data);
6401
6402 /* Disable disconnected cable conditioning for Power Gating */
6403 mac_data = er32(DPGFR);
6404 mac_data |= BIT(2);
6405 ew32(DPGFR, mac_data);
6406
6407 /* Don't wake from dynamic Power Gating with clock request */
6408 mac_data = er32(FEXTNVM12);
6409 mac_data |= BIT(12);
6410 ew32(FEXTNVM12, mac_data);
6411
6412 /* Ungate PGCB clock */
6413 mac_data = er32(FEXTNVM9);
6414 mac_data &= ~BIT(28);
6415 ew32(FEXTNVM9, mac_data);
6416
6417 /* Enable K1 off to enable mPHY Power Gating */
6418 mac_data = er32(FEXTNVM6);
6419 mac_data |= BIT(31);
6420 ew32(FEXTNVM6, mac_data);
6421
6422 /* Enable mPHY power gating for any link and speed */
6423 mac_data = er32(FEXTNVM8);
6424 mac_data |= BIT(9);
6425 ew32(FEXTNVM8, mac_data);
6426
6427 /* Enable the Dynamic Clock Gating in the DMA and MAC */
6428 mac_data = er32(CTRL_EXT);
6429 mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6430 ew32(CTRL_EXT, mac_data);
6431
6432 /* No MAC DPG gating SLP_S0 in modern standby
6433 * Switch the logic of the lanphypc to use PMC counter
6434 */
6435 mac_data = er32(FEXTNVM5);
6436 mac_data |= BIT(7);
6437 ew32(FEXTNVM5, mac_data);
6438 }
6439
6440 /* Disable the time synchronization clock */
6441 mac_data = er32(FEXTNVM7);
6442 mac_data |= BIT(31);
6443 mac_data &= ~BIT(0);
6444 ew32(FEXTNVM7, mac_data);
6445
6446 /* Dynamic Power Gating Enable */
6447 mac_data = er32(CTRL_EXT);
6448 mac_data |= BIT(3);
6449 ew32(CTRL_EXT, mac_data);
6450
6451 /* Check MAC Tx/Rx packet buffer pointers.
6452 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6453 * pending traffic indication that would prevent power gating.
6454 */
6455 mac_data = er32(TDFH);
6456 if (mac_data)
6457 ew32(TDFH, 0);
6458 mac_data = er32(TDFT);
6459 if (mac_data)
6460 ew32(TDFT, 0);
6461 mac_data = er32(TDFHS);
6462 if (mac_data)
6463 ew32(TDFHS, 0);
6464 mac_data = er32(TDFTS);
6465 if (mac_data)
6466 ew32(TDFTS, 0);
6467 mac_data = er32(TDFPC);
6468 if (mac_data)
6469 ew32(TDFPC, 0);
6470 mac_data = er32(RDFH);
6471 if (mac_data)
6472 ew32(RDFH, 0);
6473 mac_data = er32(RDFT);
6474 if (mac_data)
6475 ew32(RDFT, 0);
6476 mac_data = er32(RDFHS);
6477 if (mac_data)
6478 ew32(RDFHS, 0);
6479 mac_data = er32(RDFTS);
6480 if (mac_data)
6481 ew32(RDFTS, 0);
6482 mac_data = er32(RDFPC);
6483 if (mac_data)
6484 ew32(RDFPC, 0);
6485 }
6486
e1000e_s0ix_exit_flow(struct e1000_adapter * adapter)6487 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6488 {
6489 struct e1000_hw *hw = &adapter->hw;
6490 bool firmware_bug = false;
6491 u32 mac_data;
6492 u16 phy_data;
6493 u32 i = 0;
6494
6495 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6496 hw->mac.type >= e1000_pch_adp) {
6497 /* Keep the GPT clock enabled for CSME */
6498 mac_data = er32(FEXTNVM);
6499 mac_data |= BIT(3);
6500 ew32(FEXTNVM, mac_data);
6501 /* Request ME unconfigure the device from S0ix */
6502 mac_data = er32(H2ME);
6503 mac_data &= ~E1000_H2ME_START_DPG;
6504 mac_data |= E1000_H2ME_EXIT_DPG;
6505 ew32(H2ME, mac_data);
6506
6507 /* Poll up to 2.5 seconds for ME to unconfigure DPG.
6508 * If this takes more than 1 second, show a warning indicating a
6509 * firmware bug
6510 */
6511 while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6512 if (i > 100 && !firmware_bug)
6513 firmware_bug = true;
6514
6515 if (i++ == 250) {
6516 e_dbg("Timeout (firmware bug): %d msec\n",
6517 i * 10);
6518 break;
6519 }
6520
6521 usleep_range(10000, 11000);
6522 }
6523 if (firmware_bug)
6524 e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6525 i * 10);
6526 else
6527 e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6528 } else {
6529 /* Request driver unconfigure the device from S0ix */
6530
6531 /* Disable the Dynamic Power Gating in the MAC */
6532 mac_data = er32(FEXTNVM7);
6533 mac_data &= 0xFFBFFFFF;
6534 ew32(FEXTNVM7, mac_data);
6535
6536 /* Disable mPHY power gating for any link and speed */
6537 mac_data = er32(FEXTNVM8);
6538 mac_data &= ~BIT(9);
6539 ew32(FEXTNVM8, mac_data);
6540
6541 /* Disable K1 off */
6542 mac_data = er32(FEXTNVM6);
6543 mac_data &= ~BIT(31);
6544 ew32(FEXTNVM6, mac_data);
6545
6546 /* Disable Ungate PGCB clock */
6547 mac_data = er32(FEXTNVM9);
6548 mac_data |= BIT(28);
6549 ew32(FEXTNVM9, mac_data);
6550
6551 /* Cancel not waking from dynamic
6552 * Power Gating with clock request
6553 */
6554 mac_data = er32(FEXTNVM12);
6555 mac_data &= ~BIT(12);
6556 ew32(FEXTNVM12, mac_data);
6557
6558 /* Cancel disable disconnected cable conditioning
6559 * for Power Gating
6560 */
6561 mac_data = er32(DPGFR);
6562 mac_data &= ~BIT(2);
6563 ew32(DPGFR, mac_data);
6564
6565 /* Disable the Dynamic Clock Gating in the DMA and MAC */
6566 mac_data = er32(CTRL_EXT);
6567 mac_data &= 0xFFF7FFFF;
6568 ew32(CTRL_EXT, mac_data);
6569
6570 /* Revert the lanphypc logic to use the internal Gbe counter
6571 * and not the PMC counter
6572 */
6573 mac_data = er32(FEXTNVM5);
6574 mac_data &= 0xFFFFFF7F;
6575 ew32(FEXTNVM5, mac_data);
6576
6577 /* Enable the periodic inband message,
6578 * Request PCIe clock in K1 page770_17[10:9] =01b
6579 */
6580 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6581 phy_data &= 0xFBFF;
6582 phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6583 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6584
6585 /* Return back configuration
6586 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6587 */
6588 e1e_rphy(hw, I217_CGFREG, &phy_data);
6589 phy_data &= 0xFFDF;
6590 e1e_wphy(hw, I217_CGFREG, phy_data);
6591
6592 /* Change the MAC/PHY interface to Kumeran
6593 * Unforce the SMBus in PHY page769_23[0] = 0
6594 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6595 */
6596 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6597 phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6598 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6599 mac_data = er32(CTRL_EXT);
6600 mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6601 ew32(CTRL_EXT, mac_data);
6602 }
6603
6604 /* Disable Dynamic Power Gating */
6605 mac_data = er32(CTRL_EXT);
6606 mac_data &= 0xFFFFFFF7;
6607 ew32(CTRL_EXT, mac_data);
6608
6609 /* Enable the time synchronization clock */
6610 mac_data = er32(FEXTNVM7);
6611 mac_data &= ~BIT(31);
6612 mac_data |= BIT(0);
6613 ew32(FEXTNVM7, mac_data);
6614 }
6615
e1000e_pm_freeze(struct device * dev)6616 static int e1000e_pm_freeze(struct device *dev)
6617 {
6618 struct net_device *netdev = dev_get_drvdata(dev);
6619 struct e1000_adapter *adapter = netdev_priv(netdev);
6620 bool present;
6621
6622 rtnl_lock();
6623
6624 present = netif_device_present(netdev);
6625 netif_device_detach(netdev);
6626
6627 if (present && netif_running(netdev)) {
6628 int count = E1000_CHECK_RESET_COUNT;
6629
6630 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6631 usleep_range(10000, 11000);
6632
6633 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6634
6635 /* Quiesce the device without resetting the hardware */
6636 e1000e_down(adapter, false);
6637 e1000_free_irq(adapter);
6638 }
6639 rtnl_unlock();
6640
6641 e1000e_reset_interrupt_capability(adapter);
6642
6643 /* Allow time for pending master requests to run */
6644 e1000e_disable_pcie_master(&adapter->hw);
6645
6646 return 0;
6647 }
6648
__e1000_shutdown(struct pci_dev * pdev,bool runtime)6649 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6650 {
6651 struct net_device *netdev = pci_get_drvdata(pdev);
6652 struct e1000_adapter *adapter = netdev_priv(netdev);
6653 struct e1000_hw *hw = &adapter->hw;
6654 u32 ctrl, ctrl_ext, rctl, status, wufc;
6655 int retval = 0;
6656
6657 /* Runtime suspend should only enable wakeup for link changes */
6658 if (runtime)
6659 wufc = E1000_WUFC_LNKC;
6660 else if (device_may_wakeup(&pdev->dev))
6661 wufc = adapter->wol;
6662 else
6663 wufc = 0;
6664
6665 status = er32(STATUS);
6666 if (status & E1000_STATUS_LU)
6667 wufc &= ~E1000_WUFC_LNKC;
6668
6669 if (wufc) {
6670 e1000_setup_rctl(adapter);
6671 e1000e_set_rx_mode(netdev);
6672
6673 /* turn on all-multi mode if wake on multicast is enabled */
6674 if (wufc & E1000_WUFC_MC) {
6675 rctl = er32(RCTL);
6676 rctl |= E1000_RCTL_MPE;
6677 ew32(RCTL, rctl);
6678 }
6679
6680 ctrl = er32(CTRL);
6681 ctrl |= E1000_CTRL_ADVD3WUC;
6682 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6683 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6684 ew32(CTRL, ctrl);
6685
6686 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6687 adapter->hw.phy.media_type ==
6688 e1000_media_type_internal_serdes) {
6689 /* keep the laser running in D3 */
6690 ctrl_ext = er32(CTRL_EXT);
6691 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6692 ew32(CTRL_EXT, ctrl_ext);
6693 }
6694
6695 if (!runtime)
6696 e1000e_power_up_phy(adapter);
6697
6698 if (adapter->flags & FLAG_IS_ICH)
6699 e1000_suspend_workarounds_ich8lan(&adapter->hw);
6700
6701 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6702 /* enable wakeup by the PHY */
6703 retval = e1000_init_phy_wakeup(adapter, wufc);
6704 if (retval)
6705 return retval;
6706 } else {
6707 /* enable wakeup by the MAC */
6708 ew32(WUFC, wufc);
6709 ew32(WUC, E1000_WUC_PME_EN);
6710 }
6711 } else {
6712 ew32(WUC, 0);
6713 ew32(WUFC, 0);
6714
6715 e1000_power_down_phy(adapter);
6716 }
6717
6718 if (adapter->hw.phy.type == e1000_phy_igp_3) {
6719 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6720 } else if (hw->mac.type >= e1000_pch_lpt) {
6721 if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6722 /* ULP does not support wake from unicast, multicast
6723 * or broadcast.
6724 */
6725 retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6726
6727 if (retval)
6728 return retval;
6729 }
6730
6731 /* Ensure that the appropriate bits are set in LPI_CTRL
6732 * for EEE in Sx
6733 */
6734 if ((hw->phy.type >= e1000_phy_i217) &&
6735 adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6736 u16 lpi_ctrl = 0;
6737
6738 retval = hw->phy.ops.acquire(hw);
6739 if (!retval) {
6740 retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6741 &lpi_ctrl);
6742 if (!retval) {
6743 if (adapter->eee_advert &
6744 hw->dev_spec.ich8lan.eee_lp_ability &
6745 I82579_EEE_100_SUPPORTED)
6746 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6747 if (adapter->eee_advert &
6748 hw->dev_spec.ich8lan.eee_lp_ability &
6749 I82579_EEE_1000_SUPPORTED)
6750 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6751
6752 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6753 lpi_ctrl);
6754 }
6755 }
6756 hw->phy.ops.release(hw);
6757 }
6758
6759 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6760 * would have already happened in close and is redundant.
6761 */
6762 e1000e_release_hw_control(adapter);
6763
6764 pci_clear_master(pdev);
6765
6766 /* The pci-e switch on some quad port adapters will report a
6767 * correctable error when the MAC transitions from D0 to D3. To
6768 * prevent this we need to mask off the correctable errors on the
6769 * downstream port of the pci-e switch.
6770 *
6771 * We don't have the associated upstream bridge while assigning
6772 * the PCI device into guest. For example, the KVM on power is
6773 * one of the cases.
6774 */
6775 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6776 struct pci_dev *us_dev = pdev->bus->self;
6777 u16 devctl;
6778
6779 if (!us_dev)
6780 return 0;
6781
6782 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6783 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6784 (devctl & ~PCI_EXP_DEVCTL_CERE));
6785
6786 pci_save_state(pdev);
6787 pci_prepare_to_sleep(pdev);
6788
6789 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6790 }
6791
6792 return 0;
6793 }
6794
6795 /**
6796 * __e1000e_disable_aspm - Disable ASPM states
6797 * @pdev: pointer to PCI device struct
6798 * @state: bit-mask of ASPM states to disable
6799 * @locked: indication if this context holds pci_bus_sem locked.
6800 *
6801 * Some devices *must* have certain ASPM states disabled per hardware errata.
6802 **/
__e1000e_disable_aspm(struct pci_dev * pdev,u16 state,int locked)6803 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6804 {
6805 struct pci_dev *parent = pdev->bus->self;
6806 u16 aspm_dis_mask = 0;
6807 u16 pdev_aspmc, parent_aspmc;
6808
6809 switch (state) {
6810 case PCIE_LINK_STATE_L0S:
6811 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6812 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6813 fallthrough; /* can't have L1 without L0s */
6814 case PCIE_LINK_STATE_L1:
6815 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6816 break;
6817 default:
6818 return;
6819 }
6820
6821 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6822 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6823
6824 if (parent) {
6825 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6826 &parent_aspmc);
6827 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6828 }
6829
6830 /* Nothing to do if the ASPM states to be disabled already are */
6831 if (!(pdev_aspmc & aspm_dis_mask) &&
6832 (!parent || !(parent_aspmc & aspm_dis_mask)))
6833 return;
6834
6835 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6836 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6837 "L0s" : "",
6838 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6839 "L1" : "");
6840
6841 #ifdef CONFIG_PCIEASPM
6842 if (locked)
6843 pci_disable_link_state_locked(pdev, state);
6844 else
6845 pci_disable_link_state(pdev, state);
6846
6847 /* Double-check ASPM control. If not disabled by the above, the
6848 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6849 * not enabled); override by writing PCI config space directly.
6850 */
6851 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6852 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6853
6854 if (!(aspm_dis_mask & pdev_aspmc))
6855 return;
6856 #endif
6857
6858 /* Both device and parent should have the same ASPM setting.
6859 * Disable ASPM in downstream component first and then upstream.
6860 */
6861 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6862
6863 if (parent)
6864 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6865 aspm_dis_mask);
6866 }
6867
6868 /**
6869 * e1000e_disable_aspm - Disable ASPM states.
6870 * @pdev: pointer to PCI device struct
6871 * @state: bit-mask of ASPM states to disable
6872 *
6873 * This function acquires the pci_bus_sem!
6874 * Some devices *must* have certain ASPM states disabled per hardware errata.
6875 **/
e1000e_disable_aspm(struct pci_dev * pdev,u16 state)6876 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6877 {
6878 __e1000e_disable_aspm(pdev, state, 0);
6879 }
6880
6881 /**
6882 * e1000e_disable_aspm_locked - Disable ASPM states.
6883 * @pdev: pointer to PCI device struct
6884 * @state: bit-mask of ASPM states to disable
6885 *
6886 * This function must be called with pci_bus_sem acquired!
6887 * Some devices *must* have certain ASPM states disabled per hardware errata.
6888 **/
e1000e_disable_aspm_locked(struct pci_dev * pdev,u16 state)6889 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6890 {
6891 __e1000e_disable_aspm(pdev, state, 1);
6892 }
6893
e1000e_pm_thaw(struct device * dev)6894 static int e1000e_pm_thaw(struct device *dev)
6895 {
6896 struct net_device *netdev = dev_get_drvdata(dev);
6897 struct e1000_adapter *adapter = netdev_priv(netdev);
6898 int rc = 0;
6899
6900 e1000e_set_interrupt_capability(adapter);
6901
6902 rtnl_lock();
6903 if (netif_running(netdev)) {
6904 rc = e1000_request_irq(adapter);
6905 if (rc)
6906 goto err_irq;
6907
6908 e1000e_up(adapter);
6909 }
6910
6911 netif_device_attach(netdev);
6912 err_irq:
6913 rtnl_unlock();
6914
6915 return rc;
6916 }
6917
__e1000_resume(struct pci_dev * pdev)6918 static int __e1000_resume(struct pci_dev *pdev)
6919 {
6920 struct net_device *netdev = pci_get_drvdata(pdev);
6921 struct e1000_adapter *adapter = netdev_priv(netdev);
6922 struct e1000_hw *hw = &adapter->hw;
6923 u16 aspm_disable_flag = 0;
6924
6925 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6926 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6927 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6928 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6929 if (aspm_disable_flag)
6930 e1000e_disable_aspm(pdev, aspm_disable_flag);
6931
6932 pci_set_master(pdev);
6933
6934 if (hw->mac.type >= e1000_pch2lan)
6935 e1000_resume_workarounds_pchlan(&adapter->hw);
6936
6937 e1000e_power_up_phy(adapter);
6938
6939 /* report the system wakeup cause from S3/S4 */
6940 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6941 u16 phy_data;
6942
6943 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6944 if (phy_data) {
6945 e_info("PHY Wakeup cause - %s\n",
6946 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6947 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6948 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6949 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6950 phy_data & E1000_WUS_LNKC ?
6951 "Link Status Change" : "other");
6952 }
6953 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6954 } else {
6955 u32 wus = er32(WUS);
6956
6957 if (wus) {
6958 e_info("MAC Wakeup cause - %s\n",
6959 wus & E1000_WUS_EX ? "Unicast Packet" :
6960 wus & E1000_WUS_MC ? "Multicast Packet" :
6961 wus & E1000_WUS_BC ? "Broadcast Packet" :
6962 wus & E1000_WUS_MAG ? "Magic Packet" :
6963 wus & E1000_WUS_LNKC ? "Link Status Change" :
6964 "other");
6965 }
6966 ew32(WUS, ~0);
6967 }
6968
6969 e1000e_reset(adapter);
6970
6971 e1000_init_manageability_pt(adapter);
6972
6973 /* If the controller has AMT, do not set DRV_LOAD until the interface
6974 * is up. For all other cases, let the f/w know that the h/w is now
6975 * under the control of the driver.
6976 */
6977 if (!(adapter->flags & FLAG_HAS_AMT))
6978 e1000e_get_hw_control(adapter);
6979
6980 return 0;
6981 }
6982
e1000e_pm_prepare(struct device * dev)6983 static __maybe_unused int e1000e_pm_prepare(struct device *dev)
6984 {
6985 return pm_runtime_suspended(dev) &&
6986 pm_suspend_via_firmware();
6987 }
6988
e1000e_pm_suspend(struct device * dev)6989 static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6990 {
6991 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6992 struct e1000_adapter *adapter = netdev_priv(netdev);
6993 struct pci_dev *pdev = to_pci_dev(dev);
6994 int rc;
6995
6996 e1000e_flush_lpic(pdev);
6997
6998 e1000e_pm_freeze(dev);
6999
7000 rc = __e1000_shutdown(pdev, false);
7001 if (rc) {
7002 e1000e_pm_thaw(dev);
7003 } else {
7004 /* Introduce S0ix implementation */
7005 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
7006 e1000e_s0ix_entry_flow(adapter);
7007 }
7008
7009 return rc;
7010 }
7011
e1000e_pm_resume(struct device * dev)7012 static __maybe_unused int e1000e_pm_resume(struct device *dev)
7013 {
7014 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
7015 struct e1000_adapter *adapter = netdev_priv(netdev);
7016 struct pci_dev *pdev = to_pci_dev(dev);
7017 int rc;
7018
7019 /* Introduce S0ix implementation */
7020 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
7021 e1000e_s0ix_exit_flow(adapter);
7022
7023 rc = __e1000_resume(pdev);
7024 if (rc)
7025 return rc;
7026
7027 return e1000e_pm_thaw(dev);
7028 }
7029
e1000e_pm_runtime_idle(struct device * dev)7030 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7031 {
7032 struct net_device *netdev = dev_get_drvdata(dev);
7033 struct e1000_adapter *adapter = netdev_priv(netdev);
7034 u16 eee_lp;
7035
7036 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7037
7038 if (!e1000e_has_link(adapter)) {
7039 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7040 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7041 }
7042
7043 return -EBUSY;
7044 }
7045
e1000e_pm_runtime_resume(struct device * dev)7046 static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
7047 {
7048 struct pci_dev *pdev = to_pci_dev(dev);
7049 struct net_device *netdev = pci_get_drvdata(pdev);
7050 struct e1000_adapter *adapter = netdev_priv(netdev);
7051 int rc;
7052
7053 rc = __e1000_resume(pdev);
7054 if (rc)
7055 return rc;
7056
7057 if (netdev->flags & IFF_UP)
7058 e1000e_up(adapter);
7059
7060 return rc;
7061 }
7062
e1000e_pm_runtime_suspend(struct device * dev)7063 static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7064 {
7065 struct pci_dev *pdev = to_pci_dev(dev);
7066 struct net_device *netdev = pci_get_drvdata(pdev);
7067 struct e1000_adapter *adapter = netdev_priv(netdev);
7068
7069 if (netdev->flags & IFF_UP) {
7070 int count = E1000_CHECK_RESET_COUNT;
7071
7072 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7073 usleep_range(10000, 11000);
7074
7075 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7076
7077 /* Down the device without resetting the hardware */
7078 e1000e_down(adapter, false);
7079 }
7080
7081 if (__e1000_shutdown(pdev, true)) {
7082 e1000e_pm_runtime_resume(dev);
7083 return -EBUSY;
7084 }
7085
7086 return 0;
7087 }
7088
e1000_shutdown(struct pci_dev * pdev)7089 static void e1000_shutdown(struct pci_dev *pdev)
7090 {
7091 e1000e_flush_lpic(pdev);
7092
7093 e1000e_pm_freeze(&pdev->dev);
7094
7095 __e1000_shutdown(pdev, false);
7096 }
7097
7098 #ifdef CONFIG_NET_POLL_CONTROLLER
7099
e1000_intr_msix(int __always_unused irq,void * data)7100 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7101 {
7102 struct net_device *netdev = data;
7103 struct e1000_adapter *adapter = netdev_priv(netdev);
7104
7105 if (adapter->msix_entries) {
7106 int vector, msix_irq;
7107
7108 vector = 0;
7109 msix_irq = adapter->msix_entries[vector].vector;
7110 if (disable_hardirq(msix_irq))
7111 e1000_intr_msix_rx(msix_irq, netdev);
7112 enable_irq(msix_irq);
7113
7114 vector++;
7115 msix_irq = adapter->msix_entries[vector].vector;
7116 if (disable_hardirq(msix_irq))
7117 e1000_intr_msix_tx(msix_irq, netdev);
7118 enable_irq(msix_irq);
7119
7120 vector++;
7121 msix_irq = adapter->msix_entries[vector].vector;
7122 if (disable_hardirq(msix_irq))
7123 e1000_msix_other(msix_irq, netdev);
7124 enable_irq(msix_irq);
7125 }
7126
7127 return IRQ_HANDLED;
7128 }
7129
7130 /**
7131 * e1000_netpoll
7132 * @netdev: network interface device structure
7133 *
7134 * Polling 'interrupt' - used by things like netconsole to send skbs
7135 * without having to re-enable interrupts. It's not called while
7136 * the interrupt routine is executing.
7137 */
e1000_netpoll(struct net_device * netdev)7138 static void e1000_netpoll(struct net_device *netdev)
7139 {
7140 struct e1000_adapter *adapter = netdev_priv(netdev);
7141
7142 switch (adapter->int_mode) {
7143 case E1000E_INT_MODE_MSIX:
7144 e1000_intr_msix(adapter->pdev->irq, netdev);
7145 break;
7146 case E1000E_INT_MODE_MSI:
7147 if (disable_hardirq(adapter->pdev->irq))
7148 e1000_intr_msi(adapter->pdev->irq, netdev);
7149 enable_irq(adapter->pdev->irq);
7150 break;
7151 default: /* E1000E_INT_MODE_LEGACY */
7152 if (disable_hardirq(adapter->pdev->irq))
7153 e1000_intr(adapter->pdev->irq, netdev);
7154 enable_irq(adapter->pdev->irq);
7155 break;
7156 }
7157 }
7158 #endif
7159
7160 /**
7161 * e1000_io_error_detected - called when PCI error is detected
7162 * @pdev: Pointer to PCI device
7163 * @state: The current pci connection state
7164 *
7165 * This function is called after a PCI bus error affecting
7166 * this device has been detected.
7167 */
e1000_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)7168 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7169 pci_channel_state_t state)
7170 {
7171 e1000e_pm_freeze(&pdev->dev);
7172
7173 if (state == pci_channel_io_perm_failure)
7174 return PCI_ERS_RESULT_DISCONNECT;
7175
7176 pci_disable_device(pdev);
7177
7178 /* Request a slot reset. */
7179 return PCI_ERS_RESULT_NEED_RESET;
7180 }
7181
7182 /**
7183 * e1000_io_slot_reset - called after the pci bus has been reset.
7184 * @pdev: Pointer to PCI device
7185 *
7186 * Restart the card from scratch, as if from a cold-boot. Implementation
7187 * resembles the first-half of the e1000e_pm_resume routine.
7188 */
e1000_io_slot_reset(struct pci_dev * pdev)7189 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7190 {
7191 struct net_device *netdev = pci_get_drvdata(pdev);
7192 struct e1000_adapter *adapter = netdev_priv(netdev);
7193 struct e1000_hw *hw = &adapter->hw;
7194 u16 aspm_disable_flag = 0;
7195 int err;
7196 pci_ers_result_t result;
7197
7198 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7199 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7200 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7201 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7202 if (aspm_disable_flag)
7203 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7204
7205 err = pci_enable_device_mem(pdev);
7206 if (err) {
7207 dev_err(&pdev->dev,
7208 "Cannot re-enable PCI device after reset.\n");
7209 result = PCI_ERS_RESULT_DISCONNECT;
7210 } else {
7211 pdev->state_saved = true;
7212 pci_restore_state(pdev);
7213 pci_set_master(pdev);
7214
7215 pci_enable_wake(pdev, PCI_D3hot, 0);
7216 pci_enable_wake(pdev, PCI_D3cold, 0);
7217
7218 e1000e_reset(adapter);
7219 ew32(WUS, ~0);
7220 result = PCI_ERS_RESULT_RECOVERED;
7221 }
7222
7223 return result;
7224 }
7225
7226 /**
7227 * e1000_io_resume - called when traffic can start flowing again.
7228 * @pdev: Pointer to PCI device
7229 *
7230 * This callback is called when the error recovery driver tells us that
7231 * its OK to resume normal operation. Implementation resembles the
7232 * second-half of the e1000e_pm_resume routine.
7233 */
e1000_io_resume(struct pci_dev * pdev)7234 static void e1000_io_resume(struct pci_dev *pdev)
7235 {
7236 struct net_device *netdev = pci_get_drvdata(pdev);
7237 struct e1000_adapter *adapter = netdev_priv(netdev);
7238
7239 e1000_init_manageability_pt(adapter);
7240
7241 e1000e_pm_thaw(&pdev->dev);
7242
7243 /* If the controller has AMT, do not set DRV_LOAD until the interface
7244 * is up. For all other cases, let the f/w know that the h/w is now
7245 * under the control of the driver.
7246 */
7247 if (!(adapter->flags & FLAG_HAS_AMT))
7248 e1000e_get_hw_control(adapter);
7249 }
7250
e1000_print_device_info(struct e1000_adapter * adapter)7251 static void e1000_print_device_info(struct e1000_adapter *adapter)
7252 {
7253 struct e1000_hw *hw = &adapter->hw;
7254 struct net_device *netdev = adapter->netdev;
7255 u32 ret_val;
7256 u8 pba_str[E1000_PBANUM_LENGTH];
7257
7258 /* print bus type/speed/width info */
7259 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7260 /* bus width */
7261 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7262 "Width x1"),
7263 /* MAC address */
7264 netdev->dev_addr);
7265 e_info("Intel(R) PRO/%s Network Connection\n",
7266 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7267 ret_val = e1000_read_pba_string_generic(hw, pba_str,
7268 E1000_PBANUM_LENGTH);
7269 if (ret_val)
7270 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
7271 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7272 hw->mac.type, hw->phy.type, pba_str);
7273 }
7274
e1000_eeprom_checks(struct e1000_adapter * adapter)7275 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7276 {
7277 struct e1000_hw *hw = &adapter->hw;
7278 int ret_val;
7279 u16 buf = 0;
7280
7281 if (hw->mac.type != e1000_82573)
7282 return;
7283
7284 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7285 le16_to_cpus(&buf);
7286 if (!ret_val && (!(buf & BIT(0)))) {
7287 /* Deep Smart Power Down (DSPD) */
7288 dev_warn(&adapter->pdev->dev,
7289 "Warning: detected DSPD enabled in EEPROM\n");
7290 }
7291 }
7292
e1000_fix_features(struct net_device * netdev,netdev_features_t features)7293 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7294 netdev_features_t features)
7295 {
7296 struct e1000_adapter *adapter = netdev_priv(netdev);
7297 struct e1000_hw *hw = &adapter->hw;
7298
7299 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7300 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7301 features &= ~NETIF_F_RXFCS;
7302
7303 /* Since there is no support for separate Rx/Tx vlan accel
7304 * enable/disable make sure Tx flag is always in same state as Rx.
7305 */
7306 if (features & NETIF_F_HW_VLAN_CTAG_RX)
7307 features |= NETIF_F_HW_VLAN_CTAG_TX;
7308 else
7309 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7310
7311 return features;
7312 }
7313
e1000_set_features(struct net_device * netdev,netdev_features_t features)7314 static int e1000_set_features(struct net_device *netdev,
7315 netdev_features_t features)
7316 {
7317 struct e1000_adapter *adapter = netdev_priv(netdev);
7318 netdev_features_t changed = features ^ netdev->features;
7319
7320 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7321 adapter->flags |= FLAG_TSO_FORCE;
7322
7323 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7324 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7325 NETIF_F_RXALL)))
7326 return 0;
7327
7328 if (changed & NETIF_F_RXFCS) {
7329 if (features & NETIF_F_RXFCS) {
7330 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7331 } else {
7332 /* We need to take it back to defaults, which might mean
7333 * stripping is still disabled at the adapter level.
7334 */
7335 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7336 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7337 else
7338 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7339 }
7340 }
7341
7342 netdev->features = features;
7343
7344 if (netif_running(netdev))
7345 e1000e_reinit_locked(adapter);
7346 else
7347 e1000e_reset(adapter);
7348
7349 return 1;
7350 }
7351
7352 static const struct net_device_ops e1000e_netdev_ops = {
7353 .ndo_open = e1000e_open,
7354 .ndo_stop = e1000e_close,
7355 .ndo_start_xmit = e1000_xmit_frame,
7356 .ndo_get_stats64 = e1000e_get_stats64,
7357 .ndo_set_rx_mode = e1000e_set_rx_mode,
7358 .ndo_set_mac_address = e1000_set_mac,
7359 .ndo_change_mtu = e1000_change_mtu,
7360 .ndo_eth_ioctl = e1000_ioctl,
7361 .ndo_tx_timeout = e1000_tx_timeout,
7362 .ndo_validate_addr = eth_validate_addr,
7363
7364 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
7365 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
7366 #ifdef CONFIG_NET_POLL_CONTROLLER
7367 .ndo_poll_controller = e1000_netpoll,
7368 #endif
7369 .ndo_set_features = e1000_set_features,
7370 .ndo_fix_features = e1000_fix_features,
7371 .ndo_features_check = passthru_features_check,
7372 };
7373
7374 /**
7375 * e1000_probe - Device Initialization Routine
7376 * @pdev: PCI device information struct
7377 * @ent: entry in e1000_pci_tbl
7378 *
7379 * Returns 0 on success, negative on failure
7380 *
7381 * e1000_probe initializes an adapter identified by a pci_dev structure.
7382 * The OS initialization, configuring of the adapter private structure,
7383 * and a hardware reset occur.
7384 **/
e1000_probe(struct pci_dev * pdev,const struct pci_device_id * ent)7385 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7386 {
7387 struct net_device *netdev;
7388 struct e1000_adapter *adapter;
7389 struct e1000_hw *hw;
7390 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7391 resource_size_t mmio_start, mmio_len;
7392 resource_size_t flash_start, flash_len;
7393 static int cards_found;
7394 u16 aspm_disable_flag = 0;
7395 u16 eeprom_data = 0;
7396 u16 eeprom_apme_mask = E1000_EEPROM_APME;
7397 int bars, i, err;
7398 s32 ret_val = 0;
7399
7400 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7401 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7402 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7403 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7404 if (aspm_disable_flag)
7405 e1000e_disable_aspm(pdev, aspm_disable_flag);
7406
7407 err = pci_enable_device_mem(pdev);
7408 if (err)
7409 return err;
7410
7411 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7412 if (err) {
7413 dev_err(&pdev->dev,
7414 "No usable DMA configuration, aborting\n");
7415 goto err_dma;
7416 }
7417
7418 bars = pci_select_bars(pdev, IORESOURCE_MEM);
7419 err = pci_request_selected_regions_exclusive(pdev, bars,
7420 e1000e_driver_name);
7421 if (err)
7422 goto err_pci_reg;
7423
7424 /* AER (Advanced Error Reporting) hooks */
7425 pci_enable_pcie_error_reporting(pdev);
7426
7427 pci_set_master(pdev);
7428 /* PCI config space info */
7429 err = pci_save_state(pdev);
7430 if (err)
7431 goto err_alloc_etherdev;
7432
7433 err = -ENOMEM;
7434 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7435 if (!netdev)
7436 goto err_alloc_etherdev;
7437
7438 SET_NETDEV_DEV(netdev, &pdev->dev);
7439
7440 netdev->irq = pdev->irq;
7441
7442 pci_set_drvdata(pdev, netdev);
7443 adapter = netdev_priv(netdev);
7444 hw = &adapter->hw;
7445 adapter->netdev = netdev;
7446 adapter->pdev = pdev;
7447 adapter->ei = ei;
7448 adapter->pba = ei->pba;
7449 adapter->flags = ei->flags;
7450 adapter->flags2 = ei->flags2;
7451 adapter->hw.adapter = adapter;
7452 adapter->hw.mac.type = ei->mac;
7453 adapter->max_hw_frame_size = ei->max_hw_frame_size;
7454 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7455
7456 mmio_start = pci_resource_start(pdev, 0);
7457 mmio_len = pci_resource_len(pdev, 0);
7458
7459 err = -EIO;
7460 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7461 if (!adapter->hw.hw_addr)
7462 goto err_ioremap;
7463
7464 if ((adapter->flags & FLAG_HAS_FLASH) &&
7465 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7466 (hw->mac.type < e1000_pch_spt)) {
7467 flash_start = pci_resource_start(pdev, 1);
7468 flash_len = pci_resource_len(pdev, 1);
7469 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7470 if (!adapter->hw.flash_address)
7471 goto err_flashmap;
7472 }
7473
7474 /* Set default EEE advertisement */
7475 if (adapter->flags2 & FLAG2_HAS_EEE)
7476 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7477
7478 /* construct the net_device struct */
7479 netdev->netdev_ops = &e1000e_netdev_ops;
7480 e1000e_set_ethtool_ops(netdev);
7481 netdev->watchdog_timeo = 5 * HZ;
7482 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7483 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7484
7485 netdev->mem_start = mmio_start;
7486 netdev->mem_end = mmio_start + mmio_len;
7487
7488 adapter->bd_number = cards_found++;
7489
7490 e1000e_check_options(adapter);
7491
7492 /* setup adapter struct */
7493 err = e1000_sw_init(adapter);
7494 if (err)
7495 goto err_sw_init;
7496
7497 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7498 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7499 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7500
7501 err = ei->get_variants(adapter);
7502 if (err)
7503 goto err_hw_init;
7504
7505 if ((adapter->flags & FLAG_IS_ICH) &&
7506 (adapter->flags & FLAG_READ_ONLY_NVM) &&
7507 (hw->mac.type < e1000_pch_spt))
7508 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7509
7510 hw->mac.ops.get_bus_info(&adapter->hw);
7511
7512 adapter->hw.phy.autoneg_wait_to_complete = 0;
7513
7514 /* Copper options */
7515 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7516 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7517 adapter->hw.phy.disable_polarity_correction = 0;
7518 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7519 }
7520
7521 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7522 dev_info(&pdev->dev,
7523 "PHY reset is blocked due to SOL/IDER session.\n");
7524
7525 /* Set initial default active device features */
7526 netdev->features = (NETIF_F_SG |
7527 NETIF_F_HW_VLAN_CTAG_RX |
7528 NETIF_F_HW_VLAN_CTAG_TX |
7529 NETIF_F_TSO |
7530 NETIF_F_TSO6 |
7531 NETIF_F_RXHASH |
7532 NETIF_F_RXCSUM |
7533 NETIF_F_HW_CSUM);
7534
7535 /* Set user-changeable features (subset of all device features) */
7536 netdev->hw_features = netdev->features;
7537 netdev->hw_features |= NETIF_F_RXFCS;
7538 netdev->priv_flags |= IFF_SUPP_NOFCS;
7539 netdev->hw_features |= NETIF_F_RXALL;
7540
7541 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7542 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7543
7544 netdev->vlan_features |= (NETIF_F_SG |
7545 NETIF_F_TSO |
7546 NETIF_F_TSO6 |
7547 NETIF_F_HW_CSUM);
7548
7549 netdev->priv_flags |= IFF_UNICAST_FLT;
7550
7551 netdev->features |= NETIF_F_HIGHDMA;
7552 netdev->vlan_features |= NETIF_F_HIGHDMA;
7553
7554 /* MTU range: 68 - max_hw_frame_size */
7555 netdev->min_mtu = ETH_MIN_MTU;
7556 netdev->max_mtu = adapter->max_hw_frame_size -
7557 (VLAN_ETH_HLEN + ETH_FCS_LEN);
7558
7559 if (e1000e_enable_mng_pass_thru(&adapter->hw))
7560 adapter->flags |= FLAG_MNG_PT_ENABLED;
7561
7562 /* before reading the NVM, reset the controller to
7563 * put the device in a known good starting state
7564 */
7565 adapter->hw.mac.ops.reset_hw(&adapter->hw);
7566
7567 /* systems with ASPM and others may see the checksum fail on the first
7568 * attempt. Let's give it a few tries
7569 */
7570 for (i = 0;; i++) {
7571 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7572 break;
7573 if (i == 2) {
7574 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7575 err = -EIO;
7576 goto err_eeprom;
7577 }
7578 }
7579
7580 e1000_eeprom_checks(adapter);
7581
7582 /* copy the MAC address */
7583 if (e1000e_read_mac_addr(&adapter->hw))
7584 dev_err(&pdev->dev,
7585 "NVM Read Error while reading MAC address\n");
7586
7587 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7588
7589 if (!is_valid_ether_addr(netdev->dev_addr)) {
7590 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7591 netdev->dev_addr);
7592 err = -EIO;
7593 goto err_eeprom;
7594 }
7595
7596 timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7597 timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7598
7599 INIT_WORK(&adapter->reset_task, e1000_reset_task);
7600 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7601 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7602 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7603 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7604
7605 /* Initialize link parameters. User can change them with ethtool */
7606 adapter->hw.mac.autoneg = 1;
7607 adapter->fc_autoneg = true;
7608 adapter->hw.fc.requested_mode = e1000_fc_default;
7609 adapter->hw.fc.current_mode = e1000_fc_default;
7610 adapter->hw.phy.autoneg_advertised = 0x2f;
7611
7612 /* Initial Wake on LAN setting - If APM wake is enabled in
7613 * the EEPROM, enable the ACPI Magic Packet filter
7614 */
7615 if (adapter->flags & FLAG_APME_IN_WUC) {
7616 /* APME bit in EEPROM is mapped to WUC.APME */
7617 eeprom_data = er32(WUC);
7618 eeprom_apme_mask = E1000_WUC_APME;
7619 if ((hw->mac.type > e1000_ich10lan) &&
7620 (eeprom_data & E1000_WUC_PHY_WAKE))
7621 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7622 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7623 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7624 (adapter->hw.bus.func == 1))
7625 ret_val = e1000_read_nvm(&adapter->hw,
7626 NVM_INIT_CONTROL3_PORT_B,
7627 1, &eeprom_data);
7628 else
7629 ret_val = e1000_read_nvm(&adapter->hw,
7630 NVM_INIT_CONTROL3_PORT_A,
7631 1, &eeprom_data);
7632 }
7633
7634 /* fetch WoL from EEPROM */
7635 if (ret_val)
7636 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7637 else if (eeprom_data & eeprom_apme_mask)
7638 adapter->eeprom_wol |= E1000_WUFC_MAG;
7639
7640 /* now that we have the eeprom settings, apply the special cases
7641 * where the eeprom may be wrong or the board simply won't support
7642 * wake on lan on a particular port
7643 */
7644 if (!(adapter->flags & FLAG_HAS_WOL))
7645 adapter->eeprom_wol = 0;
7646
7647 /* initialize the wol settings based on the eeprom settings */
7648 adapter->wol = adapter->eeprom_wol;
7649
7650 /* make sure adapter isn't asleep if manageability is enabled */
7651 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7652 (hw->mac.ops.check_mng_mode(hw)))
7653 device_wakeup_enable(&pdev->dev);
7654
7655 /* save off EEPROM version number */
7656 ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7657
7658 if (ret_val) {
7659 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7660 adapter->eeprom_vers = 0;
7661 }
7662
7663 /* init PTP hardware clock */
7664 e1000e_ptp_init(adapter);
7665
7666 /* reset the hardware with the new settings */
7667 e1000e_reset(adapter);
7668
7669 /* If the controller has AMT, do not set DRV_LOAD until the interface
7670 * is up. For all other cases, let the f/w know that the h/w is now
7671 * under the control of the driver.
7672 */
7673 if (!(adapter->flags & FLAG_HAS_AMT))
7674 e1000e_get_hw_control(adapter);
7675
7676 if (hw->mac.type >= e1000_pch_cnp)
7677 adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7678
7679 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7680 err = register_netdev(netdev);
7681 if (err)
7682 goto err_register;
7683
7684 /* carrier off reporting is important to ethtool even BEFORE open */
7685 netif_carrier_off(netdev);
7686
7687 e1000_print_device_info(adapter);
7688
7689 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7690
7691 if (pci_dev_run_wake(pdev) && hw->mac.type != e1000_pch_cnp)
7692 pm_runtime_put_noidle(&pdev->dev);
7693
7694 return 0;
7695
7696 err_register:
7697 if (!(adapter->flags & FLAG_HAS_AMT))
7698 e1000e_release_hw_control(adapter);
7699 err_eeprom:
7700 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7701 e1000_phy_hw_reset(&adapter->hw);
7702 err_hw_init:
7703 kfree(adapter->tx_ring);
7704 kfree(adapter->rx_ring);
7705 err_sw_init:
7706 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7707 iounmap(adapter->hw.flash_address);
7708 e1000e_reset_interrupt_capability(adapter);
7709 err_flashmap:
7710 iounmap(adapter->hw.hw_addr);
7711 err_ioremap:
7712 free_netdev(netdev);
7713 err_alloc_etherdev:
7714 pci_disable_pcie_error_reporting(pdev);
7715 pci_release_mem_regions(pdev);
7716 err_pci_reg:
7717 err_dma:
7718 pci_disable_device(pdev);
7719 return err;
7720 }
7721
7722 /**
7723 * e1000_remove - Device Removal Routine
7724 * @pdev: PCI device information struct
7725 *
7726 * e1000_remove is called by the PCI subsystem to alert the driver
7727 * that it should release a PCI device. This could be caused by a
7728 * Hot-Plug event, or because the driver is going to be removed from
7729 * memory.
7730 **/
e1000_remove(struct pci_dev * pdev)7731 static void e1000_remove(struct pci_dev *pdev)
7732 {
7733 struct net_device *netdev = pci_get_drvdata(pdev);
7734 struct e1000_adapter *adapter = netdev_priv(netdev);
7735
7736 e1000e_ptp_remove(adapter);
7737
7738 /* The timers may be rescheduled, so explicitly disable them
7739 * from being rescheduled.
7740 */
7741 set_bit(__E1000_DOWN, &adapter->state);
7742 del_timer_sync(&adapter->watchdog_timer);
7743 del_timer_sync(&adapter->phy_info_timer);
7744
7745 cancel_work_sync(&adapter->reset_task);
7746 cancel_work_sync(&adapter->watchdog_task);
7747 cancel_work_sync(&adapter->downshift_task);
7748 cancel_work_sync(&adapter->update_phy_task);
7749 cancel_work_sync(&adapter->print_hang_task);
7750
7751 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7752 cancel_work_sync(&adapter->tx_hwtstamp_work);
7753 if (adapter->tx_hwtstamp_skb) {
7754 dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7755 adapter->tx_hwtstamp_skb = NULL;
7756 }
7757 }
7758
7759 unregister_netdev(netdev);
7760
7761 if (pci_dev_run_wake(pdev))
7762 pm_runtime_get_noresume(&pdev->dev);
7763
7764 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7765 * would have already happened in close and is redundant.
7766 */
7767 e1000e_release_hw_control(adapter);
7768
7769 e1000e_reset_interrupt_capability(adapter);
7770 kfree(adapter->tx_ring);
7771 kfree(adapter->rx_ring);
7772
7773 iounmap(adapter->hw.hw_addr);
7774 if ((adapter->hw.flash_address) &&
7775 (adapter->hw.mac.type < e1000_pch_spt))
7776 iounmap(adapter->hw.flash_address);
7777 pci_release_mem_regions(pdev);
7778
7779 free_netdev(netdev);
7780
7781 /* AER disable */
7782 pci_disable_pcie_error_reporting(pdev);
7783
7784 pci_disable_device(pdev);
7785 }
7786
7787 /* PCI Error Recovery (ERS) */
7788 static const struct pci_error_handlers e1000_err_handler = {
7789 .error_detected = e1000_io_error_detected,
7790 .slot_reset = e1000_io_slot_reset,
7791 .resume = e1000_io_resume,
7792 };
7793
7794 static const struct pci_device_id e1000_pci_tbl[] = {
7795 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7796 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7797 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7798 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7799 board_82571 },
7800 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7801 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7802 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7803 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7804 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7805
7806 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7807 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7808 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7809 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7810
7811 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7812 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7813 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7814
7815 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7816 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7817 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7818
7819 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7820 board_80003es2lan },
7821 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7822 board_80003es2lan },
7823 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7824 board_80003es2lan },
7825 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7826 board_80003es2lan },
7827
7828 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7829 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7830 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7831 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7832 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7833 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7834 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7835 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7836
7837 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7838 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7839 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7840 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7841 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7842 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7843 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7844 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7845 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7846
7847 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7848 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7849 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7850
7851 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7852 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7853 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7854
7855 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7856 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7857 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7858 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7859
7860 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7861 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7862
7863 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7864 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7865 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7866 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7867 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7868 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7869 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7870 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7871 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7872 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7873 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7874 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7875 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7876 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7877 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7878 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7879 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7880 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7881 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7882 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7883 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7884 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7885 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7886 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7887 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7888 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7889 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7890 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7891 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7892 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7893 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7894 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7895 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7896 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7897 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7898 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7899 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7900 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7901 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7902 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7903 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7904 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7905 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7906 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7907 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7908 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_adp },
7909 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_adp },
7910 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_adp },
7911 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_adp },
7912 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_adp },
7913 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_adp },
7914 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_adp },
7915 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_adp },
7916
7917 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7918 };
7919 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7920
7921 static const struct dev_pm_ops e1000_pm_ops = {
7922 #ifdef CONFIG_PM_SLEEP
7923 .prepare = e1000e_pm_prepare,
7924 .suspend = e1000e_pm_suspend,
7925 .resume = e1000e_pm_resume,
7926 .freeze = e1000e_pm_freeze,
7927 .thaw = e1000e_pm_thaw,
7928 .poweroff = e1000e_pm_suspend,
7929 .restore = e1000e_pm_resume,
7930 #endif
7931 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7932 e1000e_pm_runtime_idle)
7933 };
7934
7935 /* PCI Device API Driver */
7936 static struct pci_driver e1000_driver = {
7937 .name = e1000e_driver_name,
7938 .id_table = e1000_pci_tbl,
7939 .probe = e1000_probe,
7940 .remove = e1000_remove,
7941 .driver = {
7942 .pm = &e1000_pm_ops,
7943 },
7944 .shutdown = e1000_shutdown,
7945 .err_handler = &e1000_err_handler
7946 };
7947
7948 /**
7949 * e1000_init_module - Driver Registration Routine
7950 *
7951 * e1000_init_module is the first routine called when the driver is
7952 * loaded. All it does is register with the PCI subsystem.
7953 **/
e1000_init_module(void)7954 static int __init e1000_init_module(void)
7955 {
7956 pr_info("Intel(R) PRO/1000 Network Driver\n");
7957 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7958
7959 return pci_register_driver(&e1000_driver);
7960 }
7961 module_init(e1000_init_module);
7962
7963 /**
7964 * e1000_exit_module - Driver Exit Cleanup Routine
7965 *
7966 * e1000_exit_module is called just before the driver is removed
7967 * from memory.
7968 **/
e1000_exit_module(void)7969 static void __exit e1000_exit_module(void)
7970 {
7971 pci_unregister_driver(&e1000_driver);
7972 }
7973 module_exit(e1000_exit_module);
7974
7975 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7976 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7977 MODULE_LICENSE("GPL v2");
7978
7979 /* netdev.c */
7980