1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  * 82579LM Gigabit Network Connection
56  * 82579V Gigabit Network Connection
57  */
58 
59 #include "e1000.h"
60 
61 #define ICH_FLASH_GFPREG		0x0000
62 #define ICH_FLASH_HSFSTS		0x0004
63 #define ICH_FLASH_HSFCTL		0x0006
64 #define ICH_FLASH_FADDR			0x0008
65 #define ICH_FLASH_FDATA0		0x0010
66 #define ICH_FLASH_PR0			0x0074
67 
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT	500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT	10
73 
74 #define ICH_CYCLE_READ			0
75 #define ICH_CYCLE_WRITE			2
76 #define ICH_CYCLE_ERASE			3
77 
78 #define FLASH_GFPREG_BASE_MASK		0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT		12
80 
81 #define ICH_FLASH_SEG_SIZE_256		256
82 #define ICH_FLASH_SEG_SIZE_4K		4096
83 #define ICH_FLASH_SEG_SIZE_8K		8192
84 #define ICH_FLASH_SEG_SIZE_64K		65536
85 
86 
87 #define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID		0x00008000
90 
91 #define E1000_ICH_MNG_IAMT_MODE		0x2
92 
93 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
94 				 (ID_LED_DEF1_OFF2 <<  8) | \
95 				 (ID_LED_DEF1_ON2  <<  4) | \
96 				 (ID_LED_DEF1_DEF2))
97 
98 #define E1000_ICH_NVM_SIG_WORD		0x13
99 #define E1000_ICH_NVM_SIG_MASK		0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
101 #define E1000_ICH_NVM_SIG_VALUE         0x80
102 
103 #define E1000_ICH8_LAN_INIT_TIMEOUT	1500
104 
105 #define E1000_FEXTNVM_SW_CONFIG		1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107 
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
111 
112 #define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
113 
114 #define E1000_ICH_RAR_ENTRIES		7
115 
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 			   ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
121 
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
125 
126 #define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
127 
128 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
129 
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR            PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK       0x007F
133 #define HV_SMB_ADDR_PEC_EN     0x0200
134 #define HV_SMB_ADDR_VALID      0x0080
135 
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL		PHY_REG(770, 17)
138 
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL				PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK		0x6000
142 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
143 
144 /* EMI Registers */
145 #define I82579_EMI_ADDR         0x10
146 #define I82579_EMI_DATA         0x11
147 #define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
148 #define I82579_MSE_THRESHOLD    0x084F	/* Mean Square Error Threshold */
149 #define I82579_MSE_LINK_DOWN    0x2411	/* MSE count before dropping link */
150 
151 /* Strapping Option Register - RO */
152 #define E1000_STRAP                     0x0000C
153 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
154 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
155 
156 /* OEM Bits Phy Register */
157 #define HV_OEM_BITS            PHY_REG(768, 25)
158 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
159 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
160 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
161 
162 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
163 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
164 
165 /* KMRN Mode Control */
166 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
167 #define HV_KMRN_MDIO_SLOW      0x0400
168 
169 /* KMRN FIFO Control and Status */
170 #define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
171 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
172 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
173 
174 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
175 /* Offset 04h HSFSTS */
176 union ich8_hws_flash_status {
177 	struct ich8_hsfsts {
178 		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
179 		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
180 		u16 dael       :1; /* bit 2 Direct Access error Log */
181 		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
182 		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
183 		u16 reserved1  :2; /* bit 13:6 Reserved */
184 		u16 reserved2  :6; /* bit 13:6 Reserved */
185 		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
186 		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
187 	} hsf_status;
188 	u16 regval;
189 };
190 
191 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
192 /* Offset 06h FLCTL */
193 union ich8_hws_flash_ctrl {
194 	struct ich8_hsflctl {
195 		u16 flcgo      :1;   /* 0 Flash Cycle Go */
196 		u16 flcycle    :2;   /* 2:1 Flash Cycle */
197 		u16 reserved   :5;   /* 7:3 Reserved  */
198 		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
199 		u16 flockdn    :6;   /* 15:10 Reserved */
200 	} hsf_ctrl;
201 	u16 regval;
202 };
203 
204 /* ICH Flash Region Access Permissions */
205 union ich8_hws_flash_regacc {
206 	struct ich8_flracc {
207 		u32 grra      :8; /* 0:7 GbE region Read Access */
208 		u32 grwa      :8; /* 8:15 GbE region Write Access */
209 		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
210 		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
211 	} hsf_flregacc;
212 	u16 regval;
213 };
214 
215 /* ICH Flash Protected Region */
216 union ich8_flash_protected_range {
217 	struct ich8_pr {
218 		u32 base:13;     /* 0:12 Protected Range Base */
219 		u32 reserved1:2; /* 13:14 Reserved */
220 		u32 rpe:1;       /* 15 Read Protection Enable */
221 		u32 limit:13;    /* 16:28 Protected Range Limit */
222 		u32 reserved2:2; /* 29:30 Reserved */
223 		u32 wpe:1;       /* 31 Write Protection Enable */
224 	} range;
225 	u32 regval;
226 };
227 
228 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
229 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
230 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
231 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
232 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
233 						u32 offset, u8 byte);
234 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
235 					 u8 *data);
236 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
237 					 u16 *data);
238 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
239 					 u8 size, u16 *data);
240 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
241 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
242 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
243 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
244 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
245 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
246 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
247 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
248 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
249 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
250 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
251 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
252 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
253 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
254 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
255 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
256 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
257 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
258 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
259 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
260 
__er16flash(struct e1000_hw * hw,unsigned long reg)261 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
262 {
263 	return readw(hw->flash_address + reg);
264 }
265 
__er32flash(struct e1000_hw * hw,unsigned long reg)266 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
267 {
268 	return readl(hw->flash_address + reg);
269 }
270 
__ew16flash(struct e1000_hw * hw,unsigned long reg,u16 val)271 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
272 {
273 	writew(val, hw->flash_address + reg);
274 }
275 
__ew32flash(struct e1000_hw * hw,unsigned long reg,u32 val)276 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
277 {
278 	writel(val, hw->flash_address + reg);
279 }
280 
281 #define er16flash(reg)		__er16flash(hw, (reg))
282 #define er32flash(reg)		__er32flash(hw, (reg))
283 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
284 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
285 
e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw * hw)286 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
287 {
288 	u32 ctrl;
289 
290 	ctrl = er32(CTRL);
291 	ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
292 	ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
293 	ew32(CTRL, ctrl);
294 	e1e_flush();
295 	udelay(10);
296 	ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
297 	ew32(CTRL, ctrl);
298 }
299 
300 /**
301  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
302  *  @hw: pointer to the HW structure
303  *
304  *  Initialize family-specific PHY parameters and function pointers.
305  **/
e1000_init_phy_params_pchlan(struct e1000_hw * hw)306 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
307 {
308 	struct e1000_phy_info *phy = &hw->phy;
309 	s32 ret_val = 0;
310 
311 	phy->addr                     = 1;
312 	phy->reset_delay_us           = 100;
313 
314 	phy->ops.set_page             = e1000_set_page_igp;
315 	phy->ops.read_reg             = e1000_read_phy_reg_hv;
316 	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
317 	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
318 	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
319 	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
320 	phy->ops.write_reg            = e1000_write_phy_reg_hv;
321 	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
322 	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
323 	phy->ops.power_up             = e1000_power_up_phy_copper;
324 	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
325 	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
326 
327 	if (!hw->phy.ops.check_reset_block(hw)) {
328 		u32 fwsm = er32(FWSM);
329 
330 		/*
331 		 * The MAC-PHY interconnect may still be in SMBus mode after
332 		 * Sx->S0.  If resetting the PHY is not blocked, toggle the
333 		 * LANPHYPC Value bit to force the interconnect to PCIe mode.
334 		 */
335 		e1000_toggle_lanphypc_value_ich8lan(hw);
336 		msleep(50);
337 
338 		/*
339 		 * Gate automatic PHY configuration by hardware on
340 		 * non-managed 82579
341 		 */
342 		if ((hw->mac.type == e1000_pch2lan) &&
343 		    !(fwsm & E1000_ICH_FWSM_FW_VALID))
344 			e1000_gate_hw_phy_config_ich8lan(hw, true);
345 
346 		/*
347 		 * Reset the PHY before any access to it.  Doing so, ensures
348 		 * that the PHY is in a known good state before we read/write
349 		 * PHY registers.  The generic reset is sufficient here,
350 		 * because we haven't determined the PHY type yet.
351 		 */
352 		ret_val = e1000e_phy_hw_reset_generic(hw);
353 		if (ret_val)
354 			return ret_val;
355 
356 		/* Ungate automatic PHY configuration on non-managed 82579 */
357 		if ((hw->mac.type == e1000_pch2lan) &&
358 		    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
359 			usleep_range(10000, 20000);
360 			e1000_gate_hw_phy_config_ich8lan(hw, false);
361 		}
362 	}
363 
364 	phy->id = e1000_phy_unknown;
365 	switch (hw->mac.type) {
366 	default:
367 		ret_val = e1000e_get_phy_id(hw);
368 		if (ret_val)
369 			return ret_val;
370 		if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
371 			break;
372 		/* fall-through */
373 	case e1000_pch2lan:
374 		/*
375 		 * In case the PHY needs to be in mdio slow mode,
376 		 * set slow mode and try to get the PHY id again.
377 		 */
378 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
379 		if (ret_val)
380 			return ret_val;
381 		ret_val = e1000e_get_phy_id(hw);
382 		if (ret_val)
383 			return ret_val;
384 		break;
385 	}
386 	phy->type = e1000e_get_phy_type_from_id(phy->id);
387 
388 	switch (phy->type) {
389 	case e1000_phy_82577:
390 	case e1000_phy_82579:
391 		phy->ops.check_polarity = e1000_check_polarity_82577;
392 		phy->ops.force_speed_duplex =
393 		    e1000_phy_force_speed_duplex_82577;
394 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
395 		phy->ops.get_info = e1000_get_phy_info_82577;
396 		phy->ops.commit = e1000e_phy_sw_reset;
397 		break;
398 	case e1000_phy_82578:
399 		phy->ops.check_polarity = e1000_check_polarity_m88;
400 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
401 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
402 		phy->ops.get_info = e1000e_get_phy_info_m88;
403 		break;
404 	default:
405 		ret_val = -E1000_ERR_PHY;
406 		break;
407 	}
408 
409 	return ret_val;
410 }
411 
412 /**
413  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
414  *  @hw: pointer to the HW structure
415  *
416  *  Initialize family-specific PHY parameters and function pointers.
417  **/
e1000_init_phy_params_ich8lan(struct e1000_hw * hw)418 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
419 {
420 	struct e1000_phy_info *phy = &hw->phy;
421 	s32 ret_val;
422 	u16 i = 0;
423 
424 	phy->addr			= 1;
425 	phy->reset_delay_us		= 100;
426 
427 	phy->ops.power_up               = e1000_power_up_phy_copper;
428 	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
429 
430 	/*
431 	 * We may need to do this twice - once for IGP and if that fails,
432 	 * we'll set BM func pointers and try again
433 	 */
434 	ret_val = e1000e_determine_phy_address(hw);
435 	if (ret_val) {
436 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
437 		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
438 		ret_val = e1000e_determine_phy_address(hw);
439 		if (ret_val) {
440 			e_dbg("Cannot determine PHY addr. Erroring out\n");
441 			return ret_val;
442 		}
443 	}
444 
445 	phy->id = 0;
446 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
447 	       (i++ < 100)) {
448 		usleep_range(1000, 2000);
449 		ret_val = e1000e_get_phy_id(hw);
450 		if (ret_val)
451 			return ret_val;
452 	}
453 
454 	/* Verify phy id */
455 	switch (phy->id) {
456 	case IGP03E1000_E_PHY_ID:
457 		phy->type = e1000_phy_igp_3;
458 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
459 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
460 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
461 		phy->ops.get_info = e1000e_get_phy_info_igp;
462 		phy->ops.check_polarity = e1000_check_polarity_igp;
463 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
464 		break;
465 	case IFE_E_PHY_ID:
466 	case IFE_PLUS_E_PHY_ID:
467 	case IFE_C_E_PHY_ID:
468 		phy->type = e1000_phy_ife;
469 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
470 		phy->ops.get_info = e1000_get_phy_info_ife;
471 		phy->ops.check_polarity = e1000_check_polarity_ife;
472 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
473 		break;
474 	case BME1000_E_PHY_ID:
475 		phy->type = e1000_phy_bm;
476 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
477 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
478 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
479 		phy->ops.commit = e1000e_phy_sw_reset;
480 		phy->ops.get_info = e1000e_get_phy_info_m88;
481 		phy->ops.check_polarity = e1000_check_polarity_m88;
482 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
483 		break;
484 	default:
485 		return -E1000_ERR_PHY;
486 		break;
487 	}
488 
489 	return 0;
490 }
491 
492 /**
493  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
494  *  @hw: pointer to the HW structure
495  *
496  *  Initialize family-specific NVM parameters and function
497  *  pointers.
498  **/
e1000_init_nvm_params_ich8lan(struct e1000_hw * hw)499 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
500 {
501 	struct e1000_nvm_info *nvm = &hw->nvm;
502 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
503 	u32 gfpreg, sector_base_addr, sector_end_addr;
504 	u16 i;
505 
506 	/* Can't read flash registers if the register set isn't mapped. */
507 	if (!hw->flash_address) {
508 		e_dbg("ERROR: Flash registers not mapped\n");
509 		return -E1000_ERR_CONFIG;
510 	}
511 
512 	nvm->type = e1000_nvm_flash_sw;
513 
514 	gfpreg = er32flash(ICH_FLASH_GFPREG);
515 
516 	/*
517 	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
518 	 * Add 1 to sector_end_addr since this sector is included in
519 	 * the overall size.
520 	 */
521 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
522 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
523 
524 	/* flash_base_addr is byte-aligned */
525 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
526 
527 	/*
528 	 * find total size of the NVM, then cut in half since the total
529 	 * size represents two separate NVM banks.
530 	 */
531 	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
532 				<< FLASH_SECTOR_ADDR_SHIFT;
533 	nvm->flash_bank_size /= 2;
534 	/* Adjust to word count */
535 	nvm->flash_bank_size /= sizeof(u16);
536 
537 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
538 
539 	/* Clear shadow ram */
540 	for (i = 0; i < nvm->word_size; i++) {
541 		dev_spec->shadow_ram[i].modified = false;
542 		dev_spec->shadow_ram[i].value    = 0xFFFF;
543 	}
544 
545 	return 0;
546 }
547 
548 /**
549  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
550  *  @hw: pointer to the HW structure
551  *
552  *  Initialize family-specific MAC parameters and function
553  *  pointers.
554  **/
e1000_init_mac_params_ich8lan(struct e1000_hw * hw)555 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
556 {
557 	struct e1000_mac_info *mac = &hw->mac;
558 
559 	/* Set media type function pointer */
560 	hw->phy.media_type = e1000_media_type_copper;
561 
562 	/* Set mta register count */
563 	mac->mta_reg_count = 32;
564 	/* Set rar entry count */
565 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
566 	if (mac->type == e1000_ich8lan)
567 		mac->rar_entry_count--;
568 	/* FWSM register */
569 	mac->has_fwsm = true;
570 	/* ARC subsystem not supported */
571 	mac->arc_subsystem_valid = false;
572 	/* Adaptive IFS supported */
573 	mac->adaptive_ifs = true;
574 
575 	/* LED operations */
576 	switch (mac->type) {
577 	case e1000_ich8lan:
578 	case e1000_ich9lan:
579 	case e1000_ich10lan:
580 		/* check management mode */
581 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
582 		/* ID LED init */
583 		mac->ops.id_led_init = e1000e_id_led_init_generic;
584 		/* blink LED */
585 		mac->ops.blink_led = e1000e_blink_led_generic;
586 		/* setup LED */
587 		mac->ops.setup_led = e1000e_setup_led_generic;
588 		/* cleanup LED */
589 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
590 		/* turn on/off LED */
591 		mac->ops.led_on = e1000_led_on_ich8lan;
592 		mac->ops.led_off = e1000_led_off_ich8lan;
593 		break;
594 	case e1000_pchlan:
595 	case e1000_pch2lan:
596 		/* check management mode */
597 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
598 		/* ID LED init */
599 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
600 		/* setup LED */
601 		mac->ops.setup_led = e1000_setup_led_pchlan;
602 		/* cleanup LED */
603 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
604 		/* turn on/off LED */
605 		mac->ops.led_on = e1000_led_on_pchlan;
606 		mac->ops.led_off = e1000_led_off_pchlan;
607 		break;
608 	default:
609 		break;
610 	}
611 
612 	/* Enable PCS Lock-loss workaround for ICH8 */
613 	if (mac->type == e1000_ich8lan)
614 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
615 
616 	/* Gate automatic PHY configuration by hardware on managed 82579 */
617 	if ((mac->type == e1000_pch2lan) &&
618 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
619 		e1000_gate_hw_phy_config_ich8lan(hw, true);
620 
621 	return 0;
622 }
623 
624 /**
625  *  e1000_set_eee_pchlan - Enable/disable EEE support
626  *  @hw: pointer to the HW structure
627  *
628  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
629  *  the LPI Control register will remain set only if/when link is up.
630  **/
e1000_set_eee_pchlan(struct e1000_hw * hw)631 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
632 {
633 	s32 ret_val = 0;
634 	u16 phy_reg;
635 
636 	if (hw->phy.type != e1000_phy_82579)
637 		return 0;
638 
639 	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
640 	if (ret_val)
641 		return ret_val;
642 
643 	if (hw->dev_spec.ich8lan.eee_disable)
644 		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
645 	else
646 		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
647 
648 	return e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
649 }
650 
651 /**
652  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
653  *  @hw: pointer to the HW structure
654  *
655  *  Checks to see of the link status of the hardware has changed.  If a
656  *  change in link status has been detected, then we read the PHY registers
657  *  to get the current speed/duplex if link exists.
658  **/
e1000_check_for_copper_link_ich8lan(struct e1000_hw * hw)659 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
660 {
661 	struct e1000_mac_info *mac = &hw->mac;
662 	s32 ret_val;
663 	bool link;
664 	u16 phy_reg;
665 
666 	/*
667 	 * We only want to go out to the PHY registers to see if Auto-Neg
668 	 * has completed and/or if our link status has changed.  The
669 	 * get_link_status flag is set upon receiving a Link Status
670 	 * Change or Rx Sequence Error interrupt.
671 	 */
672 	if (!mac->get_link_status)
673 		return 0;
674 
675 	/*
676 	 * First we want to see if the MII Status Register reports
677 	 * link.  If so, then we want to get the current speed/duplex
678 	 * of the PHY.
679 	 */
680 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
681 	if (ret_val)
682 		return ret_val;
683 
684 	if (hw->mac.type == e1000_pchlan) {
685 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
686 		if (ret_val)
687 			return ret_val;
688 	}
689 
690 	if (!link)
691 		return 0; /* No link detected */
692 
693 	mac->get_link_status = false;
694 
695 	switch (hw->mac.type) {
696 	case e1000_pch2lan:
697 		ret_val = e1000_k1_workaround_lv(hw);
698 		if (ret_val)
699 			return ret_val;
700 		/* fall-thru */
701 	case e1000_pchlan:
702 		if (hw->phy.type == e1000_phy_82578) {
703 			ret_val = e1000_link_stall_workaround_hv(hw);
704 			if (ret_val)
705 				return ret_val;
706 		}
707 
708 		/*
709 		 * Workaround for PCHx parts in half-duplex:
710 		 * Set the number of preambles removed from the packet
711 		 * when it is passed from the PHY to the MAC to prevent
712 		 * the MAC from misinterpreting the packet type.
713 		 */
714 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
715 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
716 
717 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
718 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
719 
720 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
721 		break;
722 	default:
723 		break;
724 	}
725 
726 	/*
727 	 * Check if there was DownShift, must be checked
728 	 * immediately after link-up
729 	 */
730 	e1000e_check_downshift(hw);
731 
732 	/* Enable/Disable EEE after link up */
733 	ret_val = e1000_set_eee_pchlan(hw);
734 	if (ret_val)
735 		return ret_val;
736 
737 	/*
738 	 * If we are forcing speed/duplex, then we simply return since
739 	 * we have already determined whether we have link or not.
740 	 */
741 	if (!mac->autoneg)
742 		return -E1000_ERR_CONFIG;
743 
744 	/*
745 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
746 	 * of MAC speed/duplex configuration.  So we only need to
747 	 * configure Collision Distance in the MAC.
748 	 */
749 	mac->ops.config_collision_dist(hw);
750 
751 	/*
752 	 * Configure Flow Control now that Auto-Neg has completed.
753 	 * First, we need to restore the desired flow control
754 	 * settings because we may have had to re-autoneg with a
755 	 * different link partner.
756 	 */
757 	ret_val = e1000e_config_fc_after_link_up(hw);
758 	if (ret_val)
759 		e_dbg("Error configuring flow control\n");
760 
761 	return ret_val;
762 }
763 
e1000_get_variants_ich8lan(struct e1000_adapter * adapter)764 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
765 {
766 	struct e1000_hw *hw = &adapter->hw;
767 	s32 rc;
768 
769 	rc = e1000_init_mac_params_ich8lan(hw);
770 	if (rc)
771 		return rc;
772 
773 	rc = e1000_init_nvm_params_ich8lan(hw);
774 	if (rc)
775 		return rc;
776 
777 	switch (hw->mac.type) {
778 	case e1000_ich8lan:
779 	case e1000_ich9lan:
780 	case e1000_ich10lan:
781 		rc = e1000_init_phy_params_ich8lan(hw);
782 		break;
783 	case e1000_pchlan:
784 	case e1000_pch2lan:
785 		rc = e1000_init_phy_params_pchlan(hw);
786 		break;
787 	default:
788 		break;
789 	}
790 	if (rc)
791 		return rc;
792 
793 	/*
794 	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
795 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
796 	 */
797 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
798 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
799 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
800 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
801 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
802 
803 		hw->mac.ops.blink_led = NULL;
804 	}
805 
806 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
807 	    (adapter->hw.phy.type != e1000_phy_ife))
808 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
809 
810 	/* Enable workaround for 82579 w/ ME enabled */
811 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
812 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
813 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
814 
815 	/* Disable EEE by default until IEEE802.3az spec is finalized */
816 	if (adapter->flags2 & FLAG2_HAS_EEE)
817 		adapter->hw.dev_spec.ich8lan.eee_disable = true;
818 
819 	return 0;
820 }
821 
822 static DEFINE_MUTEX(nvm_mutex);
823 
824 /**
825  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
826  *  @hw: pointer to the HW structure
827  *
828  *  Acquires the mutex for performing NVM operations.
829  **/
e1000_acquire_nvm_ich8lan(struct e1000_hw * hw)830 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
831 {
832 	mutex_lock(&nvm_mutex);
833 
834 	return 0;
835 }
836 
837 /**
838  *  e1000_release_nvm_ich8lan - Release NVM mutex
839  *  @hw: pointer to the HW structure
840  *
841  *  Releases the mutex used while performing NVM operations.
842  **/
e1000_release_nvm_ich8lan(struct e1000_hw * hw)843 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
844 {
845 	mutex_unlock(&nvm_mutex);
846 }
847 
848 /**
849  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
850  *  @hw: pointer to the HW structure
851  *
852  *  Acquires the software control flag for performing PHY and select
853  *  MAC CSR accesses.
854  **/
e1000_acquire_swflag_ich8lan(struct e1000_hw * hw)855 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
856 {
857 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
858 	s32 ret_val = 0;
859 
860 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
861 			     &hw->adapter->state)) {
862 		e_dbg("contention for Phy access\n");
863 		return -E1000_ERR_PHY;
864 	}
865 
866 	while (timeout) {
867 		extcnf_ctrl = er32(EXTCNF_CTRL);
868 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
869 			break;
870 
871 		mdelay(1);
872 		timeout--;
873 	}
874 
875 	if (!timeout) {
876 		e_dbg("SW has already locked the resource.\n");
877 		ret_val = -E1000_ERR_CONFIG;
878 		goto out;
879 	}
880 
881 	timeout = SW_FLAG_TIMEOUT;
882 
883 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
884 	ew32(EXTCNF_CTRL, extcnf_ctrl);
885 
886 	while (timeout) {
887 		extcnf_ctrl = er32(EXTCNF_CTRL);
888 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
889 			break;
890 
891 		mdelay(1);
892 		timeout--;
893 	}
894 
895 	if (!timeout) {
896 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
897 		      er32(FWSM), extcnf_ctrl);
898 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
899 		ew32(EXTCNF_CTRL, extcnf_ctrl);
900 		ret_val = -E1000_ERR_CONFIG;
901 		goto out;
902 	}
903 
904 out:
905 	if (ret_val)
906 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
907 
908 	return ret_val;
909 }
910 
911 /**
912  *  e1000_release_swflag_ich8lan - Release software control flag
913  *  @hw: pointer to the HW structure
914  *
915  *  Releases the software control flag for performing PHY and select
916  *  MAC CSR accesses.
917  **/
e1000_release_swflag_ich8lan(struct e1000_hw * hw)918 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
919 {
920 	u32 extcnf_ctrl;
921 
922 	extcnf_ctrl = er32(EXTCNF_CTRL);
923 
924 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
925 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
926 		ew32(EXTCNF_CTRL, extcnf_ctrl);
927 	} else {
928 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
929 	}
930 
931 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
932 }
933 
934 /**
935  *  e1000_check_mng_mode_ich8lan - Checks management mode
936  *  @hw: pointer to the HW structure
937  *
938  *  This checks if the adapter has any manageability enabled.
939  *  This is a function pointer entry point only called by read/write
940  *  routines for the PHY and NVM parts.
941  **/
e1000_check_mng_mode_ich8lan(struct e1000_hw * hw)942 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
943 {
944 	u32 fwsm;
945 
946 	fwsm = er32(FWSM);
947 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
948 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
949 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
950 }
951 
952 /**
953  *  e1000_check_mng_mode_pchlan - Checks management mode
954  *  @hw: pointer to the HW structure
955  *
956  *  This checks if the adapter has iAMT enabled.
957  *  This is a function pointer entry point only called by read/write
958  *  routines for the PHY and NVM parts.
959  **/
e1000_check_mng_mode_pchlan(struct e1000_hw * hw)960 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
961 {
962 	u32 fwsm;
963 
964 	fwsm = er32(FWSM);
965 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
966 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
967 }
968 
969 /**
970  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
971  *  @hw: pointer to the HW structure
972  *
973  *  Checks if firmware is blocking the reset of the PHY.
974  *  This is a function pointer entry point only called by
975  *  reset routines.
976  **/
e1000_check_reset_block_ich8lan(struct e1000_hw * hw)977 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
978 {
979 	u32 fwsm;
980 
981 	fwsm = er32(FWSM);
982 
983 	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
984 }
985 
986 /**
987  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
988  *  @hw: pointer to the HW structure
989  *
990  *  Assumes semaphore already acquired.
991  *
992  **/
e1000_write_smbus_addr(struct e1000_hw * hw)993 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
994 {
995 	u16 phy_data;
996 	u32 strap = er32(STRAP);
997 	s32 ret_val = 0;
998 
999 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1000 
1001 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1002 	if (ret_val)
1003 		return ret_val;
1004 
1005 	phy_data &= ~HV_SMB_ADDR_MASK;
1006 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1007 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1008 
1009 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1010 }
1011 
1012 /**
1013  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1014  *  @hw:   pointer to the HW structure
1015  *
1016  *  SW should configure the LCD from the NVM extended configuration region
1017  *  as a workaround for certain parts.
1018  **/
e1000_sw_lcd_config_ich8lan(struct e1000_hw * hw)1019 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1020 {
1021 	struct e1000_phy_info *phy = &hw->phy;
1022 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1023 	s32 ret_val = 0;
1024 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1025 
1026 	/*
1027 	 * Initialize the PHY from the NVM on ICH platforms.  This
1028 	 * is needed due to an issue where the NVM configuration is
1029 	 * not properly autoloaded after power transitions.
1030 	 * Therefore, after each PHY reset, we will load the
1031 	 * configuration data out of the NVM manually.
1032 	 */
1033 	switch (hw->mac.type) {
1034 	case e1000_ich8lan:
1035 		if (phy->type != e1000_phy_igp_3)
1036 			return ret_val;
1037 
1038 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1039 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1040 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1041 			break;
1042 		}
1043 		/* Fall-thru */
1044 	case e1000_pchlan:
1045 	case e1000_pch2lan:
1046 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1047 		break;
1048 	default:
1049 		return ret_val;
1050 	}
1051 
1052 	ret_val = hw->phy.ops.acquire(hw);
1053 	if (ret_val)
1054 		return ret_val;
1055 
1056 	data = er32(FEXTNVM);
1057 	if (!(data & sw_cfg_mask))
1058 		goto release;
1059 
1060 	/*
1061 	 * Make sure HW does not configure LCD from PHY
1062 	 * extended configuration before SW configuration
1063 	 */
1064 	data = er32(EXTCNF_CTRL);
1065 	if (!(hw->mac.type == e1000_pch2lan)) {
1066 		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1067 			goto release;
1068 	}
1069 
1070 	cnf_size = er32(EXTCNF_SIZE);
1071 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1072 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1073 	if (!cnf_size)
1074 		goto release;
1075 
1076 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1077 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1078 
1079 	if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1080 	    (hw->mac.type == e1000_pchlan)) ||
1081 	     (hw->mac.type == e1000_pch2lan)) {
1082 		/*
1083 		 * HW configures the SMBus address and LEDs when the
1084 		 * OEM and LCD Write Enable bits are set in the NVM.
1085 		 * When both NVM bits are cleared, SW will configure
1086 		 * them instead.
1087 		 */
1088 		ret_val = e1000_write_smbus_addr(hw);
1089 		if (ret_val)
1090 			goto release;
1091 
1092 		data = er32(LEDCTL);
1093 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1094 							(u16)data);
1095 		if (ret_val)
1096 			goto release;
1097 	}
1098 
1099 	/* Configure LCD from extended configuration region. */
1100 
1101 	/* cnf_base_addr is in DWORD */
1102 	word_addr = (u16)(cnf_base_addr << 1);
1103 
1104 	for (i = 0; i < cnf_size; i++) {
1105 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1106 					 &reg_data);
1107 		if (ret_val)
1108 			goto release;
1109 
1110 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1111 					 1, &reg_addr);
1112 		if (ret_val)
1113 			goto release;
1114 
1115 		/* Save off the PHY page for future writes. */
1116 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1117 			phy_page = reg_data;
1118 			continue;
1119 		}
1120 
1121 		reg_addr &= PHY_REG_MASK;
1122 		reg_addr |= phy_page;
1123 
1124 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1125 						    reg_data);
1126 		if (ret_val)
1127 			goto release;
1128 	}
1129 
1130 release:
1131 	hw->phy.ops.release(hw);
1132 	return ret_val;
1133 }
1134 
1135 /**
1136  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1137  *  @hw:   pointer to the HW structure
1138  *  @link: link up bool flag
1139  *
1140  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1141  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1142  *  If link is down, the function will restore the default K1 setting located
1143  *  in the NVM.
1144  **/
e1000_k1_gig_workaround_hv(struct e1000_hw * hw,bool link)1145 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1146 {
1147 	s32 ret_val = 0;
1148 	u16 status_reg = 0;
1149 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1150 
1151 	if (hw->mac.type != e1000_pchlan)
1152 		return 0;
1153 
1154 	/* Wrap the whole flow with the sw flag */
1155 	ret_val = hw->phy.ops.acquire(hw);
1156 	if (ret_val)
1157 		return ret_val;
1158 
1159 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1160 	if (link) {
1161 		if (hw->phy.type == e1000_phy_82578) {
1162 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1163 			                                          &status_reg);
1164 			if (ret_val)
1165 				goto release;
1166 
1167 			status_reg &= BM_CS_STATUS_LINK_UP |
1168 			              BM_CS_STATUS_RESOLVED |
1169 			              BM_CS_STATUS_SPEED_MASK;
1170 
1171 			if (status_reg == (BM_CS_STATUS_LINK_UP |
1172 			                   BM_CS_STATUS_RESOLVED |
1173 			                   BM_CS_STATUS_SPEED_1000))
1174 				k1_enable = false;
1175 		}
1176 
1177 		if (hw->phy.type == e1000_phy_82577) {
1178 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1179 			                                          &status_reg);
1180 			if (ret_val)
1181 				goto release;
1182 
1183 			status_reg &= HV_M_STATUS_LINK_UP |
1184 			              HV_M_STATUS_AUTONEG_COMPLETE |
1185 			              HV_M_STATUS_SPEED_MASK;
1186 
1187 			if (status_reg == (HV_M_STATUS_LINK_UP |
1188 			                   HV_M_STATUS_AUTONEG_COMPLETE |
1189 			                   HV_M_STATUS_SPEED_1000))
1190 				k1_enable = false;
1191 		}
1192 
1193 		/* Link stall fix for link up */
1194 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1195 		                                           0x0100);
1196 		if (ret_val)
1197 			goto release;
1198 
1199 	} else {
1200 		/* Link stall fix for link down */
1201 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1202 		                                           0x4100);
1203 		if (ret_val)
1204 			goto release;
1205 	}
1206 
1207 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1208 
1209 release:
1210 	hw->phy.ops.release(hw);
1211 
1212 	return ret_val;
1213 }
1214 
1215 /**
1216  *  e1000_configure_k1_ich8lan - Configure K1 power state
1217  *  @hw: pointer to the HW structure
1218  *  @enable: K1 state to configure
1219  *
1220  *  Configure the K1 power state based on the provided parameter.
1221  *  Assumes semaphore already acquired.
1222  *
1223  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1224  **/
e1000_configure_k1_ich8lan(struct e1000_hw * hw,bool k1_enable)1225 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1226 {
1227 	s32 ret_val = 0;
1228 	u32 ctrl_reg = 0;
1229 	u32 ctrl_ext = 0;
1230 	u32 reg = 0;
1231 	u16 kmrn_reg = 0;
1232 
1233 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1234 					      &kmrn_reg);
1235 	if (ret_val)
1236 		return ret_val;
1237 
1238 	if (k1_enable)
1239 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1240 	else
1241 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1242 
1243 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1244 					       kmrn_reg);
1245 	if (ret_val)
1246 		return ret_val;
1247 
1248 	udelay(20);
1249 	ctrl_ext = er32(CTRL_EXT);
1250 	ctrl_reg = er32(CTRL);
1251 
1252 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1253 	reg |= E1000_CTRL_FRCSPD;
1254 	ew32(CTRL, reg);
1255 
1256 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1257 	e1e_flush();
1258 	udelay(20);
1259 	ew32(CTRL, ctrl_reg);
1260 	ew32(CTRL_EXT, ctrl_ext);
1261 	e1e_flush();
1262 	udelay(20);
1263 
1264 	return 0;
1265 }
1266 
1267 /**
1268  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1269  *  @hw:       pointer to the HW structure
1270  *  @d0_state: boolean if entering d0 or d3 device state
1271  *
1272  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1273  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1274  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1275  **/
e1000_oem_bits_config_ich8lan(struct e1000_hw * hw,bool d0_state)1276 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1277 {
1278 	s32 ret_val = 0;
1279 	u32 mac_reg;
1280 	u16 oem_reg;
1281 
1282 	if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1283 		return ret_val;
1284 
1285 	ret_val = hw->phy.ops.acquire(hw);
1286 	if (ret_val)
1287 		return ret_val;
1288 
1289 	if (!(hw->mac.type == e1000_pch2lan)) {
1290 		mac_reg = er32(EXTCNF_CTRL);
1291 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1292 			goto release;
1293 	}
1294 
1295 	mac_reg = er32(FEXTNVM);
1296 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1297 		goto release;
1298 
1299 	mac_reg = er32(PHY_CTRL);
1300 
1301 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1302 	if (ret_val)
1303 		goto release;
1304 
1305 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1306 
1307 	if (d0_state) {
1308 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1309 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1310 
1311 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1312 			oem_reg |= HV_OEM_BITS_LPLU;
1313 	} else {
1314 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1315 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1316 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1317 
1318 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1319 			       E1000_PHY_CTRL_NOND0A_LPLU))
1320 			oem_reg |= HV_OEM_BITS_LPLU;
1321 	}
1322 
1323 	/* Set Restart auto-neg to activate the bits */
1324 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1325 	    !hw->phy.ops.check_reset_block(hw))
1326 		oem_reg |= HV_OEM_BITS_RESTART_AN;
1327 
1328 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1329 
1330 release:
1331 	hw->phy.ops.release(hw);
1332 
1333 	return ret_val;
1334 }
1335 
1336 
1337 /**
1338  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1339  *  @hw:   pointer to the HW structure
1340  **/
e1000_set_mdio_slow_mode_hv(struct e1000_hw * hw)1341 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1342 {
1343 	s32 ret_val;
1344 	u16 data;
1345 
1346 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1347 	if (ret_val)
1348 		return ret_val;
1349 
1350 	data |= HV_KMRN_MDIO_SLOW;
1351 
1352 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1353 
1354 	return ret_val;
1355 }
1356 
1357 /**
1358  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1359  *  done after every PHY reset.
1360  **/
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw * hw)1361 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1362 {
1363 	s32 ret_val = 0;
1364 	u16 phy_data;
1365 
1366 	if (hw->mac.type != e1000_pchlan)
1367 		return 0;
1368 
1369 	/* Set MDIO slow mode before any other MDIO access */
1370 	if (hw->phy.type == e1000_phy_82577) {
1371 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
1372 		if (ret_val)
1373 			return ret_val;
1374 	}
1375 
1376 	if (((hw->phy.type == e1000_phy_82577) &&
1377 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1378 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1379 		/* Disable generation of early preamble */
1380 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1381 		if (ret_val)
1382 			return ret_val;
1383 
1384 		/* Preamble tuning for SSC */
1385 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1386 		if (ret_val)
1387 			return ret_val;
1388 	}
1389 
1390 	if (hw->phy.type == e1000_phy_82578) {
1391 		/*
1392 		 * Return registers to default by doing a soft reset then
1393 		 * writing 0x3140 to the control register.
1394 		 */
1395 		if (hw->phy.revision < 2) {
1396 			e1000e_phy_sw_reset(hw);
1397 			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1398 		}
1399 	}
1400 
1401 	/* Select page 0 */
1402 	ret_val = hw->phy.ops.acquire(hw);
1403 	if (ret_val)
1404 		return ret_val;
1405 
1406 	hw->phy.addr = 1;
1407 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1408 	hw->phy.ops.release(hw);
1409 	if (ret_val)
1410 		return ret_val;
1411 
1412 	/*
1413 	 * Configure the K1 Si workaround during phy reset assuming there is
1414 	 * link so that it disables K1 if link is in 1Gbps.
1415 	 */
1416 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1417 	if (ret_val)
1418 		return ret_val;
1419 
1420 	/* Workaround for link disconnects on a busy hub in half duplex */
1421 	ret_val = hw->phy.ops.acquire(hw);
1422 	if (ret_val)
1423 		return ret_val;
1424 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1425 	if (ret_val)
1426 		goto release;
1427 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
1428 					       phy_data & 0x00FF);
1429 release:
1430 	hw->phy.ops.release(hw);
1431 
1432 	return ret_val;
1433 }
1434 
1435 /**
1436  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1437  *  @hw:   pointer to the HW structure
1438  **/
e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw * hw)1439 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1440 {
1441 	u32 mac_reg;
1442 	u16 i, phy_reg = 0;
1443 	s32 ret_val;
1444 
1445 	ret_val = hw->phy.ops.acquire(hw);
1446 	if (ret_val)
1447 		return;
1448 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1449 	if (ret_val)
1450 		goto release;
1451 
1452 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1453 	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1454 		mac_reg = er32(RAL(i));
1455 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1456 					   (u16)(mac_reg & 0xFFFF));
1457 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1458 					   (u16)((mac_reg >> 16) & 0xFFFF));
1459 
1460 		mac_reg = er32(RAH(i));
1461 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1462 					   (u16)(mac_reg & 0xFFFF));
1463 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1464 					   (u16)((mac_reg & E1000_RAH_AV)
1465 						 >> 16));
1466 	}
1467 
1468 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1469 
1470 release:
1471 	hw->phy.ops.release(hw);
1472 }
1473 
1474 /**
1475  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1476  *  with 82579 PHY
1477  *  @hw: pointer to the HW structure
1478  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1479  **/
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw * hw,bool enable)1480 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1481 {
1482 	s32 ret_val = 0;
1483 	u16 phy_reg, data;
1484 	u32 mac_reg;
1485 	u16 i;
1486 
1487 	if (hw->mac.type != e1000_pch2lan)
1488 		return 0;
1489 
1490 	/* disable Rx path while enabling/disabling workaround */
1491 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1492 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1493 	if (ret_val)
1494 		return ret_val;
1495 
1496 	if (enable) {
1497 		/*
1498 		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1499 		 * SHRAL/H) and initial CRC values to the MAC
1500 		 */
1501 		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1502 			u8 mac_addr[ETH_ALEN] = {0};
1503 			u32 addr_high, addr_low;
1504 
1505 			addr_high = er32(RAH(i));
1506 			if (!(addr_high & E1000_RAH_AV))
1507 				continue;
1508 			addr_low = er32(RAL(i));
1509 			mac_addr[0] = (addr_low & 0xFF);
1510 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
1511 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
1512 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
1513 			mac_addr[4] = (addr_high & 0xFF);
1514 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
1515 
1516 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1517 		}
1518 
1519 		/* Write Rx addresses to the PHY */
1520 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1521 
1522 		/* Enable jumbo frame workaround in the MAC */
1523 		mac_reg = er32(FFLT_DBG);
1524 		mac_reg &= ~(1 << 14);
1525 		mac_reg |= (7 << 15);
1526 		ew32(FFLT_DBG, mac_reg);
1527 
1528 		mac_reg = er32(RCTL);
1529 		mac_reg |= E1000_RCTL_SECRC;
1530 		ew32(RCTL, mac_reg);
1531 
1532 		ret_val = e1000e_read_kmrn_reg(hw,
1533 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1534 						&data);
1535 		if (ret_val)
1536 			return ret_val;
1537 		ret_val = e1000e_write_kmrn_reg(hw,
1538 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1539 						data | (1 << 0));
1540 		if (ret_val)
1541 			return ret_val;
1542 		ret_val = e1000e_read_kmrn_reg(hw,
1543 						E1000_KMRNCTRLSTA_HD_CTRL,
1544 						&data);
1545 		if (ret_val)
1546 			return ret_val;
1547 		data &= ~(0xF << 8);
1548 		data |= (0xB << 8);
1549 		ret_val = e1000e_write_kmrn_reg(hw,
1550 						E1000_KMRNCTRLSTA_HD_CTRL,
1551 						data);
1552 		if (ret_val)
1553 			return ret_val;
1554 
1555 		/* Enable jumbo frame workaround in the PHY */
1556 		e1e_rphy(hw, PHY_REG(769, 23), &data);
1557 		data &= ~(0x7F << 5);
1558 		data |= (0x37 << 5);
1559 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1560 		if (ret_val)
1561 			return ret_val;
1562 		e1e_rphy(hw, PHY_REG(769, 16), &data);
1563 		data &= ~(1 << 13);
1564 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1565 		if (ret_val)
1566 			return ret_val;
1567 		e1e_rphy(hw, PHY_REG(776, 20), &data);
1568 		data &= ~(0x3FF << 2);
1569 		data |= (0x1A << 2);
1570 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1571 		if (ret_val)
1572 			return ret_val;
1573 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1574 		if (ret_val)
1575 			return ret_val;
1576 		e1e_rphy(hw, HV_PM_CTRL, &data);
1577 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1578 		if (ret_val)
1579 			return ret_val;
1580 	} else {
1581 		/* Write MAC register values back to h/w defaults */
1582 		mac_reg = er32(FFLT_DBG);
1583 		mac_reg &= ~(0xF << 14);
1584 		ew32(FFLT_DBG, mac_reg);
1585 
1586 		mac_reg = er32(RCTL);
1587 		mac_reg &= ~E1000_RCTL_SECRC;
1588 		ew32(RCTL, mac_reg);
1589 
1590 		ret_val = e1000e_read_kmrn_reg(hw,
1591 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1592 						&data);
1593 		if (ret_val)
1594 			return ret_val;
1595 		ret_val = e1000e_write_kmrn_reg(hw,
1596 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1597 						data & ~(1 << 0));
1598 		if (ret_val)
1599 			return ret_val;
1600 		ret_val = e1000e_read_kmrn_reg(hw,
1601 						E1000_KMRNCTRLSTA_HD_CTRL,
1602 						&data);
1603 		if (ret_val)
1604 			return ret_val;
1605 		data &= ~(0xF << 8);
1606 		data |= (0xB << 8);
1607 		ret_val = e1000e_write_kmrn_reg(hw,
1608 						E1000_KMRNCTRLSTA_HD_CTRL,
1609 						data);
1610 		if (ret_val)
1611 			return ret_val;
1612 
1613 		/* Write PHY register values back to h/w defaults */
1614 		e1e_rphy(hw, PHY_REG(769, 23), &data);
1615 		data &= ~(0x7F << 5);
1616 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1617 		if (ret_val)
1618 			return ret_val;
1619 		e1e_rphy(hw, PHY_REG(769, 16), &data);
1620 		data |= (1 << 13);
1621 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1622 		if (ret_val)
1623 			return ret_val;
1624 		e1e_rphy(hw, PHY_REG(776, 20), &data);
1625 		data &= ~(0x3FF << 2);
1626 		data |= (0x8 << 2);
1627 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1628 		if (ret_val)
1629 			return ret_val;
1630 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1631 		if (ret_val)
1632 			return ret_val;
1633 		e1e_rphy(hw, HV_PM_CTRL, &data);
1634 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1635 		if (ret_val)
1636 			return ret_val;
1637 	}
1638 
1639 	/* re-enable Rx path after enabling/disabling workaround */
1640 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1641 }
1642 
1643 /**
1644  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1645  *  done after every PHY reset.
1646  **/
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw * hw)1647 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1648 {
1649 	s32 ret_val = 0;
1650 
1651 	if (hw->mac.type != e1000_pch2lan)
1652 		return 0;
1653 
1654 	/* Set MDIO slow mode before any other MDIO access */
1655 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
1656 
1657 	ret_val = hw->phy.ops.acquire(hw);
1658 	if (ret_val)
1659 		return ret_val;
1660 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1661 					       I82579_MSE_THRESHOLD);
1662 	if (ret_val)
1663 		goto release;
1664 	/* set MSE higher to enable link to stay up when noise is high */
1665 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0034);
1666 	if (ret_val)
1667 		goto release;
1668 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1669 					       I82579_MSE_LINK_DOWN);
1670 	if (ret_val)
1671 		goto release;
1672 	/* drop link after 5 times MSE threshold was reached */
1673 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0005);
1674 release:
1675 	hw->phy.ops.release(hw);
1676 
1677 	return ret_val;
1678 }
1679 
1680 /**
1681  *  e1000_k1_gig_workaround_lv - K1 Si workaround
1682  *  @hw:   pointer to the HW structure
1683  *
1684  *  Workaround to set the K1 beacon duration for 82579 parts
1685  **/
e1000_k1_workaround_lv(struct e1000_hw * hw)1686 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1687 {
1688 	s32 ret_val = 0;
1689 	u16 status_reg = 0;
1690 	u32 mac_reg;
1691 	u16 phy_reg;
1692 
1693 	if (hw->mac.type != e1000_pch2lan)
1694 		return 0;
1695 
1696 	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
1697 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1698 	if (ret_val)
1699 		return ret_val;
1700 
1701 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1702 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1703 		mac_reg = er32(FEXTNVM4);
1704 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1705 
1706 		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1707 		if (ret_val)
1708 			return ret_val;
1709 
1710 		if (status_reg & HV_M_STATUS_SPEED_1000) {
1711 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1712 			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1713 		} else {
1714 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1715 			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1716 		}
1717 		ew32(FEXTNVM4, mac_reg);
1718 		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1719 	}
1720 
1721 	return ret_val;
1722 }
1723 
1724 /**
1725  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1726  *  @hw:   pointer to the HW structure
1727  *  @gate: boolean set to true to gate, false to ungate
1728  *
1729  *  Gate/ungate the automatic PHY configuration via hardware; perform
1730  *  the configuration via software instead.
1731  **/
e1000_gate_hw_phy_config_ich8lan(struct e1000_hw * hw,bool gate)1732 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1733 {
1734 	u32 extcnf_ctrl;
1735 
1736 	if (hw->mac.type != e1000_pch2lan)
1737 		return;
1738 
1739 	extcnf_ctrl = er32(EXTCNF_CTRL);
1740 
1741 	if (gate)
1742 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1743 	else
1744 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1745 
1746 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1747 }
1748 
1749 /**
1750  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1751  *  @hw: pointer to the HW structure
1752  *
1753  *  Check the appropriate indication the MAC has finished configuring the
1754  *  PHY after a software reset.
1755  **/
e1000_lan_init_done_ich8lan(struct e1000_hw * hw)1756 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1757 {
1758 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1759 
1760 	/* Wait for basic configuration completes before proceeding */
1761 	do {
1762 		data = er32(STATUS);
1763 		data &= E1000_STATUS_LAN_INIT_DONE;
1764 		udelay(100);
1765 	} while ((!data) && --loop);
1766 
1767 	/*
1768 	 * If basic configuration is incomplete before the above loop
1769 	 * count reaches 0, loading the configuration from NVM will
1770 	 * leave the PHY in a bad state possibly resulting in no link.
1771 	 */
1772 	if (loop == 0)
1773 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1774 
1775 	/* Clear the Init Done bit for the next init event */
1776 	data = er32(STATUS);
1777 	data &= ~E1000_STATUS_LAN_INIT_DONE;
1778 	ew32(STATUS, data);
1779 }
1780 
1781 /**
1782  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1783  *  @hw: pointer to the HW structure
1784  **/
e1000_post_phy_reset_ich8lan(struct e1000_hw * hw)1785 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1786 {
1787 	s32 ret_val = 0;
1788 	u16 reg;
1789 
1790 	if (hw->phy.ops.check_reset_block(hw))
1791 		return 0;
1792 
1793 	/* Allow time for h/w to get to quiescent state after reset */
1794 	usleep_range(10000, 20000);
1795 
1796 	/* Perform any necessary post-reset workarounds */
1797 	switch (hw->mac.type) {
1798 	case e1000_pchlan:
1799 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1800 		if (ret_val)
1801 			return ret_val;
1802 		break;
1803 	case e1000_pch2lan:
1804 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1805 		if (ret_val)
1806 			return ret_val;
1807 		break;
1808 	default:
1809 		break;
1810 	}
1811 
1812 	/* Clear the host wakeup bit after lcd reset */
1813 	if (hw->mac.type >= e1000_pchlan) {
1814 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
1815 		reg &= ~BM_WUC_HOST_WU_BIT;
1816 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
1817 	}
1818 
1819 	/* Configure the LCD with the extended configuration region in NVM */
1820 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
1821 	if (ret_val)
1822 		return ret_val;
1823 
1824 	/* Configure the LCD with the OEM bits in NVM */
1825 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1826 
1827 	if (hw->mac.type == e1000_pch2lan) {
1828 		/* Ungate automatic PHY configuration on non-managed 82579 */
1829 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1830 			usleep_range(10000, 20000);
1831 			e1000_gate_hw_phy_config_ich8lan(hw, false);
1832 		}
1833 
1834 		/* Set EEE LPI Update Timer to 200usec */
1835 		ret_val = hw->phy.ops.acquire(hw);
1836 		if (ret_val)
1837 			return ret_val;
1838 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1839 						       I82579_LPI_UPDATE_TIMER);
1840 		if (!ret_val)
1841 			ret_val = hw->phy.ops.write_reg_locked(hw,
1842 							       I82579_EMI_DATA,
1843 							       0x1387);
1844 		hw->phy.ops.release(hw);
1845 	}
1846 
1847 	return ret_val;
1848 }
1849 
1850 /**
1851  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1852  *  @hw: pointer to the HW structure
1853  *
1854  *  Resets the PHY
1855  *  This is a function pointer entry point called by drivers
1856  *  or other shared routines.
1857  **/
e1000_phy_hw_reset_ich8lan(struct e1000_hw * hw)1858 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1859 {
1860 	s32 ret_val = 0;
1861 
1862 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
1863 	if ((hw->mac.type == e1000_pch2lan) &&
1864 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1865 		e1000_gate_hw_phy_config_ich8lan(hw, true);
1866 
1867 	ret_val = e1000e_phy_hw_reset_generic(hw);
1868 	if (ret_val)
1869 		return ret_val;
1870 
1871 	return e1000_post_phy_reset_ich8lan(hw);
1872 }
1873 
1874 /**
1875  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1876  *  @hw: pointer to the HW structure
1877  *  @active: true to enable LPLU, false to disable
1878  *
1879  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1880  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1881  *  the phy speed. This function will manually set the LPLU bit and restart
1882  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1883  *  since it configures the same bit.
1884  **/
e1000_set_lplu_state_pchlan(struct e1000_hw * hw,bool active)1885 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1886 {
1887 	s32 ret_val = 0;
1888 	u16 oem_reg;
1889 
1890 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1891 	if (ret_val)
1892 		return ret_val;
1893 
1894 	if (active)
1895 		oem_reg |= HV_OEM_BITS_LPLU;
1896 	else
1897 		oem_reg &= ~HV_OEM_BITS_LPLU;
1898 
1899 	if (!hw->phy.ops.check_reset_block(hw))
1900 		oem_reg |= HV_OEM_BITS_RESTART_AN;
1901 
1902 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1903 }
1904 
1905 /**
1906  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1907  *  @hw: pointer to the HW structure
1908  *  @active: true to enable LPLU, false to disable
1909  *
1910  *  Sets the LPLU D0 state according to the active flag.  When
1911  *  activating LPLU this function also disables smart speed
1912  *  and vice versa.  LPLU will not be activated unless the
1913  *  device autonegotiation advertisement meets standards of
1914  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1915  *  This is a function pointer entry point only called by
1916  *  PHY setup routines.
1917  **/
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw * hw,bool active)1918 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1919 {
1920 	struct e1000_phy_info *phy = &hw->phy;
1921 	u32 phy_ctrl;
1922 	s32 ret_val = 0;
1923 	u16 data;
1924 
1925 	if (phy->type == e1000_phy_ife)
1926 		return 0;
1927 
1928 	phy_ctrl = er32(PHY_CTRL);
1929 
1930 	if (active) {
1931 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1932 		ew32(PHY_CTRL, phy_ctrl);
1933 
1934 		if (phy->type != e1000_phy_igp_3)
1935 			return 0;
1936 
1937 		/*
1938 		 * Call gig speed drop workaround on LPLU before accessing
1939 		 * any PHY registers
1940 		 */
1941 		if (hw->mac.type == e1000_ich8lan)
1942 			e1000e_gig_downshift_workaround_ich8lan(hw);
1943 
1944 		/* When LPLU is enabled, we should disable SmartSpeed */
1945 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1946 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1947 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1948 		if (ret_val)
1949 			return ret_val;
1950 	} else {
1951 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1952 		ew32(PHY_CTRL, phy_ctrl);
1953 
1954 		if (phy->type != e1000_phy_igp_3)
1955 			return 0;
1956 
1957 		/*
1958 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1959 		 * during Dx states where the power conservation is most
1960 		 * important.  During driver activity we should enable
1961 		 * SmartSpeed, so performance is maintained.
1962 		 */
1963 		if (phy->smart_speed == e1000_smart_speed_on) {
1964 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1965 					   &data);
1966 			if (ret_val)
1967 				return ret_val;
1968 
1969 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1970 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1971 					   data);
1972 			if (ret_val)
1973 				return ret_val;
1974 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1975 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1976 					   &data);
1977 			if (ret_val)
1978 				return ret_val;
1979 
1980 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1981 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1982 					   data);
1983 			if (ret_val)
1984 				return ret_val;
1985 		}
1986 	}
1987 
1988 	return 0;
1989 }
1990 
1991 /**
1992  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1993  *  @hw: pointer to the HW structure
1994  *  @active: true to enable LPLU, false to disable
1995  *
1996  *  Sets the LPLU D3 state according to the active flag.  When
1997  *  activating LPLU this function also disables smart speed
1998  *  and vice versa.  LPLU will not be activated unless the
1999  *  device autonegotiation advertisement meets standards of
2000  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2001  *  This is a function pointer entry point only called by
2002  *  PHY setup routines.
2003  **/
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw * hw,bool active)2004 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2005 {
2006 	struct e1000_phy_info *phy = &hw->phy;
2007 	u32 phy_ctrl;
2008 	s32 ret_val = 0;
2009 	u16 data;
2010 
2011 	phy_ctrl = er32(PHY_CTRL);
2012 
2013 	if (!active) {
2014 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2015 		ew32(PHY_CTRL, phy_ctrl);
2016 
2017 		if (phy->type != e1000_phy_igp_3)
2018 			return 0;
2019 
2020 		/*
2021 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2022 		 * during Dx states where the power conservation is most
2023 		 * important.  During driver activity we should enable
2024 		 * SmartSpeed, so performance is maintained.
2025 		 */
2026 		if (phy->smart_speed == e1000_smart_speed_on) {
2027 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2028 					   &data);
2029 			if (ret_val)
2030 				return ret_val;
2031 
2032 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2033 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2034 					   data);
2035 			if (ret_val)
2036 				return ret_val;
2037 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2038 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2039 					   &data);
2040 			if (ret_val)
2041 				return ret_val;
2042 
2043 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2044 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2045 					   data);
2046 			if (ret_val)
2047 				return ret_val;
2048 		}
2049 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2050 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2051 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2052 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2053 		ew32(PHY_CTRL, phy_ctrl);
2054 
2055 		if (phy->type != e1000_phy_igp_3)
2056 			return 0;
2057 
2058 		/*
2059 		 * Call gig speed drop workaround on LPLU before accessing
2060 		 * any PHY registers
2061 		 */
2062 		if (hw->mac.type == e1000_ich8lan)
2063 			e1000e_gig_downshift_workaround_ich8lan(hw);
2064 
2065 		/* When LPLU is enabled, we should disable SmartSpeed */
2066 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2067 		if (ret_val)
2068 			return ret_val;
2069 
2070 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2071 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2072 	}
2073 
2074 	return ret_val;
2075 }
2076 
2077 /**
2078  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2079  *  @hw: pointer to the HW structure
2080  *  @bank:  pointer to the variable that returns the active bank
2081  *
2082  *  Reads signature byte from the NVM using the flash access registers.
2083  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2084  **/
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw * hw,u32 * bank)2085 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2086 {
2087 	u32 eecd;
2088 	struct e1000_nvm_info *nvm = &hw->nvm;
2089 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2090 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2091 	u8 sig_byte = 0;
2092 	s32 ret_val;
2093 
2094 	switch (hw->mac.type) {
2095 	case e1000_ich8lan:
2096 	case e1000_ich9lan:
2097 		eecd = er32(EECD);
2098 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2099 		    E1000_EECD_SEC1VAL_VALID_MASK) {
2100 			if (eecd & E1000_EECD_SEC1VAL)
2101 				*bank = 1;
2102 			else
2103 				*bank = 0;
2104 
2105 			return 0;
2106 		}
2107 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2108 		/* fall-thru */
2109 	default:
2110 		/* set bank to 0 in case flash read fails */
2111 		*bank = 0;
2112 
2113 		/* Check bank 0 */
2114 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2115 		                                        &sig_byte);
2116 		if (ret_val)
2117 			return ret_val;
2118 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2119 		    E1000_ICH_NVM_SIG_VALUE) {
2120 			*bank = 0;
2121 			return 0;
2122 		}
2123 
2124 		/* Check bank 1 */
2125 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2126 		                                        bank1_offset,
2127 		                                        &sig_byte);
2128 		if (ret_val)
2129 			return ret_val;
2130 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2131 		    E1000_ICH_NVM_SIG_VALUE) {
2132 			*bank = 1;
2133 			return 0;
2134 		}
2135 
2136 		e_dbg("ERROR: No valid NVM bank present\n");
2137 		return -E1000_ERR_NVM;
2138 	}
2139 }
2140 
2141 /**
2142  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2143  *  @hw: pointer to the HW structure
2144  *  @offset: The offset (in bytes) of the word(s) to read.
2145  *  @words: Size of data to read in words
2146  *  @data: Pointer to the word(s) to read at offset.
2147  *
2148  *  Reads a word(s) from the NVM using the flash access registers.
2149  **/
e1000_read_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)2150 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2151 				  u16 *data)
2152 {
2153 	struct e1000_nvm_info *nvm = &hw->nvm;
2154 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2155 	u32 act_offset;
2156 	s32 ret_val = 0;
2157 	u32 bank = 0;
2158 	u16 i, word;
2159 
2160 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2161 	    (words == 0)) {
2162 		e_dbg("nvm parameter(s) out of bounds\n");
2163 		ret_val = -E1000_ERR_NVM;
2164 		goto out;
2165 	}
2166 
2167 	nvm->ops.acquire(hw);
2168 
2169 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2170 	if (ret_val) {
2171 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2172 		bank = 0;
2173 	}
2174 
2175 	act_offset = (bank) ? nvm->flash_bank_size : 0;
2176 	act_offset += offset;
2177 
2178 	ret_val = 0;
2179 	for (i = 0; i < words; i++) {
2180 		if (dev_spec->shadow_ram[offset+i].modified) {
2181 			data[i] = dev_spec->shadow_ram[offset+i].value;
2182 		} else {
2183 			ret_val = e1000_read_flash_word_ich8lan(hw,
2184 								act_offset + i,
2185 								&word);
2186 			if (ret_val)
2187 				break;
2188 			data[i] = word;
2189 		}
2190 	}
2191 
2192 	nvm->ops.release(hw);
2193 
2194 out:
2195 	if (ret_val)
2196 		e_dbg("NVM read error: %d\n", ret_val);
2197 
2198 	return ret_val;
2199 }
2200 
2201 /**
2202  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2203  *  @hw: pointer to the HW structure
2204  *
2205  *  This function does initial flash setup so that a new read/write/erase cycle
2206  *  can be started.
2207  **/
e1000_flash_cycle_init_ich8lan(struct e1000_hw * hw)2208 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2209 {
2210 	union ich8_hws_flash_status hsfsts;
2211 	s32 ret_val = -E1000_ERR_NVM;
2212 
2213 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2214 
2215 	/* Check if the flash descriptor is valid */
2216 	if (hsfsts.hsf_status.fldesvalid == 0) {
2217 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2218 		return -E1000_ERR_NVM;
2219 	}
2220 
2221 	/* Clear FCERR and DAEL in hw status by writing 1 */
2222 	hsfsts.hsf_status.flcerr = 1;
2223 	hsfsts.hsf_status.dael = 1;
2224 
2225 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2226 
2227 	/*
2228 	 * Either we should have a hardware SPI cycle in progress
2229 	 * bit to check against, in order to start a new cycle or
2230 	 * FDONE bit should be changed in the hardware so that it
2231 	 * is 1 after hardware reset, which can then be used as an
2232 	 * indication whether a cycle is in progress or has been
2233 	 * completed.
2234 	 */
2235 
2236 	if (hsfsts.hsf_status.flcinprog == 0) {
2237 		/*
2238 		 * There is no cycle running at present,
2239 		 * so we can start a cycle.
2240 		 * Begin by setting Flash Cycle Done.
2241 		 */
2242 		hsfsts.hsf_status.flcdone = 1;
2243 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2244 		ret_val = 0;
2245 	} else {
2246 		s32 i;
2247 
2248 		/*
2249 		 * Otherwise poll for sometime so the current
2250 		 * cycle has a chance to end before giving up.
2251 		 */
2252 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2253 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2254 			if (hsfsts.hsf_status.flcinprog == 0) {
2255 				ret_val = 0;
2256 				break;
2257 			}
2258 			udelay(1);
2259 		}
2260 		if (!ret_val) {
2261 			/*
2262 			 * Successful in waiting for previous cycle to timeout,
2263 			 * now set the Flash Cycle Done.
2264 			 */
2265 			hsfsts.hsf_status.flcdone = 1;
2266 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2267 		} else {
2268 			e_dbg("Flash controller busy, cannot get access\n");
2269 		}
2270 	}
2271 
2272 	return ret_val;
2273 }
2274 
2275 /**
2276  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2277  *  @hw: pointer to the HW structure
2278  *  @timeout: maximum time to wait for completion
2279  *
2280  *  This function starts a flash cycle and waits for its completion.
2281  **/
e1000_flash_cycle_ich8lan(struct e1000_hw * hw,u32 timeout)2282 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2283 {
2284 	union ich8_hws_flash_ctrl hsflctl;
2285 	union ich8_hws_flash_status hsfsts;
2286 	u32 i = 0;
2287 
2288 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2289 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2290 	hsflctl.hsf_ctrl.flcgo = 1;
2291 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2292 
2293 	/* wait till FDONE bit is set to 1 */
2294 	do {
2295 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2296 		if (hsfsts.hsf_status.flcdone == 1)
2297 			break;
2298 		udelay(1);
2299 	} while (i++ < timeout);
2300 
2301 	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2302 		return 0;
2303 
2304 	return -E1000_ERR_NVM;
2305 }
2306 
2307 /**
2308  *  e1000_read_flash_word_ich8lan - Read word from flash
2309  *  @hw: pointer to the HW structure
2310  *  @offset: offset to data location
2311  *  @data: pointer to the location for storing the data
2312  *
2313  *  Reads the flash word at offset into data.  Offset is converted
2314  *  to bytes before read.
2315  **/
e1000_read_flash_word_ich8lan(struct e1000_hw * hw,u32 offset,u16 * data)2316 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2317 					 u16 *data)
2318 {
2319 	/* Must convert offset into bytes. */
2320 	offset <<= 1;
2321 
2322 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2323 }
2324 
2325 /**
2326  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2327  *  @hw: pointer to the HW structure
2328  *  @offset: The offset of the byte to read.
2329  *  @data: Pointer to a byte to store the value read.
2330  *
2331  *  Reads a single byte from the NVM using the flash access registers.
2332  **/
e1000_read_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 * data)2333 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2334 					 u8 *data)
2335 {
2336 	s32 ret_val;
2337 	u16 word = 0;
2338 
2339 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2340 	if (ret_val)
2341 		return ret_val;
2342 
2343 	*data = (u8)word;
2344 
2345 	return 0;
2346 }
2347 
2348 /**
2349  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2350  *  @hw: pointer to the HW structure
2351  *  @offset: The offset (in bytes) of the byte or word to read.
2352  *  @size: Size of data to read, 1=byte 2=word
2353  *  @data: Pointer to the word to store the value read.
2354  *
2355  *  Reads a byte or word from the NVM using the flash access registers.
2356  **/
e1000_read_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 * data)2357 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2358 					 u8 size, u16 *data)
2359 {
2360 	union ich8_hws_flash_status hsfsts;
2361 	union ich8_hws_flash_ctrl hsflctl;
2362 	u32 flash_linear_addr;
2363 	u32 flash_data = 0;
2364 	s32 ret_val = -E1000_ERR_NVM;
2365 	u8 count = 0;
2366 
2367 	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2368 		return -E1000_ERR_NVM;
2369 
2370 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2371 			    hw->nvm.flash_base_addr;
2372 
2373 	do {
2374 		udelay(1);
2375 		/* Steps */
2376 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2377 		if (ret_val)
2378 			break;
2379 
2380 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2381 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2382 		hsflctl.hsf_ctrl.fldbcount = size - 1;
2383 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2384 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2385 
2386 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2387 
2388 		ret_val = e1000_flash_cycle_ich8lan(hw,
2389 						ICH_FLASH_READ_COMMAND_TIMEOUT);
2390 
2391 		/*
2392 		 * Check if FCERR is set to 1, if set to 1, clear it
2393 		 * and try the whole sequence a few more times, else
2394 		 * read in (shift in) the Flash Data0, the order is
2395 		 * least significant byte first msb to lsb
2396 		 */
2397 		if (!ret_val) {
2398 			flash_data = er32flash(ICH_FLASH_FDATA0);
2399 			if (size == 1)
2400 				*data = (u8)(flash_data & 0x000000FF);
2401 			else if (size == 2)
2402 				*data = (u16)(flash_data & 0x0000FFFF);
2403 			break;
2404 		} else {
2405 			/*
2406 			 * If we've gotten here, then things are probably
2407 			 * completely hosed, but if the error condition is
2408 			 * detected, it won't hurt to give it another try...
2409 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2410 			 */
2411 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2412 			if (hsfsts.hsf_status.flcerr == 1) {
2413 				/* Repeat for some time before giving up. */
2414 				continue;
2415 			} else if (hsfsts.hsf_status.flcdone == 0) {
2416 				e_dbg("Timeout error - flash cycle did not complete.\n");
2417 				break;
2418 			}
2419 		}
2420 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2421 
2422 	return ret_val;
2423 }
2424 
2425 /**
2426  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2427  *  @hw: pointer to the HW structure
2428  *  @offset: The offset (in bytes) of the word(s) to write.
2429  *  @words: Size of data to write in words
2430  *  @data: Pointer to the word(s) to write at offset.
2431  *
2432  *  Writes a byte or word to the NVM using the flash access registers.
2433  **/
e1000_write_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)2434 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2435 				   u16 *data)
2436 {
2437 	struct e1000_nvm_info *nvm = &hw->nvm;
2438 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2439 	u16 i;
2440 
2441 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2442 	    (words == 0)) {
2443 		e_dbg("nvm parameter(s) out of bounds\n");
2444 		return -E1000_ERR_NVM;
2445 	}
2446 
2447 	nvm->ops.acquire(hw);
2448 
2449 	for (i = 0; i < words; i++) {
2450 		dev_spec->shadow_ram[offset+i].modified = true;
2451 		dev_spec->shadow_ram[offset+i].value = data[i];
2452 	}
2453 
2454 	nvm->ops.release(hw);
2455 
2456 	return 0;
2457 }
2458 
2459 /**
2460  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2461  *  @hw: pointer to the HW structure
2462  *
2463  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2464  *  which writes the checksum to the shadow ram.  The changes in the shadow
2465  *  ram are then committed to the EEPROM by processing each bank at a time
2466  *  checking for the modified bit and writing only the pending changes.
2467  *  After a successful commit, the shadow ram is cleared and is ready for
2468  *  future writes.
2469  **/
e1000_update_nvm_checksum_ich8lan(struct e1000_hw * hw)2470 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2471 {
2472 	struct e1000_nvm_info *nvm = &hw->nvm;
2473 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2474 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2475 	s32 ret_val;
2476 	u16 data;
2477 
2478 	ret_val = e1000e_update_nvm_checksum_generic(hw);
2479 	if (ret_val)
2480 		goto out;
2481 
2482 	if (nvm->type != e1000_nvm_flash_sw)
2483 		goto out;
2484 
2485 	nvm->ops.acquire(hw);
2486 
2487 	/*
2488 	 * We're writing to the opposite bank so if we're on bank 1,
2489 	 * write to bank 0 etc.  We also need to erase the segment that
2490 	 * is going to be written
2491 	 */
2492 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2493 	if (ret_val) {
2494 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2495 		bank = 0;
2496 	}
2497 
2498 	if (bank == 0) {
2499 		new_bank_offset = nvm->flash_bank_size;
2500 		old_bank_offset = 0;
2501 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2502 		if (ret_val)
2503 			goto release;
2504 	} else {
2505 		old_bank_offset = nvm->flash_bank_size;
2506 		new_bank_offset = 0;
2507 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2508 		if (ret_val)
2509 			goto release;
2510 	}
2511 
2512 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2513 		/*
2514 		 * Determine whether to write the value stored
2515 		 * in the other NVM bank or a modified value stored
2516 		 * in the shadow RAM
2517 		 */
2518 		if (dev_spec->shadow_ram[i].modified) {
2519 			data = dev_spec->shadow_ram[i].value;
2520 		} else {
2521 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
2522 			                                        old_bank_offset,
2523 			                                        &data);
2524 			if (ret_val)
2525 				break;
2526 		}
2527 
2528 		/*
2529 		 * If the word is 0x13, then make sure the signature bits
2530 		 * (15:14) are 11b until the commit has completed.
2531 		 * This will allow us to write 10b which indicates the
2532 		 * signature is valid.  We want to do this after the write
2533 		 * has completed so that we don't mark the segment valid
2534 		 * while the write is still in progress
2535 		 */
2536 		if (i == E1000_ICH_NVM_SIG_WORD)
2537 			data |= E1000_ICH_NVM_SIG_MASK;
2538 
2539 		/* Convert offset to bytes. */
2540 		act_offset = (i + new_bank_offset) << 1;
2541 
2542 		udelay(100);
2543 		/* Write the bytes to the new bank. */
2544 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2545 							       act_offset,
2546 							       (u8)data);
2547 		if (ret_val)
2548 			break;
2549 
2550 		udelay(100);
2551 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2552 							  act_offset + 1,
2553 							  (u8)(data >> 8));
2554 		if (ret_val)
2555 			break;
2556 	}
2557 
2558 	/*
2559 	 * Don't bother writing the segment valid bits if sector
2560 	 * programming failed.
2561 	 */
2562 	if (ret_val) {
2563 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2564 		e_dbg("Flash commit failed.\n");
2565 		goto release;
2566 	}
2567 
2568 	/*
2569 	 * Finally validate the new segment by setting bit 15:14
2570 	 * to 10b in word 0x13 , this can be done without an
2571 	 * erase as well since these bits are 11 to start with
2572 	 * and we need to change bit 14 to 0b
2573 	 */
2574 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2575 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2576 	if (ret_val)
2577 		goto release;
2578 
2579 	data &= 0xBFFF;
2580 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2581 						       act_offset * 2 + 1,
2582 						       (u8)(data >> 8));
2583 	if (ret_val)
2584 		goto release;
2585 
2586 	/*
2587 	 * And invalidate the previously valid segment by setting
2588 	 * its signature word (0x13) high_byte to 0b. This can be
2589 	 * done without an erase because flash erase sets all bits
2590 	 * to 1's. We can write 1's to 0's without an erase
2591 	 */
2592 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2593 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2594 	if (ret_val)
2595 		goto release;
2596 
2597 	/* Great!  Everything worked, we can now clear the cached entries. */
2598 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2599 		dev_spec->shadow_ram[i].modified = false;
2600 		dev_spec->shadow_ram[i].value = 0xFFFF;
2601 	}
2602 
2603 release:
2604 	nvm->ops.release(hw);
2605 
2606 	/*
2607 	 * Reload the EEPROM, or else modifications will not appear
2608 	 * until after the next adapter reset.
2609 	 */
2610 	if (!ret_val) {
2611 		nvm->ops.reload(hw);
2612 		usleep_range(10000, 20000);
2613 	}
2614 
2615 out:
2616 	if (ret_val)
2617 		e_dbg("NVM update error: %d\n", ret_val);
2618 
2619 	return ret_val;
2620 }
2621 
2622 /**
2623  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2624  *  @hw: pointer to the HW structure
2625  *
2626  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2627  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2628  *  calculated, in which case we need to calculate the checksum and set bit 6.
2629  **/
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw * hw)2630 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2631 {
2632 	s32 ret_val;
2633 	u16 data;
2634 
2635 	/*
2636 	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2637 	 * needs to be fixed.  This bit is an indication that the NVM
2638 	 * was prepared by OEM software and did not calculate the
2639 	 * checksum...a likely scenario.
2640 	 */
2641 	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2642 	if (ret_val)
2643 		return ret_val;
2644 
2645 	if ((data & 0x40) == 0) {
2646 		data |= 0x40;
2647 		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2648 		if (ret_val)
2649 			return ret_val;
2650 		ret_val = e1000e_update_nvm_checksum(hw);
2651 		if (ret_val)
2652 			return ret_val;
2653 	}
2654 
2655 	return e1000e_validate_nvm_checksum_generic(hw);
2656 }
2657 
2658 /**
2659  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2660  *  @hw: pointer to the HW structure
2661  *
2662  *  To prevent malicious write/erase of the NVM, set it to be read-only
2663  *  so that the hardware ignores all write/erase cycles of the NVM via
2664  *  the flash control registers.  The shadow-ram copy of the NVM will
2665  *  still be updated, however any updates to this copy will not stick
2666  *  across driver reloads.
2667  **/
e1000e_write_protect_nvm_ich8lan(struct e1000_hw * hw)2668 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2669 {
2670 	struct e1000_nvm_info *nvm = &hw->nvm;
2671 	union ich8_flash_protected_range pr0;
2672 	union ich8_hws_flash_status hsfsts;
2673 	u32 gfpreg;
2674 
2675 	nvm->ops.acquire(hw);
2676 
2677 	gfpreg = er32flash(ICH_FLASH_GFPREG);
2678 
2679 	/* Write-protect GbE Sector of NVM */
2680 	pr0.regval = er32flash(ICH_FLASH_PR0);
2681 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2682 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2683 	pr0.range.wpe = true;
2684 	ew32flash(ICH_FLASH_PR0, pr0.regval);
2685 
2686 	/*
2687 	 * Lock down a subset of GbE Flash Control Registers, e.g.
2688 	 * PR0 to prevent the write-protection from being lifted.
2689 	 * Once FLOCKDN is set, the registers protected by it cannot
2690 	 * be written until FLOCKDN is cleared by a hardware reset.
2691 	 */
2692 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2693 	hsfsts.hsf_status.flockdn = true;
2694 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2695 
2696 	nvm->ops.release(hw);
2697 }
2698 
2699 /**
2700  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2701  *  @hw: pointer to the HW structure
2702  *  @offset: The offset (in bytes) of the byte/word to read.
2703  *  @size: Size of data to read, 1=byte 2=word
2704  *  @data: The byte(s) to write to the NVM.
2705  *
2706  *  Writes one/two bytes to the NVM using the flash access registers.
2707  **/
e1000_write_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 data)2708 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2709 					  u8 size, u16 data)
2710 {
2711 	union ich8_hws_flash_status hsfsts;
2712 	union ich8_hws_flash_ctrl hsflctl;
2713 	u32 flash_linear_addr;
2714 	u32 flash_data = 0;
2715 	s32 ret_val;
2716 	u8 count = 0;
2717 
2718 	if (size < 1 || size > 2 || data > size * 0xff ||
2719 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
2720 		return -E1000_ERR_NVM;
2721 
2722 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2723 			    hw->nvm.flash_base_addr;
2724 
2725 	do {
2726 		udelay(1);
2727 		/* Steps */
2728 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2729 		if (ret_val)
2730 			break;
2731 
2732 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2733 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2734 		hsflctl.hsf_ctrl.fldbcount = size -1;
2735 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2736 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2737 
2738 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2739 
2740 		if (size == 1)
2741 			flash_data = (u32)data & 0x00FF;
2742 		else
2743 			flash_data = (u32)data;
2744 
2745 		ew32flash(ICH_FLASH_FDATA0, flash_data);
2746 
2747 		/*
2748 		 * check if FCERR is set to 1 , if set to 1, clear it
2749 		 * and try the whole sequence a few more times else done
2750 		 */
2751 		ret_val = e1000_flash_cycle_ich8lan(hw,
2752 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2753 		if (!ret_val)
2754 			break;
2755 
2756 		/*
2757 		 * If we're here, then things are most likely
2758 		 * completely hosed, but if the error condition
2759 		 * is detected, it won't hurt to give it another
2760 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2761 		 */
2762 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2763 		if (hsfsts.hsf_status.flcerr == 1)
2764 			/* Repeat for some time before giving up. */
2765 			continue;
2766 		if (hsfsts.hsf_status.flcdone == 0) {
2767 			e_dbg("Timeout error - flash cycle did not complete.\n");
2768 			break;
2769 		}
2770 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2771 
2772 	return ret_val;
2773 }
2774 
2775 /**
2776  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2777  *  @hw: pointer to the HW structure
2778  *  @offset: The index of the byte to read.
2779  *  @data: The byte to write to the NVM.
2780  *
2781  *  Writes a single byte to the NVM using the flash access registers.
2782  **/
e1000_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 data)2783 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2784 					  u8 data)
2785 {
2786 	u16 word = (u16)data;
2787 
2788 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2789 }
2790 
2791 /**
2792  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2793  *  @hw: pointer to the HW structure
2794  *  @offset: The offset of the byte to write.
2795  *  @byte: The byte to write to the NVM.
2796  *
2797  *  Writes a single byte to the NVM using the flash access registers.
2798  *  Goes through a retry algorithm before giving up.
2799  **/
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 byte)2800 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2801 						u32 offset, u8 byte)
2802 {
2803 	s32 ret_val;
2804 	u16 program_retries;
2805 
2806 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2807 	if (!ret_val)
2808 		return ret_val;
2809 
2810 	for (program_retries = 0; program_retries < 100; program_retries++) {
2811 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2812 		udelay(100);
2813 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2814 		if (!ret_val)
2815 			break;
2816 	}
2817 	if (program_retries == 100)
2818 		return -E1000_ERR_NVM;
2819 
2820 	return 0;
2821 }
2822 
2823 /**
2824  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2825  *  @hw: pointer to the HW structure
2826  *  @bank: 0 for first bank, 1 for second bank, etc.
2827  *
2828  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2829  *  bank N is 4096 * N + flash_reg_addr.
2830  **/
e1000_erase_flash_bank_ich8lan(struct e1000_hw * hw,u32 bank)2831 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2832 {
2833 	struct e1000_nvm_info *nvm = &hw->nvm;
2834 	union ich8_hws_flash_status hsfsts;
2835 	union ich8_hws_flash_ctrl hsflctl;
2836 	u32 flash_linear_addr;
2837 	/* bank size is in 16bit words - adjust to bytes */
2838 	u32 flash_bank_size = nvm->flash_bank_size * 2;
2839 	s32 ret_val;
2840 	s32 count = 0;
2841 	s32 j, iteration, sector_size;
2842 
2843 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2844 
2845 	/*
2846 	 * Determine HW Sector size: Read BERASE bits of hw flash status
2847 	 * register
2848 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2849 	 *     consecutive sectors.  The start index for the nth Hw sector
2850 	 *     can be calculated as = bank * 4096 + n * 256
2851 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2852 	 *     The start index for the nth Hw sector can be calculated
2853 	 *     as = bank * 4096
2854 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2855 	 *     (ich9 only, otherwise error condition)
2856 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2857 	 */
2858 	switch (hsfsts.hsf_status.berasesz) {
2859 	case 0:
2860 		/* Hw sector size 256 */
2861 		sector_size = ICH_FLASH_SEG_SIZE_256;
2862 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2863 		break;
2864 	case 1:
2865 		sector_size = ICH_FLASH_SEG_SIZE_4K;
2866 		iteration = 1;
2867 		break;
2868 	case 2:
2869 		sector_size = ICH_FLASH_SEG_SIZE_8K;
2870 		iteration = 1;
2871 		break;
2872 	case 3:
2873 		sector_size = ICH_FLASH_SEG_SIZE_64K;
2874 		iteration = 1;
2875 		break;
2876 	default:
2877 		return -E1000_ERR_NVM;
2878 	}
2879 
2880 	/* Start with the base address, then add the sector offset. */
2881 	flash_linear_addr = hw->nvm.flash_base_addr;
2882 	flash_linear_addr += (bank) ? flash_bank_size : 0;
2883 
2884 	for (j = 0; j < iteration ; j++) {
2885 		do {
2886 			/* Steps */
2887 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
2888 			if (ret_val)
2889 				return ret_val;
2890 
2891 			/*
2892 			 * Write a value 11 (block Erase) in Flash
2893 			 * Cycle field in hw flash control
2894 			 */
2895 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2896 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2897 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2898 
2899 			/*
2900 			 * Write the last 24 bits of an index within the
2901 			 * block into Flash Linear address field in Flash
2902 			 * Address.
2903 			 */
2904 			flash_linear_addr += (j * sector_size);
2905 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2906 
2907 			ret_val = e1000_flash_cycle_ich8lan(hw,
2908 					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2909 			if (!ret_val)
2910 				break;
2911 
2912 			/*
2913 			 * Check if FCERR is set to 1.  If 1,
2914 			 * clear it and try the whole sequence
2915 			 * a few more times else Done
2916 			 */
2917 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2918 			if (hsfsts.hsf_status.flcerr == 1)
2919 				/* repeat for some time before giving up */
2920 				continue;
2921 			else if (hsfsts.hsf_status.flcdone == 0)
2922 				return ret_val;
2923 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2924 	}
2925 
2926 	return 0;
2927 }
2928 
2929 /**
2930  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2931  *  @hw: pointer to the HW structure
2932  *  @data: Pointer to the LED settings
2933  *
2934  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2935  *  settings is all 0's or F's, set the LED default to a valid LED default
2936  *  setting.
2937  **/
e1000_valid_led_default_ich8lan(struct e1000_hw * hw,u16 * data)2938 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2939 {
2940 	s32 ret_val;
2941 
2942 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2943 	if (ret_val) {
2944 		e_dbg("NVM Read Error\n");
2945 		return ret_val;
2946 	}
2947 
2948 	if (*data == ID_LED_RESERVED_0000 ||
2949 	    *data == ID_LED_RESERVED_FFFF)
2950 		*data = ID_LED_DEFAULT_ICH8LAN;
2951 
2952 	return 0;
2953 }
2954 
2955 /**
2956  *  e1000_id_led_init_pchlan - store LED configurations
2957  *  @hw: pointer to the HW structure
2958  *
2959  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2960  *  the PHY LED configuration register.
2961  *
2962  *  PCH also does not have an "always on" or "always off" mode which
2963  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2964  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
2965  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2966  *  link based on logic in e1000_led_[on|off]_pchlan().
2967  **/
e1000_id_led_init_pchlan(struct e1000_hw * hw)2968 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2969 {
2970 	struct e1000_mac_info *mac = &hw->mac;
2971 	s32 ret_val;
2972 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2973 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2974 	u16 data, i, temp, shift;
2975 
2976 	/* Get default ID LED modes */
2977 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2978 	if (ret_val)
2979 		return ret_val;
2980 
2981 	mac->ledctl_default = er32(LEDCTL);
2982 	mac->ledctl_mode1 = mac->ledctl_default;
2983 	mac->ledctl_mode2 = mac->ledctl_default;
2984 
2985 	for (i = 0; i < 4; i++) {
2986 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2987 		shift = (i * 5);
2988 		switch (temp) {
2989 		case ID_LED_ON1_DEF2:
2990 		case ID_LED_ON1_ON2:
2991 		case ID_LED_ON1_OFF2:
2992 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2993 			mac->ledctl_mode1 |= (ledctl_on << shift);
2994 			break;
2995 		case ID_LED_OFF1_DEF2:
2996 		case ID_LED_OFF1_ON2:
2997 		case ID_LED_OFF1_OFF2:
2998 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2999 			mac->ledctl_mode1 |= (ledctl_off << shift);
3000 			break;
3001 		default:
3002 			/* Do nothing */
3003 			break;
3004 		}
3005 		switch (temp) {
3006 		case ID_LED_DEF1_ON2:
3007 		case ID_LED_ON1_ON2:
3008 		case ID_LED_OFF1_ON2:
3009 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3010 			mac->ledctl_mode2 |= (ledctl_on << shift);
3011 			break;
3012 		case ID_LED_DEF1_OFF2:
3013 		case ID_LED_ON1_OFF2:
3014 		case ID_LED_OFF1_OFF2:
3015 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3016 			mac->ledctl_mode2 |= (ledctl_off << shift);
3017 			break;
3018 		default:
3019 			/* Do nothing */
3020 			break;
3021 		}
3022 	}
3023 
3024 	return 0;
3025 }
3026 
3027 /**
3028  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3029  *  @hw: pointer to the HW structure
3030  *
3031  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3032  *  register, so the the bus width is hard coded.
3033  **/
e1000_get_bus_info_ich8lan(struct e1000_hw * hw)3034 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3035 {
3036 	struct e1000_bus_info *bus = &hw->bus;
3037 	s32 ret_val;
3038 
3039 	ret_val = e1000e_get_bus_info_pcie(hw);
3040 
3041 	/*
3042 	 * ICH devices are "PCI Express"-ish.  They have
3043 	 * a configuration space, but do not contain
3044 	 * PCI Express Capability registers, so bus width
3045 	 * must be hardcoded.
3046 	 */
3047 	if (bus->width == e1000_bus_width_unknown)
3048 		bus->width = e1000_bus_width_pcie_x1;
3049 
3050 	return ret_val;
3051 }
3052 
3053 /**
3054  *  e1000_reset_hw_ich8lan - Reset the hardware
3055  *  @hw: pointer to the HW structure
3056  *
3057  *  Does a full reset of the hardware which includes a reset of the PHY and
3058  *  MAC.
3059  **/
e1000_reset_hw_ich8lan(struct e1000_hw * hw)3060 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3061 {
3062 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3063 	u16 reg;
3064 	u32 ctrl, kab;
3065 	s32 ret_val;
3066 
3067 	/*
3068 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3069 	 * on the last TLP read/write transaction when MAC is reset.
3070 	 */
3071 	ret_val = e1000e_disable_pcie_master(hw);
3072 	if (ret_val)
3073 		e_dbg("PCI-E Master disable polling has failed.\n");
3074 
3075 	e_dbg("Masking off all interrupts\n");
3076 	ew32(IMC, 0xffffffff);
3077 
3078 	/*
3079 	 * Disable the Transmit and Receive units.  Then delay to allow
3080 	 * any pending transactions to complete before we hit the MAC
3081 	 * with the global reset.
3082 	 */
3083 	ew32(RCTL, 0);
3084 	ew32(TCTL, E1000_TCTL_PSP);
3085 	e1e_flush();
3086 
3087 	usleep_range(10000, 20000);
3088 
3089 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3090 	if (hw->mac.type == e1000_ich8lan) {
3091 		/* Set Tx and Rx buffer allocation to 8k apiece. */
3092 		ew32(PBA, E1000_PBA_8K);
3093 		/* Set Packet Buffer Size to 16k. */
3094 		ew32(PBS, E1000_PBS_16K);
3095 	}
3096 
3097 	if (hw->mac.type == e1000_pchlan) {
3098 		/* Save the NVM K1 bit setting*/
3099 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3100 		if (ret_val)
3101 			return ret_val;
3102 
3103 		if (reg & E1000_NVM_K1_ENABLE)
3104 			dev_spec->nvm_k1_enabled = true;
3105 		else
3106 			dev_spec->nvm_k1_enabled = false;
3107 	}
3108 
3109 	ctrl = er32(CTRL);
3110 
3111 	if (!hw->phy.ops.check_reset_block(hw)) {
3112 		/*
3113 		 * Full-chip reset requires MAC and PHY reset at the same
3114 		 * time to make sure the interface between MAC and the
3115 		 * external PHY is reset.
3116 		 */
3117 		ctrl |= E1000_CTRL_PHY_RST;
3118 
3119 		/*
3120 		 * Gate automatic PHY configuration by hardware on
3121 		 * non-managed 82579
3122 		 */
3123 		if ((hw->mac.type == e1000_pch2lan) &&
3124 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3125 			e1000_gate_hw_phy_config_ich8lan(hw, true);
3126 	}
3127 	ret_val = e1000_acquire_swflag_ich8lan(hw);
3128 	e_dbg("Issuing a global reset to ich8lan\n");
3129 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3130 	/* cannot issue a flush here because it hangs the hardware */
3131 	msleep(20);
3132 
3133 	if (!ret_val)
3134 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3135 
3136 	if (ctrl & E1000_CTRL_PHY_RST) {
3137 		ret_val = hw->phy.ops.get_cfg_done(hw);
3138 		if (ret_val)
3139 			return ret_val;
3140 
3141 		ret_val = e1000_post_phy_reset_ich8lan(hw);
3142 		if (ret_val)
3143 			return ret_val;
3144 	}
3145 
3146 	/*
3147 	 * For PCH, this write will make sure that any noise
3148 	 * will be detected as a CRC error and be dropped rather than show up
3149 	 * as a bad packet to the DMA engine.
3150 	 */
3151 	if (hw->mac.type == e1000_pchlan)
3152 		ew32(CRC_OFFSET, 0x65656565);
3153 
3154 	ew32(IMC, 0xffffffff);
3155 	er32(ICR);
3156 
3157 	kab = er32(KABGTXD);
3158 	kab |= E1000_KABGTXD_BGSQLBIAS;
3159 	ew32(KABGTXD, kab);
3160 
3161 	return 0;
3162 }
3163 
3164 /**
3165  *  e1000_init_hw_ich8lan - Initialize the hardware
3166  *  @hw: pointer to the HW structure
3167  *
3168  *  Prepares the hardware for transmit and receive by doing the following:
3169  *   - initialize hardware bits
3170  *   - initialize LED identification
3171  *   - setup receive address registers
3172  *   - setup flow control
3173  *   - setup transmit descriptors
3174  *   - clear statistics
3175  **/
e1000_init_hw_ich8lan(struct e1000_hw * hw)3176 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3177 {
3178 	struct e1000_mac_info *mac = &hw->mac;
3179 	u32 ctrl_ext, txdctl, snoop;
3180 	s32 ret_val;
3181 	u16 i;
3182 
3183 	e1000_initialize_hw_bits_ich8lan(hw);
3184 
3185 	/* Initialize identification LED */
3186 	ret_val = mac->ops.id_led_init(hw);
3187 	if (ret_val)
3188 		e_dbg("Error initializing identification LED\n");
3189 		/* This is not fatal and we should not stop init due to this */
3190 
3191 	/* Setup the receive address. */
3192 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3193 
3194 	/* Zero out the Multicast HASH table */
3195 	e_dbg("Zeroing the MTA\n");
3196 	for (i = 0; i < mac->mta_reg_count; i++)
3197 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3198 
3199 	/*
3200 	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3201 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3202 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3203 	 */
3204 	if (hw->phy.type == e1000_phy_82578) {
3205 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3206 		i &= ~BM_WUC_HOST_WU_BIT;
3207 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3208 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
3209 		if (ret_val)
3210 			return ret_val;
3211 	}
3212 
3213 	/* Setup link and flow control */
3214 	ret_val = mac->ops.setup_link(hw);
3215 
3216 	/* Set the transmit descriptor write-back policy for both queues */
3217 	txdctl = er32(TXDCTL(0));
3218 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3219 		 E1000_TXDCTL_FULL_TX_DESC_WB;
3220 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3221 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3222 	ew32(TXDCTL(0), txdctl);
3223 	txdctl = er32(TXDCTL(1));
3224 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3225 		 E1000_TXDCTL_FULL_TX_DESC_WB;
3226 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3227 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3228 	ew32(TXDCTL(1), txdctl);
3229 
3230 	/*
3231 	 * ICH8 has opposite polarity of no_snoop bits.
3232 	 * By default, we should use snoop behavior.
3233 	 */
3234 	if (mac->type == e1000_ich8lan)
3235 		snoop = PCIE_ICH8_SNOOP_ALL;
3236 	else
3237 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3238 	e1000e_set_pcie_no_snoop(hw, snoop);
3239 
3240 	ctrl_ext = er32(CTRL_EXT);
3241 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3242 	ew32(CTRL_EXT, ctrl_ext);
3243 
3244 	/*
3245 	 * Clear all of the statistics registers (clear on read).  It is
3246 	 * important that we do this after we have tried to establish link
3247 	 * because the symbol error count will increment wildly if there
3248 	 * is no link.
3249 	 */
3250 	e1000_clear_hw_cntrs_ich8lan(hw);
3251 
3252 	return ret_val;
3253 }
3254 /**
3255  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3256  *  @hw: pointer to the HW structure
3257  *
3258  *  Sets/Clears required hardware bits necessary for correctly setting up the
3259  *  hardware for transmit and receive.
3260  **/
e1000_initialize_hw_bits_ich8lan(struct e1000_hw * hw)3261 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3262 {
3263 	u32 reg;
3264 
3265 	/* Extended Device Control */
3266 	reg = er32(CTRL_EXT);
3267 	reg |= (1 << 22);
3268 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
3269 	if (hw->mac.type >= e1000_pchlan)
3270 		reg |= E1000_CTRL_EXT_PHYPDEN;
3271 	ew32(CTRL_EXT, reg);
3272 
3273 	/* Transmit Descriptor Control 0 */
3274 	reg = er32(TXDCTL(0));
3275 	reg |= (1 << 22);
3276 	ew32(TXDCTL(0), reg);
3277 
3278 	/* Transmit Descriptor Control 1 */
3279 	reg = er32(TXDCTL(1));
3280 	reg |= (1 << 22);
3281 	ew32(TXDCTL(1), reg);
3282 
3283 	/* Transmit Arbitration Control 0 */
3284 	reg = er32(TARC(0));
3285 	if (hw->mac.type == e1000_ich8lan)
3286 		reg |= (1 << 28) | (1 << 29);
3287 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3288 	ew32(TARC(0), reg);
3289 
3290 	/* Transmit Arbitration Control 1 */
3291 	reg = er32(TARC(1));
3292 	if (er32(TCTL) & E1000_TCTL_MULR)
3293 		reg &= ~(1 << 28);
3294 	else
3295 		reg |= (1 << 28);
3296 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3297 	ew32(TARC(1), reg);
3298 
3299 	/* Device Status */
3300 	if (hw->mac.type == e1000_ich8lan) {
3301 		reg = er32(STATUS);
3302 		reg &= ~(1 << 31);
3303 		ew32(STATUS, reg);
3304 	}
3305 
3306 	/*
3307 	 * work-around descriptor data corruption issue during nfs v2 udp
3308 	 * traffic, just disable the nfs filtering capability
3309 	 */
3310 	reg = er32(RFCTL);
3311 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3312 	ew32(RFCTL, reg);
3313 }
3314 
3315 /**
3316  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3317  *  @hw: pointer to the HW structure
3318  *
3319  *  Determines which flow control settings to use, then configures flow
3320  *  control.  Calls the appropriate media-specific link configuration
3321  *  function.  Assuming the adapter has a valid link partner, a valid link
3322  *  should be established.  Assumes the hardware has previously been reset
3323  *  and the transmitter and receiver are not enabled.
3324  **/
e1000_setup_link_ich8lan(struct e1000_hw * hw)3325 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3326 {
3327 	s32 ret_val;
3328 
3329 	if (hw->phy.ops.check_reset_block(hw))
3330 		return 0;
3331 
3332 	/*
3333 	 * ICH parts do not have a word in the NVM to determine
3334 	 * the default flow control setting, so we explicitly
3335 	 * set it to full.
3336 	 */
3337 	if (hw->fc.requested_mode == e1000_fc_default) {
3338 		/* Workaround h/w hang when Tx flow control enabled */
3339 		if (hw->mac.type == e1000_pchlan)
3340 			hw->fc.requested_mode = e1000_fc_rx_pause;
3341 		else
3342 			hw->fc.requested_mode = e1000_fc_full;
3343 	}
3344 
3345 	/*
3346 	 * Save off the requested flow control mode for use later.  Depending
3347 	 * on the link partner's capabilities, we may or may not use this mode.
3348 	 */
3349 	hw->fc.current_mode = hw->fc.requested_mode;
3350 
3351 	e_dbg("After fix-ups FlowControl is now = %x\n",
3352 		hw->fc.current_mode);
3353 
3354 	/* Continue to configure the copper link. */
3355 	ret_val = hw->mac.ops.setup_physical_interface(hw);
3356 	if (ret_val)
3357 		return ret_val;
3358 
3359 	ew32(FCTTV, hw->fc.pause_time);
3360 	if ((hw->phy.type == e1000_phy_82578) ||
3361 	    (hw->phy.type == e1000_phy_82579) ||
3362 	    (hw->phy.type == e1000_phy_82577)) {
3363 		ew32(FCRTV_PCH, hw->fc.refresh_time);
3364 
3365 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3366 				   hw->fc.pause_time);
3367 		if (ret_val)
3368 			return ret_val;
3369 	}
3370 
3371 	return e1000e_set_fc_watermarks(hw);
3372 }
3373 
3374 /**
3375  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3376  *  @hw: pointer to the HW structure
3377  *
3378  *  Configures the kumeran interface to the PHY to wait the appropriate time
3379  *  when polling the PHY, then call the generic setup_copper_link to finish
3380  *  configuring the copper link.
3381  **/
e1000_setup_copper_link_ich8lan(struct e1000_hw * hw)3382 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3383 {
3384 	u32 ctrl;
3385 	s32 ret_val;
3386 	u16 reg_data;
3387 
3388 	ctrl = er32(CTRL);
3389 	ctrl |= E1000_CTRL_SLU;
3390 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3391 	ew32(CTRL, ctrl);
3392 
3393 	/*
3394 	 * Set the mac to wait the maximum time between each iteration
3395 	 * and increase the max iterations when polling the phy;
3396 	 * this fixes erroneous timeouts at 10Mbps.
3397 	 */
3398 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3399 	if (ret_val)
3400 		return ret_val;
3401 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3402 	                               &reg_data);
3403 	if (ret_val)
3404 		return ret_val;
3405 	reg_data |= 0x3F;
3406 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3407 	                                reg_data);
3408 	if (ret_val)
3409 		return ret_val;
3410 
3411 	switch (hw->phy.type) {
3412 	case e1000_phy_igp_3:
3413 		ret_val = e1000e_copper_link_setup_igp(hw);
3414 		if (ret_val)
3415 			return ret_val;
3416 		break;
3417 	case e1000_phy_bm:
3418 	case e1000_phy_82578:
3419 		ret_val = e1000e_copper_link_setup_m88(hw);
3420 		if (ret_val)
3421 			return ret_val;
3422 		break;
3423 	case e1000_phy_82577:
3424 	case e1000_phy_82579:
3425 		ret_val = e1000_copper_link_setup_82577(hw);
3426 		if (ret_val)
3427 			return ret_val;
3428 		break;
3429 	case e1000_phy_ife:
3430 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3431 		if (ret_val)
3432 			return ret_val;
3433 
3434 		reg_data &= ~IFE_PMC_AUTO_MDIX;
3435 
3436 		switch (hw->phy.mdix) {
3437 		case 1:
3438 			reg_data &= ~IFE_PMC_FORCE_MDIX;
3439 			break;
3440 		case 2:
3441 			reg_data |= IFE_PMC_FORCE_MDIX;
3442 			break;
3443 		case 0:
3444 		default:
3445 			reg_data |= IFE_PMC_AUTO_MDIX;
3446 			break;
3447 		}
3448 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3449 		if (ret_val)
3450 			return ret_val;
3451 		break;
3452 	default:
3453 		break;
3454 	}
3455 
3456 	return e1000e_setup_copper_link(hw);
3457 }
3458 
3459 /**
3460  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3461  *  @hw: pointer to the HW structure
3462  *  @speed: pointer to store current link speed
3463  *  @duplex: pointer to store the current link duplex
3464  *
3465  *  Calls the generic get_speed_and_duplex to retrieve the current link
3466  *  information and then calls the Kumeran lock loss workaround for links at
3467  *  gigabit speeds.
3468  **/
e1000_get_link_up_info_ich8lan(struct e1000_hw * hw,u16 * speed,u16 * duplex)3469 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3470 					  u16 *duplex)
3471 {
3472 	s32 ret_val;
3473 
3474 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3475 	if (ret_val)
3476 		return ret_val;
3477 
3478 	if ((hw->mac.type == e1000_ich8lan) &&
3479 	    (hw->phy.type == e1000_phy_igp_3) &&
3480 	    (*speed == SPEED_1000)) {
3481 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3482 	}
3483 
3484 	return ret_val;
3485 }
3486 
3487 /**
3488  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3489  *  @hw: pointer to the HW structure
3490  *
3491  *  Work-around for 82566 Kumeran PCS lock loss:
3492  *  On link status change (i.e. PCI reset, speed change) and link is up and
3493  *  speed is gigabit-
3494  *    0) if workaround is optionally disabled do nothing
3495  *    1) wait 1ms for Kumeran link to come up
3496  *    2) check Kumeran Diagnostic register PCS lock loss bit
3497  *    3) if not set the link is locked (all is good), otherwise...
3498  *    4) reset the PHY
3499  *    5) repeat up to 10 times
3500  *  Note: this is only called for IGP3 copper when speed is 1gb.
3501  **/
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw)3502 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3503 {
3504 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3505 	u32 phy_ctrl;
3506 	s32 ret_val;
3507 	u16 i, data;
3508 	bool link;
3509 
3510 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3511 		return 0;
3512 
3513 	/*
3514 	 * Make sure link is up before proceeding.  If not just return.
3515 	 * Attempting this while link is negotiating fouled up link
3516 	 * stability
3517 	 */
3518 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3519 	if (!link)
3520 		return 0;
3521 
3522 	for (i = 0; i < 10; i++) {
3523 		/* read once to clear */
3524 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3525 		if (ret_val)
3526 			return ret_val;
3527 		/* and again to get new status */
3528 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3529 		if (ret_val)
3530 			return ret_val;
3531 
3532 		/* check for PCS lock */
3533 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3534 			return 0;
3535 
3536 		/* Issue PHY reset */
3537 		e1000_phy_hw_reset(hw);
3538 		mdelay(5);
3539 	}
3540 	/* Disable GigE link negotiation */
3541 	phy_ctrl = er32(PHY_CTRL);
3542 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3543 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3544 	ew32(PHY_CTRL, phy_ctrl);
3545 
3546 	/*
3547 	 * Call gig speed drop workaround on Gig disable before accessing
3548 	 * any PHY registers
3549 	 */
3550 	e1000e_gig_downshift_workaround_ich8lan(hw);
3551 
3552 	/* unable to acquire PCS lock */
3553 	return -E1000_ERR_PHY;
3554 }
3555 
3556 /**
3557  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3558  *  @hw: pointer to the HW structure
3559  *  @state: boolean value used to set the current Kumeran workaround state
3560  *
3561  *  If ICH8, set the current Kumeran workaround state (enabled - true
3562  *  /disabled - false).
3563  **/
e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw,bool state)3564 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3565 						 bool state)
3566 {
3567 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3568 
3569 	if (hw->mac.type != e1000_ich8lan) {
3570 		e_dbg("Workaround applies to ICH8 only.\n");
3571 		return;
3572 	}
3573 
3574 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
3575 }
3576 
3577 /**
3578  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3579  *  @hw: pointer to the HW structure
3580  *
3581  *  Workaround for 82566 power-down on D3 entry:
3582  *    1) disable gigabit link
3583  *    2) write VR power-down enable
3584  *    3) read it back
3585  *  Continue if successful, else issue LCD reset and repeat
3586  **/
e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw * hw)3587 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3588 {
3589 	u32 reg;
3590 	u16 data;
3591 	u8  retry = 0;
3592 
3593 	if (hw->phy.type != e1000_phy_igp_3)
3594 		return;
3595 
3596 	/* Try the workaround twice (if needed) */
3597 	do {
3598 		/* Disable link */
3599 		reg = er32(PHY_CTRL);
3600 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3601 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3602 		ew32(PHY_CTRL, reg);
3603 
3604 		/*
3605 		 * Call gig speed drop workaround on Gig disable before
3606 		 * accessing any PHY registers
3607 		 */
3608 		if (hw->mac.type == e1000_ich8lan)
3609 			e1000e_gig_downshift_workaround_ich8lan(hw);
3610 
3611 		/* Write VR power-down enable */
3612 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3613 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3614 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3615 
3616 		/* Read it back and test */
3617 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3618 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3619 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3620 			break;
3621 
3622 		/* Issue PHY reset and repeat at most one more time */
3623 		reg = er32(CTRL);
3624 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3625 		retry++;
3626 	} while (retry);
3627 }
3628 
3629 /**
3630  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3631  *  @hw: pointer to the HW structure
3632  *
3633  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3634  *  LPLU, Gig disable, MDIC PHY reset):
3635  *    1) Set Kumeran Near-end loopback
3636  *    2) Clear Kumeran Near-end loopback
3637  *  Should only be called for ICH8[m] devices with any 1G Phy.
3638  **/
e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw * hw)3639 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3640 {
3641 	s32 ret_val;
3642 	u16 reg_data;
3643 
3644 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3645 		return;
3646 
3647 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3648 				      &reg_data);
3649 	if (ret_val)
3650 		return;
3651 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3652 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3653 				       reg_data);
3654 	if (ret_val)
3655 		return;
3656 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3657 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3658 				       reg_data);
3659 }
3660 
3661 /**
3662  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3663  *  @hw: pointer to the HW structure
3664  *
3665  *  During S0 to Sx transition, it is possible the link remains at gig
3666  *  instead of negotiating to a lower speed.  Before going to Sx, set
3667  *  'Gig Disable' to force link speed negotiation to a lower speed based on
3668  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
3669  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
3670  *  needs to be written.
3671  **/
e1000_suspend_workarounds_ich8lan(struct e1000_hw * hw)3672 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3673 {
3674 	u32 phy_ctrl;
3675 	s32 ret_val;
3676 
3677 	phy_ctrl = er32(PHY_CTRL);
3678 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
3679 	ew32(PHY_CTRL, phy_ctrl);
3680 
3681 	if (hw->mac.type == e1000_ich8lan)
3682 		e1000e_gig_downshift_workaround_ich8lan(hw);
3683 
3684 	if (hw->mac.type >= e1000_pchlan) {
3685 		e1000_oem_bits_config_ich8lan(hw, false);
3686 
3687 		/* Reset PHY to activate OEM bits on 82577/8 */
3688 		if (hw->mac.type == e1000_pchlan)
3689 			e1000e_phy_hw_reset_generic(hw);
3690 
3691 		ret_val = hw->phy.ops.acquire(hw);
3692 		if (ret_val)
3693 			return;
3694 		e1000_write_smbus_addr(hw);
3695 		hw->phy.ops.release(hw);
3696 	}
3697 }
3698 
3699 /**
3700  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3701  *  @hw: pointer to the HW structure
3702  *
3703  *  During Sx to S0 transitions on non-managed devices or managed devices
3704  *  on which PHY resets are not blocked, if the PHY registers cannot be
3705  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
3706  *  the PHY.
3707  **/
e1000_resume_workarounds_pchlan(struct e1000_hw * hw)3708 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
3709 {
3710 	u16 phy_id1, phy_id2;
3711 	s32 ret_val;
3712 
3713 	if ((hw->mac.type != e1000_pch2lan) ||
3714 	    hw->phy.ops.check_reset_block(hw))
3715 		return;
3716 
3717 	ret_val = hw->phy.ops.acquire(hw);
3718 	if (ret_val) {
3719 		e_dbg("Failed to acquire PHY semaphore in resume\n");
3720 		return;
3721 	}
3722 
3723 	/* Test access to the PHY registers by reading the ID regs */
3724 	ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
3725 	if (ret_val)
3726 		goto release;
3727 	ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
3728 	if (ret_val)
3729 		goto release;
3730 
3731 	if (hw->phy.id == ((u32)(phy_id1 << 16) |
3732 			   (u32)(phy_id2 & PHY_REVISION_MASK)))
3733 		goto release;
3734 
3735 	e1000_toggle_lanphypc_value_ich8lan(hw);
3736 
3737 	hw->phy.ops.release(hw);
3738 	msleep(50);
3739 	e1000_phy_hw_reset(hw);
3740 	msleep(50);
3741 	return;
3742 
3743 release:
3744 	hw->phy.ops.release(hw);
3745 }
3746 
3747 /**
3748  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3749  *  @hw: pointer to the HW structure
3750  *
3751  *  Return the LED back to the default configuration.
3752  **/
e1000_cleanup_led_ich8lan(struct e1000_hw * hw)3753 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3754 {
3755 	if (hw->phy.type == e1000_phy_ife)
3756 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3757 
3758 	ew32(LEDCTL, hw->mac.ledctl_default);
3759 	return 0;
3760 }
3761 
3762 /**
3763  *  e1000_led_on_ich8lan - Turn LEDs on
3764  *  @hw: pointer to the HW structure
3765  *
3766  *  Turn on the LEDs.
3767  **/
e1000_led_on_ich8lan(struct e1000_hw * hw)3768 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3769 {
3770 	if (hw->phy.type == e1000_phy_ife)
3771 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3772 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3773 
3774 	ew32(LEDCTL, hw->mac.ledctl_mode2);
3775 	return 0;
3776 }
3777 
3778 /**
3779  *  e1000_led_off_ich8lan - Turn LEDs off
3780  *  @hw: pointer to the HW structure
3781  *
3782  *  Turn off the LEDs.
3783  **/
e1000_led_off_ich8lan(struct e1000_hw * hw)3784 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3785 {
3786 	if (hw->phy.type == e1000_phy_ife)
3787 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3788 				(IFE_PSCL_PROBE_MODE |
3789 				 IFE_PSCL_PROBE_LEDS_OFF));
3790 
3791 	ew32(LEDCTL, hw->mac.ledctl_mode1);
3792 	return 0;
3793 }
3794 
3795 /**
3796  *  e1000_setup_led_pchlan - Configures SW controllable LED
3797  *  @hw: pointer to the HW structure
3798  *
3799  *  This prepares the SW controllable LED for use.
3800  **/
e1000_setup_led_pchlan(struct e1000_hw * hw)3801 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3802 {
3803 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3804 }
3805 
3806 /**
3807  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3808  *  @hw: pointer to the HW structure
3809  *
3810  *  Return the LED back to the default configuration.
3811  **/
e1000_cleanup_led_pchlan(struct e1000_hw * hw)3812 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3813 {
3814 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3815 }
3816 
3817 /**
3818  *  e1000_led_on_pchlan - Turn LEDs on
3819  *  @hw: pointer to the HW structure
3820  *
3821  *  Turn on the LEDs.
3822  **/
e1000_led_on_pchlan(struct e1000_hw * hw)3823 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3824 {
3825 	u16 data = (u16)hw->mac.ledctl_mode2;
3826 	u32 i, led;
3827 
3828 	/*
3829 	 * If no link, then turn LED on by setting the invert bit
3830 	 * for each LED that's mode is "link_up" in ledctl_mode2.
3831 	 */
3832 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
3833 		for (i = 0; i < 3; i++) {
3834 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3835 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
3836 			    E1000_LEDCTL_MODE_LINK_UP)
3837 				continue;
3838 			if (led & E1000_PHY_LED0_IVRT)
3839 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3840 			else
3841 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
3842 		}
3843 	}
3844 
3845 	return e1e_wphy(hw, HV_LED_CONFIG, data);
3846 }
3847 
3848 /**
3849  *  e1000_led_off_pchlan - Turn LEDs off
3850  *  @hw: pointer to the HW structure
3851  *
3852  *  Turn off the LEDs.
3853  **/
e1000_led_off_pchlan(struct e1000_hw * hw)3854 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3855 {
3856 	u16 data = (u16)hw->mac.ledctl_mode1;
3857 	u32 i, led;
3858 
3859 	/*
3860 	 * If no link, then turn LED off by clearing the invert bit
3861 	 * for each LED that's mode is "link_up" in ledctl_mode1.
3862 	 */
3863 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
3864 		for (i = 0; i < 3; i++) {
3865 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3866 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
3867 			    E1000_LEDCTL_MODE_LINK_UP)
3868 				continue;
3869 			if (led & E1000_PHY_LED0_IVRT)
3870 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3871 			else
3872 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
3873 		}
3874 	}
3875 
3876 	return e1e_wphy(hw, HV_LED_CONFIG, data);
3877 }
3878 
3879 /**
3880  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3881  *  @hw: pointer to the HW structure
3882  *
3883  *  Read appropriate register for the config done bit for completion status
3884  *  and configure the PHY through s/w for EEPROM-less parts.
3885  *
3886  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
3887  *  config done bit, so only an error is logged and continues.  If we were
3888  *  to return with error, EEPROM-less silicon would not be able to be reset
3889  *  or change link.
3890  **/
e1000_get_cfg_done_ich8lan(struct e1000_hw * hw)3891 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3892 {
3893 	s32 ret_val = 0;
3894 	u32 bank = 0;
3895 	u32 status;
3896 
3897 	e1000e_get_cfg_done(hw);
3898 
3899 	/* Wait for indication from h/w that it has completed basic config */
3900 	if (hw->mac.type >= e1000_ich10lan) {
3901 		e1000_lan_init_done_ich8lan(hw);
3902 	} else {
3903 		ret_val = e1000e_get_auto_rd_done(hw);
3904 		if (ret_val) {
3905 			/*
3906 			 * When auto config read does not complete, do not
3907 			 * return with an error. This can happen in situations
3908 			 * where there is no eeprom and prevents getting link.
3909 			 */
3910 			e_dbg("Auto Read Done did not complete\n");
3911 			ret_val = 0;
3912 		}
3913 	}
3914 
3915 	/* Clear PHY Reset Asserted bit */
3916 	status = er32(STATUS);
3917 	if (status & E1000_STATUS_PHYRA)
3918 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3919 	else
3920 		e_dbg("PHY Reset Asserted not set - needs delay\n");
3921 
3922 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
3923 	if (hw->mac.type <= e1000_ich9lan) {
3924 		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3925 		    (hw->phy.type == e1000_phy_igp_3)) {
3926 			e1000e_phy_init_script_igp3(hw);
3927 		}
3928 	} else {
3929 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3930 			/* Maybe we should do a basic PHY config */
3931 			e_dbg("EEPROM not present\n");
3932 			ret_val = -E1000_ERR_CONFIG;
3933 		}
3934 	}
3935 
3936 	return ret_val;
3937 }
3938 
3939 /**
3940  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3941  * @hw: pointer to the HW structure
3942  *
3943  * In the case of a PHY power down to save power, or to turn off link during a
3944  * driver unload, or wake on lan is not enabled, remove the link.
3945  **/
e1000_power_down_phy_copper_ich8lan(struct e1000_hw * hw)3946 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3947 {
3948 	/* If the management interface is not enabled, then power down */
3949 	if (!(hw->mac.ops.check_mng_mode(hw) ||
3950 	      hw->phy.ops.check_reset_block(hw)))
3951 		e1000_power_down_phy_copper(hw);
3952 }
3953 
3954 /**
3955  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3956  *  @hw: pointer to the HW structure
3957  *
3958  *  Clears hardware counters specific to the silicon family and calls
3959  *  clear_hw_cntrs_generic to clear all general purpose counters.
3960  **/
e1000_clear_hw_cntrs_ich8lan(struct e1000_hw * hw)3961 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3962 {
3963 	u16 phy_data;
3964 	s32 ret_val;
3965 
3966 	e1000e_clear_hw_cntrs_base(hw);
3967 
3968 	er32(ALGNERRC);
3969 	er32(RXERRC);
3970 	er32(TNCRS);
3971 	er32(CEXTERR);
3972 	er32(TSCTC);
3973 	er32(TSCTFC);
3974 
3975 	er32(MGTPRC);
3976 	er32(MGTPDC);
3977 	er32(MGTPTC);
3978 
3979 	er32(IAC);
3980 	er32(ICRXOC);
3981 
3982 	/* Clear PHY statistics registers */
3983 	if ((hw->phy.type == e1000_phy_82578) ||
3984 	    (hw->phy.type == e1000_phy_82579) ||
3985 	    (hw->phy.type == e1000_phy_82577)) {
3986 		ret_val = hw->phy.ops.acquire(hw);
3987 		if (ret_val)
3988 			return;
3989 		ret_val = hw->phy.ops.set_page(hw,
3990 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
3991 		if (ret_val)
3992 			goto release;
3993 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
3994 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
3995 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
3996 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
3997 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
3998 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
3999 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4000 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4001 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4002 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4003 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4004 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4005 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4006 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4007 release:
4008 		hw->phy.ops.release(hw);
4009 	}
4010 }
4011 
4012 static const struct e1000_mac_operations ich8_mac_ops = {
4013 	/* check_mng_mode dependent on mac type */
4014 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4015 	/* cleanup_led dependent on mac type */
4016 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4017 	.get_bus_info		= e1000_get_bus_info_ich8lan,
4018 	.set_lan_id		= e1000_set_lan_id_single_port,
4019 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4020 	/* led_on dependent on mac type */
4021 	/* led_off dependent on mac type */
4022 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4023 	.reset_hw		= e1000_reset_hw_ich8lan,
4024 	.init_hw		= e1000_init_hw_ich8lan,
4025 	.setup_link		= e1000_setup_link_ich8lan,
4026 	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4027 	/* id_led_init dependent on mac type */
4028 	.config_collision_dist	= e1000e_config_collision_dist_generic,
4029 };
4030 
4031 static const struct e1000_phy_operations ich8_phy_ops = {
4032 	.acquire		= e1000_acquire_swflag_ich8lan,
4033 	.check_reset_block	= e1000_check_reset_block_ich8lan,
4034 	.commit			= NULL,
4035 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4036 	.get_cable_length	= e1000e_get_cable_length_igp_2,
4037 	.read_reg		= e1000e_read_phy_reg_igp,
4038 	.release		= e1000_release_swflag_ich8lan,
4039 	.reset			= e1000_phy_hw_reset_ich8lan,
4040 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4041 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4042 	.write_reg		= e1000e_write_phy_reg_igp,
4043 };
4044 
4045 static const struct e1000_nvm_operations ich8_nvm_ops = {
4046 	.acquire		= e1000_acquire_nvm_ich8lan,
4047 	.read		 	= e1000_read_nvm_ich8lan,
4048 	.release		= e1000_release_nvm_ich8lan,
4049 	.reload			= e1000e_reload_nvm_generic,
4050 	.update			= e1000_update_nvm_checksum_ich8lan,
4051 	.valid_led_default	= e1000_valid_led_default_ich8lan,
4052 	.validate		= e1000_validate_nvm_checksum_ich8lan,
4053 	.write			= e1000_write_nvm_ich8lan,
4054 };
4055 
4056 const struct e1000_info e1000_ich8_info = {
4057 	.mac			= e1000_ich8lan,
4058 	.flags			= FLAG_HAS_WOL
4059 				  | FLAG_IS_ICH
4060 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4061 				  | FLAG_HAS_AMT
4062 				  | FLAG_HAS_FLASH
4063 				  | FLAG_APME_IN_WUC,
4064 	.pba			= 8,
4065 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
4066 	.get_variants		= e1000_get_variants_ich8lan,
4067 	.mac_ops		= &ich8_mac_ops,
4068 	.phy_ops		= &ich8_phy_ops,
4069 	.nvm_ops		= &ich8_nvm_ops,
4070 };
4071 
4072 const struct e1000_info e1000_ich9_info = {
4073 	.mac			= e1000_ich9lan,
4074 	.flags			= FLAG_HAS_JUMBO_FRAMES
4075 				  | FLAG_IS_ICH
4076 				  | FLAG_HAS_WOL
4077 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4078 				  | FLAG_HAS_AMT
4079 				  | FLAG_HAS_FLASH
4080 				  | FLAG_APME_IN_WUC,
4081 	.pba			= 18,
4082 	.max_hw_frame_size	= DEFAULT_JUMBO,
4083 	.get_variants		= e1000_get_variants_ich8lan,
4084 	.mac_ops		= &ich8_mac_ops,
4085 	.phy_ops		= &ich8_phy_ops,
4086 	.nvm_ops		= &ich8_nvm_ops,
4087 };
4088 
4089 const struct e1000_info e1000_ich10_info = {
4090 	.mac			= e1000_ich10lan,
4091 	.flags			= FLAG_HAS_JUMBO_FRAMES
4092 				  | FLAG_IS_ICH
4093 				  | FLAG_HAS_WOL
4094 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4095 				  | FLAG_HAS_AMT
4096 				  | FLAG_HAS_FLASH
4097 				  | FLAG_APME_IN_WUC,
4098 	.pba			= 18,
4099 	.max_hw_frame_size	= DEFAULT_JUMBO,
4100 	.get_variants		= e1000_get_variants_ich8lan,
4101 	.mac_ops		= &ich8_mac_ops,
4102 	.phy_ops		= &ich8_phy_ops,
4103 	.nvm_ops		= &ich8_nvm_ops,
4104 };
4105 
4106 const struct e1000_info e1000_pch_info = {
4107 	.mac			= e1000_pchlan,
4108 	.flags			= FLAG_IS_ICH
4109 				  | FLAG_HAS_WOL
4110 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4111 				  | FLAG_HAS_AMT
4112 				  | FLAG_HAS_FLASH
4113 				  | FLAG_HAS_JUMBO_FRAMES
4114 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4115 				  | FLAG_APME_IN_WUC,
4116 	.flags2			= FLAG2_HAS_PHY_STATS,
4117 	.pba			= 26,
4118 	.max_hw_frame_size	= 4096,
4119 	.get_variants		= e1000_get_variants_ich8lan,
4120 	.mac_ops		= &ich8_mac_ops,
4121 	.phy_ops		= &ich8_phy_ops,
4122 	.nvm_ops		= &ich8_nvm_ops,
4123 };
4124 
4125 const struct e1000_info e1000_pch2_info = {
4126 	.mac			= e1000_pch2lan,
4127 	.flags			= FLAG_IS_ICH
4128 				  | FLAG_HAS_WOL
4129 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4130 				  | FLAG_HAS_AMT
4131 				  | FLAG_HAS_FLASH
4132 				  | FLAG_HAS_JUMBO_FRAMES
4133 				  | FLAG_APME_IN_WUC,
4134 	.flags2			= FLAG2_HAS_PHY_STATS
4135 				  | FLAG2_HAS_EEE,
4136 	.pba			= 26,
4137 	.max_hw_frame_size	= DEFAULT_JUMBO,
4138 	.get_variants		= e1000_get_variants_ich8lan,
4139 	.mac_ops		= &ich8_mac_ops,
4140 	.phy_ops		= &ich8_phy_ops,
4141 	.nvm_ops		= &ich8_nvm_ops,
4142 };
4143