1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /*
30  * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
32  */
33 
34 #include "e1000.h"
35 
36 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL	 0x00
37 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL	 0x02
38 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL	 0x10
39 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE	 0x1F
40 
41 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS	 0x0008
42 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS	 0x0800
43 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING	 0x0010
44 
45 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
46 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT	 0x0000
47 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE		 0x2000
48 
49 #define E1000_KMRNCTRLSTA_OPMODE_MASK		 0x000C
50 #define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO	 0x0004
51 
52 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
53 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN	 0x00010000
54 
55 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN	 0x8
56 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN	 0x9
57 
58 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
59 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE	 0x0002 /* 1=Reversal Disab. */
60 #define GG82563_PSCR_CROSSOVER_MODE_MASK	 0x0060
61 #define GG82563_PSCR_CROSSOVER_MODE_MDI		 0x0000 /* 00=Manual MDI */
62 #define GG82563_PSCR_CROSSOVER_MODE_MDIX	 0x0020 /* 01=Manual MDIX */
63 #define GG82563_PSCR_CROSSOVER_MODE_AUTO	 0x0060 /* 11=Auto crossover */
64 
65 /* PHY Specific Control Register 2 (Page 0, Register 26) */
66 #define GG82563_PSCR2_REVERSE_AUTO_NEG		 0x2000
67 						/* 1=Reverse Auto-Negotiation */
68 
69 /* MAC Specific Control Register (Page 2, Register 21) */
70 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
71 #define GG82563_MSCR_TX_CLK_MASK		 0x0007
72 #define GG82563_MSCR_TX_CLK_10MBPS_2_5		 0x0004
73 #define GG82563_MSCR_TX_CLK_100MBPS_25		 0x0005
74 #define GG82563_MSCR_TX_CLK_1000MBPS_25		 0x0007
75 
76 #define GG82563_MSCR_ASSERT_CRS_ON_TX		 0x0010 /* 1=Assert */
77 
78 /* DSP Distance Register (Page 5, Register 26) */
79 #define GG82563_DSPD_CABLE_LENGTH		 0x0007 /* 0 = <50M
80 							   1 = 50-80M
81 							   2 = 80-110M
82 							   3 = 110-140M
83 							   4 = >140M */
84 
85 /* Kumeran Mode Control Register (Page 193, Register 16) */
86 #define GG82563_KMCR_PASS_FALSE_CARRIER		 0x0800
87 
88 /* Max number of times Kumeran read/write should be validated */
89 #define GG82563_MAX_KMRN_RETRY  0x5
90 
91 /* Power Management Control Register (Page 193, Register 20) */
92 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE	 0x0001
93 					   /* 1=Enable SERDES Electrical Idle */
94 
95 /* In-Band Control Register (Page 194, Register 18) */
96 #define GG82563_ICR_DIS_PADDING			 0x0010 /* Disable Padding */
97 
98 /*
99  * A table for the GG82563 cable length where the range is defined
100  * with a lower bound at "index" and the upper bound at
101  * "index + 5".
102  */
103 static const u16 e1000_gg82563_cable_length_table[] = {
104 	 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
105 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
106 		ARRAY_SIZE(e1000_gg82563_cable_length_table)
107 
108 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
109 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
110 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
111 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
112 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
113 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
115 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
116 static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
117                                             u16 *data);
118 static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
119                                              u16 data);
120 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
121 
122 /**
123  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
124  *  @hw: pointer to the HW structure
125  **/
e1000_init_phy_params_80003es2lan(struct e1000_hw * hw)126 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
127 {
128 	struct e1000_phy_info *phy = &hw->phy;
129 	s32 ret_val;
130 
131 	if (hw->phy.media_type != e1000_media_type_copper) {
132 		phy->type	= e1000_phy_none;
133 		return 0;
134 	} else {
135 		phy->ops.power_up = e1000_power_up_phy_copper;
136 		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
137 	}
138 
139 	phy->addr		= 1;
140 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
141 	phy->reset_delay_us      = 100;
142 	phy->type		= e1000_phy_gg82563;
143 
144 	/* This can only be done after all function pointers are setup. */
145 	ret_val = e1000e_get_phy_id(hw);
146 
147 	/* Verify phy id */
148 	if (phy->id != GG82563_E_PHY_ID)
149 		return -E1000_ERR_PHY;
150 
151 	return ret_val;
152 }
153 
154 /**
155  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
156  *  @hw: pointer to the HW structure
157  **/
e1000_init_nvm_params_80003es2lan(struct e1000_hw * hw)158 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
159 {
160 	struct e1000_nvm_info *nvm = &hw->nvm;
161 	u32 eecd = er32(EECD);
162 	u16 size;
163 
164 	nvm->opcode_bits	= 8;
165 	nvm->delay_usec	 = 1;
166 	switch (nvm->override) {
167 	case e1000_nvm_override_spi_large:
168 		nvm->page_size    = 32;
169 		nvm->address_bits = 16;
170 		break;
171 	case e1000_nvm_override_spi_small:
172 		nvm->page_size    = 8;
173 		nvm->address_bits = 8;
174 		break;
175 	default:
176 		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
177 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
178 		break;
179 	}
180 
181 	nvm->type = e1000_nvm_eeprom_spi;
182 
183 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
184 			  E1000_EECD_SIZE_EX_SHIFT);
185 
186 	/*
187 	 * Added to a constant, "size" becomes the left-shift value
188 	 * for setting word_size.
189 	 */
190 	size += NVM_WORD_SIZE_BASE_SHIFT;
191 
192 	/* EEPROM access above 16k is unsupported */
193 	if (size > 14)
194 		size = 14;
195 	nvm->word_size	= 1 << size;
196 
197 	return 0;
198 }
199 
200 /**
201  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
202  *  @hw: pointer to the HW structure
203  **/
e1000_init_mac_params_80003es2lan(struct e1000_hw * hw)204 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
205 {
206 	struct e1000_mac_info *mac = &hw->mac;
207 
208 	/* Set media type and media-dependent function pointers */
209 	switch (hw->adapter->pdev->device) {
210 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
211 		hw->phy.media_type = e1000_media_type_internal_serdes;
212 		mac->ops.check_for_link = e1000e_check_for_serdes_link;
213 		mac->ops.setup_physical_interface =
214 		    e1000e_setup_fiber_serdes_link;
215 		break;
216 	default:
217 		hw->phy.media_type = e1000_media_type_copper;
218 		mac->ops.check_for_link = e1000e_check_for_copper_link;
219 		mac->ops.setup_physical_interface =
220 		    e1000_setup_copper_link_80003es2lan;
221 		break;
222 	}
223 
224 	/* Set mta register count */
225 	mac->mta_reg_count = 128;
226 	/* Set rar entry count */
227 	mac->rar_entry_count = E1000_RAR_ENTRIES;
228 	/* FWSM register */
229 	mac->has_fwsm = true;
230 	/* ARC supported; valid only if manageability features are enabled. */
231 	mac->arc_subsystem_valid =
232 	        (er32(FWSM) & E1000_FWSM_MODE_MASK)
233 	                ? true : false;
234 	/* Adaptive IFS not supported */
235 	mac->adaptive_ifs = false;
236 
237 	/* set lan id for port to determine which phy lock to use */
238 	hw->mac.ops.set_lan_id(hw);
239 
240 	return 0;
241 }
242 
e1000_get_variants_80003es2lan(struct e1000_adapter * adapter)243 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
244 {
245 	struct e1000_hw *hw = &adapter->hw;
246 	s32 rc;
247 
248 	rc = e1000_init_mac_params_80003es2lan(hw);
249 	if (rc)
250 		return rc;
251 
252 	rc = e1000_init_nvm_params_80003es2lan(hw);
253 	if (rc)
254 		return rc;
255 
256 	rc = e1000_init_phy_params_80003es2lan(hw);
257 	if (rc)
258 		return rc;
259 
260 	return 0;
261 }
262 
263 /**
264  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
265  *  @hw: pointer to the HW structure
266  *
267  *  A wrapper to acquire access rights to the correct PHY.
268  **/
e1000_acquire_phy_80003es2lan(struct e1000_hw * hw)269 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
270 {
271 	u16 mask;
272 
273 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
274 	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
275 }
276 
277 /**
278  *  e1000_release_phy_80003es2lan - Release rights to access PHY
279  *  @hw: pointer to the HW structure
280  *
281  *  A wrapper to release access rights to the correct PHY.
282  **/
e1000_release_phy_80003es2lan(struct e1000_hw * hw)283 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
284 {
285 	u16 mask;
286 
287 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
288 	e1000_release_swfw_sync_80003es2lan(hw, mask);
289 }
290 
291 /**
292  *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
293  *  @hw: pointer to the HW structure
294  *
295  *  Acquire the semaphore to access the Kumeran interface.
296  *
297  **/
e1000_acquire_mac_csr_80003es2lan(struct e1000_hw * hw)298 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
299 {
300 	u16 mask;
301 
302 	mask = E1000_SWFW_CSR_SM;
303 
304 	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
305 }
306 
307 /**
308  *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
309  *  @hw: pointer to the HW structure
310  *
311  *  Release the semaphore used to access the Kumeran interface
312  **/
e1000_release_mac_csr_80003es2lan(struct e1000_hw * hw)313 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
314 {
315 	u16 mask;
316 
317 	mask = E1000_SWFW_CSR_SM;
318 
319 	e1000_release_swfw_sync_80003es2lan(hw, mask);
320 }
321 
322 /**
323  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
324  *  @hw: pointer to the HW structure
325  *
326  *  Acquire the semaphore to access the EEPROM.
327  **/
e1000_acquire_nvm_80003es2lan(struct e1000_hw * hw)328 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
329 {
330 	s32 ret_val;
331 
332 	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
333 	if (ret_val)
334 		return ret_val;
335 
336 	ret_val = e1000e_acquire_nvm(hw);
337 
338 	if (ret_val)
339 		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
340 
341 	return ret_val;
342 }
343 
344 /**
345  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
346  *  @hw: pointer to the HW structure
347  *
348  *  Release the semaphore used to access the EEPROM.
349  **/
e1000_release_nvm_80003es2lan(struct e1000_hw * hw)350 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
351 {
352 	e1000e_release_nvm(hw);
353 	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
354 }
355 
356 /**
357  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
358  *  @hw: pointer to the HW structure
359  *  @mask: specifies which semaphore to acquire
360  *
361  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
362  *  will also specify which port we're acquiring the lock for.
363  **/
e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw * hw,u16 mask)364 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
365 {
366 	u32 swfw_sync;
367 	u32 swmask = mask;
368 	u32 fwmask = mask << 16;
369 	s32 i = 0;
370 	s32 timeout = 50;
371 
372 	while (i < timeout) {
373 		if (e1000e_get_hw_semaphore(hw))
374 			return -E1000_ERR_SWFW_SYNC;
375 
376 		swfw_sync = er32(SW_FW_SYNC);
377 		if (!(swfw_sync & (fwmask | swmask)))
378 			break;
379 
380 		/*
381 		 * Firmware currently using resource (fwmask)
382 		 * or other software thread using resource (swmask)
383 		 */
384 		e1000e_put_hw_semaphore(hw);
385 		mdelay(5);
386 		i++;
387 	}
388 
389 	if (i == timeout) {
390 		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
391 		return -E1000_ERR_SWFW_SYNC;
392 	}
393 
394 	swfw_sync |= swmask;
395 	ew32(SW_FW_SYNC, swfw_sync);
396 
397 	e1000e_put_hw_semaphore(hw);
398 
399 	return 0;
400 }
401 
402 /**
403  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
404  *  @hw: pointer to the HW structure
405  *  @mask: specifies which semaphore to acquire
406  *
407  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
408  *  will also specify which port we're releasing the lock for.
409  **/
e1000_release_swfw_sync_80003es2lan(struct e1000_hw * hw,u16 mask)410 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
411 {
412 	u32 swfw_sync;
413 
414 	while (e1000e_get_hw_semaphore(hw) != 0)
415 		; /* Empty */
416 
417 	swfw_sync = er32(SW_FW_SYNC);
418 	swfw_sync &= ~mask;
419 	ew32(SW_FW_SYNC, swfw_sync);
420 
421 	e1000e_put_hw_semaphore(hw);
422 }
423 
424 /**
425  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
426  *  @hw: pointer to the HW structure
427  *  @offset: offset of the register to read
428  *  @data: pointer to the data returned from the operation
429  *
430  *  Read the GG82563 PHY register.
431  **/
e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw * hw,u32 offset,u16 * data)432 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
433 						  u32 offset, u16 *data)
434 {
435 	s32 ret_val;
436 	u32 page_select;
437 	u16 temp;
438 
439 	ret_val = e1000_acquire_phy_80003es2lan(hw);
440 	if (ret_val)
441 		return ret_val;
442 
443 	/* Select Configuration Page */
444 	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
445 		page_select = GG82563_PHY_PAGE_SELECT;
446 	} else {
447 		/*
448 		 * Use Alternative Page Select register to access
449 		 * registers 30 and 31
450 		 */
451 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
452 	}
453 
454 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
455 	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
456 	if (ret_val) {
457 		e1000_release_phy_80003es2lan(hw);
458 		return ret_val;
459 	}
460 
461 	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
462 		/*
463 		 * The "ready" bit in the MDIC register may be incorrectly set
464 		 * before the device has completed the "Page Select" MDI
465 		 * transaction.  So we wait 200us after each MDI command...
466 		 */
467 		udelay(200);
468 
469 		/* ...and verify the command was successful. */
470 		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
471 
472 		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
473 			e1000_release_phy_80003es2lan(hw);
474 			return -E1000_ERR_PHY;
475 		}
476 
477 		udelay(200);
478 
479 		ret_val = e1000e_read_phy_reg_mdic(hw,
480 		                                  MAX_PHY_REG_ADDRESS & offset,
481 		                                  data);
482 
483 		udelay(200);
484 	} else {
485 		ret_val = e1000e_read_phy_reg_mdic(hw,
486 		                                  MAX_PHY_REG_ADDRESS & offset,
487 		                                  data);
488 	}
489 
490 	e1000_release_phy_80003es2lan(hw);
491 
492 	return ret_val;
493 }
494 
495 /**
496  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
497  *  @hw: pointer to the HW structure
498  *  @offset: offset of the register to read
499  *  @data: value to write to the register
500  *
501  *  Write to the GG82563 PHY register.
502  **/
e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw * hw,u32 offset,u16 data)503 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
504 						   u32 offset, u16 data)
505 {
506 	s32 ret_val;
507 	u32 page_select;
508 	u16 temp;
509 
510 	ret_val = e1000_acquire_phy_80003es2lan(hw);
511 	if (ret_val)
512 		return ret_val;
513 
514 	/* Select Configuration Page */
515 	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
516 		page_select = GG82563_PHY_PAGE_SELECT;
517 	} else {
518 		/*
519 		 * Use Alternative Page Select register to access
520 		 * registers 30 and 31
521 		 */
522 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
523 	}
524 
525 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
526 	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
527 	if (ret_val) {
528 		e1000_release_phy_80003es2lan(hw);
529 		return ret_val;
530 	}
531 
532 	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
533 		/*
534 		 * The "ready" bit in the MDIC register may be incorrectly set
535 		 * before the device has completed the "Page Select" MDI
536 		 * transaction.  So we wait 200us after each MDI command...
537 		 */
538 		udelay(200);
539 
540 		/* ...and verify the command was successful. */
541 		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
542 
543 		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
544 			e1000_release_phy_80003es2lan(hw);
545 			return -E1000_ERR_PHY;
546 		}
547 
548 		udelay(200);
549 
550 		ret_val = e1000e_write_phy_reg_mdic(hw,
551 		                                  MAX_PHY_REG_ADDRESS & offset,
552 		                                  data);
553 
554 		udelay(200);
555 	} else {
556 		ret_val = e1000e_write_phy_reg_mdic(hw,
557 		                                  MAX_PHY_REG_ADDRESS & offset,
558 		                                  data);
559 	}
560 
561 	e1000_release_phy_80003es2lan(hw);
562 
563 	return ret_val;
564 }
565 
566 /**
567  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
568  *  @hw: pointer to the HW structure
569  *  @offset: offset of the register to read
570  *  @words: number of words to write
571  *  @data: buffer of data to write to the NVM
572  *
573  *  Write "words" of data to the ESB2 NVM.
574  **/
e1000_write_nvm_80003es2lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)575 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
576 				       u16 words, u16 *data)
577 {
578 	return e1000e_write_nvm_spi(hw, offset, words, data);
579 }
580 
581 /**
582  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
583  *  @hw: pointer to the HW structure
584  *
585  *  Wait a specific amount of time for manageability processes to complete.
586  *  This is a function pointer entry point called by the phy module.
587  **/
e1000_get_cfg_done_80003es2lan(struct e1000_hw * hw)588 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
589 {
590 	s32 timeout = PHY_CFG_TIMEOUT;
591 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
592 
593 	if (hw->bus.func == 1)
594 		mask = E1000_NVM_CFG_DONE_PORT_1;
595 
596 	while (timeout) {
597 		if (er32(EEMNGCTL) & mask)
598 			break;
599 		usleep_range(1000, 2000);
600 		timeout--;
601 	}
602 	if (!timeout) {
603 		e_dbg("MNG configuration cycle has not completed.\n");
604 		return -E1000_ERR_RESET;
605 	}
606 
607 	return 0;
608 }
609 
610 /**
611  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
612  *  @hw: pointer to the HW structure
613  *
614  *  Force the speed and duplex settings onto the PHY.  This is a
615  *  function pointer entry point called by the phy module.
616  **/
e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw * hw)617 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
618 {
619 	s32 ret_val;
620 	u16 phy_data;
621 	bool link;
622 
623 	/*
624 	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
625 	 * forced whenever speed and duplex are forced.
626 	 */
627 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
628 	if (ret_val)
629 		return ret_val;
630 
631 	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
632 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
633 	if (ret_val)
634 		return ret_val;
635 
636 	e_dbg("GG82563 PSCR: %X\n", phy_data);
637 
638 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
639 	if (ret_val)
640 		return ret_val;
641 
642 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
643 
644 	/* Reset the phy to commit changes. */
645 	phy_data |= MII_CR_RESET;
646 
647 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
648 	if (ret_val)
649 		return ret_val;
650 
651 	udelay(1);
652 
653 	if (hw->phy.autoneg_wait_to_complete) {
654 		e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
655 
656 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
657 						     100000, &link);
658 		if (ret_val)
659 			return ret_val;
660 
661 		if (!link) {
662 			/*
663 			 * We didn't get link.
664 			 * Reset the DSP and cross our fingers.
665 			 */
666 			ret_val = e1000e_phy_reset_dsp(hw);
667 			if (ret_val)
668 				return ret_val;
669 		}
670 
671 		/* Try once more */
672 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
673 						     100000, &link);
674 		if (ret_val)
675 			return ret_val;
676 	}
677 
678 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
679 	if (ret_val)
680 		return ret_val;
681 
682 	/*
683 	 * Resetting the phy means we need to verify the TX_CLK corresponds
684 	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
685 	 */
686 	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
687 	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
688 		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
689 	else
690 		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
691 
692 	/*
693 	 * In addition, we must re-enable CRS on Tx for both half and full
694 	 * duplex.
695 	 */
696 	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
697 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
698 
699 	return ret_val;
700 }
701 
702 /**
703  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
704  *  @hw: pointer to the HW structure
705  *
706  *  Find the approximate cable length as measured by the GG82563 PHY.
707  *  This is a function pointer entry point called by the phy module.
708  **/
e1000_get_cable_length_80003es2lan(struct e1000_hw * hw)709 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
710 {
711 	struct e1000_phy_info *phy = &hw->phy;
712 	s32 ret_val = 0;
713 	u16 phy_data, index;
714 
715 	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
716 	if (ret_val)
717 		return ret_val;
718 
719 	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
720 
721 	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
722 		return -E1000_ERR_PHY;
723 
724 	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
725 	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
726 
727 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
728 
729 	return 0;
730 }
731 
732 /**
733  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
734  *  @hw: pointer to the HW structure
735  *  @speed: pointer to speed buffer
736  *  @duplex: pointer to duplex buffer
737  *
738  *  Retrieve the current speed and duplex configuration.
739  **/
e1000_get_link_up_info_80003es2lan(struct e1000_hw * hw,u16 * speed,u16 * duplex)740 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
741 					      u16 *duplex)
742 {
743 	s32 ret_val;
744 
745 	if (hw->phy.media_type == e1000_media_type_copper) {
746 		ret_val = e1000e_get_speed_and_duplex_copper(hw,
747 								    speed,
748 								    duplex);
749 		hw->phy.ops.cfg_on_link_up(hw);
750 	} else {
751 		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
752 								  speed,
753 								  duplex);
754 	}
755 
756 	return ret_val;
757 }
758 
759 /**
760  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
761  *  @hw: pointer to the HW structure
762  *
763  *  Perform a global reset to the ESB2 controller.
764  **/
e1000_reset_hw_80003es2lan(struct e1000_hw * hw)765 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
766 {
767 	u32 ctrl;
768 	s32 ret_val;
769 
770 	/*
771 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
772 	 * on the last TLP read/write transaction when MAC is reset.
773 	 */
774 	ret_val = e1000e_disable_pcie_master(hw);
775 	if (ret_val)
776 		e_dbg("PCI-E Master disable polling has failed.\n");
777 
778 	e_dbg("Masking off all interrupts\n");
779 	ew32(IMC, 0xffffffff);
780 
781 	ew32(RCTL, 0);
782 	ew32(TCTL, E1000_TCTL_PSP);
783 	e1e_flush();
784 
785 	usleep_range(10000, 20000);
786 
787 	ctrl = er32(CTRL);
788 
789 	ret_val = e1000_acquire_phy_80003es2lan(hw);
790 	e_dbg("Issuing a global reset to MAC\n");
791 	ew32(CTRL, ctrl | E1000_CTRL_RST);
792 	e1000_release_phy_80003es2lan(hw);
793 
794 	ret_val = e1000e_get_auto_rd_done(hw);
795 	if (ret_val)
796 		/* We don't want to continue accessing MAC registers. */
797 		return ret_val;
798 
799 	/* Clear any pending interrupt events. */
800 	ew32(IMC, 0xffffffff);
801 	er32(ICR);
802 
803 	return e1000_check_alt_mac_addr_generic(hw);
804 }
805 
806 /**
807  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
808  *  @hw: pointer to the HW structure
809  *
810  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
811  **/
e1000_init_hw_80003es2lan(struct e1000_hw * hw)812 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
813 {
814 	struct e1000_mac_info *mac = &hw->mac;
815 	u32 reg_data;
816 	s32 ret_val;
817 	u16 kum_reg_data;
818 	u16 i;
819 
820 	e1000_initialize_hw_bits_80003es2lan(hw);
821 
822 	/* Initialize identification LED */
823 	ret_val = mac->ops.id_led_init(hw);
824 	if (ret_val)
825 		e_dbg("Error initializing identification LED\n");
826 		/* This is not fatal and we should not stop init due to this */
827 
828 	/* Disabling VLAN filtering */
829 	e_dbg("Initializing the IEEE VLAN\n");
830 	mac->ops.clear_vfta(hw);
831 
832 	/* Setup the receive address. */
833 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
834 
835 	/* Zero out the Multicast HASH table */
836 	e_dbg("Zeroing the MTA\n");
837 	for (i = 0; i < mac->mta_reg_count; i++)
838 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
839 
840 	/* Setup link and flow control */
841 	ret_val = mac->ops.setup_link(hw);
842 
843 	/* Disable IBIST slave mode (far-end loopback) */
844 	e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
845 					&kum_reg_data);
846 	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
847 	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
848 					 kum_reg_data);
849 
850 	/* Set the transmit descriptor write-back policy */
851 	reg_data = er32(TXDCTL(0));
852 	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
853 		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
854 	ew32(TXDCTL(0), reg_data);
855 
856 	/* ...for both queues. */
857 	reg_data = er32(TXDCTL(1));
858 	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
859 		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
860 	ew32(TXDCTL(1), reg_data);
861 
862 	/* Enable retransmit on late collisions */
863 	reg_data = er32(TCTL);
864 	reg_data |= E1000_TCTL_RTLC;
865 	ew32(TCTL, reg_data);
866 
867 	/* Configure Gigabit Carry Extend Padding */
868 	reg_data = er32(TCTL_EXT);
869 	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
870 	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
871 	ew32(TCTL_EXT, reg_data);
872 
873 	/* Configure Transmit Inter-Packet Gap */
874 	reg_data = er32(TIPG);
875 	reg_data &= ~E1000_TIPG_IPGT_MASK;
876 	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
877 	ew32(TIPG, reg_data);
878 
879 	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
880 	reg_data &= ~0x00100000;
881 	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
882 
883 	/* default to true to enable the MDIC W/A */
884 	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
885 
886 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
887 	                              E1000_KMRNCTRLSTA_OFFSET >>
888 	                              E1000_KMRNCTRLSTA_OFFSET_SHIFT,
889 	                              &i);
890 	if (!ret_val) {
891 		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
892 		     E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
893 			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
894 	}
895 
896 	/*
897 	 * Clear all of the statistics registers (clear on read).  It is
898 	 * important that we do this after we have tried to establish link
899 	 * because the symbol error count will increment wildly if there
900 	 * is no link.
901 	 */
902 	e1000_clear_hw_cntrs_80003es2lan(hw);
903 
904 	return ret_val;
905 }
906 
907 /**
908  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
909  *  @hw: pointer to the HW structure
910  *
911  *  Initializes required hardware-dependent bits needed for normal operation.
912  **/
e1000_initialize_hw_bits_80003es2lan(struct e1000_hw * hw)913 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
914 {
915 	u32 reg;
916 
917 	/* Transmit Descriptor Control 0 */
918 	reg = er32(TXDCTL(0));
919 	reg |= (1 << 22);
920 	ew32(TXDCTL(0), reg);
921 
922 	/* Transmit Descriptor Control 1 */
923 	reg = er32(TXDCTL(1));
924 	reg |= (1 << 22);
925 	ew32(TXDCTL(1), reg);
926 
927 	/* Transmit Arbitration Control 0 */
928 	reg = er32(TARC(0));
929 	reg &= ~(0xF << 27); /* 30:27 */
930 	if (hw->phy.media_type != e1000_media_type_copper)
931 		reg &= ~(1 << 20);
932 	ew32(TARC(0), reg);
933 
934 	/* Transmit Arbitration Control 1 */
935 	reg = er32(TARC(1));
936 	if (er32(TCTL) & E1000_TCTL_MULR)
937 		reg &= ~(1 << 28);
938 	else
939 		reg |= (1 << 28);
940 	ew32(TARC(1), reg);
941 }
942 
943 /**
944  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
945  *  @hw: pointer to the HW structure
946  *
947  *  Setup some GG82563 PHY registers for obtaining link
948  **/
e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw * hw)949 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
950 {
951 	struct e1000_phy_info *phy = &hw->phy;
952 	s32 ret_val;
953 	u32 ctrl_ext;
954 	u16 data;
955 
956 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
957 	if (ret_val)
958 		return ret_val;
959 
960 	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
961 	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
962 	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
963 
964 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
965 	if (ret_val)
966 		return ret_val;
967 
968 	/*
969 	 * Options:
970 	 *   MDI/MDI-X = 0 (default)
971 	 *   0 - Auto for all speeds
972 	 *   1 - MDI mode
973 	 *   2 - MDI-X mode
974 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
975 	 */
976 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
977 	if (ret_val)
978 		return ret_val;
979 
980 	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
981 
982 	switch (phy->mdix) {
983 	case 1:
984 		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
985 		break;
986 	case 2:
987 		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
988 		break;
989 	case 0:
990 	default:
991 		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
992 		break;
993 	}
994 
995 	/*
996 	 * Options:
997 	 *   disable_polarity_correction = 0 (default)
998 	 *       Automatic Correction for Reversed Cable Polarity
999 	 *   0 - Disabled
1000 	 *   1 - Enabled
1001 	 */
1002 	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1003 	if (phy->disable_polarity_correction)
1004 		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1005 
1006 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
1007 	if (ret_val)
1008 		return ret_val;
1009 
1010 	/* SW Reset the PHY so all changes take effect */
1011 	ret_val = e1000e_commit_phy(hw);
1012 	if (ret_val) {
1013 		e_dbg("Error Resetting the PHY\n");
1014 		return ret_val;
1015 	}
1016 
1017 	/* Bypass Rx and Tx FIFO's */
1018 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1019 					E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
1020 					E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
1021 					E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1022 	if (ret_val)
1023 		return ret_val;
1024 
1025 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1026 				       E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1027 				       &data);
1028 	if (ret_val)
1029 		return ret_val;
1030 	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
1031 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1032 					E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1033 					data);
1034 	if (ret_val)
1035 		return ret_val;
1036 
1037 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1038 	if (ret_val)
1039 		return ret_val;
1040 
1041 	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1042 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
1043 	if (ret_val)
1044 		return ret_val;
1045 
1046 	ctrl_ext = er32(CTRL_EXT);
1047 	ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1048 	ew32(CTRL_EXT, ctrl_ext);
1049 
1050 	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1051 	if (ret_val)
1052 		return ret_val;
1053 
1054 	/*
1055 	 * Do not init these registers when the HW is in IAMT mode, since the
1056 	 * firmware will have already initialized them.  We only initialize
1057 	 * them if the HW is not in IAMT mode.
1058 	 */
1059 	if (!hw->mac.ops.check_mng_mode(hw)) {
1060 		/* Enable Electrical Idle on the PHY */
1061 		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1062 		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1063 		if (ret_val)
1064 			return ret_val;
1065 
1066 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1067 		if (ret_val)
1068 			return ret_val;
1069 
1070 		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1071 		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1072 		if (ret_val)
1073 			return ret_val;
1074 	}
1075 
1076 	/*
1077 	 * Workaround: Disable padding in Kumeran interface in the MAC
1078 	 * and in the PHY to avoid CRC errors.
1079 	 */
1080 	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1081 	if (ret_val)
1082 		return ret_val;
1083 
1084 	data |= GG82563_ICR_DIS_PADDING;
1085 	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1086 	if (ret_val)
1087 		return ret_val;
1088 
1089 	return 0;
1090 }
1091 
1092 /**
1093  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1094  *  @hw: pointer to the HW structure
1095  *
1096  *  Essentially a wrapper for setting up all things "copper" related.
1097  *  This is a function pointer entry point called by the mac module.
1098  **/
e1000_setup_copper_link_80003es2lan(struct e1000_hw * hw)1099 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1100 {
1101 	u32 ctrl;
1102 	s32 ret_val;
1103 	u16 reg_data;
1104 
1105 	ctrl = er32(CTRL);
1106 	ctrl |= E1000_CTRL_SLU;
1107 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1108 	ew32(CTRL, ctrl);
1109 
1110 	/*
1111 	 * Set the mac to wait the maximum time between each
1112 	 * iteration and increase the max iterations when
1113 	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1114 	 */
1115 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1116 	                                           0xFFFF);
1117 	if (ret_val)
1118 		return ret_val;
1119 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1120 	                                          &reg_data);
1121 	if (ret_val)
1122 		return ret_val;
1123 	reg_data |= 0x3F;
1124 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1125 	                                           reg_data);
1126 	if (ret_val)
1127 		return ret_val;
1128 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1129 				      E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1130 				      &reg_data);
1131 	if (ret_val)
1132 		return ret_val;
1133 	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1134 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1135 					E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1136 					reg_data);
1137 	if (ret_val)
1138 		return ret_val;
1139 
1140 	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1141 	if (ret_val)
1142 		return ret_val;
1143 
1144 	return e1000e_setup_copper_link(hw);
1145 }
1146 
1147 /**
1148  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1149  *  @hw: pointer to the HW structure
1150  *  @duplex: current duplex setting
1151  *
1152  *  Configure the KMRN interface by applying last minute quirks for
1153  *  10/100 operation.
1154  **/
e1000_cfg_on_link_up_80003es2lan(struct e1000_hw * hw)1155 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1156 {
1157 	s32 ret_val = 0;
1158 	u16 speed;
1159 	u16 duplex;
1160 
1161 	if (hw->phy.media_type == e1000_media_type_copper) {
1162 		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1163 		                                             &duplex);
1164 		if (ret_val)
1165 			return ret_val;
1166 
1167 		if (speed == SPEED_1000)
1168 			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1169 		else
1170 			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1171 	}
1172 
1173 	return ret_val;
1174 }
1175 
1176 /**
1177  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1178  *  @hw: pointer to the HW structure
1179  *  @duplex: current duplex setting
1180  *
1181  *  Configure the KMRN interface by applying last minute quirks for
1182  *  10/100 operation.
1183  **/
e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw * hw,u16 duplex)1184 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1185 {
1186 	s32 ret_val;
1187 	u32 tipg;
1188 	u32 i = 0;
1189 	u16 reg_data, reg_data2;
1190 
1191 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1192 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1193 	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1194 	                               reg_data);
1195 	if (ret_val)
1196 		return ret_val;
1197 
1198 	/* Configure Transmit Inter-Packet Gap */
1199 	tipg = er32(TIPG);
1200 	tipg &= ~E1000_TIPG_IPGT_MASK;
1201 	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1202 	ew32(TIPG, tipg);
1203 
1204 	do {
1205 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1206 		if (ret_val)
1207 			return ret_val;
1208 
1209 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1210 		if (ret_val)
1211 			return ret_val;
1212 		i++;
1213 	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1214 
1215 	if (duplex == HALF_DUPLEX)
1216 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1217 	else
1218 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1219 
1220 	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1221 }
1222 
1223 /**
1224  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1225  *  @hw: pointer to the HW structure
1226  *
1227  *  Configure the KMRN interface by applying last minute quirks for
1228  *  gigabit operation.
1229  **/
e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw * hw)1230 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1231 {
1232 	s32 ret_val;
1233 	u16 reg_data, reg_data2;
1234 	u32 tipg;
1235 	u32 i = 0;
1236 
1237 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1238 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1239 	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1240 	                               reg_data);
1241 	if (ret_val)
1242 		return ret_val;
1243 
1244 	/* Configure Transmit Inter-Packet Gap */
1245 	tipg = er32(TIPG);
1246 	tipg &= ~E1000_TIPG_IPGT_MASK;
1247 	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1248 	ew32(TIPG, tipg);
1249 
1250 	do {
1251 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1252 		if (ret_val)
1253 			return ret_val;
1254 
1255 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1256 		if (ret_val)
1257 			return ret_val;
1258 		i++;
1259 	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1260 
1261 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1262 
1263 	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1264 }
1265 
1266 /**
1267  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1268  *  @hw: pointer to the HW structure
1269  *  @offset: register offset to be read
1270  *  @data: pointer to the read data
1271  *
1272  *  Acquire semaphore, then read the PHY register at offset
1273  *  using the kumeran interface.  The information retrieved is stored in data.
1274  *  Release the semaphore before exiting.
1275  **/
e1000_read_kmrn_reg_80003es2lan(struct e1000_hw * hw,u32 offset,u16 * data)1276 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1277 					   u16 *data)
1278 {
1279 	u32 kmrnctrlsta;
1280 	s32 ret_val = 0;
1281 
1282 	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1283 	if (ret_val)
1284 		return ret_val;
1285 
1286 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1287 	               E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1288 	ew32(KMRNCTRLSTA, kmrnctrlsta);
1289 	e1e_flush();
1290 
1291 	udelay(2);
1292 
1293 	kmrnctrlsta = er32(KMRNCTRLSTA);
1294 	*data = (u16)kmrnctrlsta;
1295 
1296 	e1000_release_mac_csr_80003es2lan(hw);
1297 
1298 	return ret_val;
1299 }
1300 
1301 /**
1302  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1303  *  @hw: pointer to the HW structure
1304  *  @offset: register offset to write to
1305  *  @data: data to write at register offset
1306  *
1307  *  Acquire semaphore, then write the data to PHY register
1308  *  at the offset using the kumeran interface.  Release semaphore
1309  *  before exiting.
1310  **/
e1000_write_kmrn_reg_80003es2lan(struct e1000_hw * hw,u32 offset,u16 data)1311 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1312 					    u16 data)
1313 {
1314 	u32 kmrnctrlsta;
1315 	s32 ret_val = 0;
1316 
1317 	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1318 	if (ret_val)
1319 		return ret_val;
1320 
1321 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1322 	               E1000_KMRNCTRLSTA_OFFSET) | data;
1323 	ew32(KMRNCTRLSTA, kmrnctrlsta);
1324 	e1e_flush();
1325 
1326 	udelay(2);
1327 
1328 	e1000_release_mac_csr_80003es2lan(hw);
1329 
1330 	return ret_val;
1331 }
1332 
1333 /**
1334  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1335  *  @hw: pointer to the HW structure
1336  **/
e1000_read_mac_addr_80003es2lan(struct e1000_hw * hw)1337 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1338 {
1339 	s32 ret_val = 0;
1340 
1341 	/*
1342 	 * If there's an alternate MAC address place it in RAR0
1343 	 * so that it will override the Si installed default perm
1344 	 * address.
1345 	 */
1346 	ret_val = e1000_check_alt_mac_addr_generic(hw);
1347 	if (ret_val)
1348 		return ret_val;
1349 
1350 	return e1000_read_mac_addr_generic(hw);
1351 }
1352 
1353 /**
1354  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1355  * @hw: pointer to the HW structure
1356  *
1357  * In the case of a PHY power down to save power, or to turn off link during a
1358  * driver unload, or wake on lan is not enabled, remove the link.
1359  **/
e1000_power_down_phy_copper_80003es2lan(struct e1000_hw * hw)1360 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1361 {
1362 	/* If the management interface is not enabled, then power down */
1363 	if (!(hw->mac.ops.check_mng_mode(hw) ||
1364 	      hw->phy.ops.check_reset_block(hw)))
1365 		e1000_power_down_phy_copper(hw);
1366 }
1367 
1368 /**
1369  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1370  *  @hw: pointer to the HW structure
1371  *
1372  *  Clears the hardware counters by reading the counter registers.
1373  **/
e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw * hw)1374 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1375 {
1376 	e1000e_clear_hw_cntrs_base(hw);
1377 
1378 	er32(PRC64);
1379 	er32(PRC127);
1380 	er32(PRC255);
1381 	er32(PRC511);
1382 	er32(PRC1023);
1383 	er32(PRC1522);
1384 	er32(PTC64);
1385 	er32(PTC127);
1386 	er32(PTC255);
1387 	er32(PTC511);
1388 	er32(PTC1023);
1389 	er32(PTC1522);
1390 
1391 	er32(ALGNERRC);
1392 	er32(RXERRC);
1393 	er32(TNCRS);
1394 	er32(CEXTERR);
1395 	er32(TSCTC);
1396 	er32(TSCTFC);
1397 
1398 	er32(MGTPRC);
1399 	er32(MGTPDC);
1400 	er32(MGTPTC);
1401 
1402 	er32(IAC);
1403 	er32(ICRXOC);
1404 
1405 	er32(ICRXPTC);
1406 	er32(ICRXATC);
1407 	er32(ICTXPTC);
1408 	er32(ICTXATC);
1409 	er32(ICTXQEC);
1410 	er32(ICTXQMTC);
1411 	er32(ICRXDMTC);
1412 }
1413 
1414 static const struct e1000_mac_operations es2_mac_ops = {
1415 	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
1416 	.id_led_init		= e1000e_id_led_init_generic,
1417 	.blink_led		= e1000e_blink_led_generic,
1418 	.check_mng_mode		= e1000e_check_mng_mode_generic,
1419 	/* check_for_link dependent on media type */
1420 	.cleanup_led		= e1000e_cleanup_led_generic,
1421 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
1422 	.get_bus_info		= e1000e_get_bus_info_pcie,
1423 	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1424 	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
1425 	.led_on			= e1000e_led_on_generic,
1426 	.led_off		= e1000e_led_off_generic,
1427 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1428 	.write_vfta		= e1000_write_vfta_generic,
1429 	.clear_vfta		= e1000_clear_vfta_generic,
1430 	.reset_hw		= e1000_reset_hw_80003es2lan,
1431 	.init_hw		= e1000_init_hw_80003es2lan,
1432 	.setup_link		= e1000e_setup_link_generic,
1433 	/* setup_physical_interface dependent on media type */
1434 	.setup_led		= e1000e_setup_led_generic,
1435 	.config_collision_dist	= e1000e_config_collision_dist_generic,
1436 };
1437 
1438 static const struct e1000_phy_operations es2_phy_ops = {
1439 	.acquire		= e1000_acquire_phy_80003es2lan,
1440 	.check_polarity		= e1000_check_polarity_m88,
1441 	.check_reset_block	= e1000e_check_reset_block_generic,
1442 	.commit		 	= e1000e_phy_sw_reset,
1443 	.force_speed_duplex 	= e1000_phy_force_speed_duplex_80003es2lan,
1444 	.get_cfg_done       	= e1000_get_cfg_done_80003es2lan,
1445 	.get_cable_length   	= e1000_get_cable_length_80003es2lan,
1446 	.get_info       	= e1000e_get_phy_info_m88,
1447 	.read_reg       	= e1000_read_phy_reg_gg82563_80003es2lan,
1448 	.release		= e1000_release_phy_80003es2lan,
1449 	.reset		  	= e1000e_phy_hw_reset_generic,
1450 	.set_d0_lplu_state  	= NULL,
1451 	.set_d3_lplu_state  	= e1000e_set_d3_lplu_state,
1452 	.write_reg      	= e1000_write_phy_reg_gg82563_80003es2lan,
1453 	.cfg_on_link_up      	= e1000_cfg_on_link_up_80003es2lan,
1454 };
1455 
1456 static const struct e1000_nvm_operations es2_nvm_ops = {
1457 	.acquire		= e1000_acquire_nvm_80003es2lan,
1458 	.read			= e1000e_read_nvm_eerd,
1459 	.release		= e1000_release_nvm_80003es2lan,
1460 	.reload			= e1000e_reload_nvm_generic,
1461 	.update			= e1000e_update_nvm_checksum_generic,
1462 	.valid_led_default	= e1000e_valid_led_default,
1463 	.validate		= e1000e_validate_nvm_checksum_generic,
1464 	.write			= e1000_write_nvm_80003es2lan,
1465 };
1466 
1467 const struct e1000_info e1000_es2_info = {
1468 	.mac			= e1000_80003es2lan,
1469 	.flags			= FLAG_HAS_HW_VLAN_FILTER
1470 				  | FLAG_HAS_JUMBO_FRAMES
1471 				  | FLAG_HAS_WOL
1472 				  | FLAG_APME_IN_CTRL3
1473 				  | FLAG_HAS_CTRLEXT_ON_LOAD
1474 				  | FLAG_RX_NEEDS_RESTART /* errata */
1475 				  | FLAG_TARC_SET_BIT_ZERO /* errata */
1476 				  | FLAG_APME_CHECK_PORT_B
1477 				  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1478 	.flags2			= FLAG2_DMA_BURST,
1479 	.pba			= 38,
1480 	.max_hw_frame_size	= DEFAULT_JUMBO,
1481 	.get_variants		= e1000_get_variants_80003es2lan,
1482 	.mac_ops		= &es2_mac_ops,
1483 	.phy_ops		= &es2_phy_ops,
1484 	.nvm_ops		= &es2_nvm_ops,
1485 };
1486 
1487