1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * hcd.c - DesignWare HS OTG Controller host-mode routines
4 *
5 * Copyright (C) 2004-2013 Synopsys, Inc.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
19 *
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
23 * later version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * This file contains the core HCD code, and implements the Linux hc_driver
40 * API
41 */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55
56 #include "core.h"
57 #include "hcd.h"
58
59 /*
60 * =========================================================================
61 * Host Core Layer Functions
62 * =========================================================================
63 */
64
65 /**
66 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
67 * used in both device and host modes
68 *
69 * @hsotg: Programming view of the DWC_otg controller
70 */
dwc2_enable_common_interrupts(struct dwc2_hsotg * hsotg)71 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
72 {
73 u32 intmsk;
74
75 /* Clear any pending OTG Interrupts */
76 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
77
78 /* Clear any pending interrupts */
79 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
80
81 /* Enable the interrupts in the GINTMSK */
82 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
83
84 if (!hsotg->params.host_dma)
85 intmsk |= GINTSTS_RXFLVL;
86 if (!hsotg->params.external_id_pin_ctl)
87 intmsk |= GINTSTS_CONIDSTSCHNG;
88
89 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
90 GINTSTS_SESSREQINT;
91
92 if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
93 intmsk |= GINTSTS_LPMTRANRCVD;
94
95 dwc2_writel(hsotg, intmsk, GINTMSK);
96 }
97
dwc2_gahbcfg_init(struct dwc2_hsotg * hsotg)98 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
99 {
100 u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
101
102 switch (hsotg->hw_params.arch) {
103 case GHWCFG2_EXT_DMA_ARCH:
104 dev_err(hsotg->dev, "External DMA Mode not supported\n");
105 return -EINVAL;
106
107 case GHWCFG2_INT_DMA_ARCH:
108 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
109 if (hsotg->params.ahbcfg != -1) {
110 ahbcfg &= GAHBCFG_CTRL_MASK;
111 ahbcfg |= hsotg->params.ahbcfg &
112 ~GAHBCFG_CTRL_MASK;
113 }
114 break;
115
116 case GHWCFG2_SLAVE_ONLY_ARCH:
117 default:
118 dev_dbg(hsotg->dev, "Slave Only Mode\n");
119 break;
120 }
121
122 if (hsotg->params.host_dma)
123 ahbcfg |= GAHBCFG_DMA_EN;
124 else
125 hsotg->params.dma_desc_enable = false;
126
127 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
128
129 return 0;
130 }
131
dwc2_gusbcfg_init(struct dwc2_hsotg * hsotg)132 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
133 {
134 u32 usbcfg;
135
136 usbcfg = dwc2_readl(hsotg, GUSBCFG);
137 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
138
139 switch (hsotg->hw_params.op_mode) {
140 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
141 if (hsotg->params.otg_caps.hnp_support &&
142 hsotg->params.otg_caps.srp_support)
143 usbcfg |= GUSBCFG_HNPCAP;
144 fallthrough;
145
146 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
147 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
148 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
149 if (hsotg->params.otg_caps.srp_support)
150 usbcfg |= GUSBCFG_SRPCAP;
151 break;
152
153 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
154 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
155 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
156 default:
157 break;
158 }
159
160 dwc2_writel(hsotg, usbcfg, GUSBCFG);
161 }
162
dwc2_vbus_supply_init(struct dwc2_hsotg * hsotg)163 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
164 {
165 if (hsotg->vbus_supply)
166 return regulator_enable(hsotg->vbus_supply);
167
168 return 0;
169 }
170
dwc2_vbus_supply_exit(struct dwc2_hsotg * hsotg)171 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
172 {
173 if (hsotg->vbus_supply)
174 return regulator_disable(hsotg->vbus_supply);
175
176 return 0;
177 }
178
179 /**
180 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
181 *
182 * @hsotg: Programming view of DWC_otg controller
183 */
dwc2_enable_host_interrupts(struct dwc2_hsotg * hsotg)184 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
185 {
186 u32 intmsk;
187
188 dev_dbg(hsotg->dev, "%s()\n", __func__);
189
190 /* Disable all interrupts */
191 dwc2_writel(hsotg, 0, GINTMSK);
192 dwc2_writel(hsotg, 0, HAINTMSK);
193
194 /* Enable the common interrupts */
195 dwc2_enable_common_interrupts(hsotg);
196
197 /* Enable host mode interrupts without disturbing common interrupts */
198 intmsk = dwc2_readl(hsotg, GINTMSK);
199 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
200 dwc2_writel(hsotg, intmsk, GINTMSK);
201 }
202
203 /**
204 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
205 *
206 * @hsotg: Programming view of DWC_otg controller
207 */
dwc2_disable_host_interrupts(struct dwc2_hsotg * hsotg)208 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
209 {
210 u32 intmsk = dwc2_readl(hsotg, GINTMSK);
211
212 /* Disable host mode interrupts without disturbing common interrupts */
213 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
214 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
215 dwc2_writel(hsotg, intmsk, GINTMSK);
216 }
217
218 /*
219 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
220 * For system that have a total fifo depth that is smaller than the default
221 * RX + TX fifo size.
222 *
223 * @hsotg: Programming view of DWC_otg controller
224 */
dwc2_calculate_dynamic_fifo(struct dwc2_hsotg * hsotg)225 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
226 {
227 struct dwc2_core_params *params = &hsotg->params;
228 struct dwc2_hw_params *hw = &hsotg->hw_params;
229 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
230
231 total_fifo_size = hw->total_fifo_size;
232 rxfsiz = params->host_rx_fifo_size;
233 nptxfsiz = params->host_nperio_tx_fifo_size;
234 ptxfsiz = params->host_perio_tx_fifo_size;
235
236 /*
237 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
238 * allocation with support for high bandwidth endpoints. Synopsys
239 * defines MPS(Max Packet size) for a periodic EP=1024, and for
240 * non-periodic as 512.
241 */
242 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
243 /*
244 * For Buffer DMA mode/Scatter Gather DMA mode
245 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
246 * with n = number of host channel.
247 * 2 * ((1024/4) + 2) = 516
248 */
249 rxfsiz = 516 + hw->host_channels;
250
251 /*
252 * min non-periodic tx fifo depth
253 * 2 * (largest non-periodic USB packet used / 4)
254 * 2 * (512/4) = 256
255 */
256 nptxfsiz = 256;
257
258 /*
259 * min periodic tx fifo depth
260 * (largest packet size*MC)/4
261 * (1024 * 3)/4 = 768
262 */
263 ptxfsiz = 768;
264
265 params->host_rx_fifo_size = rxfsiz;
266 params->host_nperio_tx_fifo_size = nptxfsiz;
267 params->host_perio_tx_fifo_size = ptxfsiz;
268 }
269
270 /*
271 * If the summation of RX, NPTX and PTX fifo sizes is still
272 * bigger than the total_fifo_size, then we have a problem.
273 *
274 * We won't be able to allocate as many endpoints. Right now,
275 * we're just printing an error message, but ideally this FIFO
276 * allocation algorithm would be improved in the future.
277 *
278 * FIXME improve this FIFO allocation algorithm.
279 */
280 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
281 dev_err(hsotg->dev, "invalid fifo sizes\n");
282 }
283
dwc2_config_fifos(struct dwc2_hsotg * hsotg)284 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
285 {
286 struct dwc2_core_params *params = &hsotg->params;
287 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
288
289 if (!params->enable_dynamic_fifo)
290 return;
291
292 dwc2_calculate_dynamic_fifo(hsotg);
293
294 /* Rx FIFO */
295 grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
296 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
297 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
298 grxfsiz |= params->host_rx_fifo_size <<
299 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
300 dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
301 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
302 dwc2_readl(hsotg, GRXFSIZ));
303
304 /* Non-periodic Tx FIFO */
305 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
306 dwc2_readl(hsotg, GNPTXFSIZ));
307 nptxfsiz = params->host_nperio_tx_fifo_size <<
308 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
309 nptxfsiz |= params->host_rx_fifo_size <<
310 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
311 dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
312 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
313 dwc2_readl(hsotg, GNPTXFSIZ));
314
315 /* Periodic Tx FIFO */
316 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
317 dwc2_readl(hsotg, HPTXFSIZ));
318 hptxfsiz = params->host_perio_tx_fifo_size <<
319 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
320 hptxfsiz |= (params->host_rx_fifo_size +
321 params->host_nperio_tx_fifo_size) <<
322 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
323 dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
324 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
325 dwc2_readl(hsotg, HPTXFSIZ));
326
327 if (hsotg->params.en_multiple_tx_fifo &&
328 hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
329 /*
330 * This feature was implemented in 2.91a version
331 * Global DFIFOCFG calculation for Host mode -
332 * include RxFIFO, NPTXFIFO and HPTXFIFO
333 */
334 dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
335 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
336 dfifocfg |= (params->host_rx_fifo_size +
337 params->host_nperio_tx_fifo_size +
338 params->host_perio_tx_fifo_size) <<
339 GDFIFOCFG_EPINFOBASE_SHIFT &
340 GDFIFOCFG_EPINFOBASE_MASK;
341 dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
342 }
343 }
344
345 /**
346 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
347 * the HFIR register according to PHY type and speed
348 *
349 * @hsotg: Programming view of DWC_otg controller
350 *
351 * NOTE: The caller can modify the value of the HFIR register only after the
352 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
353 * has been set
354 */
dwc2_calc_frame_interval(struct dwc2_hsotg * hsotg)355 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
356 {
357 u32 usbcfg;
358 u32 hprt0;
359 int clock = 60; /* default value */
360
361 usbcfg = dwc2_readl(hsotg, GUSBCFG);
362 hprt0 = dwc2_readl(hsotg, HPRT0);
363
364 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
365 !(usbcfg & GUSBCFG_PHYIF16))
366 clock = 60;
367 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
368 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
369 clock = 48;
370 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
371 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
372 clock = 30;
373 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
374 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
375 clock = 60;
376 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
377 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
378 clock = 48;
379 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
380 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
381 clock = 48;
382 if ((usbcfg & GUSBCFG_PHYSEL) &&
383 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
384 clock = 48;
385
386 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
387 /* High speed case */
388 return 125 * clock - 1;
389
390 /* FS/LS case */
391 return 1000 * clock - 1;
392 }
393
394 /**
395 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
396 * buffer
397 *
398 * @hsotg: Programming view of DWC_otg controller
399 * @dest: Destination buffer for the packet
400 * @bytes: Number of bytes to copy to the destination
401 */
dwc2_read_packet(struct dwc2_hsotg * hsotg,u8 * dest,u16 bytes)402 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
403 {
404 u32 *data_buf = (u32 *)dest;
405 int word_count = (bytes + 3) / 4;
406 int i;
407
408 /*
409 * Todo: Account for the case where dest is not dword aligned. This
410 * requires reading data from the FIFO into a u32 temp buffer, then
411 * moving it into the data buffer.
412 */
413
414 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
415
416 for (i = 0; i < word_count; i++, data_buf++)
417 *data_buf = dwc2_readl(hsotg, HCFIFO(0));
418 }
419
420 /**
421 * dwc2_dump_channel_info() - Prints the state of a host channel
422 *
423 * @hsotg: Programming view of DWC_otg controller
424 * @chan: Pointer to the channel to dump
425 *
426 * Must be called with interrupt disabled and spinlock held
427 *
428 * NOTE: This function will be removed once the peripheral controller code
429 * is integrated and the driver is stable
430 */
dwc2_dump_channel_info(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)431 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
432 struct dwc2_host_chan *chan)
433 {
434 #ifdef VERBOSE_DEBUG
435 int num_channels = hsotg->params.host_channels;
436 struct dwc2_qh *qh;
437 u32 hcchar;
438 u32 hcsplt;
439 u32 hctsiz;
440 u32 hc_dma;
441 int i;
442
443 if (!chan)
444 return;
445
446 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
447 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
448 hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
449 hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
450
451 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan);
452 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n",
453 hcchar, hcsplt);
454 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n",
455 hctsiz, hc_dma);
456 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
457 chan->dev_addr, chan->ep_num, chan->ep_is_in);
458 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
459 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
460 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start);
461 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started);
462 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
463 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
464 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
465 (unsigned long)chan->xfer_dma);
466 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
467 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
468 dev_dbg(hsotg->dev, " NP inactive sched:\n");
469 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
470 qh_list_entry)
471 dev_dbg(hsotg->dev, " %p\n", qh);
472 dev_dbg(hsotg->dev, " NP waiting sched:\n");
473 list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
474 qh_list_entry)
475 dev_dbg(hsotg->dev, " %p\n", qh);
476 dev_dbg(hsotg->dev, " NP active sched:\n");
477 list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
478 qh_list_entry)
479 dev_dbg(hsotg->dev, " %p\n", qh);
480 dev_dbg(hsotg->dev, " Channels:\n");
481 for (i = 0; i < num_channels; i++) {
482 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
483
484 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan);
485 }
486 #endif /* VERBOSE_DEBUG */
487 }
488
489 static int _dwc2_hcd_start(struct usb_hcd *hcd);
490
dwc2_host_start(struct dwc2_hsotg * hsotg)491 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
492 {
493 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
494
495 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
496 _dwc2_hcd_start(hcd);
497 }
498
dwc2_host_disconnect(struct dwc2_hsotg * hsotg)499 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
500 {
501 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
502
503 hcd->self.is_b_host = 0;
504 }
505
dwc2_host_hub_info(struct dwc2_hsotg * hsotg,void * context,int * hub_addr,int * hub_port)506 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
507 int *hub_addr, int *hub_port)
508 {
509 struct urb *urb = context;
510
511 if (urb->dev->tt)
512 *hub_addr = urb->dev->tt->hub->devnum;
513 else
514 *hub_addr = 0;
515 *hub_port = urb->dev->ttport;
516 }
517
518 /*
519 * =========================================================================
520 * Low Level Host Channel Access Functions
521 * =========================================================================
522 */
523
dwc2_hc_enable_slave_ints(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)524 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
525 struct dwc2_host_chan *chan)
526 {
527 u32 hcintmsk = HCINTMSK_CHHLTD;
528
529 switch (chan->ep_type) {
530 case USB_ENDPOINT_XFER_CONTROL:
531 case USB_ENDPOINT_XFER_BULK:
532 dev_vdbg(hsotg->dev, "control/bulk\n");
533 hcintmsk |= HCINTMSK_XFERCOMPL;
534 hcintmsk |= HCINTMSK_STALL;
535 hcintmsk |= HCINTMSK_XACTERR;
536 hcintmsk |= HCINTMSK_DATATGLERR;
537 if (chan->ep_is_in) {
538 hcintmsk |= HCINTMSK_BBLERR;
539 } else {
540 hcintmsk |= HCINTMSK_NAK;
541 hcintmsk |= HCINTMSK_NYET;
542 if (chan->do_ping)
543 hcintmsk |= HCINTMSK_ACK;
544 }
545
546 if (chan->do_split) {
547 hcintmsk |= HCINTMSK_NAK;
548 if (chan->complete_split)
549 hcintmsk |= HCINTMSK_NYET;
550 else
551 hcintmsk |= HCINTMSK_ACK;
552 }
553
554 if (chan->error_state)
555 hcintmsk |= HCINTMSK_ACK;
556 break;
557
558 case USB_ENDPOINT_XFER_INT:
559 if (dbg_perio())
560 dev_vdbg(hsotg->dev, "intr\n");
561 hcintmsk |= HCINTMSK_XFERCOMPL;
562 hcintmsk |= HCINTMSK_NAK;
563 hcintmsk |= HCINTMSK_STALL;
564 hcintmsk |= HCINTMSK_XACTERR;
565 hcintmsk |= HCINTMSK_DATATGLERR;
566 hcintmsk |= HCINTMSK_FRMOVRUN;
567
568 if (chan->ep_is_in)
569 hcintmsk |= HCINTMSK_BBLERR;
570 if (chan->error_state)
571 hcintmsk |= HCINTMSK_ACK;
572 if (chan->do_split) {
573 if (chan->complete_split)
574 hcintmsk |= HCINTMSK_NYET;
575 else
576 hcintmsk |= HCINTMSK_ACK;
577 }
578 break;
579
580 case USB_ENDPOINT_XFER_ISOC:
581 if (dbg_perio())
582 dev_vdbg(hsotg->dev, "isoc\n");
583 hcintmsk |= HCINTMSK_XFERCOMPL;
584 hcintmsk |= HCINTMSK_FRMOVRUN;
585 hcintmsk |= HCINTMSK_ACK;
586
587 if (chan->ep_is_in) {
588 hcintmsk |= HCINTMSK_XACTERR;
589 hcintmsk |= HCINTMSK_BBLERR;
590 }
591 break;
592 default:
593 dev_err(hsotg->dev, "## Unknown EP type ##\n");
594 break;
595 }
596
597 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
598 if (dbg_hc(chan))
599 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
600 }
601
dwc2_hc_enable_dma_ints(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)602 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
603 struct dwc2_host_chan *chan)
604 {
605 u32 hcintmsk = HCINTMSK_CHHLTD;
606
607 /*
608 * For Descriptor DMA mode core halts the channel on AHB error.
609 * Interrupt is not required.
610 */
611 if (!hsotg->params.dma_desc_enable) {
612 if (dbg_hc(chan))
613 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
614 hcintmsk |= HCINTMSK_AHBERR;
615 } else {
616 if (dbg_hc(chan))
617 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
618 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
619 hcintmsk |= HCINTMSK_XFERCOMPL;
620 }
621
622 if (chan->error_state && !chan->do_split &&
623 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
624 if (dbg_hc(chan))
625 dev_vdbg(hsotg->dev, "setting ACK\n");
626 hcintmsk |= HCINTMSK_ACK;
627 if (chan->ep_is_in) {
628 hcintmsk |= HCINTMSK_DATATGLERR;
629 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
630 hcintmsk |= HCINTMSK_NAK;
631 }
632 }
633
634 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
635 if (dbg_hc(chan))
636 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
637 }
638
dwc2_hc_enable_ints(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)639 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
640 struct dwc2_host_chan *chan)
641 {
642 u32 intmsk;
643
644 if (hsotg->params.host_dma) {
645 if (dbg_hc(chan))
646 dev_vdbg(hsotg->dev, "DMA enabled\n");
647 dwc2_hc_enable_dma_ints(hsotg, chan);
648 } else {
649 if (dbg_hc(chan))
650 dev_vdbg(hsotg->dev, "DMA disabled\n");
651 dwc2_hc_enable_slave_ints(hsotg, chan);
652 }
653
654 /* Enable the top level host channel interrupt */
655 intmsk = dwc2_readl(hsotg, HAINTMSK);
656 intmsk |= 1 << chan->hc_num;
657 dwc2_writel(hsotg, intmsk, HAINTMSK);
658 if (dbg_hc(chan))
659 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
660
661 /* Make sure host channel interrupts are enabled */
662 intmsk = dwc2_readl(hsotg, GINTMSK);
663 intmsk |= GINTSTS_HCHINT;
664 dwc2_writel(hsotg, intmsk, GINTMSK);
665 if (dbg_hc(chan))
666 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
667 }
668
669 /**
670 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
671 * a specific endpoint
672 *
673 * @hsotg: Programming view of DWC_otg controller
674 * @chan: Information needed to initialize the host channel
675 *
676 * The HCCHARn register is set up with the characteristics specified in chan.
677 * Host channel interrupts that may need to be serviced while this transfer is
678 * in progress are enabled.
679 */
dwc2_hc_init(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)680 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
681 {
682 u8 hc_num = chan->hc_num;
683 u32 hcintmsk;
684 u32 hcchar;
685 u32 hcsplt = 0;
686
687 if (dbg_hc(chan))
688 dev_vdbg(hsotg->dev, "%s()\n", __func__);
689
690 /* Clear old interrupt conditions for this host channel */
691 hcintmsk = 0xffffffff;
692 hcintmsk &= ~HCINTMSK_RESERVED14_31;
693 dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
694
695 /* Enable channel interrupts required for this transfer */
696 dwc2_hc_enable_ints(hsotg, chan);
697
698 /*
699 * Program the HCCHARn register with the endpoint characteristics for
700 * the current transfer
701 */
702 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
703 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
704 if (chan->ep_is_in)
705 hcchar |= HCCHAR_EPDIR;
706 if (chan->speed == USB_SPEED_LOW)
707 hcchar |= HCCHAR_LSPDDEV;
708 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
709 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
710 dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
711 if (dbg_hc(chan)) {
712 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
713 hc_num, hcchar);
714
715 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
716 __func__, hc_num);
717 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
718 chan->dev_addr);
719 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
720 chan->ep_num);
721 dev_vdbg(hsotg->dev, " Is In: %d\n",
722 chan->ep_is_in);
723 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
724 chan->speed == USB_SPEED_LOW);
725 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
726 chan->ep_type);
727 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
728 chan->max_packet);
729 }
730
731 /* Program the HCSPLT register for SPLITs */
732 if (chan->do_split) {
733 if (dbg_hc(chan))
734 dev_vdbg(hsotg->dev,
735 "Programming HC %d with split --> %s\n",
736 hc_num,
737 chan->complete_split ? "CSPLIT" : "SSPLIT");
738 if (chan->complete_split)
739 hcsplt |= HCSPLT_COMPSPLT;
740 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
741 HCSPLT_XACTPOS_MASK;
742 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
743 HCSPLT_HUBADDR_MASK;
744 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
745 HCSPLT_PRTADDR_MASK;
746 if (dbg_hc(chan)) {
747 dev_vdbg(hsotg->dev, " comp split %d\n",
748 chan->complete_split);
749 dev_vdbg(hsotg->dev, " xact pos %d\n",
750 chan->xact_pos);
751 dev_vdbg(hsotg->dev, " hub addr %d\n",
752 chan->hub_addr);
753 dev_vdbg(hsotg->dev, " hub port %d\n",
754 chan->hub_port);
755 dev_vdbg(hsotg->dev, " is_in %d\n",
756 chan->ep_is_in);
757 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
758 chan->max_packet);
759 dev_vdbg(hsotg->dev, " xferlen %d\n",
760 chan->xfer_len);
761 }
762 }
763
764 dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
765 }
766
767 /**
768 * dwc2_hc_halt() - Attempts to halt a host channel
769 *
770 * @hsotg: Controller register interface
771 * @chan: Host channel to halt
772 * @halt_status: Reason for halting the channel
773 *
774 * This function should only be called in Slave mode or to abort a transfer in
775 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
776 * controller halts the channel when the transfer is complete or a condition
777 * occurs that requires application intervention.
778 *
779 * In slave mode, checks for a free request queue entry, then sets the Channel
780 * Enable and Channel Disable bits of the Host Channel Characteristics
781 * register of the specified channel to intiate the halt. If there is no free
782 * request queue entry, sets only the Channel Disable bit of the HCCHARn
783 * register to flush requests for this channel. In the latter case, sets a
784 * flag to indicate that the host channel needs to be halted when a request
785 * queue slot is open.
786 *
787 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
788 * HCCHARn register. The controller ensures there is space in the request
789 * queue before submitting the halt request.
790 *
791 * Some time may elapse before the core flushes any posted requests for this
792 * host channel and halts. The Channel Halted interrupt handler completes the
793 * deactivation of the host channel.
794 */
dwc2_hc_halt(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,enum dwc2_halt_status halt_status)795 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
796 enum dwc2_halt_status halt_status)
797 {
798 u32 nptxsts, hptxsts, hcchar;
799
800 if (dbg_hc(chan))
801 dev_vdbg(hsotg->dev, "%s()\n", __func__);
802
803 /*
804 * In buffer DMA or external DMA mode channel can't be halted
805 * for non-split periodic channels. At the end of the next
806 * uframe/frame (in the worst case), the core generates a channel
807 * halted and disables the channel automatically.
808 */
809 if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
810 hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
811 if (!chan->do_split &&
812 (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
813 chan->ep_type == USB_ENDPOINT_XFER_INT)) {
814 dev_err(hsotg->dev, "%s() Channel can't be halted\n",
815 __func__);
816 return;
817 }
818 }
819
820 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
821 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
822
823 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
824 halt_status == DWC2_HC_XFER_AHB_ERR) {
825 /*
826 * Disable all channel interrupts except Ch Halted. The QTD
827 * and QH state associated with this transfer has been cleared
828 * (in the case of URB_DEQUEUE), so the channel needs to be
829 * shut down carefully to prevent crashes.
830 */
831 u32 hcintmsk = HCINTMSK_CHHLTD;
832
833 dev_vdbg(hsotg->dev, "dequeue/error\n");
834 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
835
836 /*
837 * Make sure no other interrupts besides halt are currently
838 * pending. Handling another interrupt could cause a crash due
839 * to the QTD and QH state.
840 */
841 dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
842
843 /*
844 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
845 * even if the channel was already halted for some other
846 * reason
847 */
848 chan->halt_status = halt_status;
849
850 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
851 if (!(hcchar & HCCHAR_CHENA)) {
852 /*
853 * The channel is either already halted or it hasn't
854 * started yet. In DMA mode, the transfer may halt if
855 * it finishes normally or a condition occurs that
856 * requires driver intervention. Don't want to halt
857 * the channel again. In either Slave or DMA mode,
858 * it's possible that the transfer has been assigned
859 * to a channel, but not started yet when an URB is
860 * dequeued. Don't want to halt a channel that hasn't
861 * started yet.
862 */
863 return;
864 }
865 }
866 if (chan->halt_pending) {
867 /*
868 * A halt has already been issued for this channel. This might
869 * happen when a transfer is aborted by a higher level in
870 * the stack.
871 */
872 dev_vdbg(hsotg->dev,
873 "*** %s: Channel %d, chan->halt_pending already set ***\n",
874 __func__, chan->hc_num);
875 return;
876 }
877
878 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
879
880 /* No need to set the bit in DDMA for disabling the channel */
881 /* TODO check it everywhere channel is disabled */
882 if (!hsotg->params.dma_desc_enable) {
883 if (dbg_hc(chan))
884 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
885 hcchar |= HCCHAR_CHENA;
886 } else {
887 if (dbg_hc(chan))
888 dev_dbg(hsotg->dev, "desc DMA enabled\n");
889 }
890 hcchar |= HCCHAR_CHDIS;
891
892 if (!hsotg->params.host_dma) {
893 if (dbg_hc(chan))
894 dev_vdbg(hsotg->dev, "DMA not enabled\n");
895 hcchar |= HCCHAR_CHENA;
896
897 /* Check for space in the request queue to issue the halt */
898 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
899 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
900 dev_vdbg(hsotg->dev, "control/bulk\n");
901 nptxsts = dwc2_readl(hsotg, GNPTXSTS);
902 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
903 dev_vdbg(hsotg->dev, "Disabling channel\n");
904 hcchar &= ~HCCHAR_CHENA;
905 }
906 } else {
907 if (dbg_perio())
908 dev_vdbg(hsotg->dev, "isoc/intr\n");
909 hptxsts = dwc2_readl(hsotg, HPTXSTS);
910 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
911 hsotg->queuing_high_bandwidth) {
912 if (dbg_perio())
913 dev_vdbg(hsotg->dev, "Disabling channel\n");
914 hcchar &= ~HCCHAR_CHENA;
915 }
916 }
917 } else {
918 if (dbg_hc(chan))
919 dev_vdbg(hsotg->dev, "DMA enabled\n");
920 }
921
922 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
923 chan->halt_status = halt_status;
924
925 if (hcchar & HCCHAR_CHENA) {
926 if (dbg_hc(chan))
927 dev_vdbg(hsotg->dev, "Channel enabled\n");
928 chan->halt_pending = 1;
929 chan->halt_on_queue = 0;
930 } else {
931 if (dbg_hc(chan))
932 dev_vdbg(hsotg->dev, "Channel disabled\n");
933 chan->halt_on_queue = 1;
934 }
935
936 if (dbg_hc(chan)) {
937 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
938 chan->hc_num);
939 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
940 hcchar);
941 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
942 chan->halt_pending);
943 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
944 chan->halt_on_queue);
945 dev_vdbg(hsotg->dev, " halt_status: %d\n",
946 chan->halt_status);
947 }
948 }
949
950 /**
951 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
952 *
953 * @hsotg: Programming view of DWC_otg controller
954 * @chan: Identifies the host channel to clean up
955 *
956 * This function is normally called after a transfer is done and the host
957 * channel is being released
958 */
dwc2_hc_cleanup(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)959 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
960 {
961 u32 hcintmsk;
962
963 chan->xfer_started = 0;
964
965 list_del_init(&chan->split_order_list_entry);
966
967 /*
968 * Clear channel interrupt enables and any unhandled channel interrupt
969 * conditions
970 */
971 dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
972 hcintmsk = 0xffffffff;
973 hcintmsk &= ~HCINTMSK_RESERVED14_31;
974 dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
975 }
976
977 /**
978 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
979 * which frame a periodic transfer should occur
980 *
981 * @hsotg: Programming view of DWC_otg controller
982 * @chan: Identifies the host channel to set up and its properties
983 * @hcchar: Current value of the HCCHAR register for the specified host channel
984 *
985 * This function has no effect on non-periodic transfers
986 */
dwc2_hc_set_even_odd_frame(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,u32 * hcchar)987 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
988 struct dwc2_host_chan *chan, u32 *hcchar)
989 {
990 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
991 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
992 int host_speed;
993 int xfer_ns;
994 int xfer_us;
995 int bytes_in_fifo;
996 u16 fifo_space;
997 u16 frame_number;
998 u16 wire_frame;
999
1000 /*
1001 * Try to figure out if we're an even or odd frame. If we set
1002 * even and the current frame number is even the the transfer
1003 * will happen immediately. Similar if both are odd. If one is
1004 * even and the other is odd then the transfer will happen when
1005 * the frame number ticks.
1006 *
1007 * There's a bit of a balancing act to get this right.
1008 * Sometimes we may want to send data in the current frame (AK
1009 * right away). We might want to do this if the frame number
1010 * _just_ ticked, but we might also want to do this in order
1011 * to continue a split transaction that happened late in a
1012 * microframe (so we didn't know to queue the next transfer
1013 * until the frame number had ticked). The problem is that we
1014 * need a lot of knowledge to know if there's actually still
1015 * time to send things or if it would be better to wait until
1016 * the next frame.
1017 *
1018 * We can look at how much time is left in the current frame
1019 * and make a guess about whether we'll have time to transfer.
1020 * We'll do that.
1021 */
1022
1023 /* Get speed host is running at */
1024 host_speed = (chan->speed != USB_SPEED_HIGH &&
1025 !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1026
1027 /* See how many bytes are in the periodic FIFO right now */
1028 fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1029 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1030 bytes_in_fifo = sizeof(u32) *
1031 (hsotg->params.host_perio_tx_fifo_size -
1032 fifo_space);
1033
1034 /*
1035 * Roughly estimate bus time for everything in the periodic
1036 * queue + our new transfer. This is "rough" because we're
1037 * using a function that makes takes into account IN/OUT
1038 * and INT/ISO and we're just slamming in one value for all
1039 * transfers. This should be an over-estimate and that should
1040 * be OK, but we can probably tighten it.
1041 */
1042 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1043 chan->xfer_len + bytes_in_fifo);
1044 xfer_us = NS_TO_US(xfer_ns);
1045
1046 /* See what frame number we'll be at by the time we finish */
1047 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1048
1049 /* This is when we were scheduled to be on the wire */
1050 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1051
1052 /*
1053 * If we'd finish _after_ the frame we're scheduled in then
1054 * it's hopeless. Just schedule right away and hope for the
1055 * best. Note that it _might_ be wise to call back into the
1056 * scheduler to pick a better frame, but this is better than
1057 * nothing.
1058 */
1059 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1060 dwc2_sch_vdbg(hsotg,
1061 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1062 chan->qh, wire_frame, frame_number,
1063 dwc2_frame_num_dec(frame_number,
1064 wire_frame));
1065 wire_frame = frame_number;
1066
1067 /*
1068 * We picked a different frame number; communicate this
1069 * back to the scheduler so it doesn't try to schedule
1070 * another in the same frame.
1071 *
1072 * Remember that next_active_frame is 1 before the wire
1073 * frame.
1074 */
1075 chan->qh->next_active_frame =
1076 dwc2_frame_num_dec(frame_number, 1);
1077 }
1078
1079 if (wire_frame & 1)
1080 *hcchar |= HCCHAR_ODDFRM;
1081 else
1082 *hcchar &= ~HCCHAR_ODDFRM;
1083 }
1084 }
1085
dwc2_set_pid_isoc(struct dwc2_host_chan * chan)1086 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1087 {
1088 /* Set up the initial PID for the transfer */
1089 if (chan->speed == USB_SPEED_HIGH) {
1090 if (chan->ep_is_in) {
1091 if (chan->multi_count == 1)
1092 chan->data_pid_start = DWC2_HC_PID_DATA0;
1093 else if (chan->multi_count == 2)
1094 chan->data_pid_start = DWC2_HC_PID_DATA1;
1095 else
1096 chan->data_pid_start = DWC2_HC_PID_DATA2;
1097 } else {
1098 if (chan->multi_count == 1)
1099 chan->data_pid_start = DWC2_HC_PID_DATA0;
1100 else
1101 chan->data_pid_start = DWC2_HC_PID_MDATA;
1102 }
1103 } else {
1104 chan->data_pid_start = DWC2_HC_PID_DATA0;
1105 }
1106 }
1107
1108 /**
1109 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1110 * the Host Channel
1111 *
1112 * @hsotg: Programming view of DWC_otg controller
1113 * @chan: Information needed to initialize the host channel
1114 *
1115 * This function should only be called in Slave mode. For a channel associated
1116 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1117 * associated with a periodic EP, the periodic Tx FIFO is written.
1118 *
1119 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1120 * the number of bytes written to the Tx FIFO.
1121 */
dwc2_hc_write_packet(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1122 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1123 struct dwc2_host_chan *chan)
1124 {
1125 u32 i;
1126 u32 remaining_count;
1127 u32 byte_count;
1128 u32 dword_count;
1129 u32 *data_buf = (u32 *)chan->xfer_buf;
1130
1131 if (dbg_hc(chan))
1132 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1133
1134 remaining_count = chan->xfer_len - chan->xfer_count;
1135 if (remaining_count > chan->max_packet)
1136 byte_count = chan->max_packet;
1137 else
1138 byte_count = remaining_count;
1139
1140 dword_count = (byte_count + 3) / 4;
1141
1142 if (((unsigned long)data_buf & 0x3) == 0) {
1143 /* xfer_buf is DWORD aligned */
1144 for (i = 0; i < dword_count; i++, data_buf++)
1145 dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1146 } else {
1147 /* xfer_buf is not DWORD aligned */
1148 for (i = 0; i < dword_count; i++, data_buf++) {
1149 u32 data = data_buf[0] | data_buf[1] << 8 |
1150 data_buf[2] << 16 | data_buf[3] << 24;
1151 dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1152 }
1153 }
1154
1155 chan->xfer_count += byte_count;
1156 chan->xfer_buf += byte_count;
1157 }
1158
1159 /**
1160 * dwc2_hc_do_ping() - Starts a PING transfer
1161 *
1162 * @hsotg: Programming view of DWC_otg controller
1163 * @chan: Information needed to initialize the host channel
1164 *
1165 * This function should only be called in Slave mode. The Do Ping bit is set in
1166 * the HCTSIZ register, then the channel is enabled.
1167 */
dwc2_hc_do_ping(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1168 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1169 struct dwc2_host_chan *chan)
1170 {
1171 u32 hcchar;
1172 u32 hctsiz;
1173
1174 if (dbg_hc(chan))
1175 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1176 chan->hc_num);
1177
1178 hctsiz = TSIZ_DOPNG;
1179 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1180 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1181
1182 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1183 hcchar |= HCCHAR_CHENA;
1184 hcchar &= ~HCCHAR_CHDIS;
1185 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1186 }
1187
1188 /**
1189 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1190 * channel and starts the transfer
1191 *
1192 * @hsotg: Programming view of DWC_otg controller
1193 * @chan: Information needed to initialize the host channel. The xfer_len value
1194 * may be reduced to accommodate the max widths of the XferSize and
1195 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1196 * changed to reflect the final xfer_len value.
1197 *
1198 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1199 * the caller must ensure that there is sufficient space in the request queue
1200 * and Tx Data FIFO.
1201 *
1202 * For an OUT transfer in Slave mode, it loads a data packet into the
1203 * appropriate FIFO. If necessary, additional data packets are loaded in the
1204 * Host ISR.
1205 *
1206 * For an IN transfer in Slave mode, a data packet is requested. The data
1207 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1208 * additional data packets are requested in the Host ISR.
1209 *
1210 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1211 * register along with a packet count of 1 and the channel is enabled. This
1212 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1213 * simply set to 0 since no data transfer occurs in this case.
1214 *
1215 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1216 * all the information required to perform the subsequent data transfer. In
1217 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1218 * controller performs the entire PING protocol, then starts the data
1219 * transfer.
1220 */
dwc2_hc_start_transfer(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1221 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1222 struct dwc2_host_chan *chan)
1223 {
1224 u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1225 u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1226 u32 hcchar;
1227 u32 hctsiz = 0;
1228 u16 num_packets;
1229 u32 ec_mc;
1230
1231 if (dbg_hc(chan))
1232 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1233
1234 if (chan->do_ping) {
1235 if (!hsotg->params.host_dma) {
1236 if (dbg_hc(chan))
1237 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1238 dwc2_hc_do_ping(hsotg, chan);
1239 chan->xfer_started = 1;
1240 return;
1241 }
1242
1243 if (dbg_hc(chan))
1244 dev_vdbg(hsotg->dev, "ping, DMA\n");
1245
1246 hctsiz |= TSIZ_DOPNG;
1247 }
1248
1249 if (chan->do_split) {
1250 if (dbg_hc(chan))
1251 dev_vdbg(hsotg->dev, "split\n");
1252 num_packets = 1;
1253
1254 if (chan->complete_split && !chan->ep_is_in)
1255 /*
1256 * For CSPLIT OUT Transfer, set the size to 0 so the
1257 * core doesn't expect any data written to the FIFO
1258 */
1259 chan->xfer_len = 0;
1260 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1261 chan->xfer_len = chan->max_packet;
1262 else if (!chan->ep_is_in && chan->xfer_len > 188)
1263 chan->xfer_len = 188;
1264
1265 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1266 TSIZ_XFERSIZE_MASK;
1267
1268 /* For split set ec_mc for immediate retries */
1269 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1270 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1271 ec_mc = 3;
1272 else
1273 ec_mc = 1;
1274 } else {
1275 if (dbg_hc(chan))
1276 dev_vdbg(hsotg->dev, "no split\n");
1277 /*
1278 * Ensure that the transfer length and packet count will fit
1279 * in the widths allocated for them in the HCTSIZn register
1280 */
1281 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1282 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1283 /*
1284 * Make sure the transfer size is no larger than one
1285 * (micro)frame's worth of data. (A check was done
1286 * when the periodic transfer was accepted to ensure
1287 * that a (micro)frame's worth of data can be
1288 * programmed into a channel.)
1289 */
1290 u32 max_periodic_len =
1291 chan->multi_count * chan->max_packet;
1292
1293 if (chan->xfer_len > max_periodic_len)
1294 chan->xfer_len = max_periodic_len;
1295 } else if (chan->xfer_len > max_hc_xfer_size) {
1296 /*
1297 * Make sure that xfer_len is a multiple of max packet
1298 * size
1299 */
1300 chan->xfer_len =
1301 max_hc_xfer_size - chan->max_packet + 1;
1302 }
1303
1304 if (chan->xfer_len > 0) {
1305 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1306 chan->max_packet;
1307 if (num_packets > max_hc_pkt_count) {
1308 num_packets = max_hc_pkt_count;
1309 chan->xfer_len = num_packets * chan->max_packet;
1310 } else if (chan->ep_is_in) {
1311 /*
1312 * Always program an integral # of max packets
1313 * for IN transfers.
1314 * Note: This assumes that the input buffer is
1315 * aligned and sized accordingly.
1316 */
1317 chan->xfer_len = num_packets * chan->max_packet;
1318 }
1319 } else {
1320 /* Need 1 packet for transfer length of 0 */
1321 num_packets = 1;
1322 }
1323
1324 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1325 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1326 /*
1327 * Make sure that the multi_count field matches the
1328 * actual transfer length
1329 */
1330 chan->multi_count = num_packets;
1331
1332 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1333 dwc2_set_pid_isoc(chan);
1334
1335 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1336 TSIZ_XFERSIZE_MASK;
1337
1338 /* The ec_mc gets the multi_count for non-split */
1339 ec_mc = chan->multi_count;
1340 }
1341
1342 chan->start_pkt_count = num_packets;
1343 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1344 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1345 TSIZ_SC_MC_PID_MASK;
1346 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1347 if (dbg_hc(chan)) {
1348 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1349 hctsiz, chan->hc_num);
1350
1351 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1352 chan->hc_num);
1353 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
1354 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1355 TSIZ_XFERSIZE_SHIFT);
1356 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
1357 (hctsiz & TSIZ_PKTCNT_MASK) >>
1358 TSIZ_PKTCNT_SHIFT);
1359 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1360 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1361 TSIZ_SC_MC_PID_SHIFT);
1362 }
1363
1364 if (hsotg->params.host_dma) {
1365 dma_addr_t dma_addr;
1366
1367 if (chan->align_buf) {
1368 if (dbg_hc(chan))
1369 dev_vdbg(hsotg->dev, "align_buf\n");
1370 dma_addr = chan->align_buf;
1371 } else {
1372 dma_addr = chan->xfer_dma;
1373 }
1374 dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1375
1376 if (dbg_hc(chan))
1377 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1378 (unsigned long)dma_addr, chan->hc_num);
1379 }
1380
1381 /* Start the split */
1382 if (chan->do_split) {
1383 u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1384
1385 hcsplt |= HCSPLT_SPLTENA;
1386 dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1387 }
1388
1389 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1390 hcchar &= ~HCCHAR_MULTICNT_MASK;
1391 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1392 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1393
1394 if (hcchar & HCCHAR_CHDIS)
1395 dev_warn(hsotg->dev,
1396 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1397 __func__, chan->hc_num, hcchar);
1398
1399 /* Set host channel enable after all other setup is complete */
1400 hcchar |= HCCHAR_CHENA;
1401 hcchar &= ~HCCHAR_CHDIS;
1402
1403 if (dbg_hc(chan))
1404 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1405 (hcchar & HCCHAR_MULTICNT_MASK) >>
1406 HCCHAR_MULTICNT_SHIFT);
1407
1408 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1409 if (dbg_hc(chan))
1410 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1411 chan->hc_num);
1412
1413 chan->xfer_started = 1;
1414 chan->requests++;
1415
1416 if (!hsotg->params.host_dma &&
1417 !chan->ep_is_in && chan->xfer_len > 0)
1418 /* Load OUT packet into the appropriate Tx FIFO */
1419 dwc2_hc_write_packet(hsotg, chan);
1420 }
1421
1422 /**
1423 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1424 * host channel and starts the transfer in Descriptor DMA mode
1425 *
1426 * @hsotg: Programming view of DWC_otg controller
1427 * @chan: Information needed to initialize the host channel
1428 *
1429 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1430 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1431 * with micro-frame bitmap.
1432 *
1433 * Initializes HCDMA register with descriptor list address and CTD value then
1434 * starts the transfer via enabling the channel.
1435 */
dwc2_hc_start_transfer_ddma(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1436 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1437 struct dwc2_host_chan *chan)
1438 {
1439 u32 hcchar;
1440 u32 hctsiz = 0;
1441
1442 if (chan->do_ping)
1443 hctsiz |= TSIZ_DOPNG;
1444
1445 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1446 dwc2_set_pid_isoc(chan);
1447
1448 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1449 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1450 TSIZ_SC_MC_PID_MASK;
1451
1452 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1453 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1454
1455 /* Non-zero only for high-speed interrupt endpoints */
1456 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1457
1458 if (dbg_hc(chan)) {
1459 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1460 chan->hc_num);
1461 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1462 chan->data_pid_start);
1463 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
1464 }
1465
1466 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1467
1468 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1469 chan->desc_list_sz, DMA_TO_DEVICE);
1470
1471 dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1472
1473 if (dbg_hc(chan))
1474 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1475 &chan->desc_list_addr, chan->hc_num);
1476
1477 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1478 hcchar &= ~HCCHAR_MULTICNT_MASK;
1479 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1480 HCCHAR_MULTICNT_MASK;
1481
1482 if (hcchar & HCCHAR_CHDIS)
1483 dev_warn(hsotg->dev,
1484 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1485 __func__, chan->hc_num, hcchar);
1486
1487 /* Set host channel enable after all other setup is complete */
1488 hcchar |= HCCHAR_CHENA;
1489 hcchar &= ~HCCHAR_CHDIS;
1490
1491 if (dbg_hc(chan))
1492 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1493 (hcchar & HCCHAR_MULTICNT_MASK) >>
1494 HCCHAR_MULTICNT_SHIFT);
1495
1496 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1497 if (dbg_hc(chan))
1498 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1499 chan->hc_num);
1500
1501 chan->xfer_started = 1;
1502 chan->requests++;
1503 }
1504
1505 /**
1506 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1507 * a previous call to dwc2_hc_start_transfer()
1508 *
1509 * @hsotg: Programming view of DWC_otg controller
1510 * @chan: Information needed to initialize the host channel
1511 *
1512 * The caller must ensure there is sufficient space in the request queue and Tx
1513 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1514 * the controller acts autonomously to complete transfers programmed to a host
1515 * channel.
1516 *
1517 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1518 * if there is any data remaining to be queued. For an IN transfer, another
1519 * data packet is always requested. For the SETUP phase of a control transfer,
1520 * this function does nothing.
1521 *
1522 * Return: 1 if a new request is queued, 0 if no more requests are required
1523 * for this transfer
1524 */
dwc2_hc_continue_transfer(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1525 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1526 struct dwc2_host_chan *chan)
1527 {
1528 if (dbg_hc(chan))
1529 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1530 chan->hc_num);
1531
1532 if (chan->do_split)
1533 /* SPLITs always queue just once per channel */
1534 return 0;
1535
1536 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1537 /* SETUPs are queued only once since they can't be NAK'd */
1538 return 0;
1539
1540 if (chan->ep_is_in) {
1541 /*
1542 * Always queue another request for other IN transfers. If
1543 * back-to-back INs are issued and NAKs are received for both,
1544 * the driver may still be processing the first NAK when the
1545 * second NAK is received. When the interrupt handler clears
1546 * the NAK interrupt for the first NAK, the second NAK will
1547 * not be seen. So we can't depend on the NAK interrupt
1548 * handler to requeue a NAK'd request. Instead, IN requests
1549 * are issued each time this function is called. When the
1550 * transfer completes, the extra requests for the channel will
1551 * be flushed.
1552 */
1553 u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1554
1555 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1556 hcchar |= HCCHAR_CHENA;
1557 hcchar &= ~HCCHAR_CHDIS;
1558 if (dbg_hc(chan))
1559 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
1560 hcchar);
1561 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1562 chan->requests++;
1563 return 1;
1564 }
1565
1566 /* OUT transfers */
1567
1568 if (chan->xfer_count < chan->xfer_len) {
1569 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1570 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1571 u32 hcchar = dwc2_readl(hsotg,
1572 HCCHAR(chan->hc_num));
1573
1574 dwc2_hc_set_even_odd_frame(hsotg, chan,
1575 &hcchar);
1576 }
1577
1578 /* Load OUT packet into the appropriate Tx FIFO */
1579 dwc2_hc_write_packet(hsotg, chan);
1580 chan->requests++;
1581 return 1;
1582 }
1583
1584 return 0;
1585 }
1586
1587 /*
1588 * =========================================================================
1589 * HCD
1590 * =========================================================================
1591 */
1592
1593 /*
1594 * Processes all the URBs in a single list of QHs. Completes them with
1595 * -ETIMEDOUT and frees the QTD.
1596 *
1597 * Must be called with interrupt disabled and spinlock held
1598 */
dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg * hsotg,struct list_head * qh_list)1599 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1600 struct list_head *qh_list)
1601 {
1602 struct dwc2_qh *qh, *qh_tmp;
1603 struct dwc2_qtd *qtd, *qtd_tmp;
1604
1605 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1606 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1607 qtd_list_entry) {
1608 dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1609 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1610 }
1611 }
1612 }
1613
dwc2_qh_list_free(struct dwc2_hsotg * hsotg,struct list_head * qh_list)1614 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1615 struct list_head *qh_list)
1616 {
1617 struct dwc2_qtd *qtd, *qtd_tmp;
1618 struct dwc2_qh *qh, *qh_tmp;
1619 unsigned long flags;
1620
1621 if (!qh_list->next)
1622 /* The list hasn't been initialized yet */
1623 return;
1624
1625 spin_lock_irqsave(&hsotg->lock, flags);
1626
1627 /* Ensure there are no QTDs or URBs left */
1628 dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1629
1630 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1631 dwc2_hcd_qh_unlink(hsotg, qh);
1632
1633 /* Free each QTD in the QH's QTD list */
1634 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1635 qtd_list_entry)
1636 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1637
1638 if (qh->channel && qh->channel->qh == qh)
1639 qh->channel->qh = NULL;
1640
1641 spin_unlock_irqrestore(&hsotg->lock, flags);
1642 dwc2_hcd_qh_free(hsotg, qh);
1643 spin_lock_irqsave(&hsotg->lock, flags);
1644 }
1645
1646 spin_unlock_irqrestore(&hsotg->lock, flags);
1647 }
1648
1649 /*
1650 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1651 * and periodic schedules. The QTD associated with each URB is removed from
1652 * the schedule and freed. This function may be called when a disconnect is
1653 * detected or when the HCD is being stopped.
1654 *
1655 * Must be called with interrupt disabled and spinlock held
1656 */
dwc2_kill_all_urbs(struct dwc2_hsotg * hsotg)1657 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1658 {
1659 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1660 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1661 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1662 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1663 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1664 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1665 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1666 }
1667
1668 /**
1669 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1670 *
1671 * @hsotg: Pointer to struct dwc2_hsotg
1672 */
dwc2_hcd_start(struct dwc2_hsotg * hsotg)1673 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1674 {
1675 u32 hprt0;
1676
1677 if (hsotg->op_state == OTG_STATE_B_HOST) {
1678 /*
1679 * Reset the port. During a HNP mode switch the reset
1680 * needs to occur within 1ms and have a duration of at
1681 * least 50ms.
1682 */
1683 hprt0 = dwc2_read_hprt0(hsotg);
1684 hprt0 |= HPRT0_RST;
1685 dwc2_writel(hsotg, hprt0, HPRT0);
1686 }
1687
1688 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1689 msecs_to_jiffies(50));
1690 }
1691
1692 /* Must be called with interrupt disabled and spinlock held */
dwc2_hcd_cleanup_channels(struct dwc2_hsotg * hsotg)1693 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1694 {
1695 int num_channels = hsotg->params.host_channels;
1696 struct dwc2_host_chan *channel;
1697 u32 hcchar;
1698 int i;
1699
1700 if (!hsotg->params.host_dma) {
1701 /* Flush out any channel requests in slave mode */
1702 for (i = 0; i < num_channels; i++) {
1703 channel = hsotg->hc_ptr_array[i];
1704 if (!list_empty(&channel->hc_list_entry))
1705 continue;
1706 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1707 if (hcchar & HCCHAR_CHENA) {
1708 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1709 hcchar |= HCCHAR_CHDIS;
1710 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1711 }
1712 }
1713 }
1714
1715 for (i = 0; i < num_channels; i++) {
1716 channel = hsotg->hc_ptr_array[i];
1717 if (!list_empty(&channel->hc_list_entry))
1718 continue;
1719 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1720 if (hcchar & HCCHAR_CHENA) {
1721 /* Halt the channel */
1722 hcchar |= HCCHAR_CHDIS;
1723 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1724 }
1725
1726 dwc2_hc_cleanup(hsotg, channel);
1727 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1728 /*
1729 * Added for Descriptor DMA to prevent channel double cleanup in
1730 * release_channel_ddma(), which is called from ep_disable when
1731 * device disconnects
1732 */
1733 channel->qh = NULL;
1734 }
1735 /* All channels have been freed, mark them available */
1736 if (hsotg->params.uframe_sched) {
1737 hsotg->available_host_channels =
1738 hsotg->params.host_channels;
1739 } else {
1740 hsotg->non_periodic_channels = 0;
1741 hsotg->periodic_channels = 0;
1742 }
1743 }
1744
1745 /**
1746 * dwc2_hcd_connect() - Handles connect of the HCD
1747 *
1748 * @hsotg: Pointer to struct dwc2_hsotg
1749 *
1750 * Must be called with interrupt disabled and spinlock held
1751 */
dwc2_hcd_connect(struct dwc2_hsotg * hsotg)1752 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1753 {
1754 if (hsotg->lx_state != DWC2_L0)
1755 usb_hcd_resume_root_hub(hsotg->priv);
1756
1757 hsotg->flags.b.port_connect_status_change = 1;
1758 hsotg->flags.b.port_connect_status = 1;
1759 }
1760
1761 /**
1762 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1763 *
1764 * @hsotg: Pointer to struct dwc2_hsotg
1765 * @force: If true, we won't try to reconnect even if we see device connected.
1766 *
1767 * Must be called with interrupt disabled and spinlock held
1768 */
dwc2_hcd_disconnect(struct dwc2_hsotg * hsotg,bool force)1769 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1770 {
1771 u32 intr;
1772 u32 hprt0;
1773
1774 /* Set status flags for the hub driver */
1775 hsotg->flags.b.port_connect_status_change = 1;
1776 hsotg->flags.b.port_connect_status = 0;
1777
1778 /*
1779 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1780 * interrupt mask and status bits and disabling subsequent host
1781 * channel interrupts.
1782 */
1783 intr = dwc2_readl(hsotg, GINTMSK);
1784 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1785 dwc2_writel(hsotg, intr, GINTMSK);
1786 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1787 dwc2_writel(hsotg, intr, GINTSTS);
1788
1789 /*
1790 * Turn off the vbus power only if the core has transitioned to device
1791 * mode. If still in host mode, need to keep power on to detect a
1792 * reconnection.
1793 */
1794 if (dwc2_is_device_mode(hsotg)) {
1795 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1796 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1797 dwc2_writel(hsotg, 0, HPRT0);
1798 }
1799
1800 dwc2_disable_host_interrupts(hsotg);
1801 }
1802
1803 /* Respond with an error status to all URBs in the schedule */
1804 dwc2_kill_all_urbs(hsotg);
1805
1806 if (dwc2_is_host_mode(hsotg))
1807 /* Clean up any host channels that were in use */
1808 dwc2_hcd_cleanup_channels(hsotg);
1809
1810 dwc2_host_disconnect(hsotg);
1811
1812 /*
1813 * Add an extra check here to see if we're actually connected but
1814 * we don't have a detection interrupt pending. This can happen if:
1815 * 1. hardware sees connect
1816 * 2. hardware sees disconnect
1817 * 3. hardware sees connect
1818 * 4. dwc2_port_intr() - clears connect interrupt
1819 * 5. dwc2_handle_common_intr() - calls here
1820 *
1821 * Without the extra check here we will end calling disconnect
1822 * and won't get any future interrupts to handle the connect.
1823 */
1824 if (!force) {
1825 hprt0 = dwc2_readl(hsotg, HPRT0);
1826 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1827 dwc2_hcd_connect(hsotg);
1828 }
1829 }
1830
1831 /**
1832 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1833 *
1834 * @hsotg: Pointer to struct dwc2_hsotg
1835 */
dwc2_hcd_rem_wakeup(struct dwc2_hsotg * hsotg)1836 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1837 {
1838 if (hsotg->bus_suspended) {
1839 hsotg->flags.b.port_suspend_change = 1;
1840 usb_hcd_resume_root_hub(hsotg->priv);
1841 }
1842
1843 if (hsotg->lx_state == DWC2_L1)
1844 hsotg->flags.b.port_l1_change = 1;
1845 }
1846
1847 /**
1848 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1849 *
1850 * @hsotg: Pointer to struct dwc2_hsotg
1851 *
1852 * Must be called with interrupt disabled and spinlock held
1853 */
dwc2_hcd_stop(struct dwc2_hsotg * hsotg)1854 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1855 {
1856 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1857
1858 /*
1859 * The root hub should be disconnected before this function is called.
1860 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1861 * and the QH lists (via ..._hcd_endpoint_disable).
1862 */
1863
1864 /* Turn off all host-specific interrupts */
1865 dwc2_disable_host_interrupts(hsotg);
1866
1867 /* Turn off the vbus power */
1868 dev_dbg(hsotg->dev, "PortPower off\n");
1869 dwc2_writel(hsotg, 0, HPRT0);
1870 }
1871
1872 /* Caller must hold driver lock */
dwc2_hcd_urb_enqueue(struct dwc2_hsotg * hsotg,struct dwc2_hcd_urb * urb,struct dwc2_qh * qh,struct dwc2_qtd * qtd)1873 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1874 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1875 struct dwc2_qtd *qtd)
1876 {
1877 u32 intr_mask;
1878 int retval;
1879 int dev_speed;
1880
1881 if (!hsotg->flags.b.port_connect_status) {
1882 /* No longer connected */
1883 dev_err(hsotg->dev, "Not connected\n");
1884 return -ENODEV;
1885 }
1886
1887 dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1888
1889 /* Some configurations cannot support LS traffic on a FS root port */
1890 if ((dev_speed == USB_SPEED_LOW) &&
1891 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1892 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1893 u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1894 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1895
1896 if (prtspd == HPRT0_SPD_FULL_SPEED)
1897 return -ENODEV;
1898 }
1899
1900 if (!qtd)
1901 return -EINVAL;
1902
1903 dwc2_hcd_qtd_init(qtd, urb);
1904 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1905 if (retval) {
1906 dev_err(hsotg->dev,
1907 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1908 retval);
1909 return retval;
1910 }
1911
1912 intr_mask = dwc2_readl(hsotg, GINTMSK);
1913 if (!(intr_mask & GINTSTS_SOF)) {
1914 enum dwc2_transaction_type tr_type;
1915
1916 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1917 !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1918 /*
1919 * Do not schedule SG transactions until qtd has
1920 * URB_GIVEBACK_ASAP set
1921 */
1922 return 0;
1923
1924 tr_type = dwc2_hcd_select_transactions(hsotg);
1925 if (tr_type != DWC2_TRANSACTION_NONE)
1926 dwc2_hcd_queue_transactions(hsotg, tr_type);
1927 }
1928
1929 return 0;
1930 }
1931
1932 /* Must be called with interrupt disabled and spinlock held */
dwc2_hcd_urb_dequeue(struct dwc2_hsotg * hsotg,struct dwc2_hcd_urb * urb)1933 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1934 struct dwc2_hcd_urb *urb)
1935 {
1936 struct dwc2_qh *qh;
1937 struct dwc2_qtd *urb_qtd;
1938
1939 urb_qtd = urb->qtd;
1940 if (!urb_qtd) {
1941 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1942 return -EINVAL;
1943 }
1944
1945 qh = urb_qtd->qh;
1946 if (!qh) {
1947 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1948 return -EINVAL;
1949 }
1950
1951 urb->priv = NULL;
1952
1953 if (urb_qtd->in_process && qh->channel) {
1954 dwc2_dump_channel_info(hsotg, qh->channel);
1955
1956 /* The QTD is in process (it has been assigned to a channel) */
1957 if (hsotg->flags.b.port_connect_status)
1958 /*
1959 * If still connected (i.e. in host mode), halt the
1960 * channel so it can be used for other transfers. If
1961 * no longer connected, the host registers can't be
1962 * written to halt the channel since the core is in
1963 * device mode.
1964 */
1965 dwc2_hc_halt(hsotg, qh->channel,
1966 DWC2_HC_XFER_URB_DEQUEUE);
1967 }
1968
1969 /*
1970 * Free the QTD and clean up the associated QH. Leave the QH in the
1971 * schedule if it has any remaining QTDs.
1972 */
1973 if (!hsotg->params.dma_desc_enable) {
1974 u8 in_process = urb_qtd->in_process;
1975
1976 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1977 if (in_process) {
1978 dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1979 qh->channel = NULL;
1980 } else if (list_empty(&qh->qtd_list)) {
1981 dwc2_hcd_qh_unlink(hsotg, qh);
1982 }
1983 } else {
1984 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1985 }
1986
1987 return 0;
1988 }
1989
1990 /* Must NOT be called with interrupt disabled or spinlock held */
dwc2_hcd_endpoint_disable(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep,int retry)1991 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1992 struct usb_host_endpoint *ep, int retry)
1993 {
1994 struct dwc2_qtd *qtd, *qtd_tmp;
1995 struct dwc2_qh *qh;
1996 unsigned long flags;
1997 int rc;
1998
1999 spin_lock_irqsave(&hsotg->lock, flags);
2000
2001 qh = ep->hcpriv;
2002 if (!qh) {
2003 rc = -EINVAL;
2004 goto err;
2005 }
2006
2007 while (!list_empty(&qh->qtd_list) && retry--) {
2008 if (retry == 0) {
2009 dev_err(hsotg->dev,
2010 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2011 rc = -EBUSY;
2012 goto err;
2013 }
2014
2015 spin_unlock_irqrestore(&hsotg->lock, flags);
2016 msleep(20);
2017 spin_lock_irqsave(&hsotg->lock, flags);
2018 qh = ep->hcpriv;
2019 if (!qh) {
2020 rc = -EINVAL;
2021 goto err;
2022 }
2023 }
2024
2025 dwc2_hcd_qh_unlink(hsotg, qh);
2026
2027 /* Free each QTD in the QH's QTD list */
2028 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2029 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2030
2031 ep->hcpriv = NULL;
2032
2033 if (qh->channel && qh->channel->qh == qh)
2034 qh->channel->qh = NULL;
2035
2036 spin_unlock_irqrestore(&hsotg->lock, flags);
2037
2038 dwc2_hcd_qh_free(hsotg, qh);
2039
2040 return 0;
2041
2042 err:
2043 ep->hcpriv = NULL;
2044 spin_unlock_irqrestore(&hsotg->lock, flags);
2045
2046 return rc;
2047 }
2048
2049 /* Must be called with interrupt disabled and spinlock held */
dwc2_hcd_endpoint_reset(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep)2050 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2051 struct usb_host_endpoint *ep)
2052 {
2053 struct dwc2_qh *qh = ep->hcpriv;
2054
2055 if (!qh)
2056 return -EINVAL;
2057
2058 qh->data_toggle = DWC2_HC_PID_DATA0;
2059
2060 return 0;
2061 }
2062
2063 /**
2064 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2065 * prepares the core for device mode or host mode operation
2066 *
2067 * @hsotg: Programming view of the DWC_otg controller
2068 * @initial_setup: If true then this is the first init for this instance.
2069 */
dwc2_core_init(struct dwc2_hsotg * hsotg,bool initial_setup)2070 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2071 {
2072 u32 usbcfg, otgctl;
2073 int retval;
2074
2075 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2076
2077 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2078
2079 /* Set ULPI External VBUS bit if needed */
2080 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2081 if (hsotg->params.phy_ulpi_ext_vbus)
2082 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2083
2084 /* Set external TS Dline pulsing bit if needed */
2085 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2086 if (hsotg->params.ts_dline)
2087 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2088
2089 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2090
2091 /*
2092 * Reset the Controller
2093 *
2094 * We only need to reset the controller if this is a re-init.
2095 * For the first init we know for sure that earlier code reset us (it
2096 * needed to in order to properly detect various parameters).
2097 */
2098 if (!initial_setup) {
2099 retval = dwc2_core_reset(hsotg, false);
2100 if (retval) {
2101 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2102 __func__);
2103 return retval;
2104 }
2105 }
2106
2107 /*
2108 * This needs to happen in FS mode before any other programming occurs
2109 */
2110 retval = dwc2_phy_init(hsotg, initial_setup);
2111 if (retval)
2112 return retval;
2113
2114 /* Program the GAHBCFG Register */
2115 retval = dwc2_gahbcfg_init(hsotg);
2116 if (retval)
2117 return retval;
2118
2119 /* Program the GUSBCFG register */
2120 dwc2_gusbcfg_init(hsotg);
2121
2122 /* Program the GOTGCTL register */
2123 otgctl = dwc2_readl(hsotg, GOTGCTL);
2124 otgctl &= ~GOTGCTL_OTGVER;
2125 dwc2_writel(hsotg, otgctl, GOTGCTL);
2126
2127 /* Clear the SRP success bit for FS-I2c */
2128 hsotg->srp_success = 0;
2129
2130 /* Enable common interrupts */
2131 dwc2_enable_common_interrupts(hsotg);
2132
2133 /*
2134 * Do device or host initialization based on mode during PCD and
2135 * HCD initialization
2136 */
2137 if (dwc2_is_host_mode(hsotg)) {
2138 dev_dbg(hsotg->dev, "Host Mode\n");
2139 hsotg->op_state = OTG_STATE_A_HOST;
2140 } else {
2141 dev_dbg(hsotg->dev, "Device Mode\n");
2142 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2143 }
2144
2145 return 0;
2146 }
2147
2148 /**
2149 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2150 * Host mode
2151 *
2152 * @hsotg: Programming view of DWC_otg controller
2153 *
2154 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2155 * request queues. Host channels are reset to ensure that they are ready for
2156 * performing transfers.
2157 */
dwc2_core_host_init(struct dwc2_hsotg * hsotg)2158 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2159 {
2160 u32 hcfg, hfir, otgctl, usbcfg;
2161
2162 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2163
2164 /* Set HS/FS Timeout Calibration to 7 (max available value).
2165 * The number of PHY clocks that the application programs in
2166 * this field is added to the high/full speed interpacket timeout
2167 * duration in the core to account for any additional delays
2168 * introduced by the PHY. This can be required, because the delay
2169 * introduced by the PHY in generating the linestate condition
2170 * can vary from one PHY to another.
2171 */
2172 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2173 usbcfg |= GUSBCFG_TOUTCAL(7);
2174 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2175
2176 /* Restart the Phy Clock */
2177 dwc2_writel(hsotg, 0, PCGCTL);
2178
2179 /* Initialize Host Configuration Register */
2180 dwc2_init_fs_ls_pclk_sel(hsotg);
2181 if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2182 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2183 hcfg = dwc2_readl(hsotg, HCFG);
2184 hcfg |= HCFG_FSLSSUPP;
2185 dwc2_writel(hsotg, hcfg, HCFG);
2186 }
2187
2188 /*
2189 * This bit allows dynamic reloading of the HFIR register during
2190 * runtime. This bit needs to be programmed during initial configuration
2191 * and its value must not be changed during runtime.
2192 */
2193 if (hsotg->params.reload_ctl) {
2194 hfir = dwc2_readl(hsotg, HFIR);
2195 hfir |= HFIR_RLDCTRL;
2196 dwc2_writel(hsotg, hfir, HFIR);
2197 }
2198
2199 if (hsotg->params.dma_desc_enable) {
2200 u32 op_mode = hsotg->hw_params.op_mode;
2201
2202 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2203 !hsotg->hw_params.dma_desc_enable ||
2204 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2205 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2206 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2207 dev_err(hsotg->dev,
2208 "Hardware does not support descriptor DMA mode -\n");
2209 dev_err(hsotg->dev,
2210 "falling back to buffer DMA mode.\n");
2211 hsotg->params.dma_desc_enable = false;
2212 } else {
2213 hcfg = dwc2_readl(hsotg, HCFG);
2214 hcfg |= HCFG_DESCDMA;
2215 dwc2_writel(hsotg, hcfg, HCFG);
2216 }
2217 }
2218
2219 /* Configure data FIFO sizes */
2220 dwc2_config_fifos(hsotg);
2221
2222 /* TODO - check this */
2223 /* Clear Host Set HNP Enable in the OTG Control Register */
2224 otgctl = dwc2_readl(hsotg, GOTGCTL);
2225 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2226 dwc2_writel(hsotg, otgctl, GOTGCTL);
2227
2228 /* Make sure the FIFOs are flushed */
2229 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2230 dwc2_flush_rx_fifo(hsotg);
2231
2232 /* Clear Host Set HNP Enable in the OTG Control Register */
2233 otgctl = dwc2_readl(hsotg, GOTGCTL);
2234 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2235 dwc2_writel(hsotg, otgctl, GOTGCTL);
2236
2237 if (!hsotg->params.dma_desc_enable) {
2238 int num_channels, i;
2239 u32 hcchar;
2240
2241 /* Flush out any leftover queued requests */
2242 num_channels = hsotg->params.host_channels;
2243 for (i = 0; i < num_channels; i++) {
2244 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2245 if (hcchar & HCCHAR_CHENA) {
2246 hcchar &= ~HCCHAR_CHENA;
2247 hcchar |= HCCHAR_CHDIS;
2248 hcchar &= ~HCCHAR_EPDIR;
2249 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2250 }
2251 }
2252
2253 /* Halt all channels to put them into a known state */
2254 for (i = 0; i < num_channels; i++) {
2255 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2256 if (hcchar & HCCHAR_CHENA) {
2257 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2258 hcchar &= ~HCCHAR_EPDIR;
2259 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2260 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2261 __func__, i);
2262
2263 if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2264 HCCHAR_CHENA,
2265 1000)) {
2266 dev_warn(hsotg->dev,
2267 "Unable to clear enable on channel %d\n",
2268 i);
2269 }
2270 }
2271 }
2272 }
2273
2274 /* Enable ACG feature in host mode, if supported */
2275 dwc2_enable_acg(hsotg);
2276
2277 /* Turn on the vbus power */
2278 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2279 if (hsotg->op_state == OTG_STATE_A_HOST) {
2280 u32 hprt0 = dwc2_read_hprt0(hsotg);
2281
2282 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2283 !!(hprt0 & HPRT0_PWR));
2284 if (!(hprt0 & HPRT0_PWR)) {
2285 hprt0 |= HPRT0_PWR;
2286 dwc2_writel(hsotg, hprt0, HPRT0);
2287 }
2288 }
2289
2290 dwc2_enable_host_interrupts(hsotg);
2291 }
2292
2293 /*
2294 * Initializes dynamic portions of the DWC_otg HCD state
2295 *
2296 * Must be called with interrupt disabled and spinlock held
2297 */
dwc2_hcd_reinit(struct dwc2_hsotg * hsotg)2298 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2299 {
2300 struct dwc2_host_chan *chan, *chan_tmp;
2301 int num_channels;
2302 int i;
2303
2304 hsotg->flags.d32 = 0;
2305 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2306
2307 if (hsotg->params.uframe_sched) {
2308 hsotg->available_host_channels =
2309 hsotg->params.host_channels;
2310 } else {
2311 hsotg->non_periodic_channels = 0;
2312 hsotg->periodic_channels = 0;
2313 }
2314
2315 /*
2316 * Put all channels in the free channel list and clean up channel
2317 * states
2318 */
2319 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2320 hc_list_entry)
2321 list_del_init(&chan->hc_list_entry);
2322
2323 num_channels = hsotg->params.host_channels;
2324 for (i = 0; i < num_channels; i++) {
2325 chan = hsotg->hc_ptr_array[i];
2326 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2327 dwc2_hc_cleanup(hsotg, chan);
2328 }
2329
2330 /* Initialize the DWC core for host mode operation */
2331 dwc2_core_host_init(hsotg);
2332 }
2333
dwc2_hc_init_split(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,struct dwc2_qtd * qtd,struct dwc2_hcd_urb * urb)2334 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2335 struct dwc2_host_chan *chan,
2336 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2337 {
2338 int hub_addr, hub_port;
2339
2340 chan->do_split = 1;
2341 chan->xact_pos = qtd->isoc_split_pos;
2342 chan->complete_split = qtd->complete_split;
2343 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2344 chan->hub_addr = (u8)hub_addr;
2345 chan->hub_port = (u8)hub_port;
2346 }
2347
dwc2_hc_init_xfer(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,struct dwc2_qtd * qtd)2348 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2349 struct dwc2_host_chan *chan,
2350 struct dwc2_qtd *qtd)
2351 {
2352 struct dwc2_hcd_urb *urb = qtd->urb;
2353 struct dwc2_hcd_iso_packet_desc *frame_desc;
2354
2355 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2356 case USB_ENDPOINT_XFER_CONTROL:
2357 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2358
2359 switch (qtd->control_phase) {
2360 case DWC2_CONTROL_SETUP:
2361 dev_vdbg(hsotg->dev, " Control setup transaction\n");
2362 chan->do_ping = 0;
2363 chan->ep_is_in = 0;
2364 chan->data_pid_start = DWC2_HC_PID_SETUP;
2365 if (hsotg->params.host_dma)
2366 chan->xfer_dma = urb->setup_dma;
2367 else
2368 chan->xfer_buf = urb->setup_packet;
2369 chan->xfer_len = 8;
2370 break;
2371
2372 case DWC2_CONTROL_DATA:
2373 dev_vdbg(hsotg->dev, " Control data transaction\n");
2374 chan->data_pid_start = qtd->data_toggle;
2375 break;
2376
2377 case DWC2_CONTROL_STATUS:
2378 /*
2379 * Direction is opposite of data direction or IN if no
2380 * data
2381 */
2382 dev_vdbg(hsotg->dev, " Control status transaction\n");
2383 if (urb->length == 0)
2384 chan->ep_is_in = 1;
2385 else
2386 chan->ep_is_in =
2387 dwc2_hcd_is_pipe_out(&urb->pipe_info);
2388 if (chan->ep_is_in)
2389 chan->do_ping = 0;
2390 chan->data_pid_start = DWC2_HC_PID_DATA1;
2391 chan->xfer_len = 0;
2392 if (hsotg->params.host_dma)
2393 chan->xfer_dma = hsotg->status_buf_dma;
2394 else
2395 chan->xfer_buf = hsotg->status_buf;
2396 break;
2397 }
2398 break;
2399
2400 case USB_ENDPOINT_XFER_BULK:
2401 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2402 break;
2403
2404 case USB_ENDPOINT_XFER_INT:
2405 chan->ep_type = USB_ENDPOINT_XFER_INT;
2406 break;
2407
2408 case USB_ENDPOINT_XFER_ISOC:
2409 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2410 if (hsotg->params.dma_desc_enable)
2411 break;
2412
2413 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2414 frame_desc->status = 0;
2415
2416 if (hsotg->params.host_dma) {
2417 chan->xfer_dma = urb->dma;
2418 chan->xfer_dma += frame_desc->offset +
2419 qtd->isoc_split_offset;
2420 } else {
2421 chan->xfer_buf = urb->buf;
2422 chan->xfer_buf += frame_desc->offset +
2423 qtd->isoc_split_offset;
2424 }
2425
2426 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2427
2428 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2429 if (chan->xfer_len <= 188)
2430 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2431 else
2432 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2433 }
2434 break;
2435 }
2436 }
2437
dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,struct dwc2_host_chan * chan)2438 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2439 struct dwc2_qh *qh,
2440 struct dwc2_host_chan *chan)
2441 {
2442 if (!hsotg->unaligned_cache ||
2443 chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2444 return -ENOMEM;
2445
2446 if (!qh->dw_align_buf) {
2447 qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2448 GFP_ATOMIC | GFP_DMA);
2449 if (!qh->dw_align_buf)
2450 return -ENOMEM;
2451 }
2452
2453 qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2454 DWC2_KMEM_UNALIGNED_BUF_SIZE,
2455 DMA_FROM_DEVICE);
2456
2457 if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2458 dev_err(hsotg->dev, "can't map align_buf\n");
2459 chan->align_buf = 0;
2460 return -EINVAL;
2461 }
2462
2463 chan->align_buf = qh->dw_align_buf_dma;
2464 return 0;
2465 }
2466
2467 #define DWC2_USB_DMA_ALIGN 4
2468
dwc2_free_dma_aligned_buffer(struct urb * urb)2469 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2470 {
2471 void *stored_xfer_buffer;
2472 size_t length;
2473
2474 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2475 return;
2476
2477 /* Restore urb->transfer_buffer from the end of the allocated area */
2478 memcpy(&stored_xfer_buffer,
2479 PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2480 dma_get_cache_alignment()),
2481 sizeof(urb->transfer_buffer));
2482
2483 if (usb_urb_dir_in(urb)) {
2484 if (usb_pipeisoc(urb->pipe))
2485 length = urb->transfer_buffer_length;
2486 else
2487 length = urb->actual_length;
2488
2489 memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2490 }
2491 kfree(urb->transfer_buffer);
2492 urb->transfer_buffer = stored_xfer_buffer;
2493
2494 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2495 }
2496
dwc2_alloc_dma_aligned_buffer(struct urb * urb,gfp_t mem_flags)2497 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2498 {
2499 void *kmalloc_ptr;
2500 size_t kmalloc_size;
2501
2502 if (urb->num_sgs || urb->sg ||
2503 urb->transfer_buffer_length == 0 ||
2504 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2505 return 0;
2506
2507 /*
2508 * Allocate a buffer with enough padding for original transfer_buffer
2509 * pointer. This allocation is guaranteed to be aligned properly for
2510 * DMA
2511 */
2512 kmalloc_size = urb->transfer_buffer_length +
2513 (dma_get_cache_alignment() - 1) +
2514 sizeof(urb->transfer_buffer);
2515
2516 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2517 if (!kmalloc_ptr)
2518 return -ENOMEM;
2519
2520 /*
2521 * Position value of original urb->transfer_buffer pointer to the end
2522 * of allocation for later referencing
2523 */
2524 memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2525 dma_get_cache_alignment()),
2526 &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2527
2528 if (usb_urb_dir_out(urb))
2529 memcpy(kmalloc_ptr, urb->transfer_buffer,
2530 urb->transfer_buffer_length);
2531 urb->transfer_buffer = kmalloc_ptr;
2532
2533 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2534
2535 return 0;
2536 }
2537
dwc2_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)2538 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2539 gfp_t mem_flags)
2540 {
2541 int ret;
2542
2543 /* We assume setup_dma is always aligned; warn if not */
2544 WARN_ON_ONCE(urb->setup_dma &&
2545 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2546
2547 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2548 if (ret)
2549 return ret;
2550
2551 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2552 if (ret)
2553 dwc2_free_dma_aligned_buffer(urb);
2554
2555 return ret;
2556 }
2557
dwc2_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)2558 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2559 {
2560 usb_hcd_unmap_urb_for_dma(hcd, urb);
2561 dwc2_free_dma_aligned_buffer(urb);
2562 }
2563
2564 /**
2565 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2566 * channel and initializes the host channel to perform the transactions. The
2567 * host channel is removed from the free list.
2568 *
2569 * @hsotg: The HCD state structure
2570 * @qh: Transactions from the first QTD for this QH are selected and assigned
2571 * to a free host channel
2572 */
dwc2_assign_and_init_hc(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)2573 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2574 {
2575 struct dwc2_host_chan *chan;
2576 struct dwc2_hcd_urb *urb;
2577 struct dwc2_qtd *qtd;
2578
2579 if (dbg_qh(qh))
2580 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2581
2582 if (list_empty(&qh->qtd_list)) {
2583 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2584 return -ENOMEM;
2585 }
2586
2587 if (list_empty(&hsotg->free_hc_list)) {
2588 dev_dbg(hsotg->dev, "No free channel to assign\n");
2589 return -ENOMEM;
2590 }
2591
2592 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2593 hc_list_entry);
2594
2595 /* Remove host channel from free list */
2596 list_del_init(&chan->hc_list_entry);
2597
2598 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2599 urb = qtd->urb;
2600 qh->channel = chan;
2601 qtd->in_process = 1;
2602
2603 /*
2604 * Use usb_pipedevice to determine device address. This address is
2605 * 0 before the SET_ADDRESS command and the correct address afterward.
2606 */
2607 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2608 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2609 chan->speed = qh->dev_speed;
2610 chan->max_packet = qh->maxp;
2611
2612 chan->xfer_started = 0;
2613 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2614 chan->error_state = (qtd->error_count > 0);
2615 chan->halt_on_queue = 0;
2616 chan->halt_pending = 0;
2617 chan->requests = 0;
2618
2619 /*
2620 * The following values may be modified in the transfer type section
2621 * below. The xfer_len value may be reduced when the transfer is
2622 * started to accommodate the max widths of the XferSize and PktCnt
2623 * fields in the HCTSIZn register.
2624 */
2625
2626 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2627 if (chan->ep_is_in)
2628 chan->do_ping = 0;
2629 else
2630 chan->do_ping = qh->ping_state;
2631
2632 chan->data_pid_start = qh->data_toggle;
2633 chan->multi_count = 1;
2634
2635 if (urb->actual_length > urb->length &&
2636 !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2637 urb->actual_length = urb->length;
2638
2639 if (hsotg->params.host_dma)
2640 chan->xfer_dma = urb->dma + urb->actual_length;
2641 else
2642 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2643
2644 chan->xfer_len = urb->length - urb->actual_length;
2645 chan->xfer_count = 0;
2646
2647 /* Set the split attributes if required */
2648 if (qh->do_split)
2649 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2650 else
2651 chan->do_split = 0;
2652
2653 /* Set the transfer attributes */
2654 dwc2_hc_init_xfer(hsotg, chan, qtd);
2655
2656 /* For non-dword aligned buffers */
2657 if (hsotg->params.host_dma && qh->do_split &&
2658 chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2659 dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2660 if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2661 dev_err(hsotg->dev,
2662 "Failed to allocate memory to handle non-aligned buffer\n");
2663 /* Add channel back to free list */
2664 chan->align_buf = 0;
2665 chan->multi_count = 0;
2666 list_add_tail(&chan->hc_list_entry,
2667 &hsotg->free_hc_list);
2668 qtd->in_process = 0;
2669 qh->channel = NULL;
2670 return -ENOMEM;
2671 }
2672 } else {
2673 /*
2674 * We assume that DMA is always aligned in non-split
2675 * case or split out case. Warn if not.
2676 */
2677 WARN_ON_ONCE(hsotg->params.host_dma &&
2678 (chan->xfer_dma & 0x3));
2679 chan->align_buf = 0;
2680 }
2681
2682 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2683 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2684 /*
2685 * This value may be modified when the transfer is started
2686 * to reflect the actual transfer length
2687 */
2688 chan->multi_count = qh->maxp_mult;
2689
2690 if (hsotg->params.dma_desc_enable) {
2691 chan->desc_list_addr = qh->desc_list_dma;
2692 chan->desc_list_sz = qh->desc_list_sz;
2693 }
2694
2695 dwc2_hc_init(hsotg, chan);
2696 chan->qh = qh;
2697
2698 return 0;
2699 }
2700
2701 /**
2702 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2703 * schedule and assigns them to available host channels. Called from the HCD
2704 * interrupt handler functions.
2705 *
2706 * @hsotg: The HCD state structure
2707 *
2708 * Return: The types of new transactions that were assigned to host channels
2709 */
dwc2_hcd_select_transactions(struct dwc2_hsotg * hsotg)2710 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2711 struct dwc2_hsotg *hsotg)
2712 {
2713 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2714 struct list_head *qh_ptr;
2715 struct dwc2_qh *qh;
2716 int num_channels;
2717
2718 #ifdef DWC2_DEBUG_SOF
2719 dev_vdbg(hsotg->dev, " Select Transactions\n");
2720 #endif
2721
2722 /* Process entries in the periodic ready list */
2723 qh_ptr = hsotg->periodic_sched_ready.next;
2724 while (qh_ptr != &hsotg->periodic_sched_ready) {
2725 if (list_empty(&hsotg->free_hc_list))
2726 break;
2727 if (hsotg->params.uframe_sched) {
2728 if (hsotg->available_host_channels <= 1)
2729 break;
2730 hsotg->available_host_channels--;
2731 }
2732 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2733 if (dwc2_assign_and_init_hc(hsotg, qh))
2734 break;
2735
2736 /*
2737 * Move the QH from the periodic ready schedule to the
2738 * periodic assigned schedule
2739 */
2740 qh_ptr = qh_ptr->next;
2741 list_move_tail(&qh->qh_list_entry,
2742 &hsotg->periodic_sched_assigned);
2743 ret_val = DWC2_TRANSACTION_PERIODIC;
2744 }
2745
2746 /*
2747 * Process entries in the inactive portion of the non-periodic
2748 * schedule. Some free host channels may not be used if they are
2749 * reserved for periodic transfers.
2750 */
2751 num_channels = hsotg->params.host_channels;
2752 qh_ptr = hsotg->non_periodic_sched_inactive.next;
2753 while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2754 if (!hsotg->params.uframe_sched &&
2755 hsotg->non_periodic_channels >= num_channels -
2756 hsotg->periodic_channels)
2757 break;
2758 if (list_empty(&hsotg->free_hc_list))
2759 break;
2760 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2761 if (hsotg->params.uframe_sched) {
2762 if (hsotg->available_host_channels < 1)
2763 break;
2764 hsotg->available_host_channels--;
2765 }
2766
2767 if (dwc2_assign_and_init_hc(hsotg, qh))
2768 break;
2769
2770 /*
2771 * Move the QH from the non-periodic inactive schedule to the
2772 * non-periodic active schedule
2773 */
2774 qh_ptr = qh_ptr->next;
2775 list_move_tail(&qh->qh_list_entry,
2776 &hsotg->non_periodic_sched_active);
2777
2778 if (ret_val == DWC2_TRANSACTION_NONE)
2779 ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2780 else
2781 ret_val = DWC2_TRANSACTION_ALL;
2782
2783 if (!hsotg->params.uframe_sched)
2784 hsotg->non_periodic_channels++;
2785 }
2786
2787 return ret_val;
2788 }
2789
2790 /**
2791 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2792 * a host channel associated with either a periodic or non-periodic transfer
2793 *
2794 * @hsotg: The HCD state structure
2795 * @chan: Host channel descriptor associated with either a periodic or
2796 * non-periodic transfer
2797 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2798 * for periodic transfers or the non-periodic Tx FIFO
2799 * for non-periodic transfers
2800 *
2801 * Return: 1 if a request is queued and more requests may be needed to
2802 * complete the transfer, 0 if no more requests are required for this
2803 * transfer, -1 if there is insufficient space in the Tx FIFO
2804 *
2805 * This function assumes that there is space available in the appropriate
2806 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2807 * it checks whether space is available in the appropriate Tx FIFO.
2808 *
2809 * Must be called with interrupt disabled and spinlock held
2810 */
dwc2_queue_transaction(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,u16 fifo_dwords_avail)2811 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2812 struct dwc2_host_chan *chan,
2813 u16 fifo_dwords_avail)
2814 {
2815 int retval = 0;
2816
2817 if (chan->do_split)
2818 /* Put ourselves on the list to keep order straight */
2819 list_move_tail(&chan->split_order_list_entry,
2820 &hsotg->split_order);
2821
2822 if (hsotg->params.host_dma && chan->qh) {
2823 if (hsotg->params.dma_desc_enable) {
2824 if (!chan->xfer_started ||
2825 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2826 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2827 chan->qh->ping_state = 0;
2828 }
2829 } else if (!chan->xfer_started) {
2830 dwc2_hc_start_transfer(hsotg, chan);
2831 chan->qh->ping_state = 0;
2832 }
2833 } else if (chan->halt_pending) {
2834 /* Don't queue a request if the channel has been halted */
2835 } else if (chan->halt_on_queue) {
2836 dwc2_hc_halt(hsotg, chan, chan->halt_status);
2837 } else if (chan->do_ping) {
2838 if (!chan->xfer_started)
2839 dwc2_hc_start_transfer(hsotg, chan);
2840 } else if (!chan->ep_is_in ||
2841 chan->data_pid_start == DWC2_HC_PID_SETUP) {
2842 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2843 if (!chan->xfer_started) {
2844 dwc2_hc_start_transfer(hsotg, chan);
2845 retval = 1;
2846 } else {
2847 retval = dwc2_hc_continue_transfer(hsotg, chan);
2848 }
2849 } else {
2850 retval = -1;
2851 }
2852 } else {
2853 if (!chan->xfer_started) {
2854 dwc2_hc_start_transfer(hsotg, chan);
2855 retval = 1;
2856 } else {
2857 retval = dwc2_hc_continue_transfer(hsotg, chan);
2858 }
2859 }
2860
2861 return retval;
2862 }
2863
2864 /*
2865 * Processes periodic channels for the next frame and queues transactions for
2866 * these channels to the DWC_otg controller. After queueing transactions, the
2867 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2868 * to queue as Periodic Tx FIFO or request queue space becomes available.
2869 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2870 *
2871 * Must be called with interrupt disabled and spinlock held
2872 */
dwc2_process_periodic_channels(struct dwc2_hsotg * hsotg)2873 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2874 {
2875 struct list_head *qh_ptr;
2876 struct dwc2_qh *qh;
2877 u32 tx_status;
2878 u32 fspcavail;
2879 u32 gintmsk;
2880 int status;
2881 bool no_queue_space = false;
2882 bool no_fifo_space = false;
2883 u32 qspcavail;
2884
2885 /* If empty list then just adjust interrupt enables */
2886 if (list_empty(&hsotg->periodic_sched_assigned))
2887 goto exit;
2888
2889 if (dbg_perio())
2890 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2891
2892 tx_status = dwc2_readl(hsotg, HPTXSTS);
2893 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2894 TXSTS_QSPCAVAIL_SHIFT;
2895 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2896 TXSTS_FSPCAVAIL_SHIFT;
2897
2898 if (dbg_perio()) {
2899 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n",
2900 qspcavail);
2901 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n",
2902 fspcavail);
2903 }
2904
2905 qh_ptr = hsotg->periodic_sched_assigned.next;
2906 while (qh_ptr != &hsotg->periodic_sched_assigned) {
2907 tx_status = dwc2_readl(hsotg, HPTXSTS);
2908 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2909 TXSTS_QSPCAVAIL_SHIFT;
2910 if (qspcavail == 0) {
2911 no_queue_space = true;
2912 break;
2913 }
2914
2915 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2916 if (!qh->channel) {
2917 qh_ptr = qh_ptr->next;
2918 continue;
2919 }
2920
2921 /* Make sure EP's TT buffer is clean before queueing qtds */
2922 if (qh->tt_buffer_dirty) {
2923 qh_ptr = qh_ptr->next;
2924 continue;
2925 }
2926
2927 /*
2928 * Set a flag if we're queuing high-bandwidth in slave mode.
2929 * The flag prevents any halts to get into the request queue in
2930 * the middle of multiple high-bandwidth packets getting queued.
2931 */
2932 if (!hsotg->params.host_dma &&
2933 qh->channel->multi_count > 1)
2934 hsotg->queuing_high_bandwidth = 1;
2935
2936 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2937 TXSTS_FSPCAVAIL_SHIFT;
2938 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2939 if (status < 0) {
2940 no_fifo_space = true;
2941 break;
2942 }
2943
2944 /*
2945 * In Slave mode, stay on the current transfer until there is
2946 * nothing more to do or the high-bandwidth request count is
2947 * reached. In DMA mode, only need to queue one request. The
2948 * controller automatically handles multiple packets for
2949 * high-bandwidth transfers.
2950 */
2951 if (hsotg->params.host_dma || status == 0 ||
2952 qh->channel->requests == qh->channel->multi_count) {
2953 qh_ptr = qh_ptr->next;
2954 /*
2955 * Move the QH from the periodic assigned schedule to
2956 * the periodic queued schedule
2957 */
2958 list_move_tail(&qh->qh_list_entry,
2959 &hsotg->periodic_sched_queued);
2960
2961 /* done queuing high bandwidth */
2962 hsotg->queuing_high_bandwidth = 0;
2963 }
2964 }
2965
2966 exit:
2967 if (no_queue_space || no_fifo_space ||
2968 (!hsotg->params.host_dma &&
2969 !list_empty(&hsotg->periodic_sched_assigned))) {
2970 /*
2971 * May need to queue more transactions as the request
2972 * queue or Tx FIFO empties. Enable the periodic Tx
2973 * FIFO empty interrupt. (Always use the half-empty
2974 * level to ensure that new requests are loaded as
2975 * soon as possible.)
2976 */
2977 gintmsk = dwc2_readl(hsotg, GINTMSK);
2978 if (!(gintmsk & GINTSTS_PTXFEMP)) {
2979 gintmsk |= GINTSTS_PTXFEMP;
2980 dwc2_writel(hsotg, gintmsk, GINTMSK);
2981 }
2982 } else {
2983 /*
2984 * Disable the Tx FIFO empty interrupt since there are
2985 * no more transactions that need to be queued right
2986 * now. This function is called from interrupt
2987 * handlers to queue more transactions as transfer
2988 * states change.
2989 */
2990 gintmsk = dwc2_readl(hsotg, GINTMSK);
2991 if (gintmsk & GINTSTS_PTXFEMP) {
2992 gintmsk &= ~GINTSTS_PTXFEMP;
2993 dwc2_writel(hsotg, gintmsk, GINTMSK);
2994 }
2995 }
2996 }
2997
2998 /*
2999 * Processes active non-periodic channels and queues transactions for these
3000 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3001 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3002 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3003 * FIFO Empty interrupt is disabled.
3004 *
3005 * Must be called with interrupt disabled and spinlock held
3006 */
dwc2_process_non_periodic_channels(struct dwc2_hsotg * hsotg)3007 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3008 {
3009 struct list_head *orig_qh_ptr;
3010 struct dwc2_qh *qh;
3011 u32 tx_status;
3012 u32 qspcavail;
3013 u32 fspcavail;
3014 u32 gintmsk;
3015 int status;
3016 int no_queue_space = 0;
3017 int no_fifo_space = 0;
3018 int more_to_do = 0;
3019
3020 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3021
3022 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3023 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3024 TXSTS_QSPCAVAIL_SHIFT;
3025 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3026 TXSTS_FSPCAVAIL_SHIFT;
3027 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n",
3028 qspcavail);
3029 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n",
3030 fspcavail);
3031
3032 /*
3033 * Keep track of the starting point. Skip over the start-of-list
3034 * entry.
3035 */
3036 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3037 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3038 orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3039
3040 /*
3041 * Process once through the active list or until no more space is
3042 * available in the request queue or the Tx FIFO
3043 */
3044 do {
3045 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3046 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3047 TXSTS_QSPCAVAIL_SHIFT;
3048 if (!hsotg->params.host_dma && qspcavail == 0) {
3049 no_queue_space = 1;
3050 break;
3051 }
3052
3053 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3054 qh_list_entry);
3055 if (!qh->channel)
3056 goto next;
3057
3058 /* Make sure EP's TT buffer is clean before queueing qtds */
3059 if (qh->tt_buffer_dirty)
3060 goto next;
3061
3062 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3063 TXSTS_FSPCAVAIL_SHIFT;
3064 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3065
3066 if (status > 0) {
3067 more_to_do = 1;
3068 } else if (status < 0) {
3069 no_fifo_space = 1;
3070 break;
3071 }
3072 next:
3073 /* Advance to next QH, skipping start-of-list entry */
3074 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3075 if (hsotg->non_periodic_qh_ptr ==
3076 &hsotg->non_periodic_sched_active)
3077 hsotg->non_periodic_qh_ptr =
3078 hsotg->non_periodic_qh_ptr->next;
3079 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3080
3081 if (!hsotg->params.host_dma) {
3082 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3083 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3084 TXSTS_QSPCAVAIL_SHIFT;
3085 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3086 TXSTS_FSPCAVAIL_SHIFT;
3087 dev_vdbg(hsotg->dev,
3088 " NP Tx Req Queue Space Avail (after queue): %d\n",
3089 qspcavail);
3090 dev_vdbg(hsotg->dev,
3091 " NP Tx FIFO Space Avail (after queue): %d\n",
3092 fspcavail);
3093
3094 if (more_to_do || no_queue_space || no_fifo_space) {
3095 /*
3096 * May need to queue more transactions as the request
3097 * queue or Tx FIFO empties. Enable the non-periodic
3098 * Tx FIFO empty interrupt. (Always use the half-empty
3099 * level to ensure that new requests are loaded as
3100 * soon as possible.)
3101 */
3102 gintmsk = dwc2_readl(hsotg, GINTMSK);
3103 gintmsk |= GINTSTS_NPTXFEMP;
3104 dwc2_writel(hsotg, gintmsk, GINTMSK);
3105 } else {
3106 /*
3107 * Disable the Tx FIFO empty interrupt since there are
3108 * no more transactions that need to be queued right
3109 * now. This function is called from interrupt
3110 * handlers to queue more transactions as transfer
3111 * states change.
3112 */
3113 gintmsk = dwc2_readl(hsotg, GINTMSK);
3114 gintmsk &= ~GINTSTS_NPTXFEMP;
3115 dwc2_writel(hsotg, gintmsk, GINTMSK);
3116 }
3117 }
3118 }
3119
3120 /**
3121 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3122 * and queues transactions for these channels to the DWC_otg controller. Called
3123 * from the HCD interrupt handler functions.
3124 *
3125 * @hsotg: The HCD state structure
3126 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3127 * or both)
3128 *
3129 * Must be called with interrupt disabled and spinlock held
3130 */
dwc2_hcd_queue_transactions(struct dwc2_hsotg * hsotg,enum dwc2_transaction_type tr_type)3131 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3132 enum dwc2_transaction_type tr_type)
3133 {
3134 #ifdef DWC2_DEBUG_SOF
3135 dev_vdbg(hsotg->dev, "Queue Transactions\n");
3136 #endif
3137 /* Process host channels associated with periodic transfers */
3138 if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3139 tr_type == DWC2_TRANSACTION_ALL)
3140 dwc2_process_periodic_channels(hsotg);
3141
3142 /* Process host channels associated with non-periodic transfers */
3143 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3144 tr_type == DWC2_TRANSACTION_ALL) {
3145 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3146 dwc2_process_non_periodic_channels(hsotg);
3147 } else {
3148 /*
3149 * Ensure NP Tx FIFO empty interrupt is disabled when
3150 * there are no non-periodic transfers to process
3151 */
3152 u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3153
3154 gintmsk &= ~GINTSTS_NPTXFEMP;
3155 dwc2_writel(hsotg, gintmsk, GINTMSK);
3156 }
3157 }
3158 }
3159
dwc2_conn_id_status_change(struct work_struct * work)3160 static void dwc2_conn_id_status_change(struct work_struct *work)
3161 {
3162 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3163 wf_otg);
3164 u32 count = 0;
3165 u32 gotgctl;
3166 unsigned long flags;
3167
3168 dev_dbg(hsotg->dev, "%s()\n", __func__);
3169
3170 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3171 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3172 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3173 !!(gotgctl & GOTGCTL_CONID_B));
3174
3175 /* B-Device connector (Device Mode) */
3176 if (gotgctl & GOTGCTL_CONID_B) {
3177 dwc2_vbus_supply_exit(hsotg);
3178 /* Wait for switch to device mode */
3179 dev_dbg(hsotg->dev, "connId B\n");
3180 if (hsotg->bus_suspended) {
3181 dev_info(hsotg->dev,
3182 "Do port resume before switching to device mode\n");
3183 dwc2_port_resume(hsotg);
3184 }
3185 while (!dwc2_is_device_mode(hsotg)) {
3186 dev_info(hsotg->dev,
3187 "Waiting for Peripheral Mode, Mode=%s\n",
3188 dwc2_is_host_mode(hsotg) ? "Host" :
3189 "Peripheral");
3190 msleep(20);
3191 /*
3192 * Sometimes the initial GOTGCTRL read is wrong, so
3193 * check it again and jump to host mode if that was
3194 * the case.
3195 */
3196 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3197 if (!(gotgctl & GOTGCTL_CONID_B))
3198 goto host;
3199 if (++count > 250)
3200 break;
3201 }
3202 if (count > 250)
3203 dev_err(hsotg->dev,
3204 "Connection id status change timed out\n");
3205
3206 /*
3207 * Exit Partial Power Down without restoring registers.
3208 * No need to check the return value as registers
3209 * are not being restored.
3210 */
3211 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3212 dwc2_exit_partial_power_down(hsotg, 0, false);
3213
3214 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3215 dwc2_core_init(hsotg, false);
3216 dwc2_enable_global_interrupts(hsotg);
3217 spin_lock_irqsave(&hsotg->lock, flags);
3218 dwc2_hsotg_core_init_disconnected(hsotg, false);
3219 spin_unlock_irqrestore(&hsotg->lock, flags);
3220 /* Enable ACG feature in device mode,if supported */
3221 dwc2_enable_acg(hsotg);
3222 dwc2_hsotg_core_connect(hsotg);
3223 } else {
3224 host:
3225 /* A-Device connector (Host Mode) */
3226 dev_dbg(hsotg->dev, "connId A\n");
3227 while (!dwc2_is_host_mode(hsotg)) {
3228 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3229 dwc2_is_host_mode(hsotg) ?
3230 "Host" : "Peripheral");
3231 msleep(20);
3232 if (++count > 250)
3233 break;
3234 }
3235 if (count > 250)
3236 dev_err(hsotg->dev,
3237 "Connection id status change timed out\n");
3238
3239 spin_lock_irqsave(&hsotg->lock, flags);
3240 dwc2_hsotg_disconnect(hsotg);
3241 spin_unlock_irqrestore(&hsotg->lock, flags);
3242
3243 hsotg->op_state = OTG_STATE_A_HOST;
3244 /* Initialize the Core for Host mode */
3245 dwc2_core_init(hsotg, false);
3246 dwc2_enable_global_interrupts(hsotg);
3247 dwc2_hcd_start(hsotg);
3248 }
3249 }
3250
dwc2_wakeup_detected(struct timer_list * t)3251 static void dwc2_wakeup_detected(struct timer_list *t)
3252 {
3253 struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3254 u32 hprt0;
3255
3256 dev_dbg(hsotg->dev, "%s()\n", __func__);
3257
3258 /*
3259 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3260 * so that OPT tests pass with all PHYs.)
3261 */
3262 hprt0 = dwc2_read_hprt0(hsotg);
3263 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3264 hprt0 &= ~HPRT0_RES;
3265 dwc2_writel(hsotg, hprt0, HPRT0);
3266 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3267 dwc2_readl(hsotg, HPRT0));
3268
3269 dwc2_hcd_rem_wakeup(hsotg);
3270 hsotg->bus_suspended = false;
3271
3272 /* Change to L0 state */
3273 hsotg->lx_state = DWC2_L0;
3274 }
3275
dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg * hsotg)3276 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3277 {
3278 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3279
3280 return hcd->self.b_hnp_enable;
3281 }
3282
3283 /**
3284 * dwc2_port_suspend() - Put controller in suspend mode for host.
3285 *
3286 * @hsotg: Programming view of the DWC_otg controller
3287 * @windex: The control request wIndex field
3288 *
3289 * Return: non-zero if failed to enter suspend mode for host.
3290 *
3291 * This function is for entering Host mode suspend.
3292 * Must NOT be called with interrupt disabled or spinlock held.
3293 */
dwc2_port_suspend(struct dwc2_hsotg * hsotg,u16 windex)3294 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3295 {
3296 unsigned long flags;
3297 u32 pcgctl;
3298 u32 gotgctl;
3299 int ret = 0;
3300
3301 dev_dbg(hsotg->dev, "%s()\n", __func__);
3302
3303 spin_lock_irqsave(&hsotg->lock, flags);
3304
3305 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3306 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3307 gotgctl |= GOTGCTL_HSTSETHNPEN;
3308 dwc2_writel(hsotg, gotgctl, GOTGCTL);
3309 hsotg->op_state = OTG_STATE_A_SUSPEND;
3310 }
3311
3312 switch (hsotg->params.power_down) {
3313 case DWC2_POWER_DOWN_PARAM_PARTIAL:
3314 ret = dwc2_enter_partial_power_down(hsotg);
3315 if (ret)
3316 dev_err(hsotg->dev,
3317 "enter partial_power_down failed.\n");
3318 break;
3319 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3320 /*
3321 * Perform spin unlock and lock because in
3322 * "dwc2_host_enter_hibernation()" function there is a spinlock
3323 * logic which prevents servicing of any IRQ during entering
3324 * hibernation.
3325 */
3326 spin_unlock_irqrestore(&hsotg->lock, flags);
3327 ret = dwc2_enter_hibernation(hsotg, 1);
3328 if (ret)
3329 dev_err(hsotg->dev, "enter hibernation failed.\n");
3330 spin_lock_irqsave(&hsotg->lock, flags);
3331 break;
3332 case DWC2_POWER_DOWN_PARAM_NONE:
3333 /*
3334 * If not hibernation nor partial power down are supported,
3335 * clock gating is used to save power.
3336 */
3337 if (!hsotg->params.no_clock_gating)
3338 dwc2_host_enter_clock_gating(hsotg);
3339 break;
3340 }
3341
3342 /* For HNP the bus must be suspended for at least 200ms */
3343 if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3344 pcgctl = dwc2_readl(hsotg, PCGCTL);
3345 pcgctl &= ~PCGCTL_STOPPCLK;
3346 dwc2_writel(hsotg, pcgctl, PCGCTL);
3347
3348 spin_unlock_irqrestore(&hsotg->lock, flags);
3349
3350 msleep(200);
3351 } else {
3352 spin_unlock_irqrestore(&hsotg->lock, flags);
3353 }
3354
3355 return ret;
3356 }
3357
3358 /**
3359 * dwc2_port_resume() - Exit controller from suspend mode for host.
3360 *
3361 * @hsotg: Programming view of the DWC_otg controller
3362 *
3363 * Return: non-zero if failed to exit suspend mode for host.
3364 *
3365 * This function is for exiting Host mode suspend.
3366 * Must NOT be called with interrupt disabled or spinlock held.
3367 */
dwc2_port_resume(struct dwc2_hsotg * hsotg)3368 int dwc2_port_resume(struct dwc2_hsotg *hsotg)
3369 {
3370 unsigned long flags;
3371 int ret = 0;
3372
3373 spin_lock_irqsave(&hsotg->lock, flags);
3374
3375 switch (hsotg->params.power_down) {
3376 case DWC2_POWER_DOWN_PARAM_PARTIAL:
3377 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
3378 if (ret)
3379 dev_err(hsotg->dev,
3380 "exit partial_power_down failed.\n");
3381 break;
3382 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3383 /* Exit host hibernation. */
3384 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
3385 if (ret)
3386 dev_err(hsotg->dev, "exit hibernation failed.\n");
3387 break;
3388 case DWC2_POWER_DOWN_PARAM_NONE:
3389 /*
3390 * If not hibernation nor partial power down are supported,
3391 * port resume is done using the clock gating programming flow.
3392 */
3393 spin_unlock_irqrestore(&hsotg->lock, flags);
3394 dwc2_host_exit_clock_gating(hsotg, 0);
3395 spin_lock_irqsave(&hsotg->lock, flags);
3396 break;
3397 }
3398
3399 spin_unlock_irqrestore(&hsotg->lock, flags);
3400
3401 return ret;
3402 }
3403
3404 /* Handles hub class-specific requests */
dwc2_hcd_hub_control(struct dwc2_hsotg * hsotg,u16 typereq,u16 wvalue,u16 windex,char * buf,u16 wlength)3405 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3406 u16 wvalue, u16 windex, char *buf, u16 wlength)
3407 {
3408 struct usb_hub_descriptor *hub_desc;
3409 int retval = 0;
3410 u32 hprt0;
3411 u32 port_status;
3412 u32 speed;
3413 u32 pcgctl;
3414 u32 pwr;
3415
3416 switch (typereq) {
3417 case ClearHubFeature:
3418 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3419
3420 switch (wvalue) {
3421 case C_HUB_LOCAL_POWER:
3422 case C_HUB_OVER_CURRENT:
3423 /* Nothing required here */
3424 break;
3425
3426 default:
3427 retval = -EINVAL;
3428 dev_err(hsotg->dev,
3429 "ClearHubFeature request %1xh unknown\n",
3430 wvalue);
3431 }
3432 break;
3433
3434 case ClearPortFeature:
3435 if (wvalue != USB_PORT_FEAT_L1)
3436 if (!windex || windex > 1)
3437 goto error;
3438 switch (wvalue) {
3439 case USB_PORT_FEAT_ENABLE:
3440 dev_dbg(hsotg->dev,
3441 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3442 hprt0 = dwc2_read_hprt0(hsotg);
3443 hprt0 |= HPRT0_ENA;
3444 dwc2_writel(hsotg, hprt0, HPRT0);
3445 break;
3446
3447 case USB_PORT_FEAT_SUSPEND:
3448 dev_dbg(hsotg->dev,
3449 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3450
3451 if (hsotg->bus_suspended)
3452 retval = dwc2_port_resume(hsotg);
3453 break;
3454
3455 case USB_PORT_FEAT_POWER:
3456 dev_dbg(hsotg->dev,
3457 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3458 hprt0 = dwc2_read_hprt0(hsotg);
3459 pwr = hprt0 & HPRT0_PWR;
3460 hprt0 &= ~HPRT0_PWR;
3461 dwc2_writel(hsotg, hprt0, HPRT0);
3462 if (pwr)
3463 dwc2_vbus_supply_exit(hsotg);
3464 break;
3465
3466 case USB_PORT_FEAT_INDICATOR:
3467 dev_dbg(hsotg->dev,
3468 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3469 /* Port indicator not supported */
3470 break;
3471
3472 case USB_PORT_FEAT_C_CONNECTION:
3473 /*
3474 * Clears driver's internal Connect Status Change flag
3475 */
3476 dev_dbg(hsotg->dev,
3477 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3478 hsotg->flags.b.port_connect_status_change = 0;
3479 break;
3480
3481 case USB_PORT_FEAT_C_RESET:
3482 /* Clears driver's internal Port Reset Change flag */
3483 dev_dbg(hsotg->dev,
3484 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3485 hsotg->flags.b.port_reset_change = 0;
3486 break;
3487
3488 case USB_PORT_FEAT_C_ENABLE:
3489 /*
3490 * Clears the driver's internal Port Enable/Disable
3491 * Change flag
3492 */
3493 dev_dbg(hsotg->dev,
3494 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3495 hsotg->flags.b.port_enable_change = 0;
3496 break;
3497
3498 case USB_PORT_FEAT_C_SUSPEND:
3499 /*
3500 * Clears the driver's internal Port Suspend Change
3501 * flag, which is set when resume signaling on the host
3502 * port is complete
3503 */
3504 dev_dbg(hsotg->dev,
3505 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3506 hsotg->flags.b.port_suspend_change = 0;
3507 break;
3508
3509 case USB_PORT_FEAT_C_PORT_L1:
3510 dev_dbg(hsotg->dev,
3511 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3512 hsotg->flags.b.port_l1_change = 0;
3513 break;
3514
3515 case USB_PORT_FEAT_C_OVER_CURRENT:
3516 dev_dbg(hsotg->dev,
3517 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3518 hsotg->flags.b.port_over_current_change = 0;
3519 break;
3520
3521 default:
3522 retval = -EINVAL;
3523 dev_err(hsotg->dev,
3524 "ClearPortFeature request %1xh unknown or unsupported\n",
3525 wvalue);
3526 }
3527 break;
3528
3529 case GetHubDescriptor:
3530 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3531 hub_desc = (struct usb_hub_descriptor *)buf;
3532 hub_desc->bDescLength = 9;
3533 hub_desc->bDescriptorType = USB_DT_HUB;
3534 hub_desc->bNbrPorts = 1;
3535 hub_desc->wHubCharacteristics =
3536 cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3537 HUB_CHAR_INDV_PORT_OCPM);
3538 hub_desc->bPwrOn2PwrGood = 1;
3539 hub_desc->bHubContrCurrent = 0;
3540 hub_desc->u.hs.DeviceRemovable[0] = 0;
3541 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3542 break;
3543
3544 case GetHubStatus:
3545 dev_dbg(hsotg->dev, "GetHubStatus\n");
3546 memset(buf, 0, 4);
3547 break;
3548
3549 case GetPortStatus:
3550 dev_vdbg(hsotg->dev,
3551 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3552 hsotg->flags.d32);
3553 if (!windex || windex > 1)
3554 goto error;
3555
3556 port_status = 0;
3557 if (hsotg->flags.b.port_connect_status_change)
3558 port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3559 if (hsotg->flags.b.port_enable_change)
3560 port_status |= USB_PORT_STAT_C_ENABLE << 16;
3561 if (hsotg->flags.b.port_suspend_change)
3562 port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3563 if (hsotg->flags.b.port_l1_change)
3564 port_status |= USB_PORT_STAT_C_L1 << 16;
3565 if (hsotg->flags.b.port_reset_change)
3566 port_status |= USB_PORT_STAT_C_RESET << 16;
3567 if (hsotg->flags.b.port_over_current_change) {
3568 dev_warn(hsotg->dev, "Overcurrent change detected\n");
3569 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3570 }
3571
3572 if (!hsotg->flags.b.port_connect_status) {
3573 /*
3574 * The port is disconnected, which means the core is
3575 * either in device mode or it soon will be. Just
3576 * return 0's for the remainder of the port status
3577 * since the port register can't be read if the core
3578 * is in device mode.
3579 */
3580 *(__le32 *)buf = cpu_to_le32(port_status);
3581 break;
3582 }
3583
3584 hprt0 = dwc2_readl(hsotg, HPRT0);
3585 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0);
3586
3587 if (hprt0 & HPRT0_CONNSTS)
3588 port_status |= USB_PORT_STAT_CONNECTION;
3589 if (hprt0 & HPRT0_ENA)
3590 port_status |= USB_PORT_STAT_ENABLE;
3591 if (hprt0 & HPRT0_SUSP)
3592 port_status |= USB_PORT_STAT_SUSPEND;
3593 if (hprt0 & HPRT0_OVRCURRACT)
3594 port_status |= USB_PORT_STAT_OVERCURRENT;
3595 if (hprt0 & HPRT0_RST)
3596 port_status |= USB_PORT_STAT_RESET;
3597 if (hprt0 & HPRT0_PWR)
3598 port_status |= USB_PORT_STAT_POWER;
3599
3600 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3601 if (speed == HPRT0_SPD_HIGH_SPEED)
3602 port_status |= USB_PORT_STAT_HIGH_SPEED;
3603 else if (speed == HPRT0_SPD_LOW_SPEED)
3604 port_status |= USB_PORT_STAT_LOW_SPEED;
3605
3606 if (hprt0 & HPRT0_TSTCTL_MASK)
3607 port_status |= USB_PORT_STAT_TEST;
3608 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3609
3610 if (hsotg->params.dma_desc_fs_enable) {
3611 /*
3612 * Enable descriptor DMA only if a full speed
3613 * device is connected.
3614 */
3615 if (hsotg->new_connection &&
3616 ((port_status &
3617 (USB_PORT_STAT_CONNECTION |
3618 USB_PORT_STAT_HIGH_SPEED |
3619 USB_PORT_STAT_LOW_SPEED)) ==
3620 USB_PORT_STAT_CONNECTION)) {
3621 u32 hcfg;
3622
3623 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3624 hsotg->params.dma_desc_enable = true;
3625 hcfg = dwc2_readl(hsotg, HCFG);
3626 hcfg |= HCFG_DESCDMA;
3627 dwc2_writel(hsotg, hcfg, HCFG);
3628 hsotg->new_connection = false;
3629 }
3630 }
3631
3632 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3633 *(__le32 *)buf = cpu_to_le32(port_status);
3634 break;
3635
3636 case SetHubFeature:
3637 dev_dbg(hsotg->dev, "SetHubFeature\n");
3638 /* No HUB features supported */
3639 break;
3640
3641 case SetPortFeature:
3642 dev_dbg(hsotg->dev, "SetPortFeature\n");
3643 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3644 goto error;
3645
3646 if (!hsotg->flags.b.port_connect_status) {
3647 /*
3648 * The port is disconnected, which means the core is
3649 * either in device mode or it soon will be. Just
3650 * return without doing anything since the port
3651 * register can't be written if the core is in device
3652 * mode.
3653 */
3654 break;
3655 }
3656
3657 switch (wvalue) {
3658 case USB_PORT_FEAT_SUSPEND:
3659 dev_dbg(hsotg->dev,
3660 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3661 if (windex != hsotg->otg_port)
3662 goto error;
3663 if (!hsotg->bus_suspended)
3664 retval = dwc2_port_suspend(hsotg, windex);
3665 break;
3666
3667 case USB_PORT_FEAT_POWER:
3668 dev_dbg(hsotg->dev,
3669 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3670 hprt0 = dwc2_read_hprt0(hsotg);
3671 pwr = hprt0 & HPRT0_PWR;
3672 hprt0 |= HPRT0_PWR;
3673 dwc2_writel(hsotg, hprt0, HPRT0);
3674 if (!pwr)
3675 dwc2_vbus_supply_init(hsotg);
3676 break;
3677
3678 case USB_PORT_FEAT_RESET:
3679 dev_dbg(hsotg->dev,
3680 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3681
3682 hprt0 = dwc2_read_hprt0(hsotg);
3683
3684 if (hsotg->hibernated) {
3685 retval = dwc2_exit_hibernation(hsotg, 0, 1, 1);
3686 if (retval)
3687 dev_err(hsotg->dev,
3688 "exit hibernation failed\n");
3689 }
3690
3691 if (hsotg->in_ppd) {
3692 retval = dwc2_exit_partial_power_down(hsotg, 1,
3693 true);
3694 if (retval)
3695 dev_err(hsotg->dev,
3696 "exit partial_power_down failed\n");
3697 }
3698
3699 if (hsotg->params.power_down ==
3700 DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended)
3701 dwc2_host_exit_clock_gating(hsotg, 0);
3702
3703 pcgctl = dwc2_readl(hsotg, PCGCTL);
3704 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3705 dwc2_writel(hsotg, pcgctl, PCGCTL);
3706 /* ??? Original driver does this */
3707 dwc2_writel(hsotg, 0, PCGCTL);
3708
3709 hprt0 = dwc2_read_hprt0(hsotg);
3710 pwr = hprt0 & HPRT0_PWR;
3711 /* Clear suspend bit if resetting from suspend state */
3712 hprt0 &= ~HPRT0_SUSP;
3713
3714 /*
3715 * When B-Host the Port reset bit is set in the Start
3716 * HCD Callback function, so that the reset is started
3717 * within 1ms of the HNP success interrupt
3718 */
3719 if (!dwc2_hcd_is_b_host(hsotg)) {
3720 hprt0 |= HPRT0_PWR | HPRT0_RST;
3721 dev_dbg(hsotg->dev,
3722 "In host mode, hprt0=%08x\n", hprt0);
3723 dwc2_writel(hsotg, hprt0, HPRT0);
3724 if (!pwr)
3725 dwc2_vbus_supply_init(hsotg);
3726 }
3727
3728 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3729 msleep(50);
3730 hprt0 &= ~HPRT0_RST;
3731 dwc2_writel(hsotg, hprt0, HPRT0);
3732 hsotg->lx_state = DWC2_L0; /* Now back to On state */
3733 break;
3734
3735 case USB_PORT_FEAT_INDICATOR:
3736 dev_dbg(hsotg->dev,
3737 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3738 /* Not supported */
3739 break;
3740
3741 case USB_PORT_FEAT_TEST:
3742 hprt0 = dwc2_read_hprt0(hsotg);
3743 dev_dbg(hsotg->dev,
3744 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3745 hprt0 &= ~HPRT0_TSTCTL_MASK;
3746 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3747 dwc2_writel(hsotg, hprt0, HPRT0);
3748 break;
3749
3750 default:
3751 retval = -EINVAL;
3752 dev_err(hsotg->dev,
3753 "SetPortFeature %1xh unknown or unsupported\n",
3754 wvalue);
3755 break;
3756 }
3757 break;
3758
3759 default:
3760 error:
3761 retval = -EINVAL;
3762 dev_dbg(hsotg->dev,
3763 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3764 typereq, windex, wvalue);
3765 break;
3766 }
3767
3768 return retval;
3769 }
3770
dwc2_hcd_is_status_changed(struct dwc2_hsotg * hsotg,int port)3771 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3772 {
3773 int retval;
3774
3775 if (port != 1)
3776 return -EINVAL;
3777
3778 retval = (hsotg->flags.b.port_connect_status_change ||
3779 hsotg->flags.b.port_reset_change ||
3780 hsotg->flags.b.port_enable_change ||
3781 hsotg->flags.b.port_suspend_change ||
3782 hsotg->flags.b.port_over_current_change);
3783
3784 if (retval) {
3785 dev_dbg(hsotg->dev,
3786 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3787 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n",
3788 hsotg->flags.b.port_connect_status_change);
3789 dev_dbg(hsotg->dev, " port_reset_change: %d\n",
3790 hsotg->flags.b.port_reset_change);
3791 dev_dbg(hsotg->dev, " port_enable_change: %d\n",
3792 hsotg->flags.b.port_enable_change);
3793 dev_dbg(hsotg->dev, " port_suspend_change: %d\n",
3794 hsotg->flags.b.port_suspend_change);
3795 dev_dbg(hsotg->dev, " port_over_current_change: %d\n",
3796 hsotg->flags.b.port_over_current_change);
3797 }
3798
3799 return retval;
3800 }
3801
dwc2_hcd_get_frame_number(struct dwc2_hsotg * hsotg)3802 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3803 {
3804 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3805
3806 #ifdef DWC2_DEBUG_SOF
3807 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3808 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3809 #endif
3810 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3811 }
3812
dwc2_hcd_get_future_frame_number(struct dwc2_hsotg * hsotg,int us)3813 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3814 {
3815 u32 hprt = dwc2_readl(hsotg, HPRT0);
3816 u32 hfir = dwc2_readl(hsotg, HFIR);
3817 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3818 unsigned int us_per_frame;
3819 unsigned int frame_number;
3820 unsigned int remaining;
3821 unsigned int interval;
3822 unsigned int phy_clks;
3823
3824 /* High speed has 125 us per (micro) frame; others are 1 ms per */
3825 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3826
3827 /* Extract fields */
3828 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3829 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3830 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3831
3832 /*
3833 * Number of phy clocks since the last tick of the frame number after
3834 * "us" has passed.
3835 */
3836 phy_clks = (interval - remaining) +
3837 DIV_ROUND_UP(interval * us, us_per_frame);
3838
3839 return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3840 }
3841
dwc2_hcd_is_b_host(struct dwc2_hsotg * hsotg)3842 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3843 {
3844 return hsotg->op_state == OTG_STATE_B_HOST;
3845 }
3846
dwc2_hcd_urb_alloc(struct dwc2_hsotg * hsotg,int iso_desc_count,gfp_t mem_flags)3847 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3848 int iso_desc_count,
3849 gfp_t mem_flags)
3850 {
3851 struct dwc2_hcd_urb *urb;
3852
3853 urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3854 if (urb)
3855 urb->packet_count = iso_desc_count;
3856 return urb;
3857 }
3858
dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg * hsotg,struct dwc2_hcd_urb * urb,u8 dev_addr,u8 ep_num,u8 ep_type,u8 ep_dir,u16 maxp,u16 maxp_mult)3859 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3860 struct dwc2_hcd_urb *urb, u8 dev_addr,
3861 u8 ep_num, u8 ep_type, u8 ep_dir,
3862 u16 maxp, u16 maxp_mult)
3863 {
3864 if (dbg_perio() ||
3865 ep_type == USB_ENDPOINT_XFER_BULK ||
3866 ep_type == USB_ENDPOINT_XFER_CONTROL)
3867 dev_vdbg(hsotg->dev,
3868 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3869 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3870 urb->pipe_info.dev_addr = dev_addr;
3871 urb->pipe_info.ep_num = ep_num;
3872 urb->pipe_info.pipe_type = ep_type;
3873 urb->pipe_info.pipe_dir = ep_dir;
3874 urb->pipe_info.maxp = maxp;
3875 urb->pipe_info.maxp_mult = maxp_mult;
3876 }
3877
3878 /*
3879 * NOTE: This function will be removed once the peripheral controller code
3880 * is integrated and the driver is stable
3881 */
dwc2_hcd_dump_state(struct dwc2_hsotg * hsotg)3882 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3883 {
3884 #ifdef DEBUG
3885 struct dwc2_host_chan *chan;
3886 struct dwc2_hcd_urb *urb;
3887 struct dwc2_qtd *qtd;
3888 int num_channels;
3889 u32 np_tx_status;
3890 u32 p_tx_status;
3891 int i;
3892
3893 num_channels = hsotg->params.host_channels;
3894 dev_dbg(hsotg->dev, "\n");
3895 dev_dbg(hsotg->dev,
3896 "************************************************************\n");
3897 dev_dbg(hsotg->dev, "HCD State:\n");
3898 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels);
3899
3900 for (i = 0; i < num_channels; i++) {
3901 chan = hsotg->hc_ptr_array[i];
3902 dev_dbg(hsotg->dev, " Channel %d:\n", i);
3903 dev_dbg(hsotg->dev,
3904 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3905 chan->dev_addr, chan->ep_num, chan->ep_is_in);
3906 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed);
3907 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
3908 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
3909 dev_dbg(hsotg->dev, " data_pid_start: %d\n",
3910 chan->data_pid_start);
3911 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count);
3912 dev_dbg(hsotg->dev, " xfer_started: %d\n",
3913 chan->xfer_started);
3914 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
3915 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
3916 (unsigned long)chan->xfer_dma);
3917 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
3918 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count);
3919 dev_dbg(hsotg->dev, " halt_on_queue: %d\n",
3920 chan->halt_on_queue);
3921 dev_dbg(hsotg->dev, " halt_pending: %d\n",
3922 chan->halt_pending);
3923 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
3924 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split);
3925 dev_dbg(hsotg->dev, " complete_split: %d\n",
3926 chan->complete_split);
3927 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr);
3928 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port);
3929 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos);
3930 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests);
3931 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
3932
3933 if (chan->xfer_started) {
3934 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3935
3936 hfnum = dwc2_readl(hsotg, HFNUM);
3937 hcchar = dwc2_readl(hsotg, HCCHAR(i));
3938 hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3939 hcint = dwc2_readl(hsotg, HCINT(i));
3940 hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3941 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum);
3942 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
3943 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz);
3944 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint);
3945 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk);
3946 }
3947
3948 if (!(chan->xfer_started && chan->qh))
3949 continue;
3950
3951 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3952 if (!qtd->in_process)
3953 break;
3954 urb = qtd->urb;
3955 dev_dbg(hsotg->dev, " URB Info:\n");
3956 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n",
3957 qtd, urb);
3958 if (urb) {
3959 dev_dbg(hsotg->dev,
3960 " Dev: %d, EP: %d %s\n",
3961 dwc2_hcd_get_dev_addr(&urb->pipe_info),
3962 dwc2_hcd_get_ep_num(&urb->pipe_info),
3963 dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3964 "IN" : "OUT");
3965 dev_dbg(hsotg->dev,
3966 " Max packet size: %d (%d mult)\n",
3967 dwc2_hcd_get_maxp(&urb->pipe_info),
3968 dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3969 dev_dbg(hsotg->dev,
3970 " transfer_buffer: %p\n",
3971 urb->buf);
3972 dev_dbg(hsotg->dev,
3973 " transfer_dma: %08lx\n",
3974 (unsigned long)urb->dma);
3975 dev_dbg(hsotg->dev,
3976 " transfer_buffer_length: %d\n",
3977 urb->length);
3978 dev_dbg(hsotg->dev, " actual_length: %d\n",
3979 urb->actual_length);
3980 }
3981 }
3982 }
3983
3984 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n",
3985 hsotg->non_periodic_channels);
3986 dev_dbg(hsotg->dev, " periodic_channels: %d\n",
3987 hsotg->periodic_channels);
3988 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs);
3989 np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3990 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n",
3991 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3992 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n",
3993 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3994 p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3995 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n",
3996 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3997 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n",
3998 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3999 dwc2_dump_global_registers(hsotg);
4000 dwc2_dump_host_registers(hsotg);
4001 dev_dbg(hsotg->dev,
4002 "************************************************************\n");
4003 dev_dbg(hsotg->dev, "\n");
4004 #endif
4005 }
4006
4007 struct wrapper_priv_data {
4008 struct dwc2_hsotg *hsotg;
4009 };
4010
4011 /* Gets the dwc2_hsotg from a usb_hcd */
dwc2_hcd_to_hsotg(struct usb_hcd * hcd)4012 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4013 {
4014 struct wrapper_priv_data *p;
4015
4016 p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4017 return p->hsotg;
4018 }
4019
4020 /**
4021 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4022 *
4023 * This will get the dwc2_tt structure (and ttport) associated with the given
4024 * context (which is really just a struct urb pointer).
4025 *
4026 * The first time this is called for a given TT we allocate memory for our
4027 * structure. When everyone is done and has called dwc2_host_put_tt_info()
4028 * then the refcount for the structure will go to 0 and we'll free it.
4029 *
4030 * @hsotg: The HCD state structure for the DWC OTG controller.
4031 * @context: The priv pointer from a struct dwc2_hcd_urb.
4032 * @mem_flags: Flags for allocating memory.
4033 * @ttport: We'll return this device's port number here. That's used to
4034 * reference into the bitmap if we're on a multi_tt hub.
4035 *
4036 * Return: a pointer to a struct dwc2_tt. Don't forget to call
4037 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
4038 */
4039
dwc2_host_get_tt_info(struct dwc2_hsotg * hsotg,void * context,gfp_t mem_flags,int * ttport)4040 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4041 gfp_t mem_flags, int *ttport)
4042 {
4043 struct urb *urb = context;
4044 struct dwc2_tt *dwc_tt = NULL;
4045
4046 if (urb->dev->tt) {
4047 *ttport = urb->dev->ttport;
4048
4049 dwc_tt = urb->dev->tt->hcpriv;
4050 if (!dwc_tt) {
4051 size_t bitmap_size;
4052
4053 /*
4054 * For single_tt we need one schedule. For multi_tt
4055 * we need one per port.
4056 */
4057 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4058 sizeof(dwc_tt->periodic_bitmaps[0]);
4059 if (urb->dev->tt->multi)
4060 bitmap_size *= urb->dev->tt->hub->maxchild;
4061
4062 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4063 mem_flags);
4064 if (!dwc_tt)
4065 return NULL;
4066
4067 dwc_tt->usb_tt = urb->dev->tt;
4068 dwc_tt->usb_tt->hcpriv = dwc_tt;
4069 }
4070
4071 dwc_tt->refcount++;
4072 }
4073
4074 return dwc_tt;
4075 }
4076
4077 /**
4078 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4079 *
4080 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4081 * of the structure are done.
4082 *
4083 * It's OK to call this with NULL.
4084 *
4085 * @hsotg: The HCD state structure for the DWC OTG controller.
4086 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
4087 */
dwc2_host_put_tt_info(struct dwc2_hsotg * hsotg,struct dwc2_tt * dwc_tt)4088 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4089 {
4090 /* Model kfree and make put of NULL a no-op */
4091 if (!dwc_tt)
4092 return;
4093
4094 WARN_ON(dwc_tt->refcount < 1);
4095
4096 dwc_tt->refcount--;
4097 if (!dwc_tt->refcount) {
4098 dwc_tt->usb_tt->hcpriv = NULL;
4099 kfree(dwc_tt);
4100 }
4101 }
4102
dwc2_host_get_speed(struct dwc2_hsotg * hsotg,void * context)4103 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4104 {
4105 struct urb *urb = context;
4106
4107 return urb->dev->speed;
4108 }
4109
dwc2_allocate_bus_bandwidth(struct usb_hcd * hcd,u16 bw,struct urb * urb)4110 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4111 struct urb *urb)
4112 {
4113 struct usb_bus *bus = hcd_to_bus(hcd);
4114
4115 if (urb->interval)
4116 bus->bandwidth_allocated += bw / urb->interval;
4117 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4118 bus->bandwidth_isoc_reqs++;
4119 else
4120 bus->bandwidth_int_reqs++;
4121 }
4122
dwc2_free_bus_bandwidth(struct usb_hcd * hcd,u16 bw,struct urb * urb)4123 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4124 struct urb *urb)
4125 {
4126 struct usb_bus *bus = hcd_to_bus(hcd);
4127
4128 if (urb->interval)
4129 bus->bandwidth_allocated -= bw / urb->interval;
4130 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4131 bus->bandwidth_isoc_reqs--;
4132 else
4133 bus->bandwidth_int_reqs--;
4134 }
4135
4136 /*
4137 * Sets the final status of an URB and returns it to the upper layer. Any
4138 * required cleanup of the URB is performed.
4139 *
4140 * Must be called with interrupt disabled and spinlock held
4141 */
dwc2_host_complete(struct dwc2_hsotg * hsotg,struct dwc2_qtd * qtd,int status)4142 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4143 int status)
4144 {
4145 struct urb *urb;
4146 int i;
4147
4148 if (!qtd) {
4149 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4150 return;
4151 }
4152
4153 if (!qtd->urb) {
4154 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4155 return;
4156 }
4157
4158 urb = qtd->urb->priv;
4159 if (!urb) {
4160 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4161 return;
4162 }
4163
4164 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4165
4166 if (dbg_urb(urb))
4167 dev_vdbg(hsotg->dev,
4168 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4169 __func__, urb, usb_pipedevice(urb->pipe),
4170 usb_pipeendpoint(urb->pipe),
4171 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4172 urb->actual_length);
4173
4174 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4175 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4176 for (i = 0; i < urb->number_of_packets; ++i) {
4177 urb->iso_frame_desc[i].actual_length =
4178 dwc2_hcd_urb_get_iso_desc_actual_length(
4179 qtd->urb, i);
4180 urb->iso_frame_desc[i].status =
4181 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4182 }
4183 }
4184
4185 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4186 for (i = 0; i < urb->number_of_packets; i++)
4187 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4188 i, urb->iso_frame_desc[i].status);
4189 }
4190
4191 urb->status = status;
4192 if (!status) {
4193 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4194 urb->actual_length < urb->transfer_buffer_length)
4195 urb->status = -EREMOTEIO;
4196 }
4197
4198 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4199 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4200 struct usb_host_endpoint *ep = urb->ep;
4201
4202 if (ep)
4203 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4204 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4205 urb);
4206 }
4207
4208 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4209 urb->hcpriv = NULL;
4210 kfree(qtd->urb);
4211 qtd->urb = NULL;
4212
4213 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4214 }
4215
4216 /*
4217 * Work queue function for starting the HCD when A-Cable is connected
4218 */
dwc2_hcd_start_func(struct work_struct * work)4219 static void dwc2_hcd_start_func(struct work_struct *work)
4220 {
4221 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4222 start_work.work);
4223
4224 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4225 dwc2_host_start(hsotg);
4226 }
4227
4228 /*
4229 * Reset work queue function
4230 */
dwc2_hcd_reset_func(struct work_struct * work)4231 static void dwc2_hcd_reset_func(struct work_struct *work)
4232 {
4233 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4234 reset_work.work);
4235 unsigned long flags;
4236 u32 hprt0;
4237
4238 dev_dbg(hsotg->dev, "USB RESET function called\n");
4239
4240 spin_lock_irqsave(&hsotg->lock, flags);
4241
4242 hprt0 = dwc2_read_hprt0(hsotg);
4243 hprt0 &= ~HPRT0_RST;
4244 dwc2_writel(hsotg, hprt0, HPRT0);
4245 hsotg->flags.b.port_reset_change = 1;
4246
4247 spin_unlock_irqrestore(&hsotg->lock, flags);
4248 }
4249
dwc2_hcd_phy_reset_func(struct work_struct * work)4250 static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4251 {
4252 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4253 phy_reset_work);
4254 int ret;
4255
4256 ret = phy_reset(hsotg->phy);
4257 if (ret)
4258 dev_warn(hsotg->dev, "PHY reset failed\n");
4259 }
4260
4261 /*
4262 * =========================================================================
4263 * Linux HC Driver Functions
4264 * =========================================================================
4265 */
4266
4267 /*
4268 * Initializes the DWC_otg controller and its root hub and prepares it for host
4269 * mode operation. Activates the root port. Returns 0 on success and a negative
4270 * error code on failure.
4271 */
_dwc2_hcd_start(struct usb_hcd * hcd)4272 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4273 {
4274 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4275 struct usb_bus *bus = hcd_to_bus(hcd);
4276 unsigned long flags;
4277 u32 hprt0;
4278 int ret;
4279
4280 dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4281
4282 spin_lock_irqsave(&hsotg->lock, flags);
4283 hsotg->lx_state = DWC2_L0;
4284 hcd->state = HC_STATE_RUNNING;
4285 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4286
4287 if (dwc2_is_device_mode(hsotg)) {
4288 spin_unlock_irqrestore(&hsotg->lock, flags);
4289 return 0; /* why 0 ?? */
4290 }
4291
4292 dwc2_hcd_reinit(hsotg);
4293
4294 hprt0 = dwc2_read_hprt0(hsotg);
4295 /* Has vbus power been turned on in dwc2_core_host_init ? */
4296 if (hprt0 & HPRT0_PWR) {
4297 /* Enable external vbus supply before resuming root hub */
4298 spin_unlock_irqrestore(&hsotg->lock, flags);
4299 ret = dwc2_vbus_supply_init(hsotg);
4300 if (ret)
4301 return ret;
4302 spin_lock_irqsave(&hsotg->lock, flags);
4303 }
4304
4305 /* Initialize and connect root hub if one is not already attached */
4306 if (bus->root_hub) {
4307 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4308 /* Inform the HUB driver to resume */
4309 usb_hcd_resume_root_hub(hcd);
4310 }
4311
4312 spin_unlock_irqrestore(&hsotg->lock, flags);
4313
4314 return 0;
4315 }
4316
4317 /*
4318 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4319 * stopped.
4320 */
_dwc2_hcd_stop(struct usb_hcd * hcd)4321 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4322 {
4323 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4324 unsigned long flags;
4325 u32 hprt0;
4326
4327 /* Turn off all host-specific interrupts */
4328 dwc2_disable_host_interrupts(hsotg);
4329
4330 /* Wait for interrupt processing to finish */
4331 synchronize_irq(hcd->irq);
4332
4333 spin_lock_irqsave(&hsotg->lock, flags);
4334 hprt0 = dwc2_read_hprt0(hsotg);
4335 /* Ensure hcd is disconnected */
4336 dwc2_hcd_disconnect(hsotg, true);
4337 dwc2_hcd_stop(hsotg);
4338 hsotg->lx_state = DWC2_L3;
4339 hcd->state = HC_STATE_HALT;
4340 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4341 spin_unlock_irqrestore(&hsotg->lock, flags);
4342
4343 /* keep balanced supply init/exit by checking HPRT0_PWR */
4344 if (hprt0 & HPRT0_PWR)
4345 dwc2_vbus_supply_exit(hsotg);
4346
4347 usleep_range(1000, 3000);
4348 }
4349
_dwc2_hcd_suspend(struct usb_hcd * hcd)4350 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4351 {
4352 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4353 unsigned long flags;
4354 int ret = 0;
4355
4356 spin_lock_irqsave(&hsotg->lock, flags);
4357
4358 if (dwc2_is_device_mode(hsotg))
4359 goto unlock;
4360
4361 if (hsotg->lx_state != DWC2_L0)
4362 goto unlock;
4363
4364 if (!HCD_HW_ACCESSIBLE(hcd))
4365 goto unlock;
4366
4367 if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4368 goto unlock;
4369
4370 if (hsotg->bus_suspended)
4371 goto skip_power_saving;
4372
4373 if (hsotg->flags.b.port_connect_status == 0)
4374 goto skip_power_saving;
4375
4376 switch (hsotg->params.power_down) {
4377 case DWC2_POWER_DOWN_PARAM_PARTIAL:
4378 /* Enter partial_power_down */
4379 ret = dwc2_enter_partial_power_down(hsotg);
4380 if (ret)
4381 dev_err(hsotg->dev,
4382 "enter partial_power_down failed\n");
4383 /* After entering suspend, hardware is not accessible */
4384 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4385 break;
4386 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4387 /* Enter hibernation */
4388 spin_unlock_irqrestore(&hsotg->lock, flags);
4389 ret = dwc2_enter_hibernation(hsotg, 1);
4390 if (ret)
4391 dev_err(hsotg->dev, "enter hibernation failed\n");
4392 spin_lock_irqsave(&hsotg->lock, flags);
4393
4394 /* After entering suspend, hardware is not accessible */
4395 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4396 break;
4397 case DWC2_POWER_DOWN_PARAM_NONE:
4398 /*
4399 * If not hibernation nor partial power down are supported,
4400 * clock gating is used to save power.
4401 */
4402 if (!hsotg->params.no_clock_gating) {
4403 dwc2_host_enter_clock_gating(hsotg);
4404
4405 /* After entering suspend, hardware is not accessible */
4406 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4407 }
4408 break;
4409 default:
4410 goto skip_power_saving;
4411 }
4412
4413 spin_unlock_irqrestore(&hsotg->lock, flags);
4414 dwc2_vbus_supply_exit(hsotg);
4415 spin_lock_irqsave(&hsotg->lock, flags);
4416
4417 /* Ask phy to be suspended */
4418 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4419 spin_unlock_irqrestore(&hsotg->lock, flags);
4420 usb_phy_set_suspend(hsotg->uphy, true);
4421 spin_lock_irqsave(&hsotg->lock, flags);
4422 }
4423
4424 skip_power_saving:
4425 hsotg->lx_state = DWC2_L2;
4426 unlock:
4427 spin_unlock_irqrestore(&hsotg->lock, flags);
4428
4429 return ret;
4430 }
4431
_dwc2_hcd_resume(struct usb_hcd * hcd)4432 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4433 {
4434 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4435 unsigned long flags;
4436 u32 hprt0;
4437 int ret = 0;
4438
4439 spin_lock_irqsave(&hsotg->lock, flags);
4440
4441 if (dwc2_is_device_mode(hsotg))
4442 goto unlock;
4443
4444 if (hsotg->lx_state != DWC2_L2)
4445 goto unlock;
4446
4447 hprt0 = dwc2_read_hprt0(hsotg);
4448
4449 /*
4450 * Added port connection status checking which prevents exiting from
4451 * Partial Power Down mode from _dwc2_hcd_resume() if not in Partial
4452 * Power Down mode.
4453 */
4454 if (hprt0 & HPRT0_CONNSTS) {
4455 hsotg->lx_state = DWC2_L0;
4456 goto unlock;
4457 }
4458
4459 switch (hsotg->params.power_down) {
4460 case DWC2_POWER_DOWN_PARAM_PARTIAL:
4461 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
4462 if (ret)
4463 dev_err(hsotg->dev,
4464 "exit partial_power_down failed\n");
4465 /*
4466 * Set HW accessible bit before powering on the controller
4467 * since an interrupt may rise.
4468 */
4469 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4470 break;
4471 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4472 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4473 if (ret)
4474 dev_err(hsotg->dev, "exit hibernation failed.\n");
4475
4476 /*
4477 * Set HW accessible bit before powering on the controller
4478 * since an interrupt may rise.
4479 */
4480 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4481 break;
4482 case DWC2_POWER_DOWN_PARAM_NONE:
4483 /*
4484 * If not hibernation nor partial power down are supported,
4485 * port resume is done using the clock gating programming flow.
4486 */
4487 spin_unlock_irqrestore(&hsotg->lock, flags);
4488 dwc2_host_exit_clock_gating(hsotg, 0);
4489
4490 /*
4491 * Initialize the Core for Host mode, as after system resume
4492 * the global interrupts are disabled.
4493 */
4494 dwc2_core_init(hsotg, false);
4495 dwc2_enable_global_interrupts(hsotg);
4496 dwc2_hcd_reinit(hsotg);
4497 spin_lock_irqsave(&hsotg->lock, flags);
4498
4499 /*
4500 * Set HW accessible bit before powering on the controller
4501 * since an interrupt may rise.
4502 */
4503 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4504 break;
4505 default:
4506 hsotg->lx_state = DWC2_L0;
4507 goto unlock;
4508 }
4509
4510 /* Change Root port status, as port status change occurred after resume.*/
4511 hsotg->flags.b.port_suspend_change = 1;
4512
4513 /*
4514 * Enable power if not already done.
4515 * This must not be spinlocked since duration
4516 * of this call is unknown.
4517 */
4518 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4519 spin_unlock_irqrestore(&hsotg->lock, flags);
4520 usb_phy_set_suspend(hsotg->uphy, false);
4521 spin_lock_irqsave(&hsotg->lock, flags);
4522 }
4523
4524 /* Enable external vbus supply after resuming the port. */
4525 spin_unlock_irqrestore(&hsotg->lock, flags);
4526 dwc2_vbus_supply_init(hsotg);
4527
4528 /* Wait for controller to correctly update D+/D- level */
4529 usleep_range(3000, 5000);
4530 spin_lock_irqsave(&hsotg->lock, flags);
4531
4532 /*
4533 * Clear Port Enable and Port Status changes.
4534 * Enable Port Power.
4535 */
4536 dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4537 HPRT0_ENACHG, HPRT0);
4538
4539 /* Wait for controller to detect Port Connect */
4540 spin_unlock_irqrestore(&hsotg->lock, flags);
4541 usleep_range(5000, 7000);
4542 spin_lock_irqsave(&hsotg->lock, flags);
4543 unlock:
4544 spin_unlock_irqrestore(&hsotg->lock, flags);
4545
4546 return ret;
4547 }
4548
4549 /* Returns the current frame number */
_dwc2_hcd_get_frame_number(struct usb_hcd * hcd)4550 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4551 {
4552 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4553
4554 return dwc2_hcd_get_frame_number(hsotg);
4555 }
4556
dwc2_dump_urb_info(struct usb_hcd * hcd,struct urb * urb,char * fn_name)4557 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4558 char *fn_name)
4559 {
4560 #ifdef VERBOSE_DEBUG
4561 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4562 char *pipetype = NULL;
4563 char *speed = NULL;
4564
4565 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4566 dev_vdbg(hsotg->dev, " Device address: %d\n",
4567 usb_pipedevice(urb->pipe));
4568 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n",
4569 usb_pipeendpoint(urb->pipe),
4570 usb_pipein(urb->pipe) ? "IN" : "OUT");
4571
4572 switch (usb_pipetype(urb->pipe)) {
4573 case PIPE_CONTROL:
4574 pipetype = "CONTROL";
4575 break;
4576 case PIPE_BULK:
4577 pipetype = "BULK";
4578 break;
4579 case PIPE_INTERRUPT:
4580 pipetype = "INTERRUPT";
4581 break;
4582 case PIPE_ISOCHRONOUS:
4583 pipetype = "ISOCHRONOUS";
4584 break;
4585 }
4586
4587 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype,
4588 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4589 "IN" : "OUT");
4590
4591 switch (urb->dev->speed) {
4592 case USB_SPEED_HIGH:
4593 speed = "HIGH";
4594 break;
4595 case USB_SPEED_FULL:
4596 speed = "FULL";
4597 break;
4598 case USB_SPEED_LOW:
4599 speed = "LOW";
4600 break;
4601 default:
4602 speed = "UNKNOWN";
4603 break;
4604 }
4605
4606 dev_vdbg(hsotg->dev, " Speed: %s\n", speed);
4607 dev_vdbg(hsotg->dev, " Max packet size: %d (%d mult)\n",
4608 usb_endpoint_maxp(&urb->ep->desc),
4609 usb_endpoint_maxp_mult(&urb->ep->desc));
4610
4611 dev_vdbg(hsotg->dev, " Data buffer length: %d\n",
4612 urb->transfer_buffer_length);
4613 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n",
4614 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4615 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n",
4616 urb->setup_packet, (unsigned long)urb->setup_dma);
4617 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval);
4618
4619 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4620 int i;
4621
4622 for (i = 0; i < urb->number_of_packets; i++) {
4623 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i);
4624 dev_vdbg(hsotg->dev, " offset: %d, length %d\n",
4625 urb->iso_frame_desc[i].offset,
4626 urb->iso_frame_desc[i].length);
4627 }
4628 }
4629 #endif
4630 }
4631
4632 /*
4633 * Starts processing a USB transfer request specified by a USB Request Block
4634 * (URB). mem_flags indicates the type of memory allocation to use while
4635 * processing this URB.
4636 */
_dwc2_hcd_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)4637 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4638 gfp_t mem_flags)
4639 {
4640 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4641 struct usb_host_endpoint *ep = urb->ep;
4642 struct dwc2_hcd_urb *dwc2_urb;
4643 int i;
4644 int retval;
4645 int alloc_bandwidth = 0;
4646 u8 ep_type = 0;
4647 u32 tflags = 0;
4648 void *buf;
4649 unsigned long flags;
4650 struct dwc2_qh *qh;
4651 bool qh_allocated = false;
4652 struct dwc2_qtd *qtd;
4653 struct dwc2_gregs_backup *gr;
4654
4655 gr = &hsotg->gr_backup;
4656
4657 if (dbg_urb(urb)) {
4658 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4659 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4660 }
4661
4662 if (hsotg->hibernated) {
4663 if (gr->gotgctl & GOTGCTL_CURMODE_HOST)
4664 retval = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4665 else
4666 retval = dwc2_exit_hibernation(hsotg, 0, 0, 0);
4667
4668 if (retval)
4669 dev_err(hsotg->dev,
4670 "exit hibernation failed.\n");
4671 }
4672
4673 if (hsotg->in_ppd) {
4674 retval = dwc2_exit_partial_power_down(hsotg, 0, true);
4675 if (retval)
4676 dev_err(hsotg->dev,
4677 "exit partial_power_down failed\n");
4678 }
4679
4680 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE &&
4681 hsotg->bus_suspended) {
4682 if (dwc2_is_device_mode(hsotg))
4683 dwc2_gadget_exit_clock_gating(hsotg, 0);
4684 else
4685 dwc2_host_exit_clock_gating(hsotg, 0);
4686 }
4687
4688 if (!ep)
4689 return -EINVAL;
4690
4691 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4692 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4693 spin_lock_irqsave(&hsotg->lock, flags);
4694 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4695 alloc_bandwidth = 1;
4696 spin_unlock_irqrestore(&hsotg->lock, flags);
4697 }
4698
4699 switch (usb_pipetype(urb->pipe)) {
4700 case PIPE_CONTROL:
4701 ep_type = USB_ENDPOINT_XFER_CONTROL;
4702 break;
4703 case PIPE_ISOCHRONOUS:
4704 ep_type = USB_ENDPOINT_XFER_ISOC;
4705 break;
4706 case PIPE_BULK:
4707 ep_type = USB_ENDPOINT_XFER_BULK;
4708 break;
4709 case PIPE_INTERRUPT:
4710 ep_type = USB_ENDPOINT_XFER_INT;
4711 break;
4712 }
4713
4714 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4715 mem_flags);
4716 if (!dwc2_urb)
4717 return -ENOMEM;
4718
4719 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4720 usb_pipeendpoint(urb->pipe), ep_type,
4721 usb_pipein(urb->pipe),
4722 usb_endpoint_maxp(&ep->desc),
4723 usb_endpoint_maxp_mult(&ep->desc));
4724
4725 buf = urb->transfer_buffer;
4726
4727 if (hcd_uses_dma(hcd)) {
4728 if (!buf && (urb->transfer_dma & 3)) {
4729 dev_err(hsotg->dev,
4730 "%s: unaligned transfer with no transfer_buffer",
4731 __func__);
4732 retval = -EINVAL;
4733 goto fail0;
4734 }
4735 }
4736
4737 if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4738 tflags |= URB_GIVEBACK_ASAP;
4739 if (urb->transfer_flags & URB_ZERO_PACKET)
4740 tflags |= URB_SEND_ZERO_PACKET;
4741
4742 dwc2_urb->priv = urb;
4743 dwc2_urb->buf = buf;
4744 dwc2_urb->dma = urb->transfer_dma;
4745 dwc2_urb->length = urb->transfer_buffer_length;
4746 dwc2_urb->setup_packet = urb->setup_packet;
4747 dwc2_urb->setup_dma = urb->setup_dma;
4748 dwc2_urb->flags = tflags;
4749 dwc2_urb->interval = urb->interval;
4750 dwc2_urb->status = -EINPROGRESS;
4751
4752 for (i = 0; i < urb->number_of_packets; ++i)
4753 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4754 urb->iso_frame_desc[i].offset,
4755 urb->iso_frame_desc[i].length);
4756
4757 urb->hcpriv = dwc2_urb;
4758 qh = (struct dwc2_qh *)ep->hcpriv;
4759 /* Create QH for the endpoint if it doesn't exist */
4760 if (!qh) {
4761 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4762 if (!qh) {
4763 retval = -ENOMEM;
4764 goto fail0;
4765 }
4766 ep->hcpriv = qh;
4767 qh_allocated = true;
4768 }
4769
4770 qtd = kzalloc(sizeof(*qtd), mem_flags);
4771 if (!qtd) {
4772 retval = -ENOMEM;
4773 goto fail1;
4774 }
4775
4776 spin_lock_irqsave(&hsotg->lock, flags);
4777 retval = usb_hcd_link_urb_to_ep(hcd, urb);
4778 if (retval)
4779 goto fail2;
4780
4781 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4782 if (retval)
4783 goto fail3;
4784
4785 if (alloc_bandwidth) {
4786 dwc2_allocate_bus_bandwidth(hcd,
4787 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4788 urb);
4789 }
4790
4791 spin_unlock_irqrestore(&hsotg->lock, flags);
4792
4793 return 0;
4794
4795 fail3:
4796 dwc2_urb->priv = NULL;
4797 usb_hcd_unlink_urb_from_ep(hcd, urb);
4798 if (qh_allocated && qh->channel && qh->channel->qh == qh)
4799 qh->channel->qh = NULL;
4800 fail2:
4801 spin_unlock_irqrestore(&hsotg->lock, flags);
4802 urb->hcpriv = NULL;
4803 kfree(qtd);
4804 fail1:
4805 if (qh_allocated) {
4806 struct dwc2_qtd *qtd2, *qtd2_tmp;
4807
4808 ep->hcpriv = NULL;
4809 dwc2_hcd_qh_unlink(hsotg, qh);
4810 /* Free each QTD in the QH's QTD list */
4811 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4812 qtd_list_entry)
4813 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4814 dwc2_hcd_qh_free(hsotg, qh);
4815 }
4816 fail0:
4817 kfree(dwc2_urb);
4818
4819 return retval;
4820 }
4821
4822 /*
4823 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4824 */
_dwc2_hcd_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)4825 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4826 int status)
4827 {
4828 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4829 int rc;
4830 unsigned long flags;
4831
4832 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4833 dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4834
4835 spin_lock_irqsave(&hsotg->lock, flags);
4836
4837 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4838 if (rc)
4839 goto out;
4840
4841 if (!urb->hcpriv) {
4842 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4843 goto out;
4844 }
4845
4846 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4847
4848 usb_hcd_unlink_urb_from_ep(hcd, urb);
4849
4850 kfree(urb->hcpriv);
4851 urb->hcpriv = NULL;
4852
4853 /* Higher layer software sets URB status */
4854 spin_unlock(&hsotg->lock);
4855 usb_hcd_giveback_urb(hcd, urb, status);
4856 spin_lock(&hsotg->lock);
4857
4858 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4859 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status);
4860 out:
4861 spin_unlock_irqrestore(&hsotg->lock, flags);
4862
4863 return rc;
4864 }
4865
4866 /*
4867 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4868 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4869 * must already be dequeued.
4870 */
_dwc2_hcd_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)4871 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4872 struct usb_host_endpoint *ep)
4873 {
4874 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4875
4876 dev_dbg(hsotg->dev,
4877 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4878 ep->desc.bEndpointAddress, ep->hcpriv);
4879 dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4880 }
4881
4882 /*
4883 * Resets endpoint specific parameter values, in current version used to reset
4884 * the data toggle (as a WA). This function can be called from usb_clear_halt
4885 * routine.
4886 */
_dwc2_hcd_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)4887 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4888 struct usb_host_endpoint *ep)
4889 {
4890 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4891 unsigned long flags;
4892
4893 dev_dbg(hsotg->dev,
4894 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4895 ep->desc.bEndpointAddress);
4896
4897 spin_lock_irqsave(&hsotg->lock, flags);
4898 dwc2_hcd_endpoint_reset(hsotg, ep);
4899 spin_unlock_irqrestore(&hsotg->lock, flags);
4900 }
4901
4902 /*
4903 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4904 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4905 * interrupt.
4906 *
4907 * This function is called by the USB core when an interrupt occurs
4908 */
_dwc2_hcd_irq(struct usb_hcd * hcd)4909 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4910 {
4911 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4912
4913 return dwc2_handle_hcd_intr(hsotg);
4914 }
4915
4916 /*
4917 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4918 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4919 * is the status change indicator for the single root port. Returns 1 if either
4920 * change indicator is 1, otherwise returns 0.
4921 */
_dwc2_hcd_hub_status_data(struct usb_hcd * hcd,char * buf)4922 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4923 {
4924 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4925
4926 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4927 return buf[0] != 0;
4928 }
4929
4930 /* Handles hub class-specific requests */
_dwc2_hcd_hub_control(struct usb_hcd * hcd,u16 typereq,u16 wvalue,u16 windex,char * buf,u16 wlength)4931 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4932 u16 windex, char *buf, u16 wlength)
4933 {
4934 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4935 wvalue, windex, buf, wlength);
4936 return retval;
4937 }
4938
4939 /* Handles hub TT buffer clear completions */
_dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)4940 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4941 struct usb_host_endpoint *ep)
4942 {
4943 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4944 struct dwc2_qh *qh;
4945 unsigned long flags;
4946
4947 qh = ep->hcpriv;
4948 if (!qh)
4949 return;
4950
4951 spin_lock_irqsave(&hsotg->lock, flags);
4952 qh->tt_buffer_dirty = 0;
4953
4954 if (hsotg->flags.b.port_connect_status)
4955 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4956
4957 spin_unlock_irqrestore(&hsotg->lock, flags);
4958 }
4959
4960 /*
4961 * HPRT0_SPD_HIGH_SPEED: high speed
4962 * HPRT0_SPD_FULL_SPEED: full speed
4963 */
dwc2_change_bus_speed(struct usb_hcd * hcd,int speed)4964 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4965 {
4966 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4967
4968 if (hsotg->params.speed == speed)
4969 return;
4970
4971 hsotg->params.speed = speed;
4972 queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4973 }
4974
dwc2_free_dev(struct usb_hcd * hcd,struct usb_device * udev)4975 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4976 {
4977 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4978
4979 if (!hsotg->params.change_speed_quirk)
4980 return;
4981
4982 /*
4983 * On removal, set speed to default high-speed.
4984 */
4985 if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4986 udev->parent->speed < USB_SPEED_HIGH) {
4987 dev_info(hsotg->dev, "Set speed to default high-speed\n");
4988 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4989 }
4990 }
4991
dwc2_reset_device(struct usb_hcd * hcd,struct usb_device * udev)4992 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4993 {
4994 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4995
4996 if (!hsotg->params.change_speed_quirk)
4997 return 0;
4998
4999 if (udev->speed == USB_SPEED_HIGH) {
5000 dev_info(hsotg->dev, "Set speed to high-speed\n");
5001 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5002 } else if ((udev->speed == USB_SPEED_FULL ||
5003 udev->speed == USB_SPEED_LOW)) {
5004 /*
5005 * Change speed setting to full-speed if there's
5006 * a full-speed or low-speed device plugged in.
5007 */
5008 dev_info(hsotg->dev, "Set speed to full-speed\n");
5009 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
5010 }
5011
5012 return 0;
5013 }
5014
5015 static struct hc_driver dwc2_hc_driver = {
5016 .description = "dwc2_hsotg",
5017 .product_desc = "DWC OTG Controller",
5018 .hcd_priv_size = sizeof(struct wrapper_priv_data),
5019
5020 .irq = _dwc2_hcd_irq,
5021 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
5022
5023 .start = _dwc2_hcd_start,
5024 .stop = _dwc2_hcd_stop,
5025 .urb_enqueue = _dwc2_hcd_urb_enqueue,
5026 .urb_dequeue = _dwc2_hcd_urb_dequeue,
5027 .endpoint_disable = _dwc2_hcd_endpoint_disable,
5028 .endpoint_reset = _dwc2_hcd_endpoint_reset,
5029 .get_frame_number = _dwc2_hcd_get_frame_number,
5030
5031 .hub_status_data = _dwc2_hcd_hub_status_data,
5032 .hub_control = _dwc2_hcd_hub_control,
5033 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5034
5035 .bus_suspend = _dwc2_hcd_suspend,
5036 .bus_resume = _dwc2_hcd_resume,
5037
5038 .map_urb_for_dma = dwc2_map_urb_for_dma,
5039 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma,
5040 };
5041
5042 /*
5043 * Frees secondary storage associated with the dwc2_hsotg structure contained
5044 * in the struct usb_hcd field
5045 */
dwc2_hcd_free(struct dwc2_hsotg * hsotg)5046 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5047 {
5048 u32 ahbcfg;
5049 u32 dctl;
5050 int i;
5051
5052 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5053
5054 /* Free memory for QH/QTD lists */
5055 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5056 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5057 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5058 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5059 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5060 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5061 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5062
5063 /* Free memory for the host channels */
5064 for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5065 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5066
5067 if (chan) {
5068 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5069 i, chan);
5070 hsotg->hc_ptr_array[i] = NULL;
5071 kfree(chan);
5072 }
5073 }
5074
5075 if (hsotg->params.host_dma) {
5076 if (hsotg->status_buf) {
5077 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5078 hsotg->status_buf,
5079 hsotg->status_buf_dma);
5080 hsotg->status_buf = NULL;
5081 }
5082 } else {
5083 kfree(hsotg->status_buf);
5084 hsotg->status_buf = NULL;
5085 }
5086
5087 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5088
5089 /* Disable all interrupts */
5090 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5091 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5092 dwc2_writel(hsotg, 0, GINTMSK);
5093
5094 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5095 dctl = dwc2_readl(hsotg, DCTL);
5096 dctl |= DCTL_SFTDISCON;
5097 dwc2_writel(hsotg, dctl, DCTL);
5098 }
5099
5100 if (hsotg->wq_otg) {
5101 if (!cancel_work_sync(&hsotg->wf_otg))
5102 flush_workqueue(hsotg->wq_otg);
5103 destroy_workqueue(hsotg->wq_otg);
5104 }
5105
5106 cancel_work_sync(&hsotg->phy_reset_work);
5107
5108 del_timer(&hsotg->wkp_timer);
5109 }
5110
dwc2_hcd_release(struct dwc2_hsotg * hsotg)5111 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5112 {
5113 /* Turn off all host-specific interrupts */
5114 dwc2_disable_host_interrupts(hsotg);
5115
5116 dwc2_hcd_free(hsotg);
5117 }
5118
5119 /*
5120 * Initializes the HCD. This function allocates memory for and initializes the
5121 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5122 * USB bus with the core and calls the hc_driver->start() function. It returns
5123 * a negative error on failure.
5124 */
dwc2_hcd_init(struct dwc2_hsotg * hsotg)5125 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5126 {
5127 struct platform_device *pdev = to_platform_device(hsotg->dev);
5128 struct resource *res;
5129 struct usb_hcd *hcd;
5130 struct dwc2_host_chan *channel;
5131 u32 hcfg;
5132 int i, num_channels;
5133 int retval;
5134
5135 if (usb_disabled())
5136 return -ENODEV;
5137
5138 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5139
5140 retval = -ENOMEM;
5141
5142 hcfg = dwc2_readl(hsotg, HCFG);
5143 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5144
5145 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5146 hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5147 sizeof(*hsotg->frame_num_array),
5148 GFP_KERNEL);
5149 if (!hsotg->frame_num_array)
5150 goto error1;
5151 hsotg->last_frame_num_array =
5152 kcalloc(FRAME_NUM_ARRAY_SIZE,
5153 sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5154 if (!hsotg->last_frame_num_array)
5155 goto error1;
5156 #endif
5157 hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5158
5159 /* Check if the bus driver or platform code has setup a dma_mask */
5160 if (hsotg->params.host_dma &&
5161 !hsotg->dev->dma_mask) {
5162 dev_warn(hsotg->dev,
5163 "dma_mask not set, disabling DMA\n");
5164 hsotg->params.host_dma = false;
5165 hsotg->params.dma_desc_enable = false;
5166 }
5167
5168 /* Set device flags indicating whether the HCD supports DMA */
5169 if (hsotg->params.host_dma) {
5170 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5171 dev_warn(hsotg->dev, "can't set DMA mask\n");
5172 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5173 dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5174 }
5175
5176 if (hsotg->params.change_speed_quirk) {
5177 dwc2_hc_driver.free_dev = dwc2_free_dev;
5178 dwc2_hc_driver.reset_device = dwc2_reset_device;
5179 }
5180
5181 if (hsotg->params.host_dma)
5182 dwc2_hc_driver.flags |= HCD_DMA;
5183
5184 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5185 if (!hcd)
5186 goto error1;
5187
5188 hcd->has_tt = 1;
5189
5190 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5191 if (!res) {
5192 retval = -EINVAL;
5193 goto error2;
5194 }
5195 hcd->rsrc_start = res->start;
5196 hcd->rsrc_len = resource_size(res);
5197
5198 ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5199 hsotg->priv = hcd;
5200
5201 /*
5202 * Disable the global interrupt until all the interrupt handlers are
5203 * installed
5204 */
5205 dwc2_disable_global_interrupts(hsotg);
5206
5207 /* Initialize the DWC_otg core, and select the Phy type */
5208 retval = dwc2_core_init(hsotg, true);
5209 if (retval)
5210 goto error2;
5211
5212 /* Create new workqueue and init work */
5213 retval = -ENOMEM;
5214 hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5215 if (!hsotg->wq_otg) {
5216 dev_err(hsotg->dev, "Failed to create workqueue\n");
5217 goto error2;
5218 }
5219 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5220
5221 timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5222
5223 /* Initialize the non-periodic schedule */
5224 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5225 INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5226 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5227
5228 /* Initialize the periodic schedule */
5229 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5230 INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5231 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5232 INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5233
5234 INIT_LIST_HEAD(&hsotg->split_order);
5235
5236 /*
5237 * Create a host channel descriptor for each host channel implemented
5238 * in the controller. Initialize the channel descriptor array.
5239 */
5240 INIT_LIST_HEAD(&hsotg->free_hc_list);
5241 num_channels = hsotg->params.host_channels;
5242 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5243
5244 for (i = 0; i < num_channels; i++) {
5245 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5246 if (!channel)
5247 goto error3;
5248 channel->hc_num = i;
5249 INIT_LIST_HEAD(&channel->split_order_list_entry);
5250 hsotg->hc_ptr_array[i] = channel;
5251 }
5252
5253 /* Initialize work */
5254 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5255 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5256 INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5257
5258 /*
5259 * Allocate space for storing data on status transactions. Normally no
5260 * data is sent, but this space acts as a bit bucket. This must be
5261 * done after usb_add_hcd since that function allocates the DMA buffer
5262 * pool.
5263 */
5264 if (hsotg->params.host_dma)
5265 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5266 DWC2_HCD_STATUS_BUF_SIZE,
5267 &hsotg->status_buf_dma, GFP_KERNEL);
5268 else
5269 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5270 GFP_KERNEL);
5271
5272 if (!hsotg->status_buf)
5273 goto error3;
5274
5275 /*
5276 * Create kmem caches to handle descriptor buffers in descriptor
5277 * DMA mode.
5278 * Alignment must be set to 512 bytes.
5279 */
5280 if (hsotg->params.dma_desc_enable ||
5281 hsotg->params.dma_desc_fs_enable) {
5282 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5283 sizeof(struct dwc2_dma_desc) *
5284 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5285 NULL);
5286 if (!hsotg->desc_gen_cache) {
5287 dev_err(hsotg->dev,
5288 "unable to create dwc2 generic desc cache\n");
5289
5290 /*
5291 * Disable descriptor dma mode since it will not be
5292 * usable.
5293 */
5294 hsotg->params.dma_desc_enable = false;
5295 hsotg->params.dma_desc_fs_enable = false;
5296 }
5297
5298 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5299 sizeof(struct dwc2_dma_desc) *
5300 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5301 if (!hsotg->desc_hsisoc_cache) {
5302 dev_err(hsotg->dev,
5303 "unable to create dwc2 hs isoc desc cache\n");
5304
5305 kmem_cache_destroy(hsotg->desc_gen_cache);
5306
5307 /*
5308 * Disable descriptor dma mode since it will not be
5309 * usable.
5310 */
5311 hsotg->params.dma_desc_enable = false;
5312 hsotg->params.dma_desc_fs_enable = false;
5313 }
5314 }
5315
5316 if (hsotg->params.host_dma) {
5317 /*
5318 * Create kmem caches to handle non-aligned buffer
5319 * in Buffer DMA mode.
5320 */
5321 hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5322 DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5323 SLAB_CACHE_DMA, NULL);
5324 if (!hsotg->unaligned_cache)
5325 dev_err(hsotg->dev,
5326 "unable to create dwc2 unaligned cache\n");
5327 }
5328
5329 hsotg->otg_port = 1;
5330 hsotg->frame_list = NULL;
5331 hsotg->frame_list_dma = 0;
5332 hsotg->periodic_qh_count = 0;
5333
5334 /* Initiate lx_state to L3 disconnected state */
5335 hsotg->lx_state = DWC2_L3;
5336
5337 hcd->self.otg_port = hsotg->otg_port;
5338
5339 /* Don't support SG list at this point */
5340 hcd->self.sg_tablesize = 0;
5341
5342 if (!IS_ERR_OR_NULL(hsotg->uphy))
5343 otg_set_host(hsotg->uphy->otg, &hcd->self);
5344
5345 /*
5346 * Finish generic HCD initialization and start the HCD. This function
5347 * allocates the DMA buffer pool, registers the USB bus, requests the
5348 * IRQ line, and calls hcd_start method.
5349 */
5350 retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5351 if (retval < 0)
5352 goto error4;
5353
5354 device_wakeup_enable(hcd->self.controller);
5355
5356 dwc2_hcd_dump_state(hsotg);
5357
5358 dwc2_enable_global_interrupts(hsotg);
5359
5360 return 0;
5361
5362 error4:
5363 kmem_cache_destroy(hsotg->unaligned_cache);
5364 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5365 kmem_cache_destroy(hsotg->desc_gen_cache);
5366 error3:
5367 dwc2_hcd_release(hsotg);
5368 error2:
5369 usb_put_hcd(hcd);
5370 error1:
5371
5372 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5373 kfree(hsotg->last_frame_num_array);
5374 kfree(hsotg->frame_num_array);
5375 #endif
5376
5377 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5378 return retval;
5379 }
5380
5381 /*
5382 * Removes the HCD.
5383 * Frees memory and resources associated with the HCD and deregisters the bus.
5384 */
dwc2_hcd_remove(struct dwc2_hsotg * hsotg)5385 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5386 {
5387 struct usb_hcd *hcd;
5388
5389 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5390
5391 hcd = dwc2_hsotg_to_hcd(hsotg);
5392 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5393
5394 if (!hcd) {
5395 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5396 __func__);
5397 return;
5398 }
5399
5400 if (!IS_ERR_OR_NULL(hsotg->uphy))
5401 otg_set_host(hsotg->uphy->otg, NULL);
5402
5403 usb_remove_hcd(hcd);
5404 hsotg->priv = NULL;
5405
5406 kmem_cache_destroy(hsotg->unaligned_cache);
5407 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5408 kmem_cache_destroy(hsotg->desc_gen_cache);
5409
5410 dwc2_hcd_release(hsotg);
5411 usb_put_hcd(hcd);
5412
5413 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5414 kfree(hsotg->last_frame_num_array);
5415 kfree(hsotg->frame_num_array);
5416 #endif
5417 }
5418
5419 /**
5420 * dwc2_backup_host_registers() - Backup controller host registers.
5421 * When suspending usb bus, registers needs to be backuped
5422 * if controller power is disabled once suspended.
5423 *
5424 * @hsotg: Programming view of the DWC_otg controller
5425 */
dwc2_backup_host_registers(struct dwc2_hsotg * hsotg)5426 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5427 {
5428 struct dwc2_hregs_backup *hr;
5429 int i;
5430
5431 dev_dbg(hsotg->dev, "%s\n", __func__);
5432
5433 /* Backup Host regs */
5434 hr = &hsotg->hr_backup;
5435 hr->hcfg = dwc2_readl(hsotg, HCFG);
5436 hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5437 for (i = 0; i < hsotg->params.host_channels; ++i)
5438 hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5439
5440 hr->hprt0 = dwc2_read_hprt0(hsotg);
5441 hr->hfir = dwc2_readl(hsotg, HFIR);
5442 hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5443 hr->valid = true;
5444
5445 return 0;
5446 }
5447
5448 /**
5449 * dwc2_restore_host_registers() - Restore controller host registers.
5450 * When resuming usb bus, device registers needs to be restored
5451 * if controller power were disabled.
5452 *
5453 * @hsotg: Programming view of the DWC_otg controller
5454 */
dwc2_restore_host_registers(struct dwc2_hsotg * hsotg)5455 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5456 {
5457 struct dwc2_hregs_backup *hr;
5458 int i;
5459
5460 dev_dbg(hsotg->dev, "%s\n", __func__);
5461
5462 /* Restore host regs */
5463 hr = &hsotg->hr_backup;
5464 if (!hr->valid) {
5465 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5466 __func__);
5467 return -EINVAL;
5468 }
5469 hr->valid = false;
5470
5471 dwc2_writel(hsotg, hr->hcfg, HCFG);
5472 dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5473
5474 for (i = 0; i < hsotg->params.host_channels; ++i)
5475 dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5476
5477 dwc2_writel(hsotg, hr->hprt0, HPRT0);
5478 dwc2_writel(hsotg, hr->hfir, HFIR);
5479 dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5480 hsotg->frame_number = 0;
5481
5482 return 0;
5483 }
5484
5485 /**
5486 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5487 *
5488 * @hsotg: Programming view of the DWC_otg controller
5489 */
dwc2_host_enter_hibernation(struct dwc2_hsotg * hsotg)5490 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5491 {
5492 unsigned long flags;
5493 int ret = 0;
5494 u32 hprt0;
5495 u32 pcgcctl;
5496 u32 gusbcfg;
5497 u32 gpwrdn;
5498
5499 dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5500 ret = dwc2_backup_global_registers(hsotg);
5501 if (ret) {
5502 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5503 __func__);
5504 return ret;
5505 }
5506 ret = dwc2_backup_host_registers(hsotg);
5507 if (ret) {
5508 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5509 __func__);
5510 return ret;
5511 }
5512
5513 /* Enter USB Suspend Mode */
5514 hprt0 = dwc2_readl(hsotg, HPRT0);
5515 hprt0 |= HPRT0_SUSP;
5516 hprt0 &= ~HPRT0_ENA;
5517 dwc2_writel(hsotg, hprt0, HPRT0);
5518
5519 /* Wait for the HPRT0.PrtSusp register field to be set */
5520 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000))
5521 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5522
5523 /*
5524 * We need to disable interrupts to prevent servicing of any IRQ
5525 * during going to hibernation
5526 */
5527 spin_lock_irqsave(&hsotg->lock, flags);
5528 hsotg->lx_state = DWC2_L2;
5529
5530 gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5531 if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5532 /* ULPI interface */
5533 /* Suspend the Phy Clock */
5534 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5535 pcgcctl |= PCGCTL_STOPPCLK;
5536 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5537 udelay(10);
5538
5539 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5540 gpwrdn |= GPWRDN_PMUACTV;
5541 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5542 udelay(10);
5543 } else {
5544 /* UTMI+ Interface */
5545 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5546 gpwrdn |= GPWRDN_PMUACTV;
5547 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5548 udelay(10);
5549
5550 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5551 pcgcctl |= PCGCTL_STOPPCLK;
5552 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5553 udelay(10);
5554 }
5555
5556 /* Enable interrupts from wake up logic */
5557 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5558 gpwrdn |= GPWRDN_PMUINTSEL;
5559 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5560 udelay(10);
5561
5562 /* Unmask host mode interrupts in GPWRDN */
5563 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5564 gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5565 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5566 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5567 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5568 udelay(10);
5569
5570 /* Enable Power Down Clamp */
5571 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5572 gpwrdn |= GPWRDN_PWRDNCLMP;
5573 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5574 udelay(10);
5575
5576 /* Switch off VDD */
5577 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5578 gpwrdn |= GPWRDN_PWRDNSWTCH;
5579 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5580
5581 hsotg->hibernated = 1;
5582 hsotg->bus_suspended = 1;
5583 dev_dbg(hsotg->dev, "Host hibernation completed\n");
5584 spin_unlock_irqrestore(&hsotg->lock, flags);
5585 return ret;
5586 }
5587
5588 /*
5589 * dwc2_host_exit_hibernation()
5590 *
5591 * @hsotg: Programming view of the DWC_otg controller
5592 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5593 * @param reset: indicates whether resume is initiated by Reset.
5594 *
5595 * Return: non-zero if failed to enter to hibernation.
5596 *
5597 * This function is for exiting from Host mode hibernation by
5598 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5599 */
dwc2_host_exit_hibernation(struct dwc2_hsotg * hsotg,int rem_wakeup,int reset)5600 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5601 int reset)
5602 {
5603 u32 gpwrdn;
5604 u32 hprt0;
5605 int ret = 0;
5606 struct dwc2_gregs_backup *gr;
5607 struct dwc2_hregs_backup *hr;
5608
5609 gr = &hsotg->gr_backup;
5610 hr = &hsotg->hr_backup;
5611
5612 dev_dbg(hsotg->dev,
5613 "%s: called with rem_wakeup = %d reset = %d\n",
5614 __func__, rem_wakeup, reset);
5615
5616 dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5617 hsotg->hibernated = 0;
5618
5619 /*
5620 * This step is not described in functional spec but if not wait for
5621 * this delay, mismatch interrupts occurred because just after restore
5622 * core is in Device mode(gintsts.curmode == 0)
5623 */
5624 mdelay(100);
5625
5626 /* Clear all pending interupts */
5627 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5628
5629 /* De-assert Restore */
5630 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5631 gpwrdn &= ~GPWRDN_RESTORE;
5632 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5633 udelay(10);
5634
5635 /* Restore GUSBCFG, HCFG */
5636 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5637 dwc2_writel(hsotg, hr->hcfg, HCFG);
5638
5639 /* De-assert Wakeup Logic */
5640 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5641 gpwrdn &= ~GPWRDN_PMUACTV;
5642 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5643 udelay(10);
5644
5645 hprt0 = hr->hprt0;
5646 hprt0 |= HPRT0_PWR;
5647 hprt0 &= ~HPRT0_ENA;
5648 hprt0 &= ~HPRT0_SUSP;
5649 dwc2_writel(hsotg, hprt0, HPRT0);
5650
5651 hprt0 = hr->hprt0;
5652 hprt0 |= HPRT0_PWR;
5653 hprt0 &= ~HPRT0_ENA;
5654 hprt0 &= ~HPRT0_SUSP;
5655
5656 if (reset) {
5657 hprt0 |= HPRT0_RST;
5658 dwc2_writel(hsotg, hprt0, HPRT0);
5659
5660 /* Wait for Resume time and then program HPRT again */
5661 mdelay(60);
5662 hprt0 &= ~HPRT0_RST;
5663 dwc2_writel(hsotg, hprt0, HPRT0);
5664 } else {
5665 hprt0 |= HPRT0_RES;
5666 dwc2_writel(hsotg, hprt0, HPRT0);
5667
5668 /* Wait for Resume time and then program HPRT again */
5669 mdelay(100);
5670 hprt0 &= ~HPRT0_RES;
5671 dwc2_writel(hsotg, hprt0, HPRT0);
5672 }
5673 /* Clear all interrupt status */
5674 hprt0 = dwc2_readl(hsotg, HPRT0);
5675 hprt0 |= HPRT0_CONNDET;
5676 hprt0 |= HPRT0_ENACHG;
5677 hprt0 &= ~HPRT0_ENA;
5678 dwc2_writel(hsotg, hprt0, HPRT0);
5679
5680 hprt0 = dwc2_readl(hsotg, HPRT0);
5681
5682 /* Clear all pending interupts */
5683 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5684
5685 /* Restore global registers */
5686 ret = dwc2_restore_global_registers(hsotg);
5687 if (ret) {
5688 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5689 __func__);
5690 return ret;
5691 }
5692
5693 /* Restore host registers */
5694 ret = dwc2_restore_host_registers(hsotg);
5695 if (ret) {
5696 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5697 __func__);
5698 return ret;
5699 }
5700
5701 if (rem_wakeup) {
5702 dwc2_hcd_rem_wakeup(hsotg);
5703 /*
5704 * Change "port_connect_status_change" flag to re-enumerate,
5705 * because after exit from hibernation port connection status
5706 * is not detected.
5707 */
5708 hsotg->flags.b.port_connect_status_change = 1;
5709 }
5710
5711 hsotg->hibernated = 0;
5712 hsotg->bus_suspended = 0;
5713 hsotg->lx_state = DWC2_L0;
5714 dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5715 return ret;
5716 }
5717
dwc2_host_can_poweroff_phy(struct dwc2_hsotg * dwc2)5718 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5719 {
5720 struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5721
5722 /* If the controller isn't allowed to wakeup then we can power off. */
5723 if (!device_may_wakeup(dwc2->dev))
5724 return true;
5725
5726 /*
5727 * We don't want to power off the PHY if something under the
5728 * root hub has wakeup enabled.
5729 */
5730 if (usb_wakeup_enabled_descendants(root_hub))
5731 return false;
5732
5733 /* No reason to keep the PHY powered, so allow poweroff */
5734 return true;
5735 }
5736
5737 /**
5738 * dwc2_host_enter_partial_power_down() - Put controller in partial
5739 * power down.
5740 *
5741 * @hsotg: Programming view of the DWC_otg controller
5742 *
5743 * Return: non-zero if failed to enter host partial power down.
5744 *
5745 * This function is for entering Host mode partial power down.
5746 */
dwc2_host_enter_partial_power_down(struct dwc2_hsotg * hsotg)5747 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5748 {
5749 u32 pcgcctl;
5750 u32 hprt0;
5751 int ret = 0;
5752
5753 dev_dbg(hsotg->dev, "Entering host partial power down started.\n");
5754
5755 /* Put this port in suspend mode. */
5756 hprt0 = dwc2_read_hprt0(hsotg);
5757 hprt0 |= HPRT0_SUSP;
5758 dwc2_writel(hsotg, hprt0, HPRT0);
5759 udelay(5);
5760
5761 /* Wait for the HPRT0.PrtSusp register field to be set */
5762 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5763 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5764
5765 /* Backup all registers */
5766 ret = dwc2_backup_global_registers(hsotg);
5767 if (ret) {
5768 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5769 __func__);
5770 return ret;
5771 }
5772
5773 ret = dwc2_backup_host_registers(hsotg);
5774 if (ret) {
5775 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5776 __func__);
5777 return ret;
5778 }
5779
5780 /*
5781 * Clear any pending interrupts since dwc2 will not be able to
5782 * clear them after entering partial_power_down.
5783 */
5784 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5785
5786 /* Put the controller in low power state */
5787 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5788
5789 pcgcctl |= PCGCTL_PWRCLMP;
5790 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5791 udelay(5);
5792
5793 pcgcctl |= PCGCTL_RSTPDWNMODULE;
5794 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5795 udelay(5);
5796
5797 pcgcctl |= PCGCTL_STOPPCLK;
5798 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5799
5800 /* Set in_ppd flag to 1 as here core enters suspend. */
5801 hsotg->in_ppd = 1;
5802 hsotg->lx_state = DWC2_L2;
5803 hsotg->bus_suspended = true;
5804
5805 dev_dbg(hsotg->dev, "Entering host partial power down completed.\n");
5806
5807 return ret;
5808 }
5809
5810 /*
5811 * dwc2_host_exit_partial_power_down() - Exit controller from host partial
5812 * power down.
5813 *
5814 * @hsotg: Programming view of the DWC_otg controller
5815 * @rem_wakeup: indicates whether resume is initiated by Reset.
5816 * @restore: indicates whether need to restore the registers or not.
5817 *
5818 * Return: non-zero if failed to exit host partial power down.
5819 *
5820 * This function is for exiting from Host mode partial power down.
5821 */
dwc2_host_exit_partial_power_down(struct dwc2_hsotg * hsotg,int rem_wakeup,bool restore)5822 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5823 int rem_wakeup, bool restore)
5824 {
5825 u32 pcgcctl;
5826 int ret = 0;
5827 u32 hprt0;
5828
5829 dev_dbg(hsotg->dev, "Exiting host partial power down started.\n");
5830
5831 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5832 pcgcctl &= ~PCGCTL_STOPPCLK;
5833 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5834 udelay(5);
5835
5836 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5837 pcgcctl &= ~PCGCTL_PWRCLMP;
5838 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5839 udelay(5);
5840
5841 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5842 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5843 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5844
5845 udelay(100);
5846 if (restore) {
5847 ret = dwc2_restore_global_registers(hsotg);
5848 if (ret) {
5849 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5850 __func__);
5851 return ret;
5852 }
5853
5854 ret = dwc2_restore_host_registers(hsotg);
5855 if (ret) {
5856 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5857 __func__);
5858 return ret;
5859 }
5860 }
5861
5862 /* Drive resume signaling and exit suspend mode on the port. */
5863 hprt0 = dwc2_read_hprt0(hsotg);
5864 hprt0 |= HPRT0_RES;
5865 hprt0 &= ~HPRT0_SUSP;
5866 dwc2_writel(hsotg, hprt0, HPRT0);
5867 udelay(5);
5868
5869 if (!rem_wakeup) {
5870 /* Stop driveing resume signaling on the port. */
5871 hprt0 = dwc2_read_hprt0(hsotg);
5872 hprt0 &= ~HPRT0_RES;
5873 dwc2_writel(hsotg, hprt0, HPRT0);
5874
5875 hsotg->bus_suspended = false;
5876 } else {
5877 /* Turn on the port power bit. */
5878 hprt0 = dwc2_read_hprt0(hsotg);
5879 hprt0 |= HPRT0_PWR;
5880 dwc2_writel(hsotg, hprt0, HPRT0);
5881
5882 /* Connect hcd. */
5883 dwc2_hcd_connect(hsotg);
5884
5885 mod_timer(&hsotg->wkp_timer,
5886 jiffies + msecs_to_jiffies(71));
5887 }
5888
5889 /* Set lx_state to and in_ppd to 0 as here core exits from suspend. */
5890 hsotg->in_ppd = 0;
5891 hsotg->lx_state = DWC2_L0;
5892
5893 dev_dbg(hsotg->dev, "Exiting host partial power down completed.\n");
5894 return ret;
5895 }
5896
5897 /**
5898 * dwc2_host_enter_clock_gating() - Put controller in clock gating.
5899 *
5900 * @hsotg: Programming view of the DWC_otg controller
5901 *
5902 * This function is for entering Host mode clock gating.
5903 */
dwc2_host_enter_clock_gating(struct dwc2_hsotg * hsotg)5904 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg)
5905 {
5906 u32 hprt0;
5907 u32 pcgctl;
5908
5909 dev_dbg(hsotg->dev, "Entering host clock gating.\n");
5910
5911 /* Put this port in suspend mode. */
5912 hprt0 = dwc2_read_hprt0(hsotg);
5913 hprt0 |= HPRT0_SUSP;
5914 dwc2_writel(hsotg, hprt0, HPRT0);
5915
5916 /* Set the Phy Clock bit as suspend is received. */
5917 pcgctl = dwc2_readl(hsotg, PCGCTL);
5918 pcgctl |= PCGCTL_STOPPCLK;
5919 dwc2_writel(hsotg, pcgctl, PCGCTL);
5920 udelay(5);
5921
5922 /* Set the Gate hclk as suspend is received. */
5923 pcgctl = dwc2_readl(hsotg, PCGCTL);
5924 pcgctl |= PCGCTL_GATEHCLK;
5925 dwc2_writel(hsotg, pcgctl, PCGCTL);
5926 udelay(5);
5927
5928 hsotg->bus_suspended = true;
5929 hsotg->lx_state = DWC2_L2;
5930 }
5931
5932 /**
5933 * dwc2_host_exit_clock_gating() - Exit controller from clock gating.
5934 *
5935 * @hsotg: Programming view of the DWC_otg controller
5936 * @rem_wakeup: indicates whether resume is initiated by remote wakeup
5937 *
5938 * This function is for exiting Host mode clock gating.
5939 */
dwc2_host_exit_clock_gating(struct dwc2_hsotg * hsotg,int rem_wakeup)5940 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5941 {
5942 u32 hprt0;
5943 u32 pcgctl;
5944
5945 dev_dbg(hsotg->dev, "Exiting host clock gating.\n");
5946
5947 /* Clear the Gate hclk. */
5948 pcgctl = dwc2_readl(hsotg, PCGCTL);
5949 pcgctl &= ~PCGCTL_GATEHCLK;
5950 dwc2_writel(hsotg, pcgctl, PCGCTL);
5951 udelay(5);
5952
5953 /* Phy Clock bit. */
5954 pcgctl = dwc2_readl(hsotg, PCGCTL);
5955 pcgctl &= ~PCGCTL_STOPPCLK;
5956 dwc2_writel(hsotg, pcgctl, PCGCTL);
5957 udelay(5);
5958
5959 /* Drive resume signaling and exit suspend mode on the port. */
5960 hprt0 = dwc2_read_hprt0(hsotg);
5961 hprt0 |= HPRT0_RES;
5962 hprt0 &= ~HPRT0_SUSP;
5963 dwc2_writel(hsotg, hprt0, HPRT0);
5964 udelay(5);
5965
5966 if (!rem_wakeup) {
5967 /* In case of port resume need to wait for 40 ms */
5968 msleep(USB_RESUME_TIMEOUT);
5969
5970 /* Stop driveing resume signaling on the port. */
5971 hprt0 = dwc2_read_hprt0(hsotg);
5972 hprt0 &= ~HPRT0_RES;
5973 dwc2_writel(hsotg, hprt0, HPRT0);
5974
5975 hsotg->bus_suspended = false;
5976 hsotg->lx_state = DWC2_L0;
5977 } else {
5978 mod_timer(&hsotg->wkp_timer,
5979 jiffies + msecs_to_jiffies(71));
5980 }
5981 }
5982