1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * hcd.c - DesignWare HS OTG Controller host-mode routines
4 *
5 * Copyright (C) 2004-2013 Synopsys, Inc.
6 */
7
8 /*
9 * This file contains the core HCD code, and implements the Linux hc_driver
10 * API
11 */
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/platform_device.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/delay.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/usb.h>
22
23 #include <linux/usb/hcd.h>
24 #include <linux/usb/ch11.h>
25 #include <linux/usb/of.h>
26
27 #include "core.h"
28 #include "hcd.h"
29
30 /*
31 * =========================================================================
32 * Host Core Layer Functions
33 * =========================================================================
34 */
35
36 /**
37 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
38 * used in both device and host modes
39 *
40 * @hsotg: Programming view of the DWC_otg controller
41 */
dwc2_enable_common_interrupts(struct dwc2_hsotg * hsotg)42 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
43 {
44 u32 intmsk;
45
46 /* Clear any pending OTG Interrupts */
47 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
48
49 /* Clear any pending interrupts */
50 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
51
52 /* Enable the interrupts in the GINTMSK */
53 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
54
55 if (!hsotg->params.host_dma)
56 intmsk |= GINTSTS_RXFLVL;
57 if (!hsotg->params.external_id_pin_ctl)
58 intmsk |= GINTSTS_CONIDSTSCHNG;
59
60 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
61 GINTSTS_SESSREQINT;
62
63 if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
64 intmsk |= GINTSTS_LPMTRANRCVD;
65
66 dwc2_writel(hsotg, intmsk, GINTMSK);
67 }
68
dwc2_gahbcfg_init(struct dwc2_hsotg * hsotg)69 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
70 {
71 u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
72
73 switch (hsotg->hw_params.arch) {
74 case GHWCFG2_EXT_DMA_ARCH:
75 dev_err(hsotg->dev, "External DMA Mode not supported\n");
76 return -EINVAL;
77
78 case GHWCFG2_INT_DMA_ARCH:
79 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
80 if (hsotg->params.ahbcfg != -1) {
81 ahbcfg &= GAHBCFG_CTRL_MASK;
82 ahbcfg |= hsotg->params.ahbcfg &
83 ~GAHBCFG_CTRL_MASK;
84 }
85 break;
86
87 case GHWCFG2_SLAVE_ONLY_ARCH:
88 default:
89 dev_dbg(hsotg->dev, "Slave Only Mode\n");
90 break;
91 }
92
93 if (hsotg->params.host_dma)
94 ahbcfg |= GAHBCFG_DMA_EN;
95 else
96 hsotg->params.dma_desc_enable = false;
97
98 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
99
100 return 0;
101 }
102
dwc2_gusbcfg_init(struct dwc2_hsotg * hsotg)103 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
104 {
105 u32 usbcfg;
106
107 usbcfg = dwc2_readl(hsotg, GUSBCFG);
108 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
109
110 switch (hsotg->hw_params.op_mode) {
111 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
112 if (hsotg->params.otg_caps.hnp_support &&
113 hsotg->params.otg_caps.srp_support)
114 usbcfg |= GUSBCFG_HNPCAP;
115 fallthrough;
116
117 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
118 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
119 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
120 if (hsotg->params.otg_caps.srp_support)
121 usbcfg |= GUSBCFG_SRPCAP;
122 break;
123
124 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
125 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
126 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
127 default:
128 break;
129 }
130
131 dwc2_writel(hsotg, usbcfg, GUSBCFG);
132 }
133
dwc2_vbus_supply_init(struct dwc2_hsotg * hsotg)134 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
135 {
136 if (hsotg->vbus_supply)
137 return regulator_enable(hsotg->vbus_supply);
138
139 return 0;
140 }
141
dwc2_vbus_supply_exit(struct dwc2_hsotg * hsotg)142 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
143 {
144 if (hsotg->vbus_supply)
145 return regulator_disable(hsotg->vbus_supply);
146
147 return 0;
148 }
149
150 /**
151 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
152 *
153 * @hsotg: Programming view of DWC_otg controller
154 */
dwc2_enable_host_interrupts(struct dwc2_hsotg * hsotg)155 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
156 {
157 u32 intmsk;
158
159 dev_dbg(hsotg->dev, "%s()\n", __func__);
160
161 /* Disable all interrupts */
162 dwc2_writel(hsotg, 0, GINTMSK);
163 dwc2_writel(hsotg, 0, HAINTMSK);
164
165 /* Enable the common interrupts */
166 dwc2_enable_common_interrupts(hsotg);
167
168 /* Enable host mode interrupts without disturbing common interrupts */
169 intmsk = dwc2_readl(hsotg, GINTMSK);
170 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
171 dwc2_writel(hsotg, intmsk, GINTMSK);
172 }
173
174 /**
175 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
176 *
177 * @hsotg: Programming view of DWC_otg controller
178 */
dwc2_disable_host_interrupts(struct dwc2_hsotg * hsotg)179 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
180 {
181 u32 intmsk = dwc2_readl(hsotg, GINTMSK);
182
183 /* Disable host mode interrupts without disturbing common interrupts */
184 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
185 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
186 dwc2_writel(hsotg, intmsk, GINTMSK);
187 }
188
189 /*
190 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
191 * For system that have a total fifo depth that is smaller than the default
192 * RX + TX fifo size.
193 *
194 * @hsotg: Programming view of DWC_otg controller
195 */
dwc2_calculate_dynamic_fifo(struct dwc2_hsotg * hsotg)196 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
197 {
198 struct dwc2_core_params *params = &hsotg->params;
199 struct dwc2_hw_params *hw = &hsotg->hw_params;
200 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
201
202 total_fifo_size = hw->total_fifo_size;
203 rxfsiz = params->host_rx_fifo_size;
204 nptxfsiz = params->host_nperio_tx_fifo_size;
205 ptxfsiz = params->host_perio_tx_fifo_size;
206
207 /*
208 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
209 * allocation with support for high bandwidth endpoints. Synopsys
210 * defines MPS(Max Packet size) for a periodic EP=1024, and for
211 * non-periodic as 512.
212 */
213 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
214 /*
215 * For Buffer DMA mode/Scatter Gather DMA mode
216 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
217 * with n = number of host channel.
218 * 2 * ((1024/4) + 2) = 516
219 */
220 rxfsiz = 516 + hw->host_channels;
221
222 /*
223 * min non-periodic tx fifo depth
224 * 2 * (largest non-periodic USB packet used / 4)
225 * 2 * (512/4) = 256
226 */
227 nptxfsiz = 256;
228
229 /*
230 * min periodic tx fifo depth
231 * (largest packet size*MC)/4
232 * (1024 * 3)/4 = 768
233 */
234 ptxfsiz = 768;
235
236 params->host_rx_fifo_size = rxfsiz;
237 params->host_nperio_tx_fifo_size = nptxfsiz;
238 params->host_perio_tx_fifo_size = ptxfsiz;
239 }
240
241 /*
242 * If the summation of RX, NPTX and PTX fifo sizes is still
243 * bigger than the total_fifo_size, then we have a problem.
244 *
245 * We won't be able to allocate as many endpoints. Right now,
246 * we're just printing an error message, but ideally this FIFO
247 * allocation algorithm would be improved in the future.
248 *
249 * FIXME improve this FIFO allocation algorithm.
250 */
251 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
252 dev_err(hsotg->dev, "invalid fifo sizes\n");
253 }
254
dwc2_config_fifos(struct dwc2_hsotg * hsotg)255 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
256 {
257 struct dwc2_core_params *params = &hsotg->params;
258 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
259
260 if (!params->enable_dynamic_fifo)
261 return;
262
263 dwc2_calculate_dynamic_fifo(hsotg);
264
265 /* Rx FIFO */
266 grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
267 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
268 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
269 grxfsiz |= params->host_rx_fifo_size <<
270 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
271 dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
272 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
273 dwc2_readl(hsotg, GRXFSIZ));
274
275 /* Non-periodic Tx FIFO */
276 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
277 dwc2_readl(hsotg, GNPTXFSIZ));
278 nptxfsiz = params->host_nperio_tx_fifo_size <<
279 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
280 nptxfsiz |= params->host_rx_fifo_size <<
281 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
282 dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
283 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
284 dwc2_readl(hsotg, GNPTXFSIZ));
285
286 /* Periodic Tx FIFO */
287 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
288 dwc2_readl(hsotg, HPTXFSIZ));
289 hptxfsiz = params->host_perio_tx_fifo_size <<
290 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
291 hptxfsiz |= (params->host_rx_fifo_size +
292 params->host_nperio_tx_fifo_size) <<
293 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
294 dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
295 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
296 dwc2_readl(hsotg, HPTXFSIZ));
297
298 if (hsotg->params.en_multiple_tx_fifo &&
299 hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
300 /*
301 * This feature was implemented in 2.91a version
302 * Global DFIFOCFG calculation for Host mode -
303 * include RxFIFO, NPTXFIFO and HPTXFIFO
304 */
305 dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
306 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
307 dfifocfg |= (params->host_rx_fifo_size +
308 params->host_nperio_tx_fifo_size +
309 params->host_perio_tx_fifo_size) <<
310 GDFIFOCFG_EPINFOBASE_SHIFT &
311 GDFIFOCFG_EPINFOBASE_MASK;
312 dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
313 }
314 }
315
316 /**
317 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
318 * the HFIR register according to PHY type and speed
319 *
320 * @hsotg: Programming view of DWC_otg controller
321 *
322 * NOTE: The caller can modify the value of the HFIR register only after the
323 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
324 * has been set
325 */
dwc2_calc_frame_interval(struct dwc2_hsotg * hsotg)326 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
327 {
328 u32 usbcfg;
329 u32 hprt0;
330 int clock = 60; /* default value */
331
332 usbcfg = dwc2_readl(hsotg, GUSBCFG);
333 hprt0 = dwc2_readl(hsotg, HPRT0);
334
335 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
336 !(usbcfg & GUSBCFG_PHYIF16))
337 clock = 60;
338 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
339 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
340 clock = 48;
341 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
342 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
343 clock = 30;
344 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
345 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
346 clock = 60;
347 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
348 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
349 clock = 48;
350 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
351 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
352 clock = 48;
353 if ((usbcfg & GUSBCFG_PHYSEL) &&
354 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
355 clock = 48;
356
357 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
358 /* High speed case */
359 return 125 * clock - 1;
360
361 /* FS/LS case */
362 return 1000 * clock - 1;
363 }
364
365 /**
366 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
367 * buffer
368 *
369 * @hsotg: Programming view of DWC_otg controller
370 * @dest: Destination buffer for the packet
371 * @bytes: Number of bytes to copy to the destination
372 */
dwc2_read_packet(struct dwc2_hsotg * hsotg,u8 * dest,u16 bytes)373 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
374 {
375 u32 *data_buf = (u32 *)dest;
376 int word_count = (bytes + 3) / 4;
377 int i;
378
379 /*
380 * Todo: Account for the case where dest is not dword aligned. This
381 * requires reading data from the FIFO into a u32 temp buffer, then
382 * moving it into the data buffer.
383 */
384
385 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
386
387 for (i = 0; i < word_count; i++, data_buf++)
388 *data_buf = dwc2_readl(hsotg, HCFIFO(0));
389 }
390
391 /**
392 * dwc2_dump_channel_info() - Prints the state of a host channel
393 *
394 * @hsotg: Programming view of DWC_otg controller
395 * @chan: Pointer to the channel to dump
396 *
397 * Must be called with interrupt disabled and spinlock held
398 *
399 * NOTE: This function will be removed once the peripheral controller code
400 * is integrated and the driver is stable
401 */
dwc2_dump_channel_info(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)402 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
403 struct dwc2_host_chan *chan)
404 {
405 #ifdef VERBOSE_DEBUG
406 int num_channels = hsotg->params.host_channels;
407 struct dwc2_qh *qh;
408 u32 hcchar;
409 u32 hcsplt;
410 u32 hctsiz;
411 u32 hc_dma;
412 int i;
413
414 if (!chan)
415 return;
416
417 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
418 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
419 hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
420 hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
421
422 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan);
423 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n",
424 hcchar, hcsplt);
425 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n",
426 hctsiz, hc_dma);
427 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
428 chan->dev_addr, chan->ep_num, chan->ep_is_in);
429 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
430 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
431 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start);
432 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started);
433 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
434 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
435 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
436 (unsigned long)chan->xfer_dma);
437 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
438 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
439 dev_dbg(hsotg->dev, " NP inactive sched:\n");
440 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
441 qh_list_entry)
442 dev_dbg(hsotg->dev, " %p\n", qh);
443 dev_dbg(hsotg->dev, " NP waiting sched:\n");
444 list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
445 qh_list_entry)
446 dev_dbg(hsotg->dev, " %p\n", qh);
447 dev_dbg(hsotg->dev, " NP active sched:\n");
448 list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
449 qh_list_entry)
450 dev_dbg(hsotg->dev, " %p\n", qh);
451 dev_dbg(hsotg->dev, " Channels:\n");
452 for (i = 0; i < num_channels; i++) {
453 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
454
455 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan);
456 }
457 #endif /* VERBOSE_DEBUG */
458 }
459
460 static int _dwc2_hcd_start(struct usb_hcd *hcd);
461
dwc2_host_start(struct dwc2_hsotg * hsotg)462 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
463 {
464 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
465
466 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
467 _dwc2_hcd_start(hcd);
468 }
469
dwc2_host_disconnect(struct dwc2_hsotg * hsotg)470 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
471 {
472 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
473
474 hcd->self.is_b_host = 0;
475 }
476
dwc2_host_hub_info(struct dwc2_hsotg * hsotg,void * context,int * hub_addr,int * hub_port)477 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
478 int *hub_addr, int *hub_port)
479 {
480 struct urb *urb = context;
481
482 if (urb->dev->tt)
483 *hub_addr = urb->dev->tt->hub->devnum;
484 else
485 *hub_addr = 0;
486 *hub_port = urb->dev->ttport;
487 }
488
489 /*
490 * =========================================================================
491 * Low Level Host Channel Access Functions
492 * =========================================================================
493 */
494
dwc2_hc_enable_slave_ints(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)495 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
496 struct dwc2_host_chan *chan)
497 {
498 u32 hcintmsk = HCINTMSK_CHHLTD;
499
500 switch (chan->ep_type) {
501 case USB_ENDPOINT_XFER_CONTROL:
502 case USB_ENDPOINT_XFER_BULK:
503 dev_vdbg(hsotg->dev, "control/bulk\n");
504 hcintmsk |= HCINTMSK_XFERCOMPL;
505 hcintmsk |= HCINTMSK_STALL;
506 hcintmsk |= HCINTMSK_XACTERR;
507 hcintmsk |= HCINTMSK_DATATGLERR;
508 if (chan->ep_is_in) {
509 hcintmsk |= HCINTMSK_BBLERR;
510 } else {
511 hcintmsk |= HCINTMSK_NAK;
512 hcintmsk |= HCINTMSK_NYET;
513 if (chan->do_ping)
514 hcintmsk |= HCINTMSK_ACK;
515 }
516
517 if (chan->do_split) {
518 hcintmsk |= HCINTMSK_NAK;
519 if (chan->complete_split)
520 hcintmsk |= HCINTMSK_NYET;
521 else
522 hcintmsk |= HCINTMSK_ACK;
523 }
524
525 if (chan->error_state)
526 hcintmsk |= HCINTMSK_ACK;
527 break;
528
529 case USB_ENDPOINT_XFER_INT:
530 if (dbg_perio())
531 dev_vdbg(hsotg->dev, "intr\n");
532 hcintmsk |= HCINTMSK_XFERCOMPL;
533 hcintmsk |= HCINTMSK_NAK;
534 hcintmsk |= HCINTMSK_STALL;
535 hcintmsk |= HCINTMSK_XACTERR;
536 hcintmsk |= HCINTMSK_DATATGLERR;
537 hcintmsk |= HCINTMSK_FRMOVRUN;
538
539 if (chan->ep_is_in)
540 hcintmsk |= HCINTMSK_BBLERR;
541 if (chan->error_state)
542 hcintmsk |= HCINTMSK_ACK;
543 if (chan->do_split) {
544 if (chan->complete_split)
545 hcintmsk |= HCINTMSK_NYET;
546 else
547 hcintmsk |= HCINTMSK_ACK;
548 }
549 break;
550
551 case USB_ENDPOINT_XFER_ISOC:
552 if (dbg_perio())
553 dev_vdbg(hsotg->dev, "isoc\n");
554 hcintmsk |= HCINTMSK_XFERCOMPL;
555 hcintmsk |= HCINTMSK_FRMOVRUN;
556 hcintmsk |= HCINTMSK_ACK;
557
558 if (chan->ep_is_in) {
559 hcintmsk |= HCINTMSK_XACTERR;
560 hcintmsk |= HCINTMSK_BBLERR;
561 }
562 break;
563 default:
564 dev_err(hsotg->dev, "## Unknown EP type ##\n");
565 break;
566 }
567
568 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
569 if (dbg_hc(chan))
570 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
571 }
572
dwc2_hc_enable_dma_ints(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)573 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
574 struct dwc2_host_chan *chan)
575 {
576 u32 hcintmsk = HCINTMSK_CHHLTD;
577
578 /*
579 * For Descriptor DMA mode core halts the channel on AHB error.
580 * Interrupt is not required.
581 */
582 if (!hsotg->params.dma_desc_enable) {
583 if (dbg_hc(chan))
584 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
585 hcintmsk |= HCINTMSK_AHBERR;
586 } else {
587 if (dbg_hc(chan))
588 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
589 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
590 hcintmsk |= HCINTMSK_XFERCOMPL;
591 }
592
593 if (chan->error_state && !chan->do_split &&
594 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
595 if (dbg_hc(chan))
596 dev_vdbg(hsotg->dev, "setting ACK\n");
597 hcintmsk |= HCINTMSK_ACK;
598 if (chan->ep_is_in) {
599 hcintmsk |= HCINTMSK_DATATGLERR;
600 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
601 hcintmsk |= HCINTMSK_NAK;
602 }
603 }
604
605 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
606 if (dbg_hc(chan))
607 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
608 }
609
dwc2_hc_enable_ints(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)610 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
611 struct dwc2_host_chan *chan)
612 {
613 u32 intmsk;
614
615 if (hsotg->params.host_dma) {
616 if (dbg_hc(chan))
617 dev_vdbg(hsotg->dev, "DMA enabled\n");
618 dwc2_hc_enable_dma_ints(hsotg, chan);
619 } else {
620 if (dbg_hc(chan))
621 dev_vdbg(hsotg->dev, "DMA disabled\n");
622 dwc2_hc_enable_slave_ints(hsotg, chan);
623 }
624
625 /* Enable the top level host channel interrupt */
626 intmsk = dwc2_readl(hsotg, HAINTMSK);
627 intmsk |= 1 << chan->hc_num;
628 dwc2_writel(hsotg, intmsk, HAINTMSK);
629 if (dbg_hc(chan))
630 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
631
632 /* Make sure host channel interrupts are enabled */
633 intmsk = dwc2_readl(hsotg, GINTMSK);
634 intmsk |= GINTSTS_HCHINT;
635 dwc2_writel(hsotg, intmsk, GINTMSK);
636 if (dbg_hc(chan))
637 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
638 }
639
640 /**
641 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
642 * a specific endpoint
643 *
644 * @hsotg: Programming view of DWC_otg controller
645 * @chan: Information needed to initialize the host channel
646 *
647 * The HCCHARn register is set up with the characteristics specified in chan.
648 * Host channel interrupts that may need to be serviced while this transfer is
649 * in progress are enabled.
650 */
dwc2_hc_init(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)651 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
652 {
653 u8 hc_num = chan->hc_num;
654 u32 hcintmsk;
655 u32 hcchar;
656 u32 hcsplt = 0;
657
658 if (dbg_hc(chan))
659 dev_vdbg(hsotg->dev, "%s()\n", __func__);
660
661 /* Clear old interrupt conditions for this host channel */
662 hcintmsk = 0xffffffff;
663 hcintmsk &= ~HCINTMSK_RESERVED14_31;
664 dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
665
666 /* Enable channel interrupts required for this transfer */
667 dwc2_hc_enable_ints(hsotg, chan);
668
669 /*
670 * Program the HCCHARn register with the endpoint characteristics for
671 * the current transfer
672 */
673 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
674 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
675 if (chan->ep_is_in)
676 hcchar |= HCCHAR_EPDIR;
677 if (chan->speed == USB_SPEED_LOW)
678 hcchar |= HCCHAR_LSPDDEV;
679 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
680 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
681 dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
682 if (dbg_hc(chan)) {
683 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
684 hc_num, hcchar);
685
686 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
687 __func__, hc_num);
688 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
689 chan->dev_addr);
690 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
691 chan->ep_num);
692 dev_vdbg(hsotg->dev, " Is In: %d\n",
693 chan->ep_is_in);
694 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
695 chan->speed == USB_SPEED_LOW);
696 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
697 chan->ep_type);
698 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
699 chan->max_packet);
700 }
701
702 /* Program the HCSPLT register for SPLITs */
703 if (chan->do_split) {
704 if (dbg_hc(chan))
705 dev_vdbg(hsotg->dev,
706 "Programming HC %d with split --> %s\n",
707 hc_num,
708 chan->complete_split ? "CSPLIT" : "SSPLIT");
709 if (chan->complete_split)
710 hcsplt |= HCSPLT_COMPSPLT;
711 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
712 HCSPLT_XACTPOS_MASK;
713 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
714 HCSPLT_HUBADDR_MASK;
715 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
716 HCSPLT_PRTADDR_MASK;
717 if (dbg_hc(chan)) {
718 dev_vdbg(hsotg->dev, " comp split %d\n",
719 chan->complete_split);
720 dev_vdbg(hsotg->dev, " xact pos %d\n",
721 chan->xact_pos);
722 dev_vdbg(hsotg->dev, " hub addr %d\n",
723 chan->hub_addr);
724 dev_vdbg(hsotg->dev, " hub port %d\n",
725 chan->hub_port);
726 dev_vdbg(hsotg->dev, " is_in %d\n",
727 chan->ep_is_in);
728 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
729 chan->max_packet);
730 dev_vdbg(hsotg->dev, " xferlen %d\n",
731 chan->xfer_len);
732 }
733 }
734
735 dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
736 }
737
738 /**
739 * dwc2_hc_halt() - Attempts to halt a host channel
740 *
741 * @hsotg: Controller register interface
742 * @chan: Host channel to halt
743 * @halt_status: Reason for halting the channel
744 *
745 * This function should only be called in Slave mode or to abort a transfer in
746 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
747 * controller halts the channel when the transfer is complete or a condition
748 * occurs that requires application intervention.
749 *
750 * In slave mode, checks for a free request queue entry, then sets the Channel
751 * Enable and Channel Disable bits of the Host Channel Characteristics
752 * register of the specified channel to intiate the halt. If there is no free
753 * request queue entry, sets only the Channel Disable bit of the HCCHARn
754 * register to flush requests for this channel. In the latter case, sets a
755 * flag to indicate that the host channel needs to be halted when a request
756 * queue slot is open.
757 *
758 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
759 * HCCHARn register. The controller ensures there is space in the request
760 * queue before submitting the halt request.
761 *
762 * Some time may elapse before the core flushes any posted requests for this
763 * host channel and halts. The Channel Halted interrupt handler completes the
764 * deactivation of the host channel.
765 */
dwc2_hc_halt(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,enum dwc2_halt_status halt_status)766 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
767 enum dwc2_halt_status halt_status)
768 {
769 u32 nptxsts, hptxsts, hcchar;
770
771 if (dbg_hc(chan))
772 dev_vdbg(hsotg->dev, "%s()\n", __func__);
773
774 /*
775 * In buffer DMA or external DMA mode channel can't be halted
776 * for non-split periodic channels. At the end of the next
777 * uframe/frame (in the worst case), the core generates a channel
778 * halted and disables the channel automatically.
779 */
780 if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
781 hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
782 if (!chan->do_split &&
783 (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
784 chan->ep_type == USB_ENDPOINT_XFER_INT)) {
785 dev_err(hsotg->dev, "%s() Channel can't be halted\n",
786 __func__);
787 return;
788 }
789 }
790
791 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
792 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
793
794 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
795 halt_status == DWC2_HC_XFER_AHB_ERR) {
796 /*
797 * Disable all channel interrupts except Ch Halted. The QTD
798 * and QH state associated with this transfer has been cleared
799 * (in the case of URB_DEQUEUE), so the channel needs to be
800 * shut down carefully to prevent crashes.
801 */
802 u32 hcintmsk = HCINTMSK_CHHLTD;
803
804 dev_vdbg(hsotg->dev, "dequeue/error\n");
805 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
806
807 /*
808 * Make sure no other interrupts besides halt are currently
809 * pending. Handling another interrupt could cause a crash due
810 * to the QTD and QH state.
811 */
812 dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
813
814 /*
815 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
816 * even if the channel was already halted for some other
817 * reason
818 */
819 chan->halt_status = halt_status;
820
821 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
822 if (!(hcchar & HCCHAR_CHENA)) {
823 /*
824 * The channel is either already halted or it hasn't
825 * started yet. In DMA mode, the transfer may halt if
826 * it finishes normally or a condition occurs that
827 * requires driver intervention. Don't want to halt
828 * the channel again. In either Slave or DMA mode,
829 * it's possible that the transfer has been assigned
830 * to a channel, but not started yet when an URB is
831 * dequeued. Don't want to halt a channel that hasn't
832 * started yet.
833 */
834 return;
835 }
836 }
837 if (chan->halt_pending) {
838 /*
839 * A halt has already been issued for this channel. This might
840 * happen when a transfer is aborted by a higher level in
841 * the stack.
842 */
843 dev_vdbg(hsotg->dev,
844 "*** %s: Channel %d, chan->halt_pending already set ***\n",
845 __func__, chan->hc_num);
846 return;
847 }
848
849 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
850
851 /* No need to set the bit in DDMA for disabling the channel */
852 /* TODO check it everywhere channel is disabled */
853 if (!hsotg->params.dma_desc_enable) {
854 if (dbg_hc(chan))
855 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
856 hcchar |= HCCHAR_CHENA;
857 } else {
858 if (dbg_hc(chan))
859 dev_dbg(hsotg->dev, "desc DMA enabled\n");
860 }
861 hcchar |= HCCHAR_CHDIS;
862
863 if (!hsotg->params.host_dma) {
864 if (dbg_hc(chan))
865 dev_vdbg(hsotg->dev, "DMA not enabled\n");
866 hcchar |= HCCHAR_CHENA;
867
868 /* Check for space in the request queue to issue the halt */
869 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
870 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
871 dev_vdbg(hsotg->dev, "control/bulk\n");
872 nptxsts = dwc2_readl(hsotg, GNPTXSTS);
873 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
874 dev_vdbg(hsotg->dev, "Disabling channel\n");
875 hcchar &= ~HCCHAR_CHENA;
876 }
877 } else {
878 if (dbg_perio())
879 dev_vdbg(hsotg->dev, "isoc/intr\n");
880 hptxsts = dwc2_readl(hsotg, HPTXSTS);
881 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
882 hsotg->queuing_high_bandwidth) {
883 if (dbg_perio())
884 dev_vdbg(hsotg->dev, "Disabling channel\n");
885 hcchar &= ~HCCHAR_CHENA;
886 }
887 }
888 } else {
889 if (dbg_hc(chan))
890 dev_vdbg(hsotg->dev, "DMA enabled\n");
891 }
892
893 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
894 chan->halt_status = halt_status;
895
896 if (hcchar & HCCHAR_CHENA) {
897 if (dbg_hc(chan))
898 dev_vdbg(hsotg->dev, "Channel enabled\n");
899 chan->halt_pending = 1;
900 chan->halt_on_queue = 0;
901 } else {
902 if (dbg_hc(chan))
903 dev_vdbg(hsotg->dev, "Channel disabled\n");
904 chan->halt_on_queue = 1;
905 }
906
907 if (dbg_hc(chan)) {
908 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
909 chan->hc_num);
910 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
911 hcchar);
912 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
913 chan->halt_pending);
914 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
915 chan->halt_on_queue);
916 dev_vdbg(hsotg->dev, " halt_status: %d\n",
917 chan->halt_status);
918 }
919 }
920
921 /**
922 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
923 *
924 * @hsotg: Programming view of DWC_otg controller
925 * @chan: Identifies the host channel to clean up
926 *
927 * This function is normally called after a transfer is done and the host
928 * channel is being released
929 */
dwc2_hc_cleanup(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)930 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
931 {
932 u32 hcintmsk;
933
934 chan->xfer_started = 0;
935
936 list_del_init(&chan->split_order_list_entry);
937
938 /*
939 * Clear channel interrupt enables and any unhandled channel interrupt
940 * conditions
941 */
942 dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
943 hcintmsk = 0xffffffff;
944 hcintmsk &= ~HCINTMSK_RESERVED14_31;
945 dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
946 }
947
948 /**
949 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
950 * which frame a periodic transfer should occur
951 *
952 * @hsotg: Programming view of DWC_otg controller
953 * @chan: Identifies the host channel to set up and its properties
954 * @hcchar: Current value of the HCCHAR register for the specified host channel
955 *
956 * This function has no effect on non-periodic transfers
957 */
dwc2_hc_set_even_odd_frame(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,u32 * hcchar)958 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
959 struct dwc2_host_chan *chan, u32 *hcchar)
960 {
961 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
962 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
963 int host_speed;
964 int xfer_ns;
965 int xfer_us;
966 int bytes_in_fifo;
967 u16 fifo_space;
968 u16 frame_number;
969 u16 wire_frame;
970
971 /*
972 * Try to figure out if we're an even or odd frame. If we set
973 * even and the current frame number is even the transfer
974 * will happen immediately. Similar if both are odd. If one is
975 * even and the other is odd then the transfer will happen when
976 * the frame number ticks.
977 *
978 * There's a bit of a balancing act to get this right.
979 * Sometimes we may want to send data in the current frame (AK
980 * right away). We might want to do this if the frame number
981 * _just_ ticked, but we might also want to do this in order
982 * to continue a split transaction that happened late in a
983 * microframe (so we didn't know to queue the next transfer
984 * until the frame number had ticked). The problem is that we
985 * need a lot of knowledge to know if there's actually still
986 * time to send things or if it would be better to wait until
987 * the next frame.
988 *
989 * We can look at how much time is left in the current frame
990 * and make a guess about whether we'll have time to transfer.
991 * We'll do that.
992 */
993
994 /* Get speed host is running at */
995 host_speed = (chan->speed != USB_SPEED_HIGH &&
996 !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
997
998 /* See how many bytes are in the periodic FIFO right now */
999 fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1000 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1001 bytes_in_fifo = sizeof(u32) *
1002 (hsotg->params.host_perio_tx_fifo_size -
1003 fifo_space);
1004
1005 /*
1006 * Roughly estimate bus time for everything in the periodic
1007 * queue + our new transfer. This is "rough" because we're
1008 * using a function that makes takes into account IN/OUT
1009 * and INT/ISO and we're just slamming in one value for all
1010 * transfers. This should be an over-estimate and that should
1011 * be OK, but we can probably tighten it.
1012 */
1013 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1014 chan->xfer_len + bytes_in_fifo);
1015 xfer_us = NS_TO_US(xfer_ns);
1016
1017 /* See what frame number we'll be at by the time we finish */
1018 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1019
1020 /* This is when we were scheduled to be on the wire */
1021 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1022
1023 /*
1024 * If we'd finish _after_ the frame we're scheduled in then
1025 * it's hopeless. Just schedule right away and hope for the
1026 * best. Note that it _might_ be wise to call back into the
1027 * scheduler to pick a better frame, but this is better than
1028 * nothing.
1029 */
1030 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1031 dwc2_sch_vdbg(hsotg,
1032 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1033 chan->qh, wire_frame, frame_number,
1034 dwc2_frame_num_dec(frame_number,
1035 wire_frame));
1036 wire_frame = frame_number;
1037
1038 /*
1039 * We picked a different frame number; communicate this
1040 * back to the scheduler so it doesn't try to schedule
1041 * another in the same frame.
1042 *
1043 * Remember that next_active_frame is 1 before the wire
1044 * frame.
1045 */
1046 chan->qh->next_active_frame =
1047 dwc2_frame_num_dec(frame_number, 1);
1048 }
1049
1050 if (wire_frame & 1)
1051 *hcchar |= HCCHAR_ODDFRM;
1052 else
1053 *hcchar &= ~HCCHAR_ODDFRM;
1054 }
1055 }
1056
dwc2_set_pid_isoc(struct dwc2_host_chan * chan)1057 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1058 {
1059 /* Set up the initial PID for the transfer */
1060 if (chan->speed == USB_SPEED_HIGH) {
1061 if (chan->ep_is_in) {
1062 if (chan->multi_count == 1)
1063 chan->data_pid_start = DWC2_HC_PID_DATA0;
1064 else if (chan->multi_count == 2)
1065 chan->data_pid_start = DWC2_HC_PID_DATA1;
1066 else
1067 chan->data_pid_start = DWC2_HC_PID_DATA2;
1068 } else {
1069 if (chan->multi_count == 1)
1070 chan->data_pid_start = DWC2_HC_PID_DATA0;
1071 else
1072 chan->data_pid_start = DWC2_HC_PID_MDATA;
1073 }
1074 } else {
1075 chan->data_pid_start = DWC2_HC_PID_DATA0;
1076 }
1077 }
1078
1079 /**
1080 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1081 * the Host Channel
1082 *
1083 * @hsotg: Programming view of DWC_otg controller
1084 * @chan: Information needed to initialize the host channel
1085 *
1086 * This function should only be called in Slave mode. For a channel associated
1087 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1088 * associated with a periodic EP, the periodic Tx FIFO is written.
1089 *
1090 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1091 * the number of bytes written to the Tx FIFO.
1092 */
dwc2_hc_write_packet(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1093 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1094 struct dwc2_host_chan *chan)
1095 {
1096 u32 i;
1097 u32 remaining_count;
1098 u32 byte_count;
1099 u32 dword_count;
1100 u32 *data_buf = (u32 *)chan->xfer_buf;
1101
1102 if (dbg_hc(chan))
1103 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1104
1105 remaining_count = chan->xfer_len - chan->xfer_count;
1106 if (remaining_count > chan->max_packet)
1107 byte_count = chan->max_packet;
1108 else
1109 byte_count = remaining_count;
1110
1111 dword_count = (byte_count + 3) / 4;
1112
1113 if (((unsigned long)data_buf & 0x3) == 0) {
1114 /* xfer_buf is DWORD aligned */
1115 for (i = 0; i < dword_count; i++, data_buf++)
1116 dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1117 } else {
1118 /* xfer_buf is not DWORD aligned */
1119 for (i = 0; i < dword_count; i++, data_buf++) {
1120 u32 data = data_buf[0] | data_buf[1] << 8 |
1121 data_buf[2] << 16 | data_buf[3] << 24;
1122 dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1123 }
1124 }
1125
1126 chan->xfer_count += byte_count;
1127 chan->xfer_buf += byte_count;
1128 }
1129
1130 /**
1131 * dwc2_hc_do_ping() - Starts a PING transfer
1132 *
1133 * @hsotg: Programming view of DWC_otg controller
1134 * @chan: Information needed to initialize the host channel
1135 *
1136 * This function should only be called in Slave mode. The Do Ping bit is set in
1137 * the HCTSIZ register, then the channel is enabled.
1138 */
dwc2_hc_do_ping(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1139 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1140 struct dwc2_host_chan *chan)
1141 {
1142 u32 hcchar;
1143 u32 hctsiz;
1144
1145 if (dbg_hc(chan))
1146 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1147 chan->hc_num);
1148
1149 hctsiz = TSIZ_DOPNG;
1150 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1151 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1152
1153 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1154 hcchar |= HCCHAR_CHENA;
1155 hcchar &= ~HCCHAR_CHDIS;
1156 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1157 }
1158
1159 /**
1160 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1161 * channel and starts the transfer
1162 *
1163 * @hsotg: Programming view of DWC_otg controller
1164 * @chan: Information needed to initialize the host channel. The xfer_len value
1165 * may be reduced to accommodate the max widths of the XferSize and
1166 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1167 * changed to reflect the final xfer_len value.
1168 *
1169 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1170 * the caller must ensure that there is sufficient space in the request queue
1171 * and Tx Data FIFO.
1172 *
1173 * For an OUT transfer in Slave mode, it loads a data packet into the
1174 * appropriate FIFO. If necessary, additional data packets are loaded in the
1175 * Host ISR.
1176 *
1177 * For an IN transfer in Slave mode, a data packet is requested. The data
1178 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1179 * additional data packets are requested in the Host ISR.
1180 *
1181 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1182 * register along with a packet count of 1 and the channel is enabled. This
1183 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1184 * simply set to 0 since no data transfer occurs in this case.
1185 *
1186 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1187 * all the information required to perform the subsequent data transfer. In
1188 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1189 * controller performs the entire PING protocol, then starts the data
1190 * transfer.
1191 */
dwc2_hc_start_transfer(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1192 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1193 struct dwc2_host_chan *chan)
1194 {
1195 u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1196 u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1197 u32 hcchar;
1198 u32 hctsiz = 0;
1199 u16 num_packets;
1200 u32 ec_mc;
1201
1202 if (dbg_hc(chan))
1203 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1204
1205 if (chan->do_ping) {
1206 if (!hsotg->params.host_dma) {
1207 if (dbg_hc(chan))
1208 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1209 dwc2_hc_do_ping(hsotg, chan);
1210 chan->xfer_started = 1;
1211 return;
1212 }
1213
1214 if (dbg_hc(chan))
1215 dev_vdbg(hsotg->dev, "ping, DMA\n");
1216
1217 hctsiz |= TSIZ_DOPNG;
1218 }
1219
1220 if (chan->do_split) {
1221 if (dbg_hc(chan))
1222 dev_vdbg(hsotg->dev, "split\n");
1223 num_packets = 1;
1224
1225 if (chan->complete_split && !chan->ep_is_in)
1226 /*
1227 * For CSPLIT OUT Transfer, set the size to 0 so the
1228 * core doesn't expect any data written to the FIFO
1229 */
1230 chan->xfer_len = 0;
1231 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1232 chan->xfer_len = chan->max_packet;
1233 else if (!chan->ep_is_in && chan->xfer_len > 188)
1234 chan->xfer_len = 188;
1235
1236 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1237 TSIZ_XFERSIZE_MASK;
1238
1239 /* For split set ec_mc for immediate retries */
1240 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1241 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1242 ec_mc = 3;
1243 else
1244 ec_mc = 1;
1245 } else {
1246 if (dbg_hc(chan))
1247 dev_vdbg(hsotg->dev, "no split\n");
1248 /*
1249 * Ensure that the transfer length and packet count will fit
1250 * in the widths allocated for them in the HCTSIZn register
1251 */
1252 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1253 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1254 /*
1255 * Make sure the transfer size is no larger than one
1256 * (micro)frame's worth of data. (A check was done
1257 * when the periodic transfer was accepted to ensure
1258 * that a (micro)frame's worth of data can be
1259 * programmed into a channel.)
1260 */
1261 u32 max_periodic_len =
1262 chan->multi_count * chan->max_packet;
1263
1264 if (chan->xfer_len > max_periodic_len)
1265 chan->xfer_len = max_periodic_len;
1266 } else if (chan->xfer_len > max_hc_xfer_size) {
1267 /*
1268 * Make sure that xfer_len is a multiple of max packet
1269 * size
1270 */
1271 chan->xfer_len =
1272 max_hc_xfer_size - chan->max_packet + 1;
1273 }
1274
1275 if (chan->xfer_len > 0) {
1276 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1277 chan->max_packet;
1278 if (num_packets > max_hc_pkt_count) {
1279 num_packets = max_hc_pkt_count;
1280 chan->xfer_len = num_packets * chan->max_packet;
1281 } else if (chan->ep_is_in) {
1282 /*
1283 * Always program an integral # of max packets
1284 * for IN transfers.
1285 * Note: This assumes that the input buffer is
1286 * aligned and sized accordingly.
1287 */
1288 chan->xfer_len = num_packets * chan->max_packet;
1289 }
1290 } else {
1291 /* Need 1 packet for transfer length of 0 */
1292 num_packets = 1;
1293 }
1294
1295 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1296 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1297 /*
1298 * Make sure that the multi_count field matches the
1299 * actual transfer length
1300 */
1301 chan->multi_count = num_packets;
1302
1303 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1304 dwc2_set_pid_isoc(chan);
1305
1306 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1307 TSIZ_XFERSIZE_MASK;
1308
1309 /* The ec_mc gets the multi_count for non-split */
1310 ec_mc = chan->multi_count;
1311 }
1312
1313 chan->start_pkt_count = num_packets;
1314 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1315 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1316 TSIZ_SC_MC_PID_MASK;
1317 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1318 if (dbg_hc(chan)) {
1319 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1320 hctsiz, chan->hc_num);
1321
1322 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1323 chan->hc_num);
1324 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
1325 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1326 TSIZ_XFERSIZE_SHIFT);
1327 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
1328 (hctsiz & TSIZ_PKTCNT_MASK) >>
1329 TSIZ_PKTCNT_SHIFT);
1330 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1331 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1332 TSIZ_SC_MC_PID_SHIFT);
1333 }
1334
1335 if (hsotg->params.host_dma) {
1336 dma_addr_t dma_addr;
1337
1338 if (chan->align_buf) {
1339 if (dbg_hc(chan))
1340 dev_vdbg(hsotg->dev, "align_buf\n");
1341 dma_addr = chan->align_buf;
1342 } else {
1343 dma_addr = chan->xfer_dma;
1344 }
1345 dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1346
1347 if (dbg_hc(chan))
1348 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1349 (unsigned long)dma_addr, chan->hc_num);
1350 }
1351
1352 /* Start the split */
1353 if (chan->do_split) {
1354 u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1355
1356 hcsplt |= HCSPLT_SPLTENA;
1357 dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1358 }
1359
1360 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1361 hcchar &= ~HCCHAR_MULTICNT_MASK;
1362 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1363 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1364
1365 if (hcchar & HCCHAR_CHDIS)
1366 dev_warn(hsotg->dev,
1367 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1368 __func__, chan->hc_num, hcchar);
1369
1370 /* Set host channel enable after all other setup is complete */
1371 hcchar |= HCCHAR_CHENA;
1372 hcchar &= ~HCCHAR_CHDIS;
1373
1374 if (dbg_hc(chan))
1375 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1376 (hcchar & HCCHAR_MULTICNT_MASK) >>
1377 HCCHAR_MULTICNT_SHIFT);
1378
1379 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1380 if (dbg_hc(chan))
1381 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1382 chan->hc_num);
1383
1384 chan->xfer_started = 1;
1385 chan->requests++;
1386
1387 if (!hsotg->params.host_dma &&
1388 !chan->ep_is_in && chan->xfer_len > 0)
1389 /* Load OUT packet into the appropriate Tx FIFO */
1390 dwc2_hc_write_packet(hsotg, chan);
1391 }
1392
1393 /**
1394 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1395 * host channel and starts the transfer in Descriptor DMA mode
1396 *
1397 * @hsotg: Programming view of DWC_otg controller
1398 * @chan: Information needed to initialize the host channel
1399 *
1400 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1401 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1402 * with micro-frame bitmap.
1403 *
1404 * Initializes HCDMA register with descriptor list address and CTD value then
1405 * starts the transfer via enabling the channel.
1406 */
dwc2_hc_start_transfer_ddma(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1407 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1408 struct dwc2_host_chan *chan)
1409 {
1410 u32 hcchar;
1411 u32 hctsiz = 0;
1412
1413 if (chan->do_ping)
1414 hctsiz |= TSIZ_DOPNG;
1415
1416 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1417 dwc2_set_pid_isoc(chan);
1418
1419 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1420 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1421 TSIZ_SC_MC_PID_MASK;
1422
1423 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1424 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1425
1426 /* Non-zero only for high-speed interrupt endpoints */
1427 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1428
1429 if (dbg_hc(chan)) {
1430 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1431 chan->hc_num);
1432 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1433 chan->data_pid_start);
1434 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
1435 }
1436
1437 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1438
1439 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1440 chan->desc_list_sz, DMA_TO_DEVICE);
1441
1442 dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1443
1444 if (dbg_hc(chan))
1445 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1446 &chan->desc_list_addr, chan->hc_num);
1447
1448 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1449 hcchar &= ~HCCHAR_MULTICNT_MASK;
1450 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1451 HCCHAR_MULTICNT_MASK;
1452
1453 if (hcchar & HCCHAR_CHDIS)
1454 dev_warn(hsotg->dev,
1455 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1456 __func__, chan->hc_num, hcchar);
1457
1458 /* Set host channel enable after all other setup is complete */
1459 hcchar |= HCCHAR_CHENA;
1460 hcchar &= ~HCCHAR_CHDIS;
1461
1462 if (dbg_hc(chan))
1463 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1464 (hcchar & HCCHAR_MULTICNT_MASK) >>
1465 HCCHAR_MULTICNT_SHIFT);
1466
1467 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1468 if (dbg_hc(chan))
1469 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1470 chan->hc_num);
1471
1472 chan->xfer_started = 1;
1473 chan->requests++;
1474 }
1475
1476 /**
1477 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1478 * a previous call to dwc2_hc_start_transfer()
1479 *
1480 * @hsotg: Programming view of DWC_otg controller
1481 * @chan: Information needed to initialize the host channel
1482 *
1483 * The caller must ensure there is sufficient space in the request queue and Tx
1484 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1485 * the controller acts autonomously to complete transfers programmed to a host
1486 * channel.
1487 *
1488 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1489 * if there is any data remaining to be queued. For an IN transfer, another
1490 * data packet is always requested. For the SETUP phase of a control transfer,
1491 * this function does nothing.
1492 *
1493 * Return: 1 if a new request is queued, 0 if no more requests are required
1494 * for this transfer
1495 */
dwc2_hc_continue_transfer(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1496 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1497 struct dwc2_host_chan *chan)
1498 {
1499 if (dbg_hc(chan))
1500 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1501 chan->hc_num);
1502
1503 if (chan->do_split)
1504 /* SPLITs always queue just once per channel */
1505 return 0;
1506
1507 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1508 /* SETUPs are queued only once since they can't be NAK'd */
1509 return 0;
1510
1511 if (chan->ep_is_in) {
1512 /*
1513 * Always queue another request for other IN transfers. If
1514 * back-to-back INs are issued and NAKs are received for both,
1515 * the driver may still be processing the first NAK when the
1516 * second NAK is received. When the interrupt handler clears
1517 * the NAK interrupt for the first NAK, the second NAK will
1518 * not be seen. So we can't depend on the NAK interrupt
1519 * handler to requeue a NAK'd request. Instead, IN requests
1520 * are issued each time this function is called. When the
1521 * transfer completes, the extra requests for the channel will
1522 * be flushed.
1523 */
1524 u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1525
1526 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1527 hcchar |= HCCHAR_CHENA;
1528 hcchar &= ~HCCHAR_CHDIS;
1529 if (dbg_hc(chan))
1530 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
1531 hcchar);
1532 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1533 chan->requests++;
1534 return 1;
1535 }
1536
1537 /* OUT transfers */
1538
1539 if (chan->xfer_count < chan->xfer_len) {
1540 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1541 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1542 u32 hcchar = dwc2_readl(hsotg,
1543 HCCHAR(chan->hc_num));
1544
1545 dwc2_hc_set_even_odd_frame(hsotg, chan,
1546 &hcchar);
1547 }
1548
1549 /* Load OUT packet into the appropriate Tx FIFO */
1550 dwc2_hc_write_packet(hsotg, chan);
1551 chan->requests++;
1552 return 1;
1553 }
1554
1555 return 0;
1556 }
1557
1558 /*
1559 * =========================================================================
1560 * HCD
1561 * =========================================================================
1562 */
1563
1564 /*
1565 * Processes all the URBs in a single list of QHs. Completes them with
1566 * -ETIMEDOUT and frees the QTD.
1567 *
1568 * Must be called with interrupt disabled and spinlock held
1569 */
dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg * hsotg,struct list_head * qh_list)1570 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1571 struct list_head *qh_list)
1572 {
1573 struct dwc2_qh *qh, *qh_tmp;
1574 struct dwc2_qtd *qtd, *qtd_tmp;
1575
1576 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1577 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1578 qtd_list_entry) {
1579 dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1580 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1581 }
1582 }
1583 }
1584
dwc2_qh_list_free(struct dwc2_hsotg * hsotg,struct list_head * qh_list)1585 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1586 struct list_head *qh_list)
1587 {
1588 struct dwc2_qtd *qtd, *qtd_tmp;
1589 struct dwc2_qh *qh, *qh_tmp;
1590 unsigned long flags;
1591
1592 if (!qh_list->next)
1593 /* The list hasn't been initialized yet */
1594 return;
1595
1596 spin_lock_irqsave(&hsotg->lock, flags);
1597
1598 /* Ensure there are no QTDs or URBs left */
1599 dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1600
1601 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1602 dwc2_hcd_qh_unlink(hsotg, qh);
1603
1604 /* Free each QTD in the QH's QTD list */
1605 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1606 qtd_list_entry)
1607 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1608
1609 if (qh->channel && qh->channel->qh == qh)
1610 qh->channel->qh = NULL;
1611
1612 spin_unlock_irqrestore(&hsotg->lock, flags);
1613 dwc2_hcd_qh_free(hsotg, qh);
1614 spin_lock_irqsave(&hsotg->lock, flags);
1615 }
1616
1617 spin_unlock_irqrestore(&hsotg->lock, flags);
1618 }
1619
1620 /*
1621 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1622 * and periodic schedules. The QTD associated with each URB is removed from
1623 * the schedule and freed. This function may be called when a disconnect is
1624 * detected or when the HCD is being stopped.
1625 *
1626 * Must be called with interrupt disabled and spinlock held
1627 */
dwc2_kill_all_urbs(struct dwc2_hsotg * hsotg)1628 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1629 {
1630 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1631 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1632 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1633 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1634 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1635 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1636 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1637 }
1638
1639 /**
1640 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1641 *
1642 * @hsotg: Pointer to struct dwc2_hsotg
1643 */
dwc2_hcd_start(struct dwc2_hsotg * hsotg)1644 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1645 {
1646 u32 hprt0;
1647
1648 if (hsotg->op_state == OTG_STATE_B_HOST) {
1649 /*
1650 * Reset the port. During a HNP mode switch the reset
1651 * needs to occur within 1ms and have a duration of at
1652 * least 50ms.
1653 */
1654 hprt0 = dwc2_read_hprt0(hsotg);
1655 hprt0 |= HPRT0_RST;
1656 dwc2_writel(hsotg, hprt0, HPRT0);
1657 }
1658
1659 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1660 msecs_to_jiffies(50));
1661 }
1662
1663 /* Must be called with interrupt disabled and spinlock held */
dwc2_hcd_cleanup_channels(struct dwc2_hsotg * hsotg)1664 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1665 {
1666 int num_channels = hsotg->params.host_channels;
1667 struct dwc2_host_chan *channel;
1668 u32 hcchar;
1669 int i;
1670
1671 if (!hsotg->params.host_dma) {
1672 /* Flush out any channel requests in slave mode */
1673 for (i = 0; i < num_channels; i++) {
1674 channel = hsotg->hc_ptr_array[i];
1675 if (!list_empty(&channel->hc_list_entry))
1676 continue;
1677 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1678 if (hcchar & HCCHAR_CHENA) {
1679 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1680 hcchar |= HCCHAR_CHDIS;
1681 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1682 }
1683 }
1684 }
1685
1686 for (i = 0; i < num_channels; i++) {
1687 channel = hsotg->hc_ptr_array[i];
1688 if (!list_empty(&channel->hc_list_entry))
1689 continue;
1690 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1691 if (hcchar & HCCHAR_CHENA) {
1692 /* Halt the channel */
1693 hcchar |= HCCHAR_CHDIS;
1694 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1695 }
1696
1697 dwc2_hc_cleanup(hsotg, channel);
1698 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1699 /*
1700 * Added for Descriptor DMA to prevent channel double cleanup in
1701 * release_channel_ddma(), which is called from ep_disable when
1702 * device disconnects
1703 */
1704 channel->qh = NULL;
1705 }
1706 /* All channels have been freed, mark them available */
1707 if (hsotg->params.uframe_sched) {
1708 hsotg->available_host_channels =
1709 hsotg->params.host_channels;
1710 } else {
1711 hsotg->non_periodic_channels = 0;
1712 hsotg->periodic_channels = 0;
1713 }
1714 }
1715
1716 /**
1717 * dwc2_hcd_connect() - Handles connect of the HCD
1718 *
1719 * @hsotg: Pointer to struct dwc2_hsotg
1720 *
1721 * Must be called with interrupt disabled and spinlock held
1722 */
dwc2_hcd_connect(struct dwc2_hsotg * hsotg)1723 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1724 {
1725 if (hsotg->lx_state != DWC2_L0)
1726 usb_hcd_resume_root_hub(hsotg->priv);
1727
1728 hsotg->flags.b.port_connect_status_change = 1;
1729 hsotg->flags.b.port_connect_status = 1;
1730 }
1731
1732 /**
1733 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1734 *
1735 * @hsotg: Pointer to struct dwc2_hsotg
1736 * @force: If true, we won't try to reconnect even if we see device connected.
1737 *
1738 * Must be called with interrupt disabled and spinlock held
1739 */
dwc2_hcd_disconnect(struct dwc2_hsotg * hsotg,bool force)1740 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1741 {
1742 u32 intr;
1743 u32 hprt0;
1744
1745 /* Set status flags for the hub driver */
1746 hsotg->flags.b.port_connect_status_change = 1;
1747 hsotg->flags.b.port_connect_status = 0;
1748
1749 /*
1750 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1751 * interrupt mask and status bits and disabling subsequent host
1752 * channel interrupts.
1753 */
1754 intr = dwc2_readl(hsotg, GINTMSK);
1755 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1756 dwc2_writel(hsotg, intr, GINTMSK);
1757 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1758 dwc2_writel(hsotg, intr, GINTSTS);
1759
1760 /*
1761 * Turn off the vbus power only if the core has transitioned to device
1762 * mode. If still in host mode, need to keep power on to detect a
1763 * reconnection.
1764 */
1765 if (dwc2_is_device_mode(hsotg)) {
1766 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1767 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1768 dwc2_writel(hsotg, 0, HPRT0);
1769 }
1770
1771 dwc2_disable_host_interrupts(hsotg);
1772 }
1773
1774 /* Respond with an error status to all URBs in the schedule */
1775 dwc2_kill_all_urbs(hsotg);
1776
1777 if (dwc2_is_host_mode(hsotg))
1778 /* Clean up any host channels that were in use */
1779 dwc2_hcd_cleanup_channels(hsotg);
1780
1781 dwc2_host_disconnect(hsotg);
1782
1783 /*
1784 * Add an extra check here to see if we're actually connected but
1785 * we don't have a detection interrupt pending. This can happen if:
1786 * 1. hardware sees connect
1787 * 2. hardware sees disconnect
1788 * 3. hardware sees connect
1789 * 4. dwc2_port_intr() - clears connect interrupt
1790 * 5. dwc2_handle_common_intr() - calls here
1791 *
1792 * Without the extra check here we will end calling disconnect
1793 * and won't get any future interrupts to handle the connect.
1794 */
1795 if (!force) {
1796 hprt0 = dwc2_readl(hsotg, HPRT0);
1797 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1798 dwc2_hcd_connect(hsotg);
1799 }
1800 }
1801
1802 /**
1803 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1804 *
1805 * @hsotg: Pointer to struct dwc2_hsotg
1806 */
dwc2_hcd_rem_wakeup(struct dwc2_hsotg * hsotg)1807 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1808 {
1809 if (hsotg->bus_suspended) {
1810 hsotg->flags.b.port_suspend_change = 1;
1811 usb_hcd_resume_root_hub(hsotg->priv);
1812 }
1813
1814 if (hsotg->lx_state == DWC2_L1)
1815 hsotg->flags.b.port_l1_change = 1;
1816 }
1817
1818 /**
1819 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1820 *
1821 * @hsotg: Pointer to struct dwc2_hsotg
1822 *
1823 * Must be called with interrupt disabled and spinlock held
1824 */
dwc2_hcd_stop(struct dwc2_hsotg * hsotg)1825 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1826 {
1827 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1828
1829 /*
1830 * The root hub should be disconnected before this function is called.
1831 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1832 * and the QH lists (via ..._hcd_endpoint_disable).
1833 */
1834
1835 /* Turn off all host-specific interrupts */
1836 dwc2_disable_host_interrupts(hsotg);
1837
1838 /* Turn off the vbus power */
1839 dev_dbg(hsotg->dev, "PortPower off\n");
1840 dwc2_writel(hsotg, 0, HPRT0);
1841 }
1842
1843 /* Caller must hold driver lock */
dwc2_hcd_urb_enqueue(struct dwc2_hsotg * hsotg,struct dwc2_hcd_urb * urb,struct dwc2_qh * qh,struct dwc2_qtd * qtd)1844 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1845 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1846 struct dwc2_qtd *qtd)
1847 {
1848 u32 intr_mask;
1849 int retval;
1850 int dev_speed;
1851
1852 if (!hsotg->flags.b.port_connect_status) {
1853 /* No longer connected */
1854 dev_err(hsotg->dev, "Not connected\n");
1855 return -ENODEV;
1856 }
1857
1858 dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1859
1860 /* Some configurations cannot support LS traffic on a FS root port */
1861 if ((dev_speed == USB_SPEED_LOW) &&
1862 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1863 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1864 u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1865 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1866
1867 if (prtspd == HPRT0_SPD_FULL_SPEED)
1868 return -ENODEV;
1869 }
1870
1871 if (!qtd)
1872 return -EINVAL;
1873
1874 dwc2_hcd_qtd_init(qtd, urb);
1875 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1876 if (retval) {
1877 dev_err(hsotg->dev,
1878 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1879 retval);
1880 return retval;
1881 }
1882
1883 intr_mask = dwc2_readl(hsotg, GINTMSK);
1884 if (!(intr_mask & GINTSTS_SOF)) {
1885 enum dwc2_transaction_type tr_type;
1886
1887 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1888 !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1889 /*
1890 * Do not schedule SG transactions until qtd has
1891 * URB_GIVEBACK_ASAP set
1892 */
1893 return 0;
1894
1895 tr_type = dwc2_hcd_select_transactions(hsotg);
1896 if (tr_type != DWC2_TRANSACTION_NONE)
1897 dwc2_hcd_queue_transactions(hsotg, tr_type);
1898 }
1899
1900 return 0;
1901 }
1902
1903 /* Must be called with interrupt disabled and spinlock held */
dwc2_hcd_urb_dequeue(struct dwc2_hsotg * hsotg,struct dwc2_hcd_urb * urb)1904 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1905 struct dwc2_hcd_urb *urb)
1906 {
1907 struct dwc2_qh *qh;
1908 struct dwc2_qtd *urb_qtd;
1909
1910 urb_qtd = urb->qtd;
1911 if (!urb_qtd) {
1912 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1913 return -EINVAL;
1914 }
1915
1916 qh = urb_qtd->qh;
1917 if (!qh) {
1918 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1919 return -EINVAL;
1920 }
1921
1922 urb->priv = NULL;
1923
1924 if (urb_qtd->in_process && qh->channel) {
1925 dwc2_dump_channel_info(hsotg, qh->channel);
1926
1927 /* The QTD is in process (it has been assigned to a channel) */
1928 if (hsotg->flags.b.port_connect_status)
1929 /*
1930 * If still connected (i.e. in host mode), halt the
1931 * channel so it can be used for other transfers. If
1932 * no longer connected, the host registers can't be
1933 * written to halt the channel since the core is in
1934 * device mode.
1935 */
1936 dwc2_hc_halt(hsotg, qh->channel,
1937 DWC2_HC_XFER_URB_DEQUEUE);
1938 }
1939
1940 /*
1941 * Free the QTD and clean up the associated QH. Leave the QH in the
1942 * schedule if it has any remaining QTDs.
1943 */
1944 if (!hsotg->params.dma_desc_enable) {
1945 u8 in_process = urb_qtd->in_process;
1946
1947 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1948 if (in_process) {
1949 dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1950 qh->channel = NULL;
1951 } else if (list_empty(&qh->qtd_list)) {
1952 dwc2_hcd_qh_unlink(hsotg, qh);
1953 }
1954 } else {
1955 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1956 }
1957
1958 return 0;
1959 }
1960
1961 /* Must NOT be called with interrupt disabled or spinlock held */
dwc2_hcd_endpoint_disable(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep,int retry)1962 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1963 struct usb_host_endpoint *ep, int retry)
1964 {
1965 struct dwc2_qtd *qtd, *qtd_tmp;
1966 struct dwc2_qh *qh;
1967 unsigned long flags;
1968 int rc;
1969
1970 spin_lock_irqsave(&hsotg->lock, flags);
1971
1972 qh = ep->hcpriv;
1973 if (!qh) {
1974 rc = -EINVAL;
1975 goto err;
1976 }
1977
1978 while (!list_empty(&qh->qtd_list) && retry--) {
1979 if (retry == 0) {
1980 dev_err(hsotg->dev,
1981 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
1982 rc = -EBUSY;
1983 goto err;
1984 }
1985
1986 spin_unlock_irqrestore(&hsotg->lock, flags);
1987 msleep(20);
1988 spin_lock_irqsave(&hsotg->lock, flags);
1989 qh = ep->hcpriv;
1990 if (!qh) {
1991 rc = -EINVAL;
1992 goto err;
1993 }
1994 }
1995
1996 dwc2_hcd_qh_unlink(hsotg, qh);
1997
1998 /* Free each QTD in the QH's QTD list */
1999 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2000 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2001
2002 ep->hcpriv = NULL;
2003
2004 if (qh->channel && qh->channel->qh == qh)
2005 qh->channel->qh = NULL;
2006
2007 spin_unlock_irqrestore(&hsotg->lock, flags);
2008
2009 dwc2_hcd_qh_free(hsotg, qh);
2010
2011 return 0;
2012
2013 err:
2014 ep->hcpriv = NULL;
2015 spin_unlock_irqrestore(&hsotg->lock, flags);
2016
2017 return rc;
2018 }
2019
2020 /* Must be called with interrupt disabled and spinlock held */
dwc2_hcd_endpoint_reset(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep)2021 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2022 struct usb_host_endpoint *ep)
2023 {
2024 struct dwc2_qh *qh = ep->hcpriv;
2025
2026 if (!qh)
2027 return -EINVAL;
2028
2029 qh->data_toggle = DWC2_HC_PID_DATA0;
2030
2031 return 0;
2032 }
2033
2034 /**
2035 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2036 * prepares the core for device mode or host mode operation
2037 *
2038 * @hsotg: Programming view of the DWC_otg controller
2039 * @initial_setup: If true then this is the first init for this instance.
2040 */
dwc2_core_init(struct dwc2_hsotg * hsotg,bool initial_setup)2041 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2042 {
2043 u32 usbcfg, otgctl;
2044 int retval;
2045
2046 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2047
2048 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2049
2050 /* Set ULPI External VBUS bit if needed */
2051 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2052 if (hsotg->params.phy_ulpi_ext_vbus)
2053 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2054
2055 /* Set external TS Dline pulsing bit if needed */
2056 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2057 if (hsotg->params.ts_dline)
2058 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2059
2060 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2061
2062 /*
2063 * Reset the Controller
2064 *
2065 * We only need to reset the controller if this is a re-init.
2066 * For the first init we know for sure that earlier code reset us (it
2067 * needed to in order to properly detect various parameters).
2068 */
2069 if (!initial_setup) {
2070 retval = dwc2_core_reset(hsotg, false);
2071 if (retval) {
2072 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2073 __func__);
2074 return retval;
2075 }
2076 }
2077
2078 /*
2079 * This needs to happen in FS mode before any other programming occurs
2080 */
2081 retval = dwc2_phy_init(hsotg, initial_setup);
2082 if (retval)
2083 return retval;
2084
2085 /* Program the GAHBCFG Register */
2086 retval = dwc2_gahbcfg_init(hsotg);
2087 if (retval)
2088 return retval;
2089
2090 /* Program the GUSBCFG register */
2091 dwc2_gusbcfg_init(hsotg);
2092
2093 /* Program the GOTGCTL register */
2094 otgctl = dwc2_readl(hsotg, GOTGCTL);
2095 otgctl &= ~GOTGCTL_OTGVER;
2096 dwc2_writel(hsotg, otgctl, GOTGCTL);
2097
2098 /* Clear the SRP success bit for FS-I2c */
2099 hsotg->srp_success = 0;
2100
2101 /* Enable common interrupts */
2102 dwc2_enable_common_interrupts(hsotg);
2103
2104 /*
2105 * Do device or host initialization based on mode during PCD and
2106 * HCD initialization
2107 */
2108 if (dwc2_is_host_mode(hsotg)) {
2109 dev_dbg(hsotg->dev, "Host Mode\n");
2110 hsotg->op_state = OTG_STATE_A_HOST;
2111 } else {
2112 dev_dbg(hsotg->dev, "Device Mode\n");
2113 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2114 }
2115
2116 return 0;
2117 }
2118
2119 /**
2120 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2121 * Host mode
2122 *
2123 * @hsotg: Programming view of DWC_otg controller
2124 *
2125 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2126 * request queues. Host channels are reset to ensure that they are ready for
2127 * performing transfers.
2128 */
dwc2_core_host_init(struct dwc2_hsotg * hsotg)2129 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2130 {
2131 u32 hcfg, hfir, otgctl, usbcfg;
2132
2133 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2134
2135 /* Set HS/FS Timeout Calibration to 7 (max available value).
2136 * The number of PHY clocks that the application programs in
2137 * this field is added to the high/full speed interpacket timeout
2138 * duration in the core to account for any additional delays
2139 * introduced by the PHY. This can be required, because the delay
2140 * introduced by the PHY in generating the linestate condition
2141 * can vary from one PHY to another.
2142 */
2143 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2144 usbcfg |= GUSBCFG_TOUTCAL(7);
2145 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2146
2147 /* Restart the Phy Clock */
2148 dwc2_writel(hsotg, 0, PCGCTL);
2149
2150 /* Initialize Host Configuration Register */
2151 dwc2_init_fs_ls_pclk_sel(hsotg);
2152 if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2153 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2154 hcfg = dwc2_readl(hsotg, HCFG);
2155 hcfg |= HCFG_FSLSSUPP;
2156 dwc2_writel(hsotg, hcfg, HCFG);
2157 }
2158
2159 /*
2160 * This bit allows dynamic reloading of the HFIR register during
2161 * runtime. This bit needs to be programmed during initial configuration
2162 * and its value must not be changed during runtime.
2163 */
2164 if (hsotg->params.reload_ctl) {
2165 hfir = dwc2_readl(hsotg, HFIR);
2166 hfir |= HFIR_RLDCTRL;
2167 dwc2_writel(hsotg, hfir, HFIR);
2168 }
2169
2170 if (hsotg->params.dma_desc_enable) {
2171 u32 op_mode = hsotg->hw_params.op_mode;
2172
2173 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2174 !hsotg->hw_params.dma_desc_enable ||
2175 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2176 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2177 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2178 dev_err(hsotg->dev,
2179 "Hardware does not support descriptor DMA mode -\n");
2180 dev_err(hsotg->dev,
2181 "falling back to buffer DMA mode.\n");
2182 hsotg->params.dma_desc_enable = false;
2183 } else {
2184 hcfg = dwc2_readl(hsotg, HCFG);
2185 hcfg |= HCFG_DESCDMA;
2186 dwc2_writel(hsotg, hcfg, HCFG);
2187 }
2188 }
2189
2190 /* Configure data FIFO sizes */
2191 dwc2_config_fifos(hsotg);
2192
2193 /* TODO - check this */
2194 /* Clear Host Set HNP Enable in the OTG Control Register */
2195 otgctl = dwc2_readl(hsotg, GOTGCTL);
2196 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2197 dwc2_writel(hsotg, otgctl, GOTGCTL);
2198
2199 /* Make sure the FIFOs are flushed */
2200 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2201 dwc2_flush_rx_fifo(hsotg);
2202
2203 /* Clear Host Set HNP Enable in the OTG Control Register */
2204 otgctl = dwc2_readl(hsotg, GOTGCTL);
2205 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2206 dwc2_writel(hsotg, otgctl, GOTGCTL);
2207
2208 if (!hsotg->params.dma_desc_enable) {
2209 int num_channels, i;
2210 u32 hcchar;
2211
2212 /* Flush out any leftover queued requests */
2213 num_channels = hsotg->params.host_channels;
2214 for (i = 0; i < num_channels; i++) {
2215 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2216 if (hcchar & HCCHAR_CHENA) {
2217 hcchar &= ~HCCHAR_CHENA;
2218 hcchar |= HCCHAR_CHDIS;
2219 hcchar &= ~HCCHAR_EPDIR;
2220 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2221 }
2222 }
2223
2224 /* Halt all channels to put them into a known state */
2225 for (i = 0; i < num_channels; i++) {
2226 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2227 if (hcchar & HCCHAR_CHENA) {
2228 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2229 hcchar &= ~HCCHAR_EPDIR;
2230 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2231 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2232 __func__, i);
2233
2234 if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2235 HCCHAR_CHENA,
2236 1000)) {
2237 dev_warn(hsotg->dev,
2238 "Unable to clear enable on channel %d\n",
2239 i);
2240 }
2241 }
2242 }
2243 }
2244
2245 /* Enable ACG feature in host mode, if supported */
2246 dwc2_enable_acg(hsotg);
2247
2248 /* Turn on the vbus power */
2249 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2250 if (hsotg->op_state == OTG_STATE_A_HOST) {
2251 u32 hprt0 = dwc2_read_hprt0(hsotg);
2252
2253 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2254 !!(hprt0 & HPRT0_PWR));
2255 if (!(hprt0 & HPRT0_PWR)) {
2256 hprt0 |= HPRT0_PWR;
2257 dwc2_writel(hsotg, hprt0, HPRT0);
2258 }
2259 }
2260
2261 dwc2_enable_host_interrupts(hsotg);
2262 }
2263
2264 /*
2265 * Initializes dynamic portions of the DWC_otg HCD state
2266 *
2267 * Must be called with interrupt disabled and spinlock held
2268 */
dwc2_hcd_reinit(struct dwc2_hsotg * hsotg)2269 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2270 {
2271 struct dwc2_host_chan *chan, *chan_tmp;
2272 int num_channels;
2273 int i;
2274
2275 hsotg->flags.d32 = 0;
2276 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2277
2278 if (hsotg->params.uframe_sched) {
2279 hsotg->available_host_channels =
2280 hsotg->params.host_channels;
2281 } else {
2282 hsotg->non_periodic_channels = 0;
2283 hsotg->periodic_channels = 0;
2284 }
2285
2286 /*
2287 * Put all channels in the free channel list and clean up channel
2288 * states
2289 */
2290 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2291 hc_list_entry)
2292 list_del_init(&chan->hc_list_entry);
2293
2294 num_channels = hsotg->params.host_channels;
2295 for (i = 0; i < num_channels; i++) {
2296 chan = hsotg->hc_ptr_array[i];
2297 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2298 dwc2_hc_cleanup(hsotg, chan);
2299 }
2300
2301 /* Initialize the DWC core for host mode operation */
2302 dwc2_core_host_init(hsotg);
2303 }
2304
dwc2_hc_init_split(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,struct dwc2_qtd * qtd,struct dwc2_hcd_urb * urb)2305 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2306 struct dwc2_host_chan *chan,
2307 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2308 {
2309 int hub_addr, hub_port;
2310
2311 chan->do_split = 1;
2312 chan->xact_pos = qtd->isoc_split_pos;
2313 chan->complete_split = qtd->complete_split;
2314 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2315 chan->hub_addr = (u8)hub_addr;
2316 chan->hub_port = (u8)hub_port;
2317 }
2318
dwc2_hc_init_xfer(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,struct dwc2_qtd * qtd)2319 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2320 struct dwc2_host_chan *chan,
2321 struct dwc2_qtd *qtd)
2322 {
2323 struct dwc2_hcd_urb *urb = qtd->urb;
2324 struct dwc2_hcd_iso_packet_desc *frame_desc;
2325
2326 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2327 case USB_ENDPOINT_XFER_CONTROL:
2328 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2329
2330 switch (qtd->control_phase) {
2331 case DWC2_CONTROL_SETUP:
2332 dev_vdbg(hsotg->dev, " Control setup transaction\n");
2333 chan->do_ping = 0;
2334 chan->ep_is_in = 0;
2335 chan->data_pid_start = DWC2_HC_PID_SETUP;
2336 if (hsotg->params.host_dma)
2337 chan->xfer_dma = urb->setup_dma;
2338 else
2339 chan->xfer_buf = urb->setup_packet;
2340 chan->xfer_len = 8;
2341 break;
2342
2343 case DWC2_CONTROL_DATA:
2344 dev_vdbg(hsotg->dev, " Control data transaction\n");
2345 chan->data_pid_start = qtd->data_toggle;
2346 break;
2347
2348 case DWC2_CONTROL_STATUS:
2349 /*
2350 * Direction is opposite of data direction or IN if no
2351 * data
2352 */
2353 dev_vdbg(hsotg->dev, " Control status transaction\n");
2354 if (urb->length == 0)
2355 chan->ep_is_in = 1;
2356 else
2357 chan->ep_is_in =
2358 dwc2_hcd_is_pipe_out(&urb->pipe_info);
2359 if (chan->ep_is_in)
2360 chan->do_ping = 0;
2361 chan->data_pid_start = DWC2_HC_PID_DATA1;
2362 chan->xfer_len = 0;
2363 if (hsotg->params.host_dma)
2364 chan->xfer_dma = hsotg->status_buf_dma;
2365 else
2366 chan->xfer_buf = hsotg->status_buf;
2367 break;
2368 }
2369 break;
2370
2371 case USB_ENDPOINT_XFER_BULK:
2372 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2373 break;
2374
2375 case USB_ENDPOINT_XFER_INT:
2376 chan->ep_type = USB_ENDPOINT_XFER_INT;
2377 break;
2378
2379 case USB_ENDPOINT_XFER_ISOC:
2380 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2381 if (hsotg->params.dma_desc_enable)
2382 break;
2383
2384 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2385 frame_desc->status = 0;
2386
2387 if (hsotg->params.host_dma) {
2388 chan->xfer_dma = urb->dma;
2389 chan->xfer_dma += frame_desc->offset +
2390 qtd->isoc_split_offset;
2391 } else {
2392 chan->xfer_buf = urb->buf;
2393 chan->xfer_buf += frame_desc->offset +
2394 qtd->isoc_split_offset;
2395 }
2396
2397 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2398
2399 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2400 if (chan->xfer_len <= 188)
2401 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2402 else
2403 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2404 }
2405 break;
2406 }
2407 }
2408
dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,struct dwc2_host_chan * chan)2409 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2410 struct dwc2_qh *qh,
2411 struct dwc2_host_chan *chan)
2412 {
2413 if (!hsotg->unaligned_cache ||
2414 chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2415 return -ENOMEM;
2416
2417 if (!qh->dw_align_buf) {
2418 qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2419 GFP_ATOMIC | GFP_DMA);
2420 if (!qh->dw_align_buf)
2421 return -ENOMEM;
2422 }
2423
2424 qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2425 DWC2_KMEM_UNALIGNED_BUF_SIZE,
2426 DMA_FROM_DEVICE);
2427
2428 if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2429 dev_err(hsotg->dev, "can't map align_buf\n");
2430 chan->align_buf = 0;
2431 return -EINVAL;
2432 }
2433
2434 chan->align_buf = qh->dw_align_buf_dma;
2435 return 0;
2436 }
2437
2438 #define DWC2_USB_DMA_ALIGN 4
2439
dwc2_free_dma_aligned_buffer(struct urb * urb)2440 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2441 {
2442 void *stored_xfer_buffer;
2443 size_t length;
2444
2445 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2446 return;
2447
2448 /* Restore urb->transfer_buffer from the end of the allocated area */
2449 memcpy(&stored_xfer_buffer,
2450 PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2451 dma_get_cache_alignment()),
2452 sizeof(urb->transfer_buffer));
2453
2454 if (usb_urb_dir_in(urb)) {
2455 if (usb_pipeisoc(urb->pipe))
2456 length = urb->transfer_buffer_length;
2457 else
2458 length = urb->actual_length;
2459
2460 memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2461 }
2462 kfree(urb->transfer_buffer);
2463 urb->transfer_buffer = stored_xfer_buffer;
2464
2465 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2466 }
2467
dwc2_alloc_dma_aligned_buffer(struct urb * urb,gfp_t mem_flags)2468 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2469 {
2470 void *kmalloc_ptr;
2471 size_t kmalloc_size;
2472
2473 if (urb->num_sgs || urb->sg ||
2474 urb->transfer_buffer_length == 0 ||
2475 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2476 return 0;
2477
2478 /*
2479 * Allocate a buffer with enough padding for original transfer_buffer
2480 * pointer. This allocation is guaranteed to be aligned properly for
2481 * DMA
2482 */
2483 kmalloc_size = urb->transfer_buffer_length +
2484 (dma_get_cache_alignment() - 1) +
2485 sizeof(urb->transfer_buffer);
2486
2487 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2488 if (!kmalloc_ptr)
2489 return -ENOMEM;
2490
2491 /*
2492 * Position value of original urb->transfer_buffer pointer to the end
2493 * of allocation for later referencing
2494 */
2495 memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2496 dma_get_cache_alignment()),
2497 &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2498
2499 if (usb_urb_dir_out(urb))
2500 memcpy(kmalloc_ptr, urb->transfer_buffer,
2501 urb->transfer_buffer_length);
2502 urb->transfer_buffer = kmalloc_ptr;
2503
2504 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2505
2506 return 0;
2507 }
2508
dwc2_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)2509 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2510 gfp_t mem_flags)
2511 {
2512 int ret;
2513
2514 /* We assume setup_dma is always aligned; warn if not */
2515 WARN_ON_ONCE(urb->setup_dma &&
2516 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2517
2518 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2519 if (ret)
2520 return ret;
2521
2522 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2523 if (ret)
2524 dwc2_free_dma_aligned_buffer(urb);
2525
2526 return ret;
2527 }
2528
dwc2_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)2529 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2530 {
2531 usb_hcd_unmap_urb_for_dma(hcd, urb);
2532 dwc2_free_dma_aligned_buffer(urb);
2533 }
2534
2535 /**
2536 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2537 * channel and initializes the host channel to perform the transactions. The
2538 * host channel is removed from the free list.
2539 *
2540 * @hsotg: The HCD state structure
2541 * @qh: Transactions from the first QTD for this QH are selected and assigned
2542 * to a free host channel
2543 */
dwc2_assign_and_init_hc(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)2544 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2545 {
2546 struct dwc2_host_chan *chan;
2547 struct dwc2_hcd_urb *urb;
2548 struct dwc2_qtd *qtd;
2549
2550 if (dbg_qh(qh))
2551 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2552
2553 if (list_empty(&qh->qtd_list)) {
2554 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2555 return -ENOMEM;
2556 }
2557
2558 if (list_empty(&hsotg->free_hc_list)) {
2559 dev_dbg(hsotg->dev, "No free channel to assign\n");
2560 return -ENOMEM;
2561 }
2562
2563 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2564 hc_list_entry);
2565
2566 /* Remove host channel from free list */
2567 list_del_init(&chan->hc_list_entry);
2568
2569 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2570 urb = qtd->urb;
2571 qh->channel = chan;
2572 qtd->in_process = 1;
2573
2574 /*
2575 * Use usb_pipedevice to determine device address. This address is
2576 * 0 before the SET_ADDRESS command and the correct address afterward.
2577 */
2578 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2579 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2580 chan->speed = qh->dev_speed;
2581 chan->max_packet = qh->maxp;
2582
2583 chan->xfer_started = 0;
2584 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2585 chan->error_state = (qtd->error_count > 0);
2586 chan->halt_on_queue = 0;
2587 chan->halt_pending = 0;
2588 chan->requests = 0;
2589
2590 /*
2591 * The following values may be modified in the transfer type section
2592 * below. The xfer_len value may be reduced when the transfer is
2593 * started to accommodate the max widths of the XferSize and PktCnt
2594 * fields in the HCTSIZn register.
2595 */
2596
2597 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2598 if (chan->ep_is_in)
2599 chan->do_ping = 0;
2600 else
2601 chan->do_ping = qh->ping_state;
2602
2603 chan->data_pid_start = qh->data_toggle;
2604 chan->multi_count = 1;
2605
2606 if (urb->actual_length > urb->length &&
2607 !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2608 urb->actual_length = urb->length;
2609
2610 if (hsotg->params.host_dma)
2611 chan->xfer_dma = urb->dma + urb->actual_length;
2612 else
2613 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2614
2615 chan->xfer_len = urb->length - urb->actual_length;
2616 chan->xfer_count = 0;
2617
2618 /* Set the split attributes if required */
2619 if (qh->do_split)
2620 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2621 else
2622 chan->do_split = 0;
2623
2624 /* Set the transfer attributes */
2625 dwc2_hc_init_xfer(hsotg, chan, qtd);
2626
2627 /* For non-dword aligned buffers */
2628 if (hsotg->params.host_dma && qh->do_split &&
2629 chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2630 dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2631 if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2632 dev_err(hsotg->dev,
2633 "Failed to allocate memory to handle non-aligned buffer\n");
2634 /* Add channel back to free list */
2635 chan->align_buf = 0;
2636 chan->multi_count = 0;
2637 list_add_tail(&chan->hc_list_entry,
2638 &hsotg->free_hc_list);
2639 qtd->in_process = 0;
2640 qh->channel = NULL;
2641 return -ENOMEM;
2642 }
2643 } else {
2644 /*
2645 * We assume that DMA is always aligned in non-split
2646 * case or split out case. Warn if not.
2647 */
2648 WARN_ON_ONCE(hsotg->params.host_dma &&
2649 (chan->xfer_dma & 0x3));
2650 chan->align_buf = 0;
2651 }
2652
2653 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2654 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2655 /*
2656 * This value may be modified when the transfer is started
2657 * to reflect the actual transfer length
2658 */
2659 chan->multi_count = qh->maxp_mult;
2660
2661 if (hsotg->params.dma_desc_enable) {
2662 chan->desc_list_addr = qh->desc_list_dma;
2663 chan->desc_list_sz = qh->desc_list_sz;
2664 }
2665
2666 dwc2_hc_init(hsotg, chan);
2667 chan->qh = qh;
2668
2669 return 0;
2670 }
2671
2672 /**
2673 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2674 * schedule and assigns them to available host channels. Called from the HCD
2675 * interrupt handler functions.
2676 *
2677 * @hsotg: The HCD state structure
2678 *
2679 * Return: The types of new transactions that were assigned to host channels
2680 */
dwc2_hcd_select_transactions(struct dwc2_hsotg * hsotg)2681 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2682 struct dwc2_hsotg *hsotg)
2683 {
2684 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2685 struct list_head *qh_ptr;
2686 struct dwc2_qh *qh;
2687 int num_channels;
2688
2689 #ifdef DWC2_DEBUG_SOF
2690 dev_vdbg(hsotg->dev, " Select Transactions\n");
2691 #endif
2692
2693 /* Process entries in the periodic ready list */
2694 qh_ptr = hsotg->periodic_sched_ready.next;
2695 while (qh_ptr != &hsotg->periodic_sched_ready) {
2696 if (list_empty(&hsotg->free_hc_list))
2697 break;
2698 if (hsotg->params.uframe_sched) {
2699 if (hsotg->available_host_channels <= 1)
2700 break;
2701 hsotg->available_host_channels--;
2702 }
2703 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2704 if (dwc2_assign_and_init_hc(hsotg, qh))
2705 break;
2706
2707 /*
2708 * Move the QH from the periodic ready schedule to the
2709 * periodic assigned schedule
2710 */
2711 qh_ptr = qh_ptr->next;
2712 list_move_tail(&qh->qh_list_entry,
2713 &hsotg->periodic_sched_assigned);
2714 ret_val = DWC2_TRANSACTION_PERIODIC;
2715 }
2716
2717 /*
2718 * Process entries in the inactive portion of the non-periodic
2719 * schedule. Some free host channels may not be used if they are
2720 * reserved for periodic transfers.
2721 */
2722 num_channels = hsotg->params.host_channels;
2723 qh_ptr = hsotg->non_periodic_sched_inactive.next;
2724 while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2725 if (!hsotg->params.uframe_sched &&
2726 hsotg->non_periodic_channels >= num_channels -
2727 hsotg->periodic_channels)
2728 break;
2729 if (list_empty(&hsotg->free_hc_list))
2730 break;
2731 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2732 if (hsotg->params.uframe_sched) {
2733 if (hsotg->available_host_channels < 1)
2734 break;
2735 hsotg->available_host_channels--;
2736 }
2737
2738 if (dwc2_assign_and_init_hc(hsotg, qh))
2739 break;
2740
2741 /*
2742 * Move the QH from the non-periodic inactive schedule to the
2743 * non-periodic active schedule
2744 */
2745 qh_ptr = qh_ptr->next;
2746 list_move_tail(&qh->qh_list_entry,
2747 &hsotg->non_periodic_sched_active);
2748
2749 if (ret_val == DWC2_TRANSACTION_NONE)
2750 ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2751 else
2752 ret_val = DWC2_TRANSACTION_ALL;
2753
2754 if (!hsotg->params.uframe_sched)
2755 hsotg->non_periodic_channels++;
2756 }
2757
2758 return ret_val;
2759 }
2760
2761 /**
2762 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2763 * a host channel associated with either a periodic or non-periodic transfer
2764 *
2765 * @hsotg: The HCD state structure
2766 * @chan: Host channel descriptor associated with either a periodic or
2767 * non-periodic transfer
2768 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2769 * for periodic transfers or the non-periodic Tx FIFO
2770 * for non-periodic transfers
2771 *
2772 * Return: 1 if a request is queued and more requests may be needed to
2773 * complete the transfer, 0 if no more requests are required for this
2774 * transfer, -1 if there is insufficient space in the Tx FIFO
2775 *
2776 * This function assumes that there is space available in the appropriate
2777 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2778 * it checks whether space is available in the appropriate Tx FIFO.
2779 *
2780 * Must be called with interrupt disabled and spinlock held
2781 */
dwc2_queue_transaction(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,u16 fifo_dwords_avail)2782 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2783 struct dwc2_host_chan *chan,
2784 u16 fifo_dwords_avail)
2785 {
2786 int retval = 0;
2787
2788 if (chan->do_split)
2789 /* Put ourselves on the list to keep order straight */
2790 list_move_tail(&chan->split_order_list_entry,
2791 &hsotg->split_order);
2792
2793 if (hsotg->params.host_dma && chan->qh) {
2794 if (hsotg->params.dma_desc_enable) {
2795 if (!chan->xfer_started ||
2796 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2797 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2798 chan->qh->ping_state = 0;
2799 }
2800 } else if (!chan->xfer_started) {
2801 dwc2_hc_start_transfer(hsotg, chan);
2802 chan->qh->ping_state = 0;
2803 }
2804 } else if (chan->halt_pending) {
2805 /* Don't queue a request if the channel has been halted */
2806 } else if (chan->halt_on_queue) {
2807 dwc2_hc_halt(hsotg, chan, chan->halt_status);
2808 } else if (chan->do_ping) {
2809 if (!chan->xfer_started)
2810 dwc2_hc_start_transfer(hsotg, chan);
2811 } else if (!chan->ep_is_in ||
2812 chan->data_pid_start == DWC2_HC_PID_SETUP) {
2813 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2814 if (!chan->xfer_started) {
2815 dwc2_hc_start_transfer(hsotg, chan);
2816 retval = 1;
2817 } else {
2818 retval = dwc2_hc_continue_transfer(hsotg, chan);
2819 }
2820 } else {
2821 retval = -1;
2822 }
2823 } else {
2824 if (!chan->xfer_started) {
2825 dwc2_hc_start_transfer(hsotg, chan);
2826 retval = 1;
2827 } else {
2828 retval = dwc2_hc_continue_transfer(hsotg, chan);
2829 }
2830 }
2831
2832 return retval;
2833 }
2834
2835 /*
2836 * Processes periodic channels for the next frame and queues transactions for
2837 * these channels to the DWC_otg controller. After queueing transactions, the
2838 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2839 * to queue as Periodic Tx FIFO or request queue space becomes available.
2840 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2841 *
2842 * Must be called with interrupt disabled and spinlock held
2843 */
dwc2_process_periodic_channels(struct dwc2_hsotg * hsotg)2844 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2845 {
2846 struct list_head *qh_ptr;
2847 struct dwc2_qh *qh;
2848 u32 tx_status;
2849 u32 fspcavail;
2850 u32 gintmsk;
2851 int status;
2852 bool no_queue_space = false;
2853 bool no_fifo_space = false;
2854 u32 qspcavail;
2855
2856 /* If empty list then just adjust interrupt enables */
2857 if (list_empty(&hsotg->periodic_sched_assigned))
2858 goto exit;
2859
2860 if (dbg_perio())
2861 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2862
2863 tx_status = dwc2_readl(hsotg, HPTXSTS);
2864 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2865 TXSTS_QSPCAVAIL_SHIFT;
2866 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2867 TXSTS_FSPCAVAIL_SHIFT;
2868
2869 if (dbg_perio()) {
2870 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n",
2871 qspcavail);
2872 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n",
2873 fspcavail);
2874 }
2875
2876 qh_ptr = hsotg->periodic_sched_assigned.next;
2877 while (qh_ptr != &hsotg->periodic_sched_assigned) {
2878 tx_status = dwc2_readl(hsotg, HPTXSTS);
2879 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2880 TXSTS_QSPCAVAIL_SHIFT;
2881 if (qspcavail == 0) {
2882 no_queue_space = true;
2883 break;
2884 }
2885
2886 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2887 if (!qh->channel) {
2888 qh_ptr = qh_ptr->next;
2889 continue;
2890 }
2891
2892 /* Make sure EP's TT buffer is clean before queueing qtds */
2893 if (qh->tt_buffer_dirty) {
2894 qh_ptr = qh_ptr->next;
2895 continue;
2896 }
2897
2898 /*
2899 * Set a flag if we're queuing high-bandwidth in slave mode.
2900 * The flag prevents any halts to get into the request queue in
2901 * the middle of multiple high-bandwidth packets getting queued.
2902 */
2903 if (!hsotg->params.host_dma &&
2904 qh->channel->multi_count > 1)
2905 hsotg->queuing_high_bandwidth = 1;
2906
2907 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2908 TXSTS_FSPCAVAIL_SHIFT;
2909 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2910 if (status < 0) {
2911 no_fifo_space = true;
2912 break;
2913 }
2914
2915 /*
2916 * In Slave mode, stay on the current transfer until there is
2917 * nothing more to do or the high-bandwidth request count is
2918 * reached. In DMA mode, only need to queue one request. The
2919 * controller automatically handles multiple packets for
2920 * high-bandwidth transfers.
2921 */
2922 if (hsotg->params.host_dma || status == 0 ||
2923 qh->channel->requests == qh->channel->multi_count) {
2924 qh_ptr = qh_ptr->next;
2925 /*
2926 * Move the QH from the periodic assigned schedule to
2927 * the periodic queued schedule
2928 */
2929 list_move_tail(&qh->qh_list_entry,
2930 &hsotg->periodic_sched_queued);
2931
2932 /* done queuing high bandwidth */
2933 hsotg->queuing_high_bandwidth = 0;
2934 }
2935 }
2936
2937 exit:
2938 if (no_queue_space || no_fifo_space ||
2939 (!hsotg->params.host_dma &&
2940 !list_empty(&hsotg->periodic_sched_assigned))) {
2941 /*
2942 * May need to queue more transactions as the request
2943 * queue or Tx FIFO empties. Enable the periodic Tx
2944 * FIFO empty interrupt. (Always use the half-empty
2945 * level to ensure that new requests are loaded as
2946 * soon as possible.)
2947 */
2948 gintmsk = dwc2_readl(hsotg, GINTMSK);
2949 if (!(gintmsk & GINTSTS_PTXFEMP)) {
2950 gintmsk |= GINTSTS_PTXFEMP;
2951 dwc2_writel(hsotg, gintmsk, GINTMSK);
2952 }
2953 } else {
2954 /*
2955 * Disable the Tx FIFO empty interrupt since there are
2956 * no more transactions that need to be queued right
2957 * now. This function is called from interrupt
2958 * handlers to queue more transactions as transfer
2959 * states change.
2960 */
2961 gintmsk = dwc2_readl(hsotg, GINTMSK);
2962 if (gintmsk & GINTSTS_PTXFEMP) {
2963 gintmsk &= ~GINTSTS_PTXFEMP;
2964 dwc2_writel(hsotg, gintmsk, GINTMSK);
2965 }
2966 }
2967 }
2968
2969 /*
2970 * Processes active non-periodic channels and queues transactions for these
2971 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
2972 * FIFO Empty interrupt is enabled if there are more transactions to queue as
2973 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
2974 * FIFO Empty interrupt is disabled.
2975 *
2976 * Must be called with interrupt disabled and spinlock held
2977 */
dwc2_process_non_periodic_channels(struct dwc2_hsotg * hsotg)2978 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
2979 {
2980 struct list_head *orig_qh_ptr;
2981 struct dwc2_qh *qh;
2982 u32 tx_status;
2983 u32 qspcavail;
2984 u32 fspcavail;
2985 u32 gintmsk;
2986 int status;
2987 int no_queue_space = 0;
2988 int no_fifo_space = 0;
2989 int more_to_do = 0;
2990
2991 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
2992
2993 tx_status = dwc2_readl(hsotg, GNPTXSTS);
2994 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2995 TXSTS_QSPCAVAIL_SHIFT;
2996 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2997 TXSTS_FSPCAVAIL_SHIFT;
2998 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n",
2999 qspcavail);
3000 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n",
3001 fspcavail);
3002
3003 /*
3004 * Keep track of the starting point. Skip over the start-of-list
3005 * entry.
3006 */
3007 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3008 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3009 orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3010
3011 /*
3012 * Process once through the active list or until no more space is
3013 * available in the request queue or the Tx FIFO
3014 */
3015 do {
3016 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3017 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3018 TXSTS_QSPCAVAIL_SHIFT;
3019 if (!hsotg->params.host_dma && qspcavail == 0) {
3020 no_queue_space = 1;
3021 break;
3022 }
3023
3024 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3025 qh_list_entry);
3026 if (!qh->channel)
3027 goto next;
3028
3029 /* Make sure EP's TT buffer is clean before queueing qtds */
3030 if (qh->tt_buffer_dirty)
3031 goto next;
3032
3033 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3034 TXSTS_FSPCAVAIL_SHIFT;
3035 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3036
3037 if (status > 0) {
3038 more_to_do = 1;
3039 } else if (status < 0) {
3040 no_fifo_space = 1;
3041 break;
3042 }
3043 next:
3044 /* Advance to next QH, skipping start-of-list entry */
3045 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3046 if (hsotg->non_periodic_qh_ptr ==
3047 &hsotg->non_periodic_sched_active)
3048 hsotg->non_periodic_qh_ptr =
3049 hsotg->non_periodic_qh_ptr->next;
3050 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3051
3052 if (!hsotg->params.host_dma) {
3053 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3054 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3055 TXSTS_QSPCAVAIL_SHIFT;
3056 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3057 TXSTS_FSPCAVAIL_SHIFT;
3058 dev_vdbg(hsotg->dev,
3059 " NP Tx Req Queue Space Avail (after queue): %d\n",
3060 qspcavail);
3061 dev_vdbg(hsotg->dev,
3062 " NP Tx FIFO Space Avail (after queue): %d\n",
3063 fspcavail);
3064
3065 if (more_to_do || no_queue_space || no_fifo_space) {
3066 /*
3067 * May need to queue more transactions as the request
3068 * queue or Tx FIFO empties. Enable the non-periodic
3069 * Tx FIFO empty interrupt. (Always use the half-empty
3070 * level to ensure that new requests are loaded as
3071 * soon as possible.)
3072 */
3073 gintmsk = dwc2_readl(hsotg, GINTMSK);
3074 gintmsk |= GINTSTS_NPTXFEMP;
3075 dwc2_writel(hsotg, gintmsk, GINTMSK);
3076 } else {
3077 /*
3078 * Disable the Tx FIFO empty interrupt since there are
3079 * no more transactions that need to be queued right
3080 * now. This function is called from interrupt
3081 * handlers to queue more transactions as transfer
3082 * states change.
3083 */
3084 gintmsk = dwc2_readl(hsotg, GINTMSK);
3085 gintmsk &= ~GINTSTS_NPTXFEMP;
3086 dwc2_writel(hsotg, gintmsk, GINTMSK);
3087 }
3088 }
3089 }
3090
3091 /**
3092 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3093 * and queues transactions for these channels to the DWC_otg controller. Called
3094 * from the HCD interrupt handler functions.
3095 *
3096 * @hsotg: The HCD state structure
3097 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3098 * or both)
3099 *
3100 * Must be called with interrupt disabled and spinlock held
3101 */
dwc2_hcd_queue_transactions(struct dwc2_hsotg * hsotg,enum dwc2_transaction_type tr_type)3102 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3103 enum dwc2_transaction_type tr_type)
3104 {
3105 #ifdef DWC2_DEBUG_SOF
3106 dev_vdbg(hsotg->dev, "Queue Transactions\n");
3107 #endif
3108 /* Process host channels associated with periodic transfers */
3109 if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3110 tr_type == DWC2_TRANSACTION_ALL)
3111 dwc2_process_periodic_channels(hsotg);
3112
3113 /* Process host channels associated with non-periodic transfers */
3114 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3115 tr_type == DWC2_TRANSACTION_ALL) {
3116 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3117 dwc2_process_non_periodic_channels(hsotg);
3118 } else {
3119 /*
3120 * Ensure NP Tx FIFO empty interrupt is disabled when
3121 * there are no non-periodic transfers to process
3122 */
3123 u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3124
3125 gintmsk &= ~GINTSTS_NPTXFEMP;
3126 dwc2_writel(hsotg, gintmsk, GINTMSK);
3127 }
3128 }
3129 }
3130
dwc2_conn_id_status_change(struct work_struct * work)3131 static void dwc2_conn_id_status_change(struct work_struct *work)
3132 {
3133 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3134 wf_otg);
3135 u32 count = 0;
3136 u32 gotgctl;
3137 unsigned long flags;
3138
3139 dev_dbg(hsotg->dev, "%s()\n", __func__);
3140
3141 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3142 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3143 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3144 !!(gotgctl & GOTGCTL_CONID_B));
3145
3146 /* B-Device connector (Device Mode) */
3147 if (gotgctl & GOTGCTL_CONID_B) {
3148 dwc2_vbus_supply_exit(hsotg);
3149 /* Wait for switch to device mode */
3150 dev_dbg(hsotg->dev, "connId B\n");
3151 if (hsotg->bus_suspended) {
3152 dev_info(hsotg->dev,
3153 "Do port resume before switching to device mode\n");
3154 dwc2_port_resume(hsotg);
3155 }
3156 while (!dwc2_is_device_mode(hsotg)) {
3157 dev_info(hsotg->dev,
3158 "Waiting for Peripheral Mode, Mode=%s\n",
3159 dwc2_is_host_mode(hsotg) ? "Host" :
3160 "Peripheral");
3161 msleep(20);
3162 /*
3163 * Sometimes the initial GOTGCTRL read is wrong, so
3164 * check it again and jump to host mode if that was
3165 * the case.
3166 */
3167 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3168 if (!(gotgctl & GOTGCTL_CONID_B))
3169 goto host;
3170 if (++count > 250)
3171 break;
3172 }
3173 if (count > 250)
3174 dev_err(hsotg->dev,
3175 "Connection id status change timed out\n");
3176
3177 /*
3178 * Exit Partial Power Down without restoring registers.
3179 * No need to check the return value as registers
3180 * are not being restored.
3181 */
3182 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3183 dwc2_exit_partial_power_down(hsotg, 0, false);
3184
3185 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3186 dwc2_core_init(hsotg, false);
3187 dwc2_enable_global_interrupts(hsotg);
3188 spin_lock_irqsave(&hsotg->lock, flags);
3189 dwc2_hsotg_core_init_disconnected(hsotg, false);
3190 spin_unlock_irqrestore(&hsotg->lock, flags);
3191 /* Enable ACG feature in device mode,if supported */
3192 dwc2_enable_acg(hsotg);
3193 dwc2_hsotg_core_connect(hsotg);
3194 } else {
3195 host:
3196 /* A-Device connector (Host Mode) */
3197 dev_dbg(hsotg->dev, "connId A\n");
3198 while (!dwc2_is_host_mode(hsotg)) {
3199 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3200 dwc2_is_host_mode(hsotg) ?
3201 "Host" : "Peripheral");
3202 msleep(20);
3203 if (++count > 250)
3204 break;
3205 }
3206 if (count > 250)
3207 dev_err(hsotg->dev,
3208 "Connection id status change timed out\n");
3209
3210 spin_lock_irqsave(&hsotg->lock, flags);
3211 dwc2_hsotg_disconnect(hsotg);
3212 spin_unlock_irqrestore(&hsotg->lock, flags);
3213
3214 hsotg->op_state = OTG_STATE_A_HOST;
3215 /* Initialize the Core for Host mode */
3216 dwc2_core_init(hsotg, false);
3217 dwc2_enable_global_interrupts(hsotg);
3218 dwc2_hcd_start(hsotg);
3219 }
3220 }
3221
dwc2_wakeup_detected(struct timer_list * t)3222 static void dwc2_wakeup_detected(struct timer_list *t)
3223 {
3224 struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3225 u32 hprt0;
3226
3227 dev_dbg(hsotg->dev, "%s()\n", __func__);
3228
3229 /*
3230 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3231 * so that OPT tests pass with all PHYs.)
3232 */
3233 hprt0 = dwc2_read_hprt0(hsotg);
3234 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3235 hprt0 &= ~HPRT0_RES;
3236 dwc2_writel(hsotg, hprt0, HPRT0);
3237 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3238 dwc2_readl(hsotg, HPRT0));
3239
3240 dwc2_hcd_rem_wakeup(hsotg);
3241 hsotg->bus_suspended = false;
3242
3243 /* Change to L0 state */
3244 hsotg->lx_state = DWC2_L0;
3245 }
3246
dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg * hsotg)3247 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3248 {
3249 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3250
3251 return hcd->self.b_hnp_enable;
3252 }
3253
3254 /**
3255 * dwc2_port_suspend() - Put controller in suspend mode for host.
3256 *
3257 * @hsotg: Programming view of the DWC_otg controller
3258 * @windex: The control request wIndex field
3259 *
3260 * Return: non-zero if failed to enter suspend mode for host.
3261 *
3262 * This function is for entering Host mode suspend.
3263 * Must NOT be called with interrupt disabled or spinlock held.
3264 */
dwc2_port_suspend(struct dwc2_hsotg * hsotg,u16 windex)3265 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3266 {
3267 unsigned long flags;
3268 u32 pcgctl;
3269 u32 gotgctl;
3270 int ret = 0;
3271
3272 dev_dbg(hsotg->dev, "%s()\n", __func__);
3273
3274 spin_lock_irqsave(&hsotg->lock, flags);
3275
3276 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3277 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3278 gotgctl |= GOTGCTL_HSTSETHNPEN;
3279 dwc2_writel(hsotg, gotgctl, GOTGCTL);
3280 hsotg->op_state = OTG_STATE_A_SUSPEND;
3281 }
3282
3283 switch (hsotg->params.power_down) {
3284 case DWC2_POWER_DOWN_PARAM_PARTIAL:
3285 ret = dwc2_enter_partial_power_down(hsotg);
3286 if (ret)
3287 dev_err(hsotg->dev,
3288 "enter partial_power_down failed.\n");
3289 break;
3290 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3291 /*
3292 * Perform spin unlock and lock because in
3293 * "dwc2_host_enter_hibernation()" function there is a spinlock
3294 * logic which prevents servicing of any IRQ during entering
3295 * hibernation.
3296 */
3297 spin_unlock_irqrestore(&hsotg->lock, flags);
3298 ret = dwc2_enter_hibernation(hsotg, 1);
3299 if (ret)
3300 dev_err(hsotg->dev, "enter hibernation failed.\n");
3301 spin_lock_irqsave(&hsotg->lock, flags);
3302 break;
3303 case DWC2_POWER_DOWN_PARAM_NONE:
3304 /*
3305 * If not hibernation nor partial power down are supported,
3306 * clock gating is used to save power.
3307 */
3308 if (!hsotg->params.no_clock_gating)
3309 dwc2_host_enter_clock_gating(hsotg);
3310 break;
3311 }
3312
3313 /* For HNP the bus must be suspended for at least 200ms */
3314 if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3315 pcgctl = dwc2_readl(hsotg, PCGCTL);
3316 pcgctl &= ~PCGCTL_STOPPCLK;
3317 dwc2_writel(hsotg, pcgctl, PCGCTL);
3318
3319 spin_unlock_irqrestore(&hsotg->lock, flags);
3320
3321 msleep(200);
3322 } else {
3323 spin_unlock_irqrestore(&hsotg->lock, flags);
3324 }
3325
3326 return ret;
3327 }
3328
3329 /**
3330 * dwc2_port_resume() - Exit controller from suspend mode for host.
3331 *
3332 * @hsotg: Programming view of the DWC_otg controller
3333 *
3334 * Return: non-zero if failed to exit suspend mode for host.
3335 *
3336 * This function is for exiting Host mode suspend.
3337 * Must NOT be called with interrupt disabled or spinlock held.
3338 */
dwc2_port_resume(struct dwc2_hsotg * hsotg)3339 int dwc2_port_resume(struct dwc2_hsotg *hsotg)
3340 {
3341 unsigned long flags;
3342 int ret = 0;
3343
3344 spin_lock_irqsave(&hsotg->lock, flags);
3345
3346 switch (hsotg->params.power_down) {
3347 case DWC2_POWER_DOWN_PARAM_PARTIAL:
3348 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
3349 if (ret)
3350 dev_err(hsotg->dev,
3351 "exit partial_power_down failed.\n");
3352 break;
3353 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3354 /* Exit host hibernation. */
3355 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
3356 if (ret)
3357 dev_err(hsotg->dev, "exit hibernation failed.\n");
3358 break;
3359 case DWC2_POWER_DOWN_PARAM_NONE:
3360 /*
3361 * If not hibernation nor partial power down are supported,
3362 * port resume is done using the clock gating programming flow.
3363 */
3364 spin_unlock_irqrestore(&hsotg->lock, flags);
3365 dwc2_host_exit_clock_gating(hsotg, 0);
3366 spin_lock_irqsave(&hsotg->lock, flags);
3367 break;
3368 }
3369
3370 spin_unlock_irqrestore(&hsotg->lock, flags);
3371
3372 return ret;
3373 }
3374
3375 /* Handles hub class-specific requests */
dwc2_hcd_hub_control(struct dwc2_hsotg * hsotg,u16 typereq,u16 wvalue,u16 windex,char * buf,u16 wlength)3376 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3377 u16 wvalue, u16 windex, char *buf, u16 wlength)
3378 {
3379 struct usb_hub_descriptor *hub_desc;
3380 int retval = 0;
3381 u32 hprt0;
3382 u32 port_status;
3383 u32 speed;
3384 u32 pcgctl;
3385 u32 pwr;
3386
3387 switch (typereq) {
3388 case ClearHubFeature:
3389 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3390
3391 switch (wvalue) {
3392 case C_HUB_LOCAL_POWER:
3393 case C_HUB_OVER_CURRENT:
3394 /* Nothing required here */
3395 break;
3396
3397 default:
3398 retval = -EINVAL;
3399 dev_err(hsotg->dev,
3400 "ClearHubFeature request %1xh unknown\n",
3401 wvalue);
3402 }
3403 break;
3404
3405 case ClearPortFeature:
3406 if (wvalue != USB_PORT_FEAT_L1)
3407 if (!windex || windex > 1)
3408 goto error;
3409 switch (wvalue) {
3410 case USB_PORT_FEAT_ENABLE:
3411 dev_dbg(hsotg->dev,
3412 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3413 hprt0 = dwc2_read_hprt0(hsotg);
3414 hprt0 |= HPRT0_ENA;
3415 dwc2_writel(hsotg, hprt0, HPRT0);
3416 break;
3417
3418 case USB_PORT_FEAT_SUSPEND:
3419 dev_dbg(hsotg->dev,
3420 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3421
3422 if (hsotg->bus_suspended)
3423 retval = dwc2_port_resume(hsotg);
3424 break;
3425
3426 case USB_PORT_FEAT_POWER:
3427 dev_dbg(hsotg->dev,
3428 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3429 hprt0 = dwc2_read_hprt0(hsotg);
3430 pwr = hprt0 & HPRT0_PWR;
3431 hprt0 &= ~HPRT0_PWR;
3432 dwc2_writel(hsotg, hprt0, HPRT0);
3433 if (pwr)
3434 dwc2_vbus_supply_exit(hsotg);
3435 break;
3436
3437 case USB_PORT_FEAT_INDICATOR:
3438 dev_dbg(hsotg->dev,
3439 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3440 /* Port indicator not supported */
3441 break;
3442
3443 case USB_PORT_FEAT_C_CONNECTION:
3444 /*
3445 * Clears driver's internal Connect Status Change flag
3446 */
3447 dev_dbg(hsotg->dev,
3448 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3449 hsotg->flags.b.port_connect_status_change = 0;
3450 break;
3451
3452 case USB_PORT_FEAT_C_RESET:
3453 /* Clears driver's internal Port Reset Change flag */
3454 dev_dbg(hsotg->dev,
3455 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3456 hsotg->flags.b.port_reset_change = 0;
3457 break;
3458
3459 case USB_PORT_FEAT_C_ENABLE:
3460 /*
3461 * Clears the driver's internal Port Enable/Disable
3462 * Change flag
3463 */
3464 dev_dbg(hsotg->dev,
3465 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3466 hsotg->flags.b.port_enable_change = 0;
3467 break;
3468
3469 case USB_PORT_FEAT_C_SUSPEND:
3470 /*
3471 * Clears the driver's internal Port Suspend Change
3472 * flag, which is set when resume signaling on the host
3473 * port is complete
3474 */
3475 dev_dbg(hsotg->dev,
3476 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3477 hsotg->flags.b.port_suspend_change = 0;
3478 break;
3479
3480 case USB_PORT_FEAT_C_PORT_L1:
3481 dev_dbg(hsotg->dev,
3482 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3483 hsotg->flags.b.port_l1_change = 0;
3484 break;
3485
3486 case USB_PORT_FEAT_C_OVER_CURRENT:
3487 dev_dbg(hsotg->dev,
3488 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3489 hsotg->flags.b.port_over_current_change = 0;
3490 break;
3491
3492 default:
3493 retval = -EINVAL;
3494 dev_err(hsotg->dev,
3495 "ClearPortFeature request %1xh unknown or unsupported\n",
3496 wvalue);
3497 }
3498 break;
3499
3500 case GetHubDescriptor:
3501 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3502 hub_desc = (struct usb_hub_descriptor *)buf;
3503 hub_desc->bDescLength = 9;
3504 hub_desc->bDescriptorType = USB_DT_HUB;
3505 hub_desc->bNbrPorts = 1;
3506 hub_desc->wHubCharacteristics =
3507 cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3508 HUB_CHAR_INDV_PORT_OCPM);
3509 hub_desc->bPwrOn2PwrGood = 1;
3510 hub_desc->bHubContrCurrent = 0;
3511 hub_desc->u.hs.DeviceRemovable[0] = 0;
3512 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3513 break;
3514
3515 case GetHubStatus:
3516 dev_dbg(hsotg->dev, "GetHubStatus\n");
3517 memset(buf, 0, 4);
3518 break;
3519
3520 case GetPortStatus:
3521 dev_vdbg(hsotg->dev,
3522 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3523 hsotg->flags.d32);
3524 if (!windex || windex > 1)
3525 goto error;
3526
3527 port_status = 0;
3528 if (hsotg->flags.b.port_connect_status_change)
3529 port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3530 if (hsotg->flags.b.port_enable_change)
3531 port_status |= USB_PORT_STAT_C_ENABLE << 16;
3532 if (hsotg->flags.b.port_suspend_change)
3533 port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3534 if (hsotg->flags.b.port_l1_change)
3535 port_status |= USB_PORT_STAT_C_L1 << 16;
3536 if (hsotg->flags.b.port_reset_change)
3537 port_status |= USB_PORT_STAT_C_RESET << 16;
3538 if (hsotg->flags.b.port_over_current_change) {
3539 dev_warn(hsotg->dev, "Overcurrent change detected\n");
3540 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3541 }
3542
3543 if (!hsotg->flags.b.port_connect_status) {
3544 /*
3545 * The port is disconnected, which means the core is
3546 * either in device mode or it soon will be. Just
3547 * return 0's for the remainder of the port status
3548 * since the port register can't be read if the core
3549 * is in device mode.
3550 */
3551 *(__le32 *)buf = cpu_to_le32(port_status);
3552 break;
3553 }
3554
3555 hprt0 = dwc2_readl(hsotg, HPRT0);
3556 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0);
3557
3558 if (hprt0 & HPRT0_CONNSTS)
3559 port_status |= USB_PORT_STAT_CONNECTION;
3560 if (hprt0 & HPRT0_ENA)
3561 port_status |= USB_PORT_STAT_ENABLE;
3562 if (hprt0 & HPRT0_SUSP)
3563 port_status |= USB_PORT_STAT_SUSPEND;
3564 if (hprt0 & HPRT0_OVRCURRACT)
3565 port_status |= USB_PORT_STAT_OVERCURRENT;
3566 if (hprt0 & HPRT0_RST)
3567 port_status |= USB_PORT_STAT_RESET;
3568 if (hprt0 & HPRT0_PWR)
3569 port_status |= USB_PORT_STAT_POWER;
3570
3571 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3572 if (speed == HPRT0_SPD_HIGH_SPEED)
3573 port_status |= USB_PORT_STAT_HIGH_SPEED;
3574 else if (speed == HPRT0_SPD_LOW_SPEED)
3575 port_status |= USB_PORT_STAT_LOW_SPEED;
3576
3577 if (hprt0 & HPRT0_TSTCTL_MASK)
3578 port_status |= USB_PORT_STAT_TEST;
3579 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3580
3581 if (hsotg->params.dma_desc_fs_enable) {
3582 /*
3583 * Enable descriptor DMA only if a full speed
3584 * device is connected.
3585 */
3586 if (hsotg->new_connection &&
3587 ((port_status &
3588 (USB_PORT_STAT_CONNECTION |
3589 USB_PORT_STAT_HIGH_SPEED |
3590 USB_PORT_STAT_LOW_SPEED)) ==
3591 USB_PORT_STAT_CONNECTION)) {
3592 u32 hcfg;
3593
3594 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3595 hsotg->params.dma_desc_enable = true;
3596 hcfg = dwc2_readl(hsotg, HCFG);
3597 hcfg |= HCFG_DESCDMA;
3598 dwc2_writel(hsotg, hcfg, HCFG);
3599 hsotg->new_connection = false;
3600 }
3601 }
3602
3603 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3604 *(__le32 *)buf = cpu_to_le32(port_status);
3605 break;
3606
3607 case SetHubFeature:
3608 dev_dbg(hsotg->dev, "SetHubFeature\n");
3609 /* No HUB features supported */
3610 break;
3611
3612 case SetPortFeature:
3613 dev_dbg(hsotg->dev, "SetPortFeature\n");
3614 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3615 goto error;
3616
3617 if (!hsotg->flags.b.port_connect_status) {
3618 /*
3619 * The port is disconnected, which means the core is
3620 * either in device mode or it soon will be. Just
3621 * return without doing anything since the port
3622 * register can't be written if the core is in device
3623 * mode.
3624 */
3625 break;
3626 }
3627
3628 switch (wvalue) {
3629 case USB_PORT_FEAT_SUSPEND:
3630 dev_dbg(hsotg->dev,
3631 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3632 if (windex != hsotg->otg_port)
3633 goto error;
3634 if (!hsotg->bus_suspended)
3635 retval = dwc2_port_suspend(hsotg, windex);
3636 break;
3637
3638 case USB_PORT_FEAT_POWER:
3639 dev_dbg(hsotg->dev,
3640 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3641 hprt0 = dwc2_read_hprt0(hsotg);
3642 pwr = hprt0 & HPRT0_PWR;
3643 hprt0 |= HPRT0_PWR;
3644 dwc2_writel(hsotg, hprt0, HPRT0);
3645 if (!pwr)
3646 dwc2_vbus_supply_init(hsotg);
3647 break;
3648
3649 case USB_PORT_FEAT_RESET:
3650 dev_dbg(hsotg->dev,
3651 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3652
3653 hprt0 = dwc2_read_hprt0(hsotg);
3654
3655 if (hsotg->hibernated) {
3656 retval = dwc2_exit_hibernation(hsotg, 0, 1, 1);
3657 if (retval)
3658 dev_err(hsotg->dev,
3659 "exit hibernation failed\n");
3660 }
3661
3662 if (hsotg->in_ppd) {
3663 retval = dwc2_exit_partial_power_down(hsotg, 1,
3664 true);
3665 if (retval)
3666 dev_err(hsotg->dev,
3667 "exit partial_power_down failed\n");
3668 }
3669
3670 if (hsotg->params.power_down ==
3671 DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended)
3672 dwc2_host_exit_clock_gating(hsotg, 0);
3673
3674 pcgctl = dwc2_readl(hsotg, PCGCTL);
3675 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3676 dwc2_writel(hsotg, pcgctl, PCGCTL);
3677 /* ??? Original driver does this */
3678 dwc2_writel(hsotg, 0, PCGCTL);
3679
3680 hprt0 = dwc2_read_hprt0(hsotg);
3681 pwr = hprt0 & HPRT0_PWR;
3682 /* Clear suspend bit if resetting from suspend state */
3683 hprt0 &= ~HPRT0_SUSP;
3684
3685 /*
3686 * When B-Host the Port reset bit is set in the Start
3687 * HCD Callback function, so that the reset is started
3688 * within 1ms of the HNP success interrupt
3689 */
3690 if (!dwc2_hcd_is_b_host(hsotg)) {
3691 hprt0 |= HPRT0_PWR | HPRT0_RST;
3692 dev_dbg(hsotg->dev,
3693 "In host mode, hprt0=%08x\n", hprt0);
3694 dwc2_writel(hsotg, hprt0, HPRT0);
3695 if (!pwr)
3696 dwc2_vbus_supply_init(hsotg);
3697 }
3698
3699 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3700 msleep(50);
3701 hprt0 &= ~HPRT0_RST;
3702 dwc2_writel(hsotg, hprt0, HPRT0);
3703 hsotg->lx_state = DWC2_L0; /* Now back to On state */
3704 break;
3705
3706 case USB_PORT_FEAT_INDICATOR:
3707 dev_dbg(hsotg->dev,
3708 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3709 /* Not supported */
3710 break;
3711
3712 case USB_PORT_FEAT_TEST:
3713 hprt0 = dwc2_read_hprt0(hsotg);
3714 dev_dbg(hsotg->dev,
3715 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3716 hprt0 &= ~HPRT0_TSTCTL_MASK;
3717 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3718 dwc2_writel(hsotg, hprt0, HPRT0);
3719 break;
3720
3721 default:
3722 retval = -EINVAL;
3723 dev_err(hsotg->dev,
3724 "SetPortFeature %1xh unknown or unsupported\n",
3725 wvalue);
3726 break;
3727 }
3728 break;
3729
3730 default:
3731 error:
3732 retval = -EINVAL;
3733 dev_dbg(hsotg->dev,
3734 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3735 typereq, windex, wvalue);
3736 break;
3737 }
3738
3739 return retval;
3740 }
3741
dwc2_hcd_is_status_changed(struct dwc2_hsotg * hsotg,int port)3742 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3743 {
3744 int retval;
3745
3746 if (port != 1)
3747 return -EINVAL;
3748
3749 retval = (hsotg->flags.b.port_connect_status_change ||
3750 hsotg->flags.b.port_reset_change ||
3751 hsotg->flags.b.port_enable_change ||
3752 hsotg->flags.b.port_suspend_change ||
3753 hsotg->flags.b.port_over_current_change);
3754
3755 if (retval) {
3756 dev_dbg(hsotg->dev,
3757 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3758 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n",
3759 hsotg->flags.b.port_connect_status_change);
3760 dev_dbg(hsotg->dev, " port_reset_change: %d\n",
3761 hsotg->flags.b.port_reset_change);
3762 dev_dbg(hsotg->dev, " port_enable_change: %d\n",
3763 hsotg->flags.b.port_enable_change);
3764 dev_dbg(hsotg->dev, " port_suspend_change: %d\n",
3765 hsotg->flags.b.port_suspend_change);
3766 dev_dbg(hsotg->dev, " port_over_current_change: %d\n",
3767 hsotg->flags.b.port_over_current_change);
3768 }
3769
3770 return retval;
3771 }
3772
dwc2_hcd_get_frame_number(struct dwc2_hsotg * hsotg)3773 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3774 {
3775 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3776
3777 #ifdef DWC2_DEBUG_SOF
3778 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3779 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3780 #endif
3781 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3782 }
3783
dwc2_hcd_get_future_frame_number(struct dwc2_hsotg * hsotg,int us)3784 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3785 {
3786 u32 hprt = dwc2_readl(hsotg, HPRT0);
3787 u32 hfir = dwc2_readl(hsotg, HFIR);
3788 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3789 unsigned int us_per_frame;
3790 unsigned int frame_number;
3791 unsigned int remaining;
3792 unsigned int interval;
3793 unsigned int phy_clks;
3794
3795 /* High speed has 125 us per (micro) frame; others are 1 ms per */
3796 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3797
3798 /* Extract fields */
3799 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3800 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3801 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3802
3803 /*
3804 * Number of phy clocks since the last tick of the frame number after
3805 * "us" has passed.
3806 */
3807 phy_clks = (interval - remaining) +
3808 DIV_ROUND_UP(interval * us, us_per_frame);
3809
3810 return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3811 }
3812
dwc2_hcd_is_b_host(struct dwc2_hsotg * hsotg)3813 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3814 {
3815 return hsotg->op_state == OTG_STATE_B_HOST;
3816 }
3817
dwc2_hcd_urb_alloc(struct dwc2_hsotg * hsotg,int iso_desc_count,gfp_t mem_flags)3818 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3819 int iso_desc_count,
3820 gfp_t mem_flags)
3821 {
3822 struct dwc2_hcd_urb *urb;
3823
3824 urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3825 if (urb)
3826 urb->packet_count = iso_desc_count;
3827 return urb;
3828 }
3829
dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg * hsotg,struct dwc2_hcd_urb * urb,u8 dev_addr,u8 ep_num,u8 ep_type,u8 ep_dir,u16 maxp,u16 maxp_mult)3830 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3831 struct dwc2_hcd_urb *urb, u8 dev_addr,
3832 u8 ep_num, u8 ep_type, u8 ep_dir,
3833 u16 maxp, u16 maxp_mult)
3834 {
3835 if (dbg_perio() ||
3836 ep_type == USB_ENDPOINT_XFER_BULK ||
3837 ep_type == USB_ENDPOINT_XFER_CONTROL)
3838 dev_vdbg(hsotg->dev,
3839 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3840 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3841 urb->pipe_info.dev_addr = dev_addr;
3842 urb->pipe_info.ep_num = ep_num;
3843 urb->pipe_info.pipe_type = ep_type;
3844 urb->pipe_info.pipe_dir = ep_dir;
3845 urb->pipe_info.maxp = maxp;
3846 urb->pipe_info.maxp_mult = maxp_mult;
3847 }
3848
3849 /*
3850 * NOTE: This function will be removed once the peripheral controller code
3851 * is integrated and the driver is stable
3852 */
dwc2_hcd_dump_state(struct dwc2_hsotg * hsotg)3853 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3854 {
3855 #ifdef DEBUG
3856 struct dwc2_host_chan *chan;
3857 struct dwc2_hcd_urb *urb;
3858 struct dwc2_qtd *qtd;
3859 int num_channels;
3860 u32 np_tx_status;
3861 u32 p_tx_status;
3862 int i;
3863
3864 num_channels = hsotg->params.host_channels;
3865 dev_dbg(hsotg->dev, "\n");
3866 dev_dbg(hsotg->dev,
3867 "************************************************************\n");
3868 dev_dbg(hsotg->dev, "HCD State:\n");
3869 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels);
3870
3871 for (i = 0; i < num_channels; i++) {
3872 chan = hsotg->hc_ptr_array[i];
3873 dev_dbg(hsotg->dev, " Channel %d:\n", i);
3874 dev_dbg(hsotg->dev,
3875 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3876 chan->dev_addr, chan->ep_num, chan->ep_is_in);
3877 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed);
3878 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
3879 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
3880 dev_dbg(hsotg->dev, " data_pid_start: %d\n",
3881 chan->data_pid_start);
3882 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count);
3883 dev_dbg(hsotg->dev, " xfer_started: %d\n",
3884 chan->xfer_started);
3885 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
3886 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
3887 (unsigned long)chan->xfer_dma);
3888 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
3889 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count);
3890 dev_dbg(hsotg->dev, " halt_on_queue: %d\n",
3891 chan->halt_on_queue);
3892 dev_dbg(hsotg->dev, " halt_pending: %d\n",
3893 chan->halt_pending);
3894 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
3895 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split);
3896 dev_dbg(hsotg->dev, " complete_split: %d\n",
3897 chan->complete_split);
3898 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr);
3899 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port);
3900 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos);
3901 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests);
3902 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
3903
3904 if (chan->xfer_started) {
3905 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3906
3907 hfnum = dwc2_readl(hsotg, HFNUM);
3908 hcchar = dwc2_readl(hsotg, HCCHAR(i));
3909 hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3910 hcint = dwc2_readl(hsotg, HCINT(i));
3911 hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3912 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum);
3913 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
3914 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz);
3915 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint);
3916 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk);
3917 }
3918
3919 if (!(chan->xfer_started && chan->qh))
3920 continue;
3921
3922 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3923 if (!qtd->in_process)
3924 break;
3925 urb = qtd->urb;
3926 dev_dbg(hsotg->dev, " URB Info:\n");
3927 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n",
3928 qtd, urb);
3929 if (urb) {
3930 dev_dbg(hsotg->dev,
3931 " Dev: %d, EP: %d %s\n",
3932 dwc2_hcd_get_dev_addr(&urb->pipe_info),
3933 dwc2_hcd_get_ep_num(&urb->pipe_info),
3934 dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3935 "IN" : "OUT");
3936 dev_dbg(hsotg->dev,
3937 " Max packet size: %d (%d mult)\n",
3938 dwc2_hcd_get_maxp(&urb->pipe_info),
3939 dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3940 dev_dbg(hsotg->dev,
3941 " transfer_buffer: %p\n",
3942 urb->buf);
3943 dev_dbg(hsotg->dev,
3944 " transfer_dma: %08lx\n",
3945 (unsigned long)urb->dma);
3946 dev_dbg(hsotg->dev,
3947 " transfer_buffer_length: %d\n",
3948 urb->length);
3949 dev_dbg(hsotg->dev, " actual_length: %d\n",
3950 urb->actual_length);
3951 }
3952 }
3953 }
3954
3955 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n",
3956 hsotg->non_periodic_channels);
3957 dev_dbg(hsotg->dev, " periodic_channels: %d\n",
3958 hsotg->periodic_channels);
3959 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs);
3960 np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3961 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n",
3962 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3963 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n",
3964 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3965 p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3966 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n",
3967 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3968 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n",
3969 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3970 dwc2_dump_global_registers(hsotg);
3971 dwc2_dump_host_registers(hsotg);
3972 dev_dbg(hsotg->dev,
3973 "************************************************************\n");
3974 dev_dbg(hsotg->dev, "\n");
3975 #endif
3976 }
3977
3978 struct wrapper_priv_data {
3979 struct dwc2_hsotg *hsotg;
3980 };
3981
3982 /* Gets the dwc2_hsotg from a usb_hcd */
dwc2_hcd_to_hsotg(struct usb_hcd * hcd)3983 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
3984 {
3985 struct wrapper_priv_data *p;
3986
3987 p = (struct wrapper_priv_data *)&hcd->hcd_priv;
3988 return p->hsotg;
3989 }
3990
3991 /**
3992 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
3993 *
3994 * This will get the dwc2_tt structure (and ttport) associated with the given
3995 * context (which is really just a struct urb pointer).
3996 *
3997 * The first time this is called for a given TT we allocate memory for our
3998 * structure. When everyone is done and has called dwc2_host_put_tt_info()
3999 * then the refcount for the structure will go to 0 and we'll free it.
4000 *
4001 * @hsotg: The HCD state structure for the DWC OTG controller.
4002 * @context: The priv pointer from a struct dwc2_hcd_urb.
4003 * @mem_flags: Flags for allocating memory.
4004 * @ttport: We'll return this device's port number here. That's used to
4005 * reference into the bitmap if we're on a multi_tt hub.
4006 *
4007 * Return: a pointer to a struct dwc2_tt. Don't forget to call
4008 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
4009 */
4010
dwc2_host_get_tt_info(struct dwc2_hsotg * hsotg,void * context,gfp_t mem_flags,int * ttport)4011 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4012 gfp_t mem_flags, int *ttport)
4013 {
4014 struct urb *urb = context;
4015 struct dwc2_tt *dwc_tt = NULL;
4016
4017 if (urb->dev->tt) {
4018 *ttport = urb->dev->ttport;
4019
4020 dwc_tt = urb->dev->tt->hcpriv;
4021 if (!dwc_tt) {
4022 size_t bitmap_size;
4023
4024 /*
4025 * For single_tt we need one schedule. For multi_tt
4026 * we need one per port.
4027 */
4028 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4029 sizeof(dwc_tt->periodic_bitmaps[0]);
4030 if (urb->dev->tt->multi)
4031 bitmap_size *= urb->dev->tt->hub->maxchild;
4032
4033 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4034 mem_flags);
4035 if (!dwc_tt)
4036 return NULL;
4037
4038 dwc_tt->usb_tt = urb->dev->tt;
4039 dwc_tt->usb_tt->hcpriv = dwc_tt;
4040 }
4041
4042 dwc_tt->refcount++;
4043 }
4044
4045 return dwc_tt;
4046 }
4047
4048 /**
4049 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4050 *
4051 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4052 * of the structure are done.
4053 *
4054 * It's OK to call this with NULL.
4055 *
4056 * @hsotg: The HCD state structure for the DWC OTG controller.
4057 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
4058 */
dwc2_host_put_tt_info(struct dwc2_hsotg * hsotg,struct dwc2_tt * dwc_tt)4059 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4060 {
4061 /* Model kfree and make put of NULL a no-op */
4062 if (!dwc_tt)
4063 return;
4064
4065 WARN_ON(dwc_tt->refcount < 1);
4066
4067 dwc_tt->refcount--;
4068 if (!dwc_tt->refcount) {
4069 dwc_tt->usb_tt->hcpriv = NULL;
4070 kfree(dwc_tt);
4071 }
4072 }
4073
dwc2_host_get_speed(struct dwc2_hsotg * hsotg,void * context)4074 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4075 {
4076 struct urb *urb = context;
4077
4078 return urb->dev->speed;
4079 }
4080
dwc2_allocate_bus_bandwidth(struct usb_hcd * hcd,u16 bw,struct urb * urb)4081 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4082 struct urb *urb)
4083 {
4084 struct usb_bus *bus = hcd_to_bus(hcd);
4085
4086 if (urb->interval)
4087 bus->bandwidth_allocated += bw / urb->interval;
4088 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4089 bus->bandwidth_isoc_reqs++;
4090 else
4091 bus->bandwidth_int_reqs++;
4092 }
4093
dwc2_free_bus_bandwidth(struct usb_hcd * hcd,u16 bw,struct urb * urb)4094 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4095 struct urb *urb)
4096 {
4097 struct usb_bus *bus = hcd_to_bus(hcd);
4098
4099 if (urb->interval)
4100 bus->bandwidth_allocated -= bw / urb->interval;
4101 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4102 bus->bandwidth_isoc_reqs--;
4103 else
4104 bus->bandwidth_int_reqs--;
4105 }
4106
4107 /*
4108 * Sets the final status of an URB and returns it to the upper layer. Any
4109 * required cleanup of the URB is performed.
4110 *
4111 * Must be called with interrupt disabled and spinlock held
4112 */
dwc2_host_complete(struct dwc2_hsotg * hsotg,struct dwc2_qtd * qtd,int status)4113 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4114 int status)
4115 {
4116 struct urb *urb;
4117 int i;
4118
4119 if (!qtd) {
4120 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4121 return;
4122 }
4123
4124 if (!qtd->urb) {
4125 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4126 return;
4127 }
4128
4129 urb = qtd->urb->priv;
4130 if (!urb) {
4131 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4132 return;
4133 }
4134
4135 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4136
4137 if (dbg_urb(urb))
4138 dev_vdbg(hsotg->dev,
4139 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4140 __func__, urb, usb_pipedevice(urb->pipe),
4141 usb_pipeendpoint(urb->pipe),
4142 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4143 urb->actual_length);
4144
4145 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4146 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4147 for (i = 0; i < urb->number_of_packets; ++i) {
4148 urb->iso_frame_desc[i].actual_length =
4149 dwc2_hcd_urb_get_iso_desc_actual_length(
4150 qtd->urb, i);
4151 urb->iso_frame_desc[i].status =
4152 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4153 }
4154 }
4155
4156 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4157 for (i = 0; i < urb->number_of_packets; i++)
4158 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4159 i, urb->iso_frame_desc[i].status);
4160 }
4161
4162 urb->status = status;
4163 if (!status) {
4164 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4165 urb->actual_length < urb->transfer_buffer_length)
4166 urb->status = -EREMOTEIO;
4167 }
4168
4169 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4170 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4171 struct usb_host_endpoint *ep = urb->ep;
4172
4173 if (ep)
4174 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4175 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4176 urb);
4177 }
4178
4179 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4180 urb->hcpriv = NULL;
4181 kfree(qtd->urb);
4182 qtd->urb = NULL;
4183
4184 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4185 }
4186
4187 /*
4188 * Work queue function for starting the HCD when A-Cable is connected
4189 */
dwc2_hcd_start_func(struct work_struct * work)4190 static void dwc2_hcd_start_func(struct work_struct *work)
4191 {
4192 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4193 start_work.work);
4194
4195 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4196 dwc2_host_start(hsotg);
4197 }
4198
4199 /*
4200 * Reset work queue function
4201 */
dwc2_hcd_reset_func(struct work_struct * work)4202 static void dwc2_hcd_reset_func(struct work_struct *work)
4203 {
4204 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4205 reset_work.work);
4206 unsigned long flags;
4207 u32 hprt0;
4208
4209 dev_dbg(hsotg->dev, "USB RESET function called\n");
4210
4211 spin_lock_irqsave(&hsotg->lock, flags);
4212
4213 hprt0 = dwc2_read_hprt0(hsotg);
4214 hprt0 &= ~HPRT0_RST;
4215 dwc2_writel(hsotg, hprt0, HPRT0);
4216 hsotg->flags.b.port_reset_change = 1;
4217
4218 spin_unlock_irqrestore(&hsotg->lock, flags);
4219 }
4220
dwc2_hcd_phy_reset_func(struct work_struct * work)4221 static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4222 {
4223 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4224 phy_reset_work);
4225 int ret;
4226
4227 ret = phy_reset(hsotg->phy);
4228 if (ret)
4229 dev_warn(hsotg->dev, "PHY reset failed\n");
4230 }
4231
4232 /*
4233 * =========================================================================
4234 * Linux HC Driver Functions
4235 * =========================================================================
4236 */
4237
4238 /*
4239 * Initializes the DWC_otg controller and its root hub and prepares it for host
4240 * mode operation. Activates the root port. Returns 0 on success and a negative
4241 * error code on failure.
4242 */
_dwc2_hcd_start(struct usb_hcd * hcd)4243 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4244 {
4245 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4246 struct usb_bus *bus = hcd_to_bus(hcd);
4247 unsigned long flags;
4248 u32 hprt0;
4249 int ret;
4250
4251 dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4252
4253 spin_lock_irqsave(&hsotg->lock, flags);
4254 hsotg->lx_state = DWC2_L0;
4255 hcd->state = HC_STATE_RUNNING;
4256 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4257
4258 if (dwc2_is_device_mode(hsotg)) {
4259 spin_unlock_irqrestore(&hsotg->lock, flags);
4260 return 0; /* why 0 ?? */
4261 }
4262
4263 dwc2_hcd_reinit(hsotg);
4264
4265 hprt0 = dwc2_read_hprt0(hsotg);
4266 /* Has vbus power been turned on in dwc2_core_host_init ? */
4267 if (hprt0 & HPRT0_PWR) {
4268 /* Enable external vbus supply before resuming root hub */
4269 spin_unlock_irqrestore(&hsotg->lock, flags);
4270 ret = dwc2_vbus_supply_init(hsotg);
4271 if (ret)
4272 return ret;
4273 spin_lock_irqsave(&hsotg->lock, flags);
4274 }
4275
4276 /* Initialize and connect root hub if one is not already attached */
4277 if (bus->root_hub) {
4278 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4279 /* Inform the HUB driver to resume */
4280 usb_hcd_resume_root_hub(hcd);
4281 }
4282
4283 spin_unlock_irqrestore(&hsotg->lock, flags);
4284
4285 return 0;
4286 }
4287
4288 /*
4289 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4290 * stopped.
4291 */
_dwc2_hcd_stop(struct usb_hcd * hcd)4292 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4293 {
4294 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4295 unsigned long flags;
4296 u32 hprt0;
4297
4298 /* Turn off all host-specific interrupts */
4299 dwc2_disable_host_interrupts(hsotg);
4300
4301 /* Wait for interrupt processing to finish */
4302 synchronize_irq(hcd->irq);
4303
4304 spin_lock_irqsave(&hsotg->lock, flags);
4305 hprt0 = dwc2_read_hprt0(hsotg);
4306 /* Ensure hcd is disconnected */
4307 dwc2_hcd_disconnect(hsotg, true);
4308 dwc2_hcd_stop(hsotg);
4309 hsotg->lx_state = DWC2_L3;
4310 hcd->state = HC_STATE_HALT;
4311 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4312 spin_unlock_irqrestore(&hsotg->lock, flags);
4313
4314 /* keep balanced supply init/exit by checking HPRT0_PWR */
4315 if (hprt0 & HPRT0_PWR)
4316 dwc2_vbus_supply_exit(hsotg);
4317
4318 usleep_range(1000, 3000);
4319 }
4320
_dwc2_hcd_suspend(struct usb_hcd * hcd)4321 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4322 {
4323 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4324 unsigned long flags;
4325 int ret = 0;
4326
4327 spin_lock_irqsave(&hsotg->lock, flags);
4328
4329 if (dwc2_is_device_mode(hsotg))
4330 goto unlock;
4331
4332 if (hsotg->lx_state != DWC2_L0)
4333 goto unlock;
4334
4335 if (!HCD_HW_ACCESSIBLE(hcd))
4336 goto unlock;
4337
4338 if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4339 goto unlock;
4340
4341 if (hsotg->bus_suspended)
4342 goto skip_power_saving;
4343
4344 if (hsotg->flags.b.port_connect_status == 0)
4345 goto skip_power_saving;
4346
4347 switch (hsotg->params.power_down) {
4348 case DWC2_POWER_DOWN_PARAM_PARTIAL:
4349 /* Enter partial_power_down */
4350 ret = dwc2_enter_partial_power_down(hsotg);
4351 if (ret)
4352 dev_err(hsotg->dev,
4353 "enter partial_power_down failed\n");
4354 /* After entering suspend, hardware is not accessible */
4355 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4356 break;
4357 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4358 /* Enter hibernation */
4359 spin_unlock_irqrestore(&hsotg->lock, flags);
4360 ret = dwc2_enter_hibernation(hsotg, 1);
4361 if (ret)
4362 dev_err(hsotg->dev, "enter hibernation failed\n");
4363 spin_lock_irqsave(&hsotg->lock, flags);
4364
4365 /* After entering suspend, hardware is not accessible */
4366 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4367 break;
4368 case DWC2_POWER_DOWN_PARAM_NONE:
4369 /*
4370 * If not hibernation nor partial power down are supported,
4371 * clock gating is used to save power.
4372 */
4373 if (!hsotg->params.no_clock_gating) {
4374 dwc2_host_enter_clock_gating(hsotg);
4375
4376 /* After entering suspend, hardware is not accessible */
4377 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4378 }
4379 break;
4380 default:
4381 goto skip_power_saving;
4382 }
4383
4384 spin_unlock_irqrestore(&hsotg->lock, flags);
4385 dwc2_vbus_supply_exit(hsotg);
4386 spin_lock_irqsave(&hsotg->lock, flags);
4387
4388 /* Ask phy to be suspended */
4389 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4390 spin_unlock_irqrestore(&hsotg->lock, flags);
4391 usb_phy_set_suspend(hsotg->uphy, true);
4392 spin_lock_irqsave(&hsotg->lock, flags);
4393 }
4394
4395 skip_power_saving:
4396 hsotg->lx_state = DWC2_L2;
4397 unlock:
4398 spin_unlock_irqrestore(&hsotg->lock, flags);
4399
4400 return ret;
4401 }
4402
_dwc2_hcd_resume(struct usb_hcd * hcd)4403 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4404 {
4405 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4406 unsigned long flags;
4407 u32 hprt0;
4408 int ret = 0;
4409
4410 spin_lock_irqsave(&hsotg->lock, flags);
4411
4412 if (dwc2_is_device_mode(hsotg))
4413 goto unlock;
4414
4415 if (hsotg->lx_state != DWC2_L2)
4416 goto unlock;
4417
4418 hprt0 = dwc2_read_hprt0(hsotg);
4419
4420 /*
4421 * Added port connection status checking which prevents exiting from
4422 * Partial Power Down mode from _dwc2_hcd_resume() if not in Partial
4423 * Power Down mode.
4424 */
4425 if (hprt0 & HPRT0_CONNSTS) {
4426 hsotg->lx_state = DWC2_L0;
4427 goto unlock;
4428 }
4429
4430 switch (hsotg->params.power_down) {
4431 case DWC2_POWER_DOWN_PARAM_PARTIAL:
4432 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
4433 if (ret)
4434 dev_err(hsotg->dev,
4435 "exit partial_power_down failed\n");
4436 /*
4437 * Set HW accessible bit before powering on the controller
4438 * since an interrupt may rise.
4439 */
4440 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4441 break;
4442 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4443 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4444 if (ret)
4445 dev_err(hsotg->dev, "exit hibernation failed.\n");
4446
4447 /*
4448 * Set HW accessible bit before powering on the controller
4449 * since an interrupt may rise.
4450 */
4451 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4452 break;
4453 case DWC2_POWER_DOWN_PARAM_NONE:
4454 /*
4455 * If not hibernation nor partial power down are supported,
4456 * port resume is done using the clock gating programming flow.
4457 */
4458 spin_unlock_irqrestore(&hsotg->lock, flags);
4459 dwc2_host_exit_clock_gating(hsotg, 0);
4460
4461 /*
4462 * Initialize the Core for Host mode, as after system resume
4463 * the global interrupts are disabled.
4464 */
4465 dwc2_core_init(hsotg, false);
4466 dwc2_enable_global_interrupts(hsotg);
4467 dwc2_hcd_reinit(hsotg);
4468 spin_lock_irqsave(&hsotg->lock, flags);
4469
4470 /*
4471 * Set HW accessible bit before powering on the controller
4472 * since an interrupt may rise.
4473 */
4474 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4475 break;
4476 default:
4477 hsotg->lx_state = DWC2_L0;
4478 goto unlock;
4479 }
4480
4481 /* Change Root port status, as port status change occurred after resume.*/
4482 hsotg->flags.b.port_suspend_change = 1;
4483
4484 /*
4485 * Enable power if not already done.
4486 * This must not be spinlocked since duration
4487 * of this call is unknown.
4488 */
4489 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4490 spin_unlock_irqrestore(&hsotg->lock, flags);
4491 usb_phy_set_suspend(hsotg->uphy, false);
4492 spin_lock_irqsave(&hsotg->lock, flags);
4493 }
4494
4495 /* Enable external vbus supply after resuming the port. */
4496 spin_unlock_irqrestore(&hsotg->lock, flags);
4497 dwc2_vbus_supply_init(hsotg);
4498
4499 /* Wait for controller to correctly update D+/D- level */
4500 usleep_range(3000, 5000);
4501 spin_lock_irqsave(&hsotg->lock, flags);
4502
4503 /*
4504 * Clear Port Enable and Port Status changes.
4505 * Enable Port Power.
4506 */
4507 dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4508 HPRT0_ENACHG, HPRT0);
4509
4510 /* Wait for controller to detect Port Connect */
4511 spin_unlock_irqrestore(&hsotg->lock, flags);
4512 usleep_range(5000, 7000);
4513 spin_lock_irqsave(&hsotg->lock, flags);
4514 unlock:
4515 spin_unlock_irqrestore(&hsotg->lock, flags);
4516
4517 return ret;
4518 }
4519
4520 /* Returns the current frame number */
_dwc2_hcd_get_frame_number(struct usb_hcd * hcd)4521 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4522 {
4523 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4524
4525 return dwc2_hcd_get_frame_number(hsotg);
4526 }
4527
dwc2_dump_urb_info(struct usb_hcd * hcd,struct urb * urb,char * fn_name)4528 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4529 char *fn_name)
4530 {
4531 #ifdef VERBOSE_DEBUG
4532 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4533 char *pipetype = NULL;
4534 char *speed = NULL;
4535
4536 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4537 dev_vdbg(hsotg->dev, " Device address: %d\n",
4538 usb_pipedevice(urb->pipe));
4539 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n",
4540 usb_pipeendpoint(urb->pipe),
4541 usb_pipein(urb->pipe) ? "IN" : "OUT");
4542
4543 switch (usb_pipetype(urb->pipe)) {
4544 case PIPE_CONTROL:
4545 pipetype = "CONTROL";
4546 break;
4547 case PIPE_BULK:
4548 pipetype = "BULK";
4549 break;
4550 case PIPE_INTERRUPT:
4551 pipetype = "INTERRUPT";
4552 break;
4553 case PIPE_ISOCHRONOUS:
4554 pipetype = "ISOCHRONOUS";
4555 break;
4556 }
4557
4558 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype,
4559 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4560 "IN" : "OUT");
4561
4562 switch (urb->dev->speed) {
4563 case USB_SPEED_HIGH:
4564 speed = "HIGH";
4565 break;
4566 case USB_SPEED_FULL:
4567 speed = "FULL";
4568 break;
4569 case USB_SPEED_LOW:
4570 speed = "LOW";
4571 break;
4572 default:
4573 speed = "UNKNOWN";
4574 break;
4575 }
4576
4577 dev_vdbg(hsotg->dev, " Speed: %s\n", speed);
4578 dev_vdbg(hsotg->dev, " Max packet size: %d (%d mult)\n",
4579 usb_endpoint_maxp(&urb->ep->desc),
4580 usb_endpoint_maxp_mult(&urb->ep->desc));
4581
4582 dev_vdbg(hsotg->dev, " Data buffer length: %d\n",
4583 urb->transfer_buffer_length);
4584 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n",
4585 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4586 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n",
4587 urb->setup_packet, (unsigned long)urb->setup_dma);
4588 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval);
4589
4590 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4591 int i;
4592
4593 for (i = 0; i < urb->number_of_packets; i++) {
4594 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i);
4595 dev_vdbg(hsotg->dev, " offset: %d, length %d\n",
4596 urb->iso_frame_desc[i].offset,
4597 urb->iso_frame_desc[i].length);
4598 }
4599 }
4600 #endif
4601 }
4602
4603 /*
4604 * Starts processing a USB transfer request specified by a USB Request Block
4605 * (URB). mem_flags indicates the type of memory allocation to use while
4606 * processing this URB.
4607 */
_dwc2_hcd_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)4608 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4609 gfp_t mem_flags)
4610 {
4611 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4612 struct usb_host_endpoint *ep = urb->ep;
4613 struct dwc2_hcd_urb *dwc2_urb;
4614 int i;
4615 int retval;
4616 int alloc_bandwidth = 0;
4617 u8 ep_type = 0;
4618 u32 tflags = 0;
4619 void *buf;
4620 unsigned long flags;
4621 struct dwc2_qh *qh;
4622 bool qh_allocated = false;
4623 struct dwc2_qtd *qtd;
4624 struct dwc2_gregs_backup *gr;
4625
4626 gr = &hsotg->gr_backup;
4627
4628 if (dbg_urb(urb)) {
4629 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4630 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4631 }
4632
4633 if (hsotg->hibernated) {
4634 if (gr->gotgctl & GOTGCTL_CURMODE_HOST)
4635 retval = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4636 else
4637 retval = dwc2_exit_hibernation(hsotg, 0, 0, 0);
4638
4639 if (retval)
4640 dev_err(hsotg->dev,
4641 "exit hibernation failed.\n");
4642 }
4643
4644 if (hsotg->in_ppd) {
4645 retval = dwc2_exit_partial_power_down(hsotg, 0, true);
4646 if (retval)
4647 dev_err(hsotg->dev,
4648 "exit partial_power_down failed\n");
4649 }
4650
4651 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE &&
4652 hsotg->bus_suspended) {
4653 if (dwc2_is_device_mode(hsotg))
4654 dwc2_gadget_exit_clock_gating(hsotg, 0);
4655 else
4656 dwc2_host_exit_clock_gating(hsotg, 0);
4657 }
4658
4659 if (!ep)
4660 return -EINVAL;
4661
4662 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4663 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4664 spin_lock_irqsave(&hsotg->lock, flags);
4665 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4666 alloc_bandwidth = 1;
4667 spin_unlock_irqrestore(&hsotg->lock, flags);
4668 }
4669
4670 switch (usb_pipetype(urb->pipe)) {
4671 case PIPE_CONTROL:
4672 ep_type = USB_ENDPOINT_XFER_CONTROL;
4673 break;
4674 case PIPE_ISOCHRONOUS:
4675 ep_type = USB_ENDPOINT_XFER_ISOC;
4676 break;
4677 case PIPE_BULK:
4678 ep_type = USB_ENDPOINT_XFER_BULK;
4679 break;
4680 case PIPE_INTERRUPT:
4681 ep_type = USB_ENDPOINT_XFER_INT;
4682 break;
4683 }
4684
4685 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4686 mem_flags);
4687 if (!dwc2_urb)
4688 return -ENOMEM;
4689
4690 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4691 usb_pipeendpoint(urb->pipe), ep_type,
4692 usb_pipein(urb->pipe),
4693 usb_endpoint_maxp(&ep->desc),
4694 usb_endpoint_maxp_mult(&ep->desc));
4695
4696 buf = urb->transfer_buffer;
4697
4698 if (hcd_uses_dma(hcd)) {
4699 if (!buf && (urb->transfer_dma & 3)) {
4700 dev_err(hsotg->dev,
4701 "%s: unaligned transfer with no transfer_buffer",
4702 __func__);
4703 retval = -EINVAL;
4704 goto fail0;
4705 }
4706 }
4707
4708 if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4709 tflags |= URB_GIVEBACK_ASAP;
4710 if (urb->transfer_flags & URB_ZERO_PACKET)
4711 tflags |= URB_SEND_ZERO_PACKET;
4712
4713 dwc2_urb->priv = urb;
4714 dwc2_urb->buf = buf;
4715 dwc2_urb->dma = urb->transfer_dma;
4716 dwc2_urb->length = urb->transfer_buffer_length;
4717 dwc2_urb->setup_packet = urb->setup_packet;
4718 dwc2_urb->setup_dma = urb->setup_dma;
4719 dwc2_urb->flags = tflags;
4720 dwc2_urb->interval = urb->interval;
4721 dwc2_urb->status = -EINPROGRESS;
4722
4723 for (i = 0; i < urb->number_of_packets; ++i)
4724 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4725 urb->iso_frame_desc[i].offset,
4726 urb->iso_frame_desc[i].length);
4727
4728 urb->hcpriv = dwc2_urb;
4729 qh = (struct dwc2_qh *)ep->hcpriv;
4730 /* Create QH for the endpoint if it doesn't exist */
4731 if (!qh) {
4732 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4733 if (!qh) {
4734 retval = -ENOMEM;
4735 goto fail0;
4736 }
4737 ep->hcpriv = qh;
4738 qh_allocated = true;
4739 }
4740
4741 qtd = kzalloc(sizeof(*qtd), mem_flags);
4742 if (!qtd) {
4743 retval = -ENOMEM;
4744 goto fail1;
4745 }
4746
4747 spin_lock_irqsave(&hsotg->lock, flags);
4748 retval = usb_hcd_link_urb_to_ep(hcd, urb);
4749 if (retval)
4750 goto fail2;
4751
4752 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4753 if (retval)
4754 goto fail3;
4755
4756 if (alloc_bandwidth) {
4757 dwc2_allocate_bus_bandwidth(hcd,
4758 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4759 urb);
4760 }
4761
4762 spin_unlock_irqrestore(&hsotg->lock, flags);
4763
4764 return 0;
4765
4766 fail3:
4767 dwc2_urb->priv = NULL;
4768 usb_hcd_unlink_urb_from_ep(hcd, urb);
4769 if (qh_allocated && qh->channel && qh->channel->qh == qh)
4770 qh->channel->qh = NULL;
4771 fail2:
4772 urb->hcpriv = NULL;
4773 spin_unlock_irqrestore(&hsotg->lock, flags);
4774 kfree(qtd);
4775 fail1:
4776 if (qh_allocated) {
4777 struct dwc2_qtd *qtd2, *qtd2_tmp;
4778
4779 ep->hcpriv = NULL;
4780 dwc2_hcd_qh_unlink(hsotg, qh);
4781 /* Free each QTD in the QH's QTD list */
4782 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4783 qtd_list_entry)
4784 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4785 dwc2_hcd_qh_free(hsotg, qh);
4786 }
4787 fail0:
4788 kfree(dwc2_urb);
4789
4790 return retval;
4791 }
4792
4793 /*
4794 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4795 */
_dwc2_hcd_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)4796 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4797 int status)
4798 {
4799 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4800 int rc;
4801 unsigned long flags;
4802
4803 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4804 dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4805
4806 spin_lock_irqsave(&hsotg->lock, flags);
4807
4808 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4809 if (rc)
4810 goto out;
4811
4812 if (!urb->hcpriv) {
4813 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4814 goto out;
4815 }
4816
4817 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4818
4819 usb_hcd_unlink_urb_from_ep(hcd, urb);
4820
4821 kfree(urb->hcpriv);
4822 urb->hcpriv = NULL;
4823
4824 /* Higher layer software sets URB status */
4825 spin_unlock(&hsotg->lock);
4826 usb_hcd_giveback_urb(hcd, urb, status);
4827 spin_lock(&hsotg->lock);
4828
4829 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4830 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status);
4831 out:
4832 spin_unlock_irqrestore(&hsotg->lock, flags);
4833
4834 return rc;
4835 }
4836
4837 /*
4838 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4839 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4840 * must already be dequeued.
4841 */
_dwc2_hcd_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)4842 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4843 struct usb_host_endpoint *ep)
4844 {
4845 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4846
4847 dev_dbg(hsotg->dev,
4848 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4849 ep->desc.bEndpointAddress, ep->hcpriv);
4850 dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4851 }
4852
4853 /*
4854 * Resets endpoint specific parameter values, in current version used to reset
4855 * the data toggle (as a WA). This function can be called from usb_clear_halt
4856 * routine.
4857 */
_dwc2_hcd_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)4858 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4859 struct usb_host_endpoint *ep)
4860 {
4861 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4862 unsigned long flags;
4863
4864 dev_dbg(hsotg->dev,
4865 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4866 ep->desc.bEndpointAddress);
4867
4868 spin_lock_irqsave(&hsotg->lock, flags);
4869 dwc2_hcd_endpoint_reset(hsotg, ep);
4870 spin_unlock_irqrestore(&hsotg->lock, flags);
4871 }
4872
4873 /*
4874 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4875 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4876 * interrupt.
4877 *
4878 * This function is called by the USB core when an interrupt occurs
4879 */
_dwc2_hcd_irq(struct usb_hcd * hcd)4880 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4881 {
4882 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4883
4884 return dwc2_handle_hcd_intr(hsotg);
4885 }
4886
4887 /*
4888 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4889 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4890 * is the status change indicator for the single root port. Returns 1 if either
4891 * change indicator is 1, otherwise returns 0.
4892 */
_dwc2_hcd_hub_status_data(struct usb_hcd * hcd,char * buf)4893 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4894 {
4895 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4896
4897 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4898 return buf[0] != 0;
4899 }
4900
4901 /* Handles hub class-specific requests */
_dwc2_hcd_hub_control(struct usb_hcd * hcd,u16 typereq,u16 wvalue,u16 windex,char * buf,u16 wlength)4902 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4903 u16 windex, char *buf, u16 wlength)
4904 {
4905 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4906 wvalue, windex, buf, wlength);
4907 return retval;
4908 }
4909
4910 /* Handles hub TT buffer clear completions */
_dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)4911 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4912 struct usb_host_endpoint *ep)
4913 {
4914 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4915 struct dwc2_qh *qh;
4916 unsigned long flags;
4917
4918 qh = ep->hcpriv;
4919 if (!qh)
4920 return;
4921
4922 spin_lock_irqsave(&hsotg->lock, flags);
4923 qh->tt_buffer_dirty = 0;
4924
4925 if (hsotg->flags.b.port_connect_status)
4926 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4927
4928 spin_unlock_irqrestore(&hsotg->lock, flags);
4929 }
4930
4931 /*
4932 * HPRT0_SPD_HIGH_SPEED: high speed
4933 * HPRT0_SPD_FULL_SPEED: full speed
4934 */
dwc2_change_bus_speed(struct usb_hcd * hcd,int speed)4935 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4936 {
4937 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4938
4939 if (hsotg->params.speed == speed)
4940 return;
4941
4942 hsotg->params.speed = speed;
4943 queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4944 }
4945
dwc2_free_dev(struct usb_hcd * hcd,struct usb_device * udev)4946 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4947 {
4948 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4949
4950 if (!hsotg->params.change_speed_quirk)
4951 return;
4952
4953 /*
4954 * On removal, set speed to default high-speed.
4955 */
4956 if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4957 udev->parent->speed < USB_SPEED_HIGH) {
4958 dev_info(hsotg->dev, "Set speed to default high-speed\n");
4959 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4960 }
4961 }
4962
dwc2_reset_device(struct usb_hcd * hcd,struct usb_device * udev)4963 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4964 {
4965 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4966
4967 if (!hsotg->params.change_speed_quirk)
4968 return 0;
4969
4970 if (udev->speed == USB_SPEED_HIGH) {
4971 dev_info(hsotg->dev, "Set speed to high-speed\n");
4972 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4973 } else if ((udev->speed == USB_SPEED_FULL ||
4974 udev->speed == USB_SPEED_LOW)) {
4975 /*
4976 * Change speed setting to full-speed if there's
4977 * a full-speed or low-speed device plugged in.
4978 */
4979 dev_info(hsotg->dev, "Set speed to full-speed\n");
4980 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4981 }
4982
4983 return 0;
4984 }
4985
4986 static struct hc_driver dwc2_hc_driver = {
4987 .description = "dwc2_hsotg",
4988 .product_desc = "DWC OTG Controller",
4989 .hcd_priv_size = sizeof(struct wrapper_priv_data),
4990
4991 .irq = _dwc2_hcd_irq,
4992 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4993
4994 .start = _dwc2_hcd_start,
4995 .stop = _dwc2_hcd_stop,
4996 .urb_enqueue = _dwc2_hcd_urb_enqueue,
4997 .urb_dequeue = _dwc2_hcd_urb_dequeue,
4998 .endpoint_disable = _dwc2_hcd_endpoint_disable,
4999 .endpoint_reset = _dwc2_hcd_endpoint_reset,
5000 .get_frame_number = _dwc2_hcd_get_frame_number,
5001
5002 .hub_status_data = _dwc2_hcd_hub_status_data,
5003 .hub_control = _dwc2_hcd_hub_control,
5004 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5005
5006 .bus_suspend = _dwc2_hcd_suspend,
5007 .bus_resume = _dwc2_hcd_resume,
5008
5009 .map_urb_for_dma = dwc2_map_urb_for_dma,
5010 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma,
5011 };
5012
5013 /*
5014 * Frees secondary storage associated with the dwc2_hsotg structure contained
5015 * in the struct usb_hcd field
5016 */
dwc2_hcd_free(struct dwc2_hsotg * hsotg)5017 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5018 {
5019 u32 ahbcfg;
5020 u32 dctl;
5021 int i;
5022
5023 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5024
5025 /* Free memory for QH/QTD lists */
5026 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5027 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5028 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5029 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5030 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5031 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5032 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5033
5034 /* Free memory for the host channels */
5035 for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5036 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5037
5038 if (chan) {
5039 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5040 i, chan);
5041 hsotg->hc_ptr_array[i] = NULL;
5042 kfree(chan);
5043 }
5044 }
5045
5046 if (hsotg->params.host_dma) {
5047 if (hsotg->status_buf) {
5048 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5049 hsotg->status_buf,
5050 hsotg->status_buf_dma);
5051 hsotg->status_buf = NULL;
5052 }
5053 } else {
5054 kfree(hsotg->status_buf);
5055 hsotg->status_buf = NULL;
5056 }
5057
5058 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5059
5060 /* Disable all interrupts */
5061 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5062 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5063 dwc2_writel(hsotg, 0, GINTMSK);
5064
5065 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5066 dctl = dwc2_readl(hsotg, DCTL);
5067 dctl |= DCTL_SFTDISCON;
5068 dwc2_writel(hsotg, dctl, DCTL);
5069 }
5070
5071 if (hsotg->wq_otg) {
5072 if (!cancel_work_sync(&hsotg->wf_otg))
5073 flush_workqueue(hsotg->wq_otg);
5074 destroy_workqueue(hsotg->wq_otg);
5075 }
5076
5077 cancel_work_sync(&hsotg->phy_reset_work);
5078
5079 del_timer(&hsotg->wkp_timer);
5080 }
5081
dwc2_hcd_release(struct dwc2_hsotg * hsotg)5082 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5083 {
5084 /* Turn off all host-specific interrupts */
5085 dwc2_disable_host_interrupts(hsotg);
5086
5087 dwc2_hcd_free(hsotg);
5088 }
5089
5090 /*
5091 * Initializes the HCD. This function allocates memory for and initializes the
5092 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5093 * USB bus with the core and calls the hc_driver->start() function. It returns
5094 * a negative error on failure.
5095 */
dwc2_hcd_init(struct dwc2_hsotg * hsotg)5096 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5097 {
5098 struct platform_device *pdev = to_platform_device(hsotg->dev);
5099 struct resource *res;
5100 struct usb_hcd *hcd;
5101 struct dwc2_host_chan *channel;
5102 u32 hcfg;
5103 int i, num_channels;
5104 int retval;
5105
5106 if (usb_disabled())
5107 return -ENODEV;
5108
5109 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5110
5111 retval = -ENOMEM;
5112
5113 hcfg = dwc2_readl(hsotg, HCFG);
5114 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5115
5116 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5117 hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5118 sizeof(*hsotg->frame_num_array),
5119 GFP_KERNEL);
5120 if (!hsotg->frame_num_array)
5121 goto error1;
5122 hsotg->last_frame_num_array =
5123 kcalloc(FRAME_NUM_ARRAY_SIZE,
5124 sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5125 if (!hsotg->last_frame_num_array)
5126 goto error1;
5127 #endif
5128 hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5129
5130 /* Check if the bus driver or platform code has setup a dma_mask */
5131 if (hsotg->params.host_dma &&
5132 !hsotg->dev->dma_mask) {
5133 dev_warn(hsotg->dev,
5134 "dma_mask not set, disabling DMA\n");
5135 hsotg->params.host_dma = false;
5136 hsotg->params.dma_desc_enable = false;
5137 }
5138
5139 /* Set device flags indicating whether the HCD supports DMA */
5140 if (hsotg->params.host_dma) {
5141 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5142 dev_warn(hsotg->dev, "can't set DMA mask\n");
5143 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5144 dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5145 }
5146
5147 if (hsotg->params.change_speed_quirk) {
5148 dwc2_hc_driver.free_dev = dwc2_free_dev;
5149 dwc2_hc_driver.reset_device = dwc2_reset_device;
5150 }
5151
5152 if (hsotg->params.host_dma)
5153 dwc2_hc_driver.flags |= HCD_DMA;
5154
5155 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5156 if (!hcd)
5157 goto error1;
5158
5159 hcd->has_tt = 1;
5160
5161 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5162 if (!res) {
5163 retval = -EINVAL;
5164 goto error2;
5165 }
5166 hcd->rsrc_start = res->start;
5167 hcd->rsrc_len = resource_size(res);
5168
5169 ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5170 hsotg->priv = hcd;
5171
5172 /*
5173 * Disable the global interrupt until all the interrupt handlers are
5174 * installed
5175 */
5176 dwc2_disable_global_interrupts(hsotg);
5177
5178 /* Initialize the DWC_otg core, and select the Phy type */
5179 retval = dwc2_core_init(hsotg, true);
5180 if (retval)
5181 goto error2;
5182
5183 /* Create new workqueue and init work */
5184 retval = -ENOMEM;
5185 hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5186 if (!hsotg->wq_otg) {
5187 dev_err(hsotg->dev, "Failed to create workqueue\n");
5188 goto error2;
5189 }
5190 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5191
5192 timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5193
5194 /* Initialize the non-periodic schedule */
5195 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5196 INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5197 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5198
5199 /* Initialize the periodic schedule */
5200 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5201 INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5202 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5203 INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5204
5205 INIT_LIST_HEAD(&hsotg->split_order);
5206
5207 /*
5208 * Create a host channel descriptor for each host channel implemented
5209 * in the controller. Initialize the channel descriptor array.
5210 */
5211 INIT_LIST_HEAD(&hsotg->free_hc_list);
5212 num_channels = hsotg->params.host_channels;
5213 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5214
5215 for (i = 0; i < num_channels; i++) {
5216 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5217 if (!channel)
5218 goto error3;
5219 channel->hc_num = i;
5220 INIT_LIST_HEAD(&channel->split_order_list_entry);
5221 hsotg->hc_ptr_array[i] = channel;
5222 }
5223
5224 /* Initialize work */
5225 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5226 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5227 INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5228
5229 /*
5230 * Allocate space for storing data on status transactions. Normally no
5231 * data is sent, but this space acts as a bit bucket. This must be
5232 * done after usb_add_hcd since that function allocates the DMA buffer
5233 * pool.
5234 */
5235 if (hsotg->params.host_dma)
5236 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5237 DWC2_HCD_STATUS_BUF_SIZE,
5238 &hsotg->status_buf_dma, GFP_KERNEL);
5239 else
5240 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5241 GFP_KERNEL);
5242
5243 if (!hsotg->status_buf)
5244 goto error3;
5245
5246 /*
5247 * Create kmem caches to handle descriptor buffers in descriptor
5248 * DMA mode.
5249 * Alignment must be set to 512 bytes.
5250 */
5251 if (hsotg->params.dma_desc_enable ||
5252 hsotg->params.dma_desc_fs_enable) {
5253 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5254 sizeof(struct dwc2_dma_desc) *
5255 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5256 NULL);
5257 if (!hsotg->desc_gen_cache) {
5258 dev_err(hsotg->dev,
5259 "unable to create dwc2 generic desc cache\n");
5260
5261 /*
5262 * Disable descriptor dma mode since it will not be
5263 * usable.
5264 */
5265 hsotg->params.dma_desc_enable = false;
5266 hsotg->params.dma_desc_fs_enable = false;
5267 }
5268
5269 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5270 sizeof(struct dwc2_dma_desc) *
5271 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5272 if (!hsotg->desc_hsisoc_cache) {
5273 dev_err(hsotg->dev,
5274 "unable to create dwc2 hs isoc desc cache\n");
5275
5276 kmem_cache_destroy(hsotg->desc_gen_cache);
5277
5278 /*
5279 * Disable descriptor dma mode since it will not be
5280 * usable.
5281 */
5282 hsotg->params.dma_desc_enable = false;
5283 hsotg->params.dma_desc_fs_enable = false;
5284 }
5285 }
5286
5287 if (hsotg->params.host_dma) {
5288 /*
5289 * Create kmem caches to handle non-aligned buffer
5290 * in Buffer DMA mode.
5291 */
5292 hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5293 DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5294 SLAB_CACHE_DMA, NULL);
5295 if (!hsotg->unaligned_cache)
5296 dev_err(hsotg->dev,
5297 "unable to create dwc2 unaligned cache\n");
5298 }
5299
5300 hsotg->otg_port = 1;
5301 hsotg->frame_list = NULL;
5302 hsotg->frame_list_dma = 0;
5303 hsotg->periodic_qh_count = 0;
5304
5305 /* Initiate lx_state to L3 disconnected state */
5306 hsotg->lx_state = DWC2_L3;
5307
5308 hcd->self.otg_port = hsotg->otg_port;
5309
5310 /* Don't support SG list at this point */
5311 hcd->self.sg_tablesize = 0;
5312
5313 hcd->tpl_support = of_usb_host_tpl_support(hsotg->dev->of_node);
5314
5315 if (!IS_ERR_OR_NULL(hsotg->uphy))
5316 otg_set_host(hsotg->uphy->otg, &hcd->self);
5317
5318 /*
5319 * Finish generic HCD initialization and start the HCD. This function
5320 * allocates the DMA buffer pool, registers the USB bus, requests the
5321 * IRQ line, and calls hcd_start method.
5322 */
5323 retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5324 if (retval < 0)
5325 goto error4;
5326
5327 device_wakeup_enable(hcd->self.controller);
5328
5329 dwc2_hcd_dump_state(hsotg);
5330
5331 dwc2_enable_global_interrupts(hsotg);
5332
5333 return 0;
5334
5335 error4:
5336 kmem_cache_destroy(hsotg->unaligned_cache);
5337 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5338 kmem_cache_destroy(hsotg->desc_gen_cache);
5339 error3:
5340 dwc2_hcd_release(hsotg);
5341 error2:
5342 usb_put_hcd(hcd);
5343 error1:
5344
5345 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5346 kfree(hsotg->last_frame_num_array);
5347 kfree(hsotg->frame_num_array);
5348 #endif
5349
5350 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5351 return retval;
5352 }
5353
5354 /*
5355 * Removes the HCD.
5356 * Frees memory and resources associated with the HCD and deregisters the bus.
5357 */
dwc2_hcd_remove(struct dwc2_hsotg * hsotg)5358 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5359 {
5360 struct usb_hcd *hcd;
5361
5362 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5363
5364 hcd = dwc2_hsotg_to_hcd(hsotg);
5365 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5366
5367 if (!hcd) {
5368 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5369 __func__);
5370 return;
5371 }
5372
5373 if (!IS_ERR_OR_NULL(hsotg->uphy))
5374 otg_set_host(hsotg->uphy->otg, NULL);
5375
5376 usb_remove_hcd(hcd);
5377 hsotg->priv = NULL;
5378
5379 kmem_cache_destroy(hsotg->unaligned_cache);
5380 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5381 kmem_cache_destroy(hsotg->desc_gen_cache);
5382
5383 dwc2_hcd_release(hsotg);
5384 usb_put_hcd(hcd);
5385
5386 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5387 kfree(hsotg->last_frame_num_array);
5388 kfree(hsotg->frame_num_array);
5389 #endif
5390 }
5391
5392 /**
5393 * dwc2_backup_host_registers() - Backup controller host registers.
5394 * When suspending usb bus, registers needs to be backuped
5395 * if controller power is disabled once suspended.
5396 *
5397 * @hsotg: Programming view of the DWC_otg controller
5398 */
dwc2_backup_host_registers(struct dwc2_hsotg * hsotg)5399 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5400 {
5401 struct dwc2_hregs_backup *hr;
5402 int i;
5403
5404 dev_dbg(hsotg->dev, "%s\n", __func__);
5405
5406 /* Backup Host regs */
5407 hr = &hsotg->hr_backup;
5408 hr->hcfg = dwc2_readl(hsotg, HCFG);
5409 hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5410 for (i = 0; i < hsotg->params.host_channels; ++i)
5411 hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5412
5413 hr->hprt0 = dwc2_read_hprt0(hsotg);
5414 hr->hfir = dwc2_readl(hsotg, HFIR);
5415 hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5416 hr->valid = true;
5417
5418 return 0;
5419 }
5420
5421 /**
5422 * dwc2_restore_host_registers() - Restore controller host registers.
5423 * When resuming usb bus, device registers needs to be restored
5424 * if controller power were disabled.
5425 *
5426 * @hsotg: Programming view of the DWC_otg controller
5427 */
dwc2_restore_host_registers(struct dwc2_hsotg * hsotg)5428 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5429 {
5430 struct dwc2_hregs_backup *hr;
5431 int i;
5432
5433 dev_dbg(hsotg->dev, "%s\n", __func__);
5434
5435 /* Restore host regs */
5436 hr = &hsotg->hr_backup;
5437 if (!hr->valid) {
5438 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5439 __func__);
5440 return -EINVAL;
5441 }
5442 hr->valid = false;
5443
5444 dwc2_writel(hsotg, hr->hcfg, HCFG);
5445 dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5446
5447 for (i = 0; i < hsotg->params.host_channels; ++i)
5448 dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5449
5450 dwc2_writel(hsotg, hr->hprt0, HPRT0);
5451 dwc2_writel(hsotg, hr->hfir, HFIR);
5452 dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5453 hsotg->frame_number = 0;
5454
5455 return 0;
5456 }
5457
5458 /**
5459 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5460 *
5461 * @hsotg: Programming view of the DWC_otg controller
5462 */
dwc2_host_enter_hibernation(struct dwc2_hsotg * hsotg)5463 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5464 {
5465 unsigned long flags;
5466 int ret = 0;
5467 u32 hprt0;
5468 u32 pcgcctl;
5469 u32 gusbcfg;
5470 u32 gpwrdn;
5471
5472 dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5473 ret = dwc2_backup_global_registers(hsotg);
5474 if (ret) {
5475 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5476 __func__);
5477 return ret;
5478 }
5479 ret = dwc2_backup_host_registers(hsotg);
5480 if (ret) {
5481 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5482 __func__);
5483 return ret;
5484 }
5485
5486 /* Enter USB Suspend Mode */
5487 hprt0 = dwc2_readl(hsotg, HPRT0);
5488 hprt0 |= HPRT0_SUSP;
5489 hprt0 &= ~HPRT0_ENA;
5490 dwc2_writel(hsotg, hprt0, HPRT0);
5491
5492 /* Wait for the HPRT0.PrtSusp register field to be set */
5493 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000))
5494 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5495
5496 /*
5497 * We need to disable interrupts to prevent servicing of any IRQ
5498 * during going to hibernation
5499 */
5500 spin_lock_irqsave(&hsotg->lock, flags);
5501 hsotg->lx_state = DWC2_L2;
5502
5503 gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5504 if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5505 /* ULPI interface */
5506 /* Suspend the Phy Clock */
5507 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5508 pcgcctl |= PCGCTL_STOPPCLK;
5509 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5510 udelay(10);
5511
5512 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5513 gpwrdn |= GPWRDN_PMUACTV;
5514 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5515 udelay(10);
5516 } else {
5517 /* UTMI+ Interface */
5518 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5519 gpwrdn |= GPWRDN_PMUACTV;
5520 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5521 udelay(10);
5522
5523 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5524 pcgcctl |= PCGCTL_STOPPCLK;
5525 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5526 udelay(10);
5527 }
5528
5529 /* Enable interrupts from wake up logic */
5530 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5531 gpwrdn |= GPWRDN_PMUINTSEL;
5532 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5533 udelay(10);
5534
5535 /* Unmask host mode interrupts in GPWRDN */
5536 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5537 gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5538 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5539 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5540 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5541 udelay(10);
5542
5543 /* Enable Power Down Clamp */
5544 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5545 gpwrdn |= GPWRDN_PWRDNCLMP;
5546 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5547 udelay(10);
5548
5549 /* Switch off VDD */
5550 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5551 gpwrdn |= GPWRDN_PWRDNSWTCH;
5552 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5553
5554 hsotg->hibernated = 1;
5555 hsotg->bus_suspended = 1;
5556 dev_dbg(hsotg->dev, "Host hibernation completed\n");
5557 spin_unlock_irqrestore(&hsotg->lock, flags);
5558 return ret;
5559 }
5560
5561 /*
5562 * dwc2_host_exit_hibernation()
5563 *
5564 * @hsotg: Programming view of the DWC_otg controller
5565 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5566 * @param reset: indicates whether resume is initiated by Reset.
5567 *
5568 * Return: non-zero if failed to enter to hibernation.
5569 *
5570 * This function is for exiting from Host mode hibernation by
5571 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5572 */
dwc2_host_exit_hibernation(struct dwc2_hsotg * hsotg,int rem_wakeup,int reset)5573 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5574 int reset)
5575 {
5576 u32 gpwrdn;
5577 u32 hprt0;
5578 int ret = 0;
5579 struct dwc2_gregs_backup *gr;
5580 struct dwc2_hregs_backup *hr;
5581
5582 gr = &hsotg->gr_backup;
5583 hr = &hsotg->hr_backup;
5584
5585 dev_dbg(hsotg->dev,
5586 "%s: called with rem_wakeup = %d reset = %d\n",
5587 __func__, rem_wakeup, reset);
5588
5589 dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5590 hsotg->hibernated = 0;
5591
5592 /*
5593 * This step is not described in functional spec but if not wait for
5594 * this delay, mismatch interrupts occurred because just after restore
5595 * core is in Device mode(gintsts.curmode == 0)
5596 */
5597 mdelay(100);
5598
5599 /* Clear all pending interupts */
5600 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5601
5602 /* De-assert Restore */
5603 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5604 gpwrdn &= ~GPWRDN_RESTORE;
5605 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5606 udelay(10);
5607
5608 /* Restore GUSBCFG, HCFG */
5609 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5610 dwc2_writel(hsotg, hr->hcfg, HCFG);
5611
5612 /* De-assert Wakeup Logic */
5613 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5614 gpwrdn &= ~GPWRDN_PMUACTV;
5615 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5616 udelay(10);
5617
5618 hprt0 = hr->hprt0;
5619 hprt0 |= HPRT0_PWR;
5620 hprt0 &= ~HPRT0_ENA;
5621 hprt0 &= ~HPRT0_SUSP;
5622 dwc2_writel(hsotg, hprt0, HPRT0);
5623
5624 hprt0 = hr->hprt0;
5625 hprt0 |= HPRT0_PWR;
5626 hprt0 &= ~HPRT0_ENA;
5627 hprt0 &= ~HPRT0_SUSP;
5628
5629 if (reset) {
5630 hprt0 |= HPRT0_RST;
5631 dwc2_writel(hsotg, hprt0, HPRT0);
5632
5633 /* Wait for Resume time and then program HPRT again */
5634 mdelay(60);
5635 hprt0 &= ~HPRT0_RST;
5636 dwc2_writel(hsotg, hprt0, HPRT0);
5637 } else {
5638 hprt0 |= HPRT0_RES;
5639 dwc2_writel(hsotg, hprt0, HPRT0);
5640
5641 /* Wait for Resume time and then program HPRT again */
5642 mdelay(100);
5643 hprt0 &= ~HPRT0_RES;
5644 dwc2_writel(hsotg, hprt0, HPRT0);
5645 }
5646 /* Clear all interrupt status */
5647 hprt0 = dwc2_readl(hsotg, HPRT0);
5648 hprt0 |= HPRT0_CONNDET;
5649 hprt0 |= HPRT0_ENACHG;
5650 hprt0 &= ~HPRT0_ENA;
5651 dwc2_writel(hsotg, hprt0, HPRT0);
5652
5653 hprt0 = dwc2_readl(hsotg, HPRT0);
5654
5655 /* Clear all pending interupts */
5656 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5657
5658 /* Restore global registers */
5659 ret = dwc2_restore_global_registers(hsotg);
5660 if (ret) {
5661 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5662 __func__);
5663 return ret;
5664 }
5665
5666 /* Restore host registers */
5667 ret = dwc2_restore_host_registers(hsotg);
5668 if (ret) {
5669 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5670 __func__);
5671 return ret;
5672 }
5673
5674 if (rem_wakeup) {
5675 dwc2_hcd_rem_wakeup(hsotg);
5676 /*
5677 * Change "port_connect_status_change" flag to re-enumerate,
5678 * because after exit from hibernation port connection status
5679 * is not detected.
5680 */
5681 hsotg->flags.b.port_connect_status_change = 1;
5682 }
5683
5684 hsotg->hibernated = 0;
5685 hsotg->bus_suspended = 0;
5686 hsotg->lx_state = DWC2_L0;
5687 dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5688 return ret;
5689 }
5690
dwc2_host_can_poweroff_phy(struct dwc2_hsotg * dwc2)5691 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5692 {
5693 struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5694
5695 /* If the controller isn't allowed to wakeup then we can power off. */
5696 if (!device_may_wakeup(dwc2->dev))
5697 return true;
5698
5699 /*
5700 * We don't want to power off the PHY if something under the
5701 * root hub has wakeup enabled.
5702 */
5703 if (usb_wakeup_enabled_descendants(root_hub))
5704 return false;
5705
5706 /* No reason to keep the PHY powered, so allow poweroff */
5707 return true;
5708 }
5709
5710 /**
5711 * dwc2_host_enter_partial_power_down() - Put controller in partial
5712 * power down.
5713 *
5714 * @hsotg: Programming view of the DWC_otg controller
5715 *
5716 * Return: non-zero if failed to enter host partial power down.
5717 *
5718 * This function is for entering Host mode partial power down.
5719 */
dwc2_host_enter_partial_power_down(struct dwc2_hsotg * hsotg)5720 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5721 {
5722 u32 pcgcctl;
5723 u32 hprt0;
5724 int ret = 0;
5725
5726 dev_dbg(hsotg->dev, "Entering host partial power down started.\n");
5727
5728 /* Put this port in suspend mode. */
5729 hprt0 = dwc2_read_hprt0(hsotg);
5730 hprt0 |= HPRT0_SUSP;
5731 dwc2_writel(hsotg, hprt0, HPRT0);
5732 udelay(5);
5733
5734 /* Wait for the HPRT0.PrtSusp register field to be set */
5735 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5736 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5737
5738 /* Backup all registers */
5739 ret = dwc2_backup_global_registers(hsotg);
5740 if (ret) {
5741 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5742 __func__);
5743 return ret;
5744 }
5745
5746 ret = dwc2_backup_host_registers(hsotg);
5747 if (ret) {
5748 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5749 __func__);
5750 return ret;
5751 }
5752
5753 /*
5754 * Clear any pending interrupts since dwc2 will not be able to
5755 * clear them after entering partial_power_down.
5756 */
5757 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5758
5759 /* Put the controller in low power state */
5760 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5761
5762 pcgcctl |= PCGCTL_PWRCLMP;
5763 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5764 udelay(5);
5765
5766 pcgcctl |= PCGCTL_RSTPDWNMODULE;
5767 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5768 udelay(5);
5769
5770 pcgcctl |= PCGCTL_STOPPCLK;
5771 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5772
5773 /* Set in_ppd flag to 1 as here core enters suspend. */
5774 hsotg->in_ppd = 1;
5775 hsotg->lx_state = DWC2_L2;
5776 hsotg->bus_suspended = true;
5777
5778 dev_dbg(hsotg->dev, "Entering host partial power down completed.\n");
5779
5780 return ret;
5781 }
5782
5783 /*
5784 * dwc2_host_exit_partial_power_down() - Exit controller from host partial
5785 * power down.
5786 *
5787 * @hsotg: Programming view of the DWC_otg controller
5788 * @rem_wakeup: indicates whether resume is initiated by Reset.
5789 * @restore: indicates whether need to restore the registers or not.
5790 *
5791 * Return: non-zero if failed to exit host partial power down.
5792 *
5793 * This function is for exiting from Host mode partial power down.
5794 */
dwc2_host_exit_partial_power_down(struct dwc2_hsotg * hsotg,int rem_wakeup,bool restore)5795 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5796 int rem_wakeup, bool restore)
5797 {
5798 u32 pcgcctl;
5799 int ret = 0;
5800 u32 hprt0;
5801
5802 dev_dbg(hsotg->dev, "Exiting host partial power down started.\n");
5803
5804 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5805 pcgcctl &= ~PCGCTL_STOPPCLK;
5806 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5807 udelay(5);
5808
5809 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5810 pcgcctl &= ~PCGCTL_PWRCLMP;
5811 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5812 udelay(5);
5813
5814 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5815 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5816 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5817
5818 udelay(100);
5819 if (restore) {
5820 ret = dwc2_restore_global_registers(hsotg);
5821 if (ret) {
5822 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5823 __func__);
5824 return ret;
5825 }
5826
5827 ret = dwc2_restore_host_registers(hsotg);
5828 if (ret) {
5829 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5830 __func__);
5831 return ret;
5832 }
5833 }
5834
5835 /* Drive resume signaling and exit suspend mode on the port. */
5836 hprt0 = dwc2_read_hprt0(hsotg);
5837 hprt0 |= HPRT0_RES;
5838 hprt0 &= ~HPRT0_SUSP;
5839 dwc2_writel(hsotg, hprt0, HPRT0);
5840 udelay(5);
5841
5842 if (!rem_wakeup) {
5843 /* Stop driveing resume signaling on the port. */
5844 hprt0 = dwc2_read_hprt0(hsotg);
5845 hprt0 &= ~HPRT0_RES;
5846 dwc2_writel(hsotg, hprt0, HPRT0);
5847
5848 hsotg->bus_suspended = false;
5849 } else {
5850 /* Turn on the port power bit. */
5851 hprt0 = dwc2_read_hprt0(hsotg);
5852 hprt0 |= HPRT0_PWR;
5853 dwc2_writel(hsotg, hprt0, HPRT0);
5854
5855 /* Connect hcd. */
5856 dwc2_hcd_connect(hsotg);
5857
5858 mod_timer(&hsotg->wkp_timer,
5859 jiffies + msecs_to_jiffies(71));
5860 }
5861
5862 /* Set lx_state to and in_ppd to 0 as here core exits from suspend. */
5863 hsotg->in_ppd = 0;
5864 hsotg->lx_state = DWC2_L0;
5865
5866 dev_dbg(hsotg->dev, "Exiting host partial power down completed.\n");
5867 return ret;
5868 }
5869
5870 /**
5871 * dwc2_host_enter_clock_gating() - Put controller in clock gating.
5872 *
5873 * @hsotg: Programming view of the DWC_otg controller
5874 *
5875 * This function is for entering Host mode clock gating.
5876 */
dwc2_host_enter_clock_gating(struct dwc2_hsotg * hsotg)5877 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg)
5878 {
5879 u32 hprt0;
5880 u32 pcgctl;
5881
5882 dev_dbg(hsotg->dev, "Entering host clock gating.\n");
5883
5884 /* Put this port in suspend mode. */
5885 hprt0 = dwc2_read_hprt0(hsotg);
5886 hprt0 |= HPRT0_SUSP;
5887 dwc2_writel(hsotg, hprt0, HPRT0);
5888
5889 /* Set the Phy Clock bit as suspend is received. */
5890 pcgctl = dwc2_readl(hsotg, PCGCTL);
5891 pcgctl |= PCGCTL_STOPPCLK;
5892 dwc2_writel(hsotg, pcgctl, PCGCTL);
5893 udelay(5);
5894
5895 /* Set the Gate hclk as suspend is received. */
5896 pcgctl = dwc2_readl(hsotg, PCGCTL);
5897 pcgctl |= PCGCTL_GATEHCLK;
5898 dwc2_writel(hsotg, pcgctl, PCGCTL);
5899 udelay(5);
5900
5901 hsotg->bus_suspended = true;
5902 hsotg->lx_state = DWC2_L2;
5903 }
5904
5905 /**
5906 * dwc2_host_exit_clock_gating() - Exit controller from clock gating.
5907 *
5908 * @hsotg: Programming view of the DWC_otg controller
5909 * @rem_wakeup: indicates whether resume is initiated by remote wakeup
5910 *
5911 * This function is for exiting Host mode clock gating.
5912 */
dwc2_host_exit_clock_gating(struct dwc2_hsotg * hsotg,int rem_wakeup)5913 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5914 {
5915 u32 hprt0;
5916 u32 pcgctl;
5917
5918 dev_dbg(hsotg->dev, "Exiting host clock gating.\n");
5919
5920 /* Clear the Gate hclk. */
5921 pcgctl = dwc2_readl(hsotg, PCGCTL);
5922 pcgctl &= ~PCGCTL_GATEHCLK;
5923 dwc2_writel(hsotg, pcgctl, PCGCTL);
5924 udelay(5);
5925
5926 /* Phy Clock bit. */
5927 pcgctl = dwc2_readl(hsotg, PCGCTL);
5928 pcgctl &= ~PCGCTL_STOPPCLK;
5929 dwc2_writel(hsotg, pcgctl, PCGCTL);
5930 udelay(5);
5931
5932 /* Drive resume signaling and exit suspend mode on the port. */
5933 hprt0 = dwc2_read_hprt0(hsotg);
5934 hprt0 |= HPRT0_RES;
5935 hprt0 &= ~HPRT0_SUSP;
5936 dwc2_writel(hsotg, hprt0, HPRT0);
5937 udelay(5);
5938
5939 if (!rem_wakeup) {
5940 /* In case of port resume need to wait for 40 ms */
5941 msleep(USB_RESUME_TIMEOUT);
5942
5943 /* Stop driveing resume signaling on the port. */
5944 hprt0 = dwc2_read_hprt0(hsotg);
5945 hprt0 &= ~HPRT0_RES;
5946 dwc2_writel(hsotg, hprt0, HPRT0);
5947
5948 hsotg->bus_suspended = false;
5949 hsotg->lx_state = DWC2_L0;
5950 } else {
5951 mod_timer(&hsotg->wkp_timer,
5952 jiffies + msecs_to_jiffies(71));
5953 }
5954 }
5955