1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Synopsys DesignWare Multimedia Card Interface driver
4 * (Based on NXP driver for lpc 31xx)
5 *
6 * Copyright (C) 2009 NXP Semiconductors
7 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8 */
9
10 #include <linux/blkdev.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/iopoll.h>
19 #include <linux/ioport.h>
20 #include <linux/ktime.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/prandom.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/bitops.h>
36 #include <linux/regulator/consumer.h>
37 #include <linux/of.h>
38 #include <linux/of_gpio.h>
39 #include <linux/mmc/slot-gpio.h>
40
41 #include "dw_mmc.h"
42
43 /* Common flag combinations */
44 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
45 SDMMC_INT_HTO | SDMMC_INT_SBE | \
46 SDMMC_INT_EBE | SDMMC_INT_HLE)
47 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
48 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
49 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
50 DW_MCI_CMD_ERROR_FLAGS)
51 #define DW_MCI_SEND_STATUS 1
52 #define DW_MCI_RECV_STATUS 2
53 #define DW_MCI_DMA_THRESHOLD 16
54
55 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
56 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
57
58 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
59 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
60 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
61 SDMMC_IDMAC_INT_TI)
62
63 #define DESC_RING_BUF_SZ PAGE_SIZE
64
65 struct idmac_desc_64addr {
66 u32 des0; /* Control Descriptor */
67 #define IDMAC_OWN_CLR64(x) \
68 !((x) & cpu_to_le32(IDMAC_DES0_OWN))
69
70 u32 des1; /* Reserved */
71
72 u32 des2; /*Buffer sizes */
73 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
74 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
75 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
76
77 u32 des3; /* Reserved */
78
79 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
80 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
81
82 u32 des6; /* Lower 32-bits of Next Descriptor Address */
83 u32 des7; /* Upper 32-bits of Next Descriptor Address */
84 };
85
86 struct idmac_desc {
87 __le32 des0; /* Control Descriptor */
88 #define IDMAC_DES0_DIC BIT(1)
89 #define IDMAC_DES0_LD BIT(2)
90 #define IDMAC_DES0_FD BIT(3)
91 #define IDMAC_DES0_CH BIT(4)
92 #define IDMAC_DES0_ER BIT(5)
93 #define IDMAC_DES0_CES BIT(30)
94 #define IDMAC_DES0_OWN BIT(31)
95
96 __le32 des1; /* Buffer sizes */
97 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
98 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
99
100 __le32 des2; /* buffer 1 physical address */
101
102 __le32 des3; /* buffer 2 physical address */
103 };
104
105 /* Each descriptor can transfer up to 4KB of data in chained mode */
106 #define DW_MCI_DESC_DATA_LENGTH 0x1000
107
108 #if defined(CONFIG_DEBUG_FS)
dw_mci_req_show(struct seq_file * s,void * v)109 static int dw_mci_req_show(struct seq_file *s, void *v)
110 {
111 struct dw_mci_slot *slot = s->private;
112 struct mmc_request *mrq;
113 struct mmc_command *cmd;
114 struct mmc_command *stop;
115 struct mmc_data *data;
116
117 /* Make sure we get a consistent snapshot */
118 spin_lock_bh(&slot->host->lock);
119 mrq = slot->mrq;
120
121 if (mrq) {
122 cmd = mrq->cmd;
123 data = mrq->data;
124 stop = mrq->stop;
125
126 if (cmd)
127 seq_printf(s,
128 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
129 cmd->opcode, cmd->arg, cmd->flags,
130 cmd->resp[0], cmd->resp[1], cmd->resp[2],
131 cmd->resp[2], cmd->error);
132 if (data)
133 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
134 data->bytes_xfered, data->blocks,
135 data->blksz, data->flags, data->error);
136 if (stop)
137 seq_printf(s,
138 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
139 stop->opcode, stop->arg, stop->flags,
140 stop->resp[0], stop->resp[1], stop->resp[2],
141 stop->resp[2], stop->error);
142 }
143
144 spin_unlock_bh(&slot->host->lock);
145
146 return 0;
147 }
148 DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
149
dw_mci_regs_show(struct seq_file * s,void * v)150 static int dw_mci_regs_show(struct seq_file *s, void *v)
151 {
152 struct dw_mci *host = s->private;
153
154 pm_runtime_get_sync(host->dev);
155
156 seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
157 seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
158 seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
159 seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
160 seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
161 seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
162
163 pm_runtime_put_autosuspend(host->dev);
164
165 return 0;
166 }
167 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
168
dw_mci_init_debugfs(struct dw_mci_slot * slot)169 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
170 {
171 struct mmc_host *mmc = slot->mmc;
172 struct dw_mci *host = slot->host;
173 struct dentry *root;
174
175 root = mmc->debugfs_root;
176 if (!root)
177 return;
178
179 debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops);
180 debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops);
181 debugfs_create_u32("state", S_IRUSR, root, &host->state);
182 debugfs_create_xul("pending_events", S_IRUSR, root,
183 &host->pending_events);
184 debugfs_create_xul("completed_events", S_IRUSR, root,
185 &host->completed_events);
186 #ifdef CONFIG_FAULT_INJECTION
187 fault_create_debugfs_attr("fail_data_crc", root, &host->fail_data_crc);
188 #endif
189 }
190 #endif /* defined(CONFIG_DEBUG_FS) */
191
dw_mci_ctrl_reset(struct dw_mci * host,u32 reset)192 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
193 {
194 u32 ctrl;
195
196 ctrl = mci_readl(host, CTRL);
197 ctrl |= reset;
198 mci_writel(host, CTRL, ctrl);
199
200 /* wait till resets clear */
201 if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
202 !(ctrl & reset),
203 1, 500 * USEC_PER_MSEC)) {
204 dev_err(host->dev,
205 "Timeout resetting block (ctrl reset %#x)\n",
206 ctrl & reset);
207 return false;
208 }
209
210 return true;
211 }
212
dw_mci_wait_while_busy(struct dw_mci * host,u32 cmd_flags)213 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
214 {
215 u32 status;
216
217 /*
218 * Databook says that before issuing a new data transfer command
219 * we need to check to see if the card is busy. Data transfer commands
220 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
221 *
222 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
223 * expected.
224 */
225 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
226 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
227 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
228 status,
229 !(status & SDMMC_STATUS_BUSY),
230 10, 500 * USEC_PER_MSEC))
231 dev_err(host->dev, "Busy; trying anyway\n");
232 }
233 }
234
mci_send_cmd(struct dw_mci_slot * slot,u32 cmd,u32 arg)235 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
236 {
237 struct dw_mci *host = slot->host;
238 unsigned int cmd_status = 0;
239
240 mci_writel(host, CMDARG, arg);
241 wmb(); /* drain writebuffer */
242 dw_mci_wait_while_busy(host, cmd);
243 mci_writel(host, CMD, SDMMC_CMD_START | cmd);
244
245 if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
246 !(cmd_status & SDMMC_CMD_START),
247 1, 500 * USEC_PER_MSEC))
248 dev_err(&slot->mmc->class_dev,
249 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
250 cmd, arg, cmd_status);
251 }
252
dw_mci_prepare_command(struct mmc_host * mmc,struct mmc_command * cmd)253 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
254 {
255 struct dw_mci_slot *slot = mmc_priv(mmc);
256 struct dw_mci *host = slot->host;
257 u32 cmdr;
258
259 cmd->error = -EINPROGRESS;
260 cmdr = cmd->opcode;
261
262 if (cmd->opcode == MMC_STOP_TRANSMISSION ||
263 cmd->opcode == MMC_GO_IDLE_STATE ||
264 cmd->opcode == MMC_GO_INACTIVE_STATE ||
265 (cmd->opcode == SD_IO_RW_DIRECT &&
266 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
267 cmdr |= SDMMC_CMD_STOP;
268 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
269 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
270
271 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
272 u32 clk_en_a;
273
274 /* Special bit makes CMD11 not die */
275 cmdr |= SDMMC_CMD_VOLT_SWITCH;
276
277 /* Change state to continue to handle CMD11 weirdness */
278 WARN_ON(slot->host->state != STATE_SENDING_CMD);
279 slot->host->state = STATE_SENDING_CMD11;
280
281 /*
282 * We need to disable low power mode (automatic clock stop)
283 * while doing voltage switch so we don't confuse the card,
284 * since stopping the clock is a specific part of the UHS
285 * voltage change dance.
286 *
287 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
288 * unconditionally turned back on in dw_mci_setup_bus() if it's
289 * ever called with a non-zero clock. That shouldn't happen
290 * until the voltage change is all done.
291 */
292 clk_en_a = mci_readl(host, CLKENA);
293 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
294 mci_writel(host, CLKENA, clk_en_a);
295 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
296 SDMMC_CMD_PRV_DAT_WAIT, 0);
297 }
298
299 if (cmd->flags & MMC_RSP_PRESENT) {
300 /* We expect a response, so set this bit */
301 cmdr |= SDMMC_CMD_RESP_EXP;
302 if (cmd->flags & MMC_RSP_136)
303 cmdr |= SDMMC_CMD_RESP_LONG;
304 }
305
306 if (cmd->flags & MMC_RSP_CRC)
307 cmdr |= SDMMC_CMD_RESP_CRC;
308
309 if (cmd->data) {
310 cmdr |= SDMMC_CMD_DAT_EXP;
311 if (cmd->data->flags & MMC_DATA_WRITE)
312 cmdr |= SDMMC_CMD_DAT_WR;
313 }
314
315 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
316 cmdr |= SDMMC_CMD_USE_HOLD_REG;
317
318 return cmdr;
319 }
320
dw_mci_prep_stop_abort(struct dw_mci * host,struct mmc_command * cmd)321 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
322 {
323 struct mmc_command *stop;
324 u32 cmdr;
325
326 if (!cmd->data)
327 return 0;
328
329 stop = &host->stop_abort;
330 cmdr = cmd->opcode;
331 memset(stop, 0, sizeof(struct mmc_command));
332
333 if (cmdr == MMC_READ_SINGLE_BLOCK ||
334 cmdr == MMC_READ_MULTIPLE_BLOCK ||
335 cmdr == MMC_WRITE_BLOCK ||
336 cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
337 cmdr == MMC_SEND_TUNING_BLOCK ||
338 cmdr == MMC_SEND_TUNING_BLOCK_HS200 ||
339 cmdr == MMC_GEN_CMD) {
340 stop->opcode = MMC_STOP_TRANSMISSION;
341 stop->arg = 0;
342 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
343 } else if (cmdr == SD_IO_RW_EXTENDED) {
344 stop->opcode = SD_IO_RW_DIRECT;
345 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
346 ((cmd->arg >> 28) & 0x7);
347 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
348 } else {
349 return 0;
350 }
351
352 cmdr = stop->opcode | SDMMC_CMD_STOP |
353 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
354
355 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
356 cmdr |= SDMMC_CMD_USE_HOLD_REG;
357
358 return cmdr;
359 }
360
dw_mci_set_cto(struct dw_mci * host)361 static inline void dw_mci_set_cto(struct dw_mci *host)
362 {
363 unsigned int cto_clks;
364 unsigned int cto_div;
365 unsigned int cto_ms;
366 unsigned long irqflags;
367
368 cto_clks = mci_readl(host, TMOUT) & 0xff;
369 cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
370 if (cto_div == 0)
371 cto_div = 1;
372
373 cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
374 host->bus_hz);
375
376 /* add a bit spare time */
377 cto_ms += 10;
378
379 /*
380 * The durations we're working with are fairly short so we have to be
381 * extra careful about synchronization here. Specifically in hardware a
382 * command timeout is _at most_ 5.1 ms, so that means we expect an
383 * interrupt (either command done or timeout) to come rather quickly
384 * after the mci_writel. ...but just in case we have a long interrupt
385 * latency let's add a bit of paranoia.
386 *
387 * In general we'll assume that at least an interrupt will be asserted
388 * in hardware by the time the cto_timer runs. ...and if it hasn't
389 * been asserted in hardware by that time then we'll assume it'll never
390 * come.
391 */
392 spin_lock_irqsave(&host->irq_lock, irqflags);
393 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
394 mod_timer(&host->cto_timer,
395 jiffies + msecs_to_jiffies(cto_ms) + 1);
396 spin_unlock_irqrestore(&host->irq_lock, irqflags);
397 }
398
dw_mci_start_command(struct dw_mci * host,struct mmc_command * cmd,u32 cmd_flags)399 static void dw_mci_start_command(struct dw_mci *host,
400 struct mmc_command *cmd, u32 cmd_flags)
401 {
402 host->cmd = cmd;
403 dev_vdbg(host->dev,
404 "start command: ARGR=0x%08x CMDR=0x%08x\n",
405 cmd->arg, cmd_flags);
406
407 mci_writel(host, CMDARG, cmd->arg);
408 wmb(); /* drain writebuffer */
409 dw_mci_wait_while_busy(host, cmd_flags);
410
411 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
412
413 /* response expected command only */
414 if (cmd_flags & SDMMC_CMD_RESP_EXP)
415 dw_mci_set_cto(host);
416 }
417
send_stop_abort(struct dw_mci * host,struct mmc_data * data)418 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
419 {
420 struct mmc_command *stop = &host->stop_abort;
421
422 dw_mci_start_command(host, stop, host->stop_cmdr);
423 }
424
425 /* DMA interface functions */
dw_mci_stop_dma(struct dw_mci * host)426 static void dw_mci_stop_dma(struct dw_mci *host)
427 {
428 if (host->using_dma) {
429 host->dma_ops->stop(host);
430 host->dma_ops->cleanup(host);
431 }
432
433 /* Data transfer was stopped by the interrupt handler */
434 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
435 }
436
dw_mci_dma_cleanup(struct dw_mci * host)437 static void dw_mci_dma_cleanup(struct dw_mci *host)
438 {
439 struct mmc_data *data = host->data;
440
441 if (data && data->host_cookie == COOKIE_MAPPED) {
442 dma_unmap_sg(host->dev,
443 data->sg,
444 data->sg_len,
445 mmc_get_dma_dir(data));
446 data->host_cookie = COOKIE_UNMAPPED;
447 }
448 }
449
dw_mci_idmac_reset(struct dw_mci * host)450 static void dw_mci_idmac_reset(struct dw_mci *host)
451 {
452 u32 bmod = mci_readl(host, BMOD);
453 /* Software reset of DMA */
454 bmod |= SDMMC_IDMAC_SWRESET;
455 mci_writel(host, BMOD, bmod);
456 }
457
dw_mci_idmac_stop_dma(struct dw_mci * host)458 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
459 {
460 u32 temp;
461
462 /* Disable and reset the IDMAC interface */
463 temp = mci_readl(host, CTRL);
464 temp &= ~SDMMC_CTRL_USE_IDMAC;
465 temp |= SDMMC_CTRL_DMA_RESET;
466 mci_writel(host, CTRL, temp);
467
468 /* Stop the IDMAC running */
469 temp = mci_readl(host, BMOD);
470 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
471 temp |= SDMMC_IDMAC_SWRESET;
472 mci_writel(host, BMOD, temp);
473 }
474
dw_mci_dmac_complete_dma(void * arg)475 static void dw_mci_dmac_complete_dma(void *arg)
476 {
477 struct dw_mci *host = arg;
478 struct mmc_data *data = host->data;
479
480 dev_vdbg(host->dev, "DMA complete\n");
481
482 if ((host->use_dma == TRANS_MODE_EDMAC) &&
483 data && (data->flags & MMC_DATA_READ))
484 /* Invalidate cache after read */
485 dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
486 data->sg,
487 data->sg_len,
488 DMA_FROM_DEVICE);
489
490 host->dma_ops->cleanup(host);
491
492 /*
493 * If the card was removed, data will be NULL. No point in trying to
494 * send the stop command or waiting for NBUSY in this case.
495 */
496 if (data) {
497 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
498 tasklet_schedule(&host->tasklet);
499 }
500 }
501
dw_mci_idmac_init(struct dw_mci * host)502 static int dw_mci_idmac_init(struct dw_mci *host)
503 {
504 int i;
505
506 if (host->dma_64bit_address == 1) {
507 struct idmac_desc_64addr *p;
508 /* Number of descriptors in the ring buffer */
509 host->ring_size =
510 DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
511
512 /* Forward link the descriptor list */
513 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
514 i++, p++) {
515 p->des6 = (host->sg_dma +
516 (sizeof(struct idmac_desc_64addr) *
517 (i + 1))) & 0xffffffff;
518
519 p->des7 = (u64)(host->sg_dma +
520 (sizeof(struct idmac_desc_64addr) *
521 (i + 1))) >> 32;
522 /* Initialize reserved and buffer size fields to "0" */
523 p->des0 = 0;
524 p->des1 = 0;
525 p->des2 = 0;
526 p->des3 = 0;
527 }
528
529 /* Set the last descriptor as the end-of-ring descriptor */
530 p->des6 = host->sg_dma & 0xffffffff;
531 p->des7 = (u64)host->sg_dma >> 32;
532 p->des0 = IDMAC_DES0_ER;
533
534 } else {
535 struct idmac_desc *p;
536 /* Number of descriptors in the ring buffer */
537 host->ring_size =
538 DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
539
540 /* Forward link the descriptor list */
541 for (i = 0, p = host->sg_cpu;
542 i < host->ring_size - 1;
543 i++, p++) {
544 p->des3 = cpu_to_le32(host->sg_dma +
545 (sizeof(struct idmac_desc) * (i + 1)));
546 p->des0 = 0;
547 p->des1 = 0;
548 }
549
550 /* Set the last descriptor as the end-of-ring descriptor */
551 p->des3 = cpu_to_le32(host->sg_dma);
552 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
553 }
554
555 dw_mci_idmac_reset(host);
556
557 if (host->dma_64bit_address == 1) {
558 /* Mask out interrupts - get Tx & Rx complete only */
559 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
560 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
561 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
562
563 /* Set the descriptor base address */
564 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
565 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
566
567 } else {
568 /* Mask out interrupts - get Tx & Rx complete only */
569 mci_writel(host, IDSTS, IDMAC_INT_CLR);
570 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
571 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
572
573 /* Set the descriptor base address */
574 mci_writel(host, DBADDR, host->sg_dma);
575 }
576
577 return 0;
578 }
579
dw_mci_prepare_desc64(struct dw_mci * host,struct mmc_data * data,unsigned int sg_len)580 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
581 struct mmc_data *data,
582 unsigned int sg_len)
583 {
584 unsigned int desc_len;
585 struct idmac_desc_64addr *desc_first, *desc_last, *desc;
586 u32 val;
587 int i;
588
589 desc_first = desc_last = desc = host->sg_cpu;
590
591 for (i = 0; i < sg_len; i++) {
592 unsigned int length = sg_dma_len(&data->sg[i]);
593
594 u64 mem_addr = sg_dma_address(&data->sg[i]);
595
596 for ( ; length ; desc++) {
597 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
598 length : DW_MCI_DESC_DATA_LENGTH;
599
600 length -= desc_len;
601
602 /*
603 * Wait for the former clear OWN bit operation
604 * of IDMAC to make sure that this descriptor
605 * isn't still owned by IDMAC as IDMAC's write
606 * ops and CPU's read ops are asynchronous.
607 */
608 if (readl_poll_timeout_atomic(&desc->des0, val,
609 !(val & IDMAC_DES0_OWN),
610 10, 100 * USEC_PER_MSEC))
611 goto err_own_bit;
612
613 /*
614 * Set the OWN bit and disable interrupts
615 * for this descriptor
616 */
617 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
618 IDMAC_DES0_CH;
619
620 /* Buffer length */
621 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
622
623 /* Physical address to DMA to/from */
624 desc->des4 = mem_addr & 0xffffffff;
625 desc->des5 = mem_addr >> 32;
626
627 /* Update physical address for the next desc */
628 mem_addr += desc_len;
629
630 /* Save pointer to the last descriptor */
631 desc_last = desc;
632 }
633 }
634
635 /* Set first descriptor */
636 desc_first->des0 |= IDMAC_DES0_FD;
637
638 /* Set last descriptor */
639 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
640 desc_last->des0 |= IDMAC_DES0_LD;
641
642 return 0;
643 err_own_bit:
644 /* restore the descriptor chain as it's polluted */
645 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
646 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
647 dw_mci_idmac_init(host);
648 return -EINVAL;
649 }
650
651
dw_mci_prepare_desc32(struct dw_mci * host,struct mmc_data * data,unsigned int sg_len)652 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
653 struct mmc_data *data,
654 unsigned int sg_len)
655 {
656 unsigned int desc_len;
657 struct idmac_desc *desc_first, *desc_last, *desc;
658 u32 val;
659 int i;
660
661 desc_first = desc_last = desc = host->sg_cpu;
662
663 for (i = 0; i < sg_len; i++) {
664 unsigned int length = sg_dma_len(&data->sg[i]);
665
666 u32 mem_addr = sg_dma_address(&data->sg[i]);
667
668 for ( ; length ; desc++) {
669 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
670 length : DW_MCI_DESC_DATA_LENGTH;
671
672 length -= desc_len;
673
674 /*
675 * Wait for the former clear OWN bit operation
676 * of IDMAC to make sure that this descriptor
677 * isn't still owned by IDMAC as IDMAC's write
678 * ops and CPU's read ops are asynchronous.
679 */
680 if (readl_poll_timeout_atomic(&desc->des0, val,
681 IDMAC_OWN_CLR64(val),
682 10,
683 100 * USEC_PER_MSEC))
684 goto err_own_bit;
685
686 /*
687 * Set the OWN bit and disable interrupts
688 * for this descriptor
689 */
690 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
691 IDMAC_DES0_DIC |
692 IDMAC_DES0_CH);
693
694 /* Buffer length */
695 IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
696
697 /* Physical address to DMA to/from */
698 desc->des2 = cpu_to_le32(mem_addr);
699
700 /* Update physical address for the next desc */
701 mem_addr += desc_len;
702
703 /* Save pointer to the last descriptor */
704 desc_last = desc;
705 }
706 }
707
708 /* Set first descriptor */
709 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
710
711 /* Set last descriptor */
712 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
713 IDMAC_DES0_DIC));
714 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
715
716 return 0;
717 err_own_bit:
718 /* restore the descriptor chain as it's polluted */
719 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
720 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
721 dw_mci_idmac_init(host);
722 return -EINVAL;
723 }
724
dw_mci_idmac_start_dma(struct dw_mci * host,unsigned int sg_len)725 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
726 {
727 u32 temp;
728 int ret;
729
730 if (host->dma_64bit_address == 1)
731 ret = dw_mci_prepare_desc64(host, host->data, sg_len);
732 else
733 ret = dw_mci_prepare_desc32(host, host->data, sg_len);
734
735 if (ret)
736 goto out;
737
738 /* drain writebuffer */
739 wmb();
740
741 /* Make sure to reset DMA in case we did PIO before this */
742 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
743 dw_mci_idmac_reset(host);
744
745 /* Select IDMAC interface */
746 temp = mci_readl(host, CTRL);
747 temp |= SDMMC_CTRL_USE_IDMAC;
748 mci_writel(host, CTRL, temp);
749
750 /* drain writebuffer */
751 wmb();
752
753 /* Enable the IDMAC */
754 temp = mci_readl(host, BMOD);
755 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
756 mci_writel(host, BMOD, temp);
757
758 /* Start it running */
759 mci_writel(host, PLDMND, 1);
760
761 out:
762 return ret;
763 }
764
765 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
766 .init = dw_mci_idmac_init,
767 .start = dw_mci_idmac_start_dma,
768 .stop = dw_mci_idmac_stop_dma,
769 .complete = dw_mci_dmac_complete_dma,
770 .cleanup = dw_mci_dma_cleanup,
771 };
772
dw_mci_edmac_stop_dma(struct dw_mci * host)773 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
774 {
775 dmaengine_terminate_async(host->dms->ch);
776 }
777
dw_mci_edmac_start_dma(struct dw_mci * host,unsigned int sg_len)778 static int dw_mci_edmac_start_dma(struct dw_mci *host,
779 unsigned int sg_len)
780 {
781 struct dma_slave_config cfg;
782 struct dma_async_tx_descriptor *desc = NULL;
783 struct scatterlist *sgl = host->data->sg;
784 static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
785 u32 sg_elems = host->data->sg_len;
786 u32 fifoth_val;
787 u32 fifo_offset = host->fifo_reg - host->regs;
788 int ret = 0;
789
790 /* Set external dma config: burst size, burst width */
791 memset(&cfg, 0, sizeof(cfg));
792 cfg.dst_addr = host->phy_regs + fifo_offset;
793 cfg.src_addr = cfg.dst_addr;
794 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
795 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
796
797 /* Match burst msize with external dma config */
798 fifoth_val = mci_readl(host, FIFOTH);
799 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
800 cfg.src_maxburst = cfg.dst_maxburst;
801
802 if (host->data->flags & MMC_DATA_WRITE)
803 cfg.direction = DMA_MEM_TO_DEV;
804 else
805 cfg.direction = DMA_DEV_TO_MEM;
806
807 ret = dmaengine_slave_config(host->dms->ch, &cfg);
808 if (ret) {
809 dev_err(host->dev, "Failed to config edmac.\n");
810 return -EBUSY;
811 }
812
813 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
814 sg_len, cfg.direction,
815 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
816 if (!desc) {
817 dev_err(host->dev, "Can't prepare slave sg.\n");
818 return -EBUSY;
819 }
820
821 /* Set dw_mci_dmac_complete_dma as callback */
822 desc->callback = dw_mci_dmac_complete_dma;
823 desc->callback_param = (void *)host;
824 dmaengine_submit(desc);
825
826 /* Flush cache before write */
827 if (host->data->flags & MMC_DATA_WRITE)
828 dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
829 sg_elems, DMA_TO_DEVICE);
830
831 dma_async_issue_pending(host->dms->ch);
832
833 return 0;
834 }
835
dw_mci_edmac_init(struct dw_mci * host)836 static int dw_mci_edmac_init(struct dw_mci *host)
837 {
838 /* Request external dma channel */
839 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
840 if (!host->dms)
841 return -ENOMEM;
842
843 host->dms->ch = dma_request_chan(host->dev, "rx-tx");
844 if (IS_ERR(host->dms->ch)) {
845 int ret = PTR_ERR(host->dms->ch);
846
847 dev_err(host->dev, "Failed to get external DMA channel.\n");
848 kfree(host->dms);
849 host->dms = NULL;
850 return ret;
851 }
852
853 return 0;
854 }
855
dw_mci_edmac_exit(struct dw_mci * host)856 static void dw_mci_edmac_exit(struct dw_mci *host)
857 {
858 if (host->dms) {
859 if (host->dms->ch) {
860 dma_release_channel(host->dms->ch);
861 host->dms->ch = NULL;
862 }
863 kfree(host->dms);
864 host->dms = NULL;
865 }
866 }
867
868 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
869 .init = dw_mci_edmac_init,
870 .exit = dw_mci_edmac_exit,
871 .start = dw_mci_edmac_start_dma,
872 .stop = dw_mci_edmac_stop_dma,
873 .complete = dw_mci_dmac_complete_dma,
874 .cleanup = dw_mci_dma_cleanup,
875 };
876
dw_mci_pre_dma_transfer(struct dw_mci * host,struct mmc_data * data,int cookie)877 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
878 struct mmc_data *data,
879 int cookie)
880 {
881 struct scatterlist *sg;
882 unsigned int i, sg_len;
883
884 if (data->host_cookie == COOKIE_PRE_MAPPED)
885 return data->sg_len;
886
887 /*
888 * We don't do DMA on "complex" transfers, i.e. with
889 * non-word-aligned buffers or lengths. Also, we don't bother
890 * with all the DMA setup overhead for short transfers.
891 */
892 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
893 return -EINVAL;
894
895 if (data->blksz & 3)
896 return -EINVAL;
897
898 for_each_sg(data->sg, sg, data->sg_len, i) {
899 if (sg->offset & 3 || sg->length & 3)
900 return -EINVAL;
901 }
902
903 sg_len = dma_map_sg(host->dev,
904 data->sg,
905 data->sg_len,
906 mmc_get_dma_dir(data));
907 if (sg_len == 0)
908 return -EINVAL;
909
910 data->host_cookie = cookie;
911
912 return sg_len;
913 }
914
dw_mci_pre_req(struct mmc_host * mmc,struct mmc_request * mrq)915 static void dw_mci_pre_req(struct mmc_host *mmc,
916 struct mmc_request *mrq)
917 {
918 struct dw_mci_slot *slot = mmc_priv(mmc);
919 struct mmc_data *data = mrq->data;
920
921 if (!slot->host->use_dma || !data)
922 return;
923
924 /* This data might be unmapped at this time */
925 data->host_cookie = COOKIE_UNMAPPED;
926
927 if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
928 COOKIE_PRE_MAPPED) < 0)
929 data->host_cookie = COOKIE_UNMAPPED;
930 }
931
dw_mci_post_req(struct mmc_host * mmc,struct mmc_request * mrq,int err)932 static void dw_mci_post_req(struct mmc_host *mmc,
933 struct mmc_request *mrq,
934 int err)
935 {
936 struct dw_mci_slot *slot = mmc_priv(mmc);
937 struct mmc_data *data = mrq->data;
938
939 if (!slot->host->use_dma || !data)
940 return;
941
942 if (data->host_cookie != COOKIE_UNMAPPED)
943 dma_unmap_sg(slot->host->dev,
944 data->sg,
945 data->sg_len,
946 mmc_get_dma_dir(data));
947 data->host_cookie = COOKIE_UNMAPPED;
948 }
949
dw_mci_get_cd(struct mmc_host * mmc)950 static int dw_mci_get_cd(struct mmc_host *mmc)
951 {
952 int present;
953 struct dw_mci_slot *slot = mmc_priv(mmc);
954 struct dw_mci *host = slot->host;
955 int gpio_cd = mmc_gpio_get_cd(mmc);
956
957 /* Use platform get_cd function, else try onboard card detect */
958 if (((mmc->caps & MMC_CAP_NEEDS_POLL)
959 || !mmc_card_is_removable(mmc))) {
960 present = 1;
961
962 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
963 if (mmc->caps & MMC_CAP_NEEDS_POLL) {
964 dev_info(&mmc->class_dev,
965 "card is polling.\n");
966 } else {
967 dev_info(&mmc->class_dev,
968 "card is non-removable.\n");
969 }
970 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
971 }
972
973 return present;
974 } else if (gpio_cd >= 0)
975 present = gpio_cd;
976 else
977 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
978 == 0 ? 1 : 0;
979
980 spin_lock_bh(&host->lock);
981 if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
982 dev_dbg(&mmc->class_dev, "card is present\n");
983 else if (!present &&
984 !test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
985 dev_dbg(&mmc->class_dev, "card is not present\n");
986 spin_unlock_bh(&host->lock);
987
988 return present;
989 }
990
dw_mci_adjust_fifoth(struct dw_mci * host,struct mmc_data * data)991 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
992 {
993 unsigned int blksz = data->blksz;
994 static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
995 u32 fifo_width = 1 << host->data_shift;
996 u32 blksz_depth = blksz / fifo_width, fifoth_val;
997 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
998 int idx = ARRAY_SIZE(mszs) - 1;
999
1000 /* pio should ship this scenario */
1001 if (!host->use_dma)
1002 return;
1003
1004 tx_wmark = (host->fifo_depth) / 2;
1005 tx_wmark_invers = host->fifo_depth - tx_wmark;
1006
1007 /*
1008 * MSIZE is '1',
1009 * if blksz is not a multiple of the FIFO width
1010 */
1011 if (blksz % fifo_width)
1012 goto done;
1013
1014 do {
1015 if (!((blksz_depth % mszs[idx]) ||
1016 (tx_wmark_invers % mszs[idx]))) {
1017 msize = idx;
1018 rx_wmark = mszs[idx] - 1;
1019 break;
1020 }
1021 } while (--idx > 0);
1022 /*
1023 * If idx is '0', it won't be tried
1024 * Thus, initial values are uesed
1025 */
1026 done:
1027 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1028 mci_writel(host, FIFOTH, fifoth_val);
1029 }
1030
dw_mci_ctrl_thld(struct dw_mci * host,struct mmc_data * data)1031 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1032 {
1033 unsigned int blksz = data->blksz;
1034 u32 blksz_depth, fifo_depth;
1035 u16 thld_size;
1036 u8 enable;
1037
1038 /*
1039 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1040 * in the FIFO region, so we really shouldn't access it).
1041 */
1042 if (host->verid < DW_MMC_240A ||
1043 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1044 return;
1045
1046 /*
1047 * Card write Threshold is introduced since 2.80a
1048 * It's used when HS400 mode is enabled.
1049 */
1050 if (data->flags & MMC_DATA_WRITE &&
1051 host->timing != MMC_TIMING_MMC_HS400)
1052 goto disable;
1053
1054 if (data->flags & MMC_DATA_WRITE)
1055 enable = SDMMC_CARD_WR_THR_EN;
1056 else
1057 enable = SDMMC_CARD_RD_THR_EN;
1058
1059 if (host->timing != MMC_TIMING_MMC_HS200 &&
1060 host->timing != MMC_TIMING_UHS_SDR104 &&
1061 host->timing != MMC_TIMING_MMC_HS400)
1062 goto disable;
1063
1064 blksz_depth = blksz / (1 << host->data_shift);
1065 fifo_depth = host->fifo_depth;
1066
1067 if (blksz_depth > fifo_depth)
1068 goto disable;
1069
1070 /*
1071 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1072 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
1073 * Currently just choose blksz.
1074 */
1075 thld_size = blksz;
1076 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1077 return;
1078
1079 disable:
1080 mci_writel(host, CDTHRCTL, 0);
1081 }
1082
dw_mci_submit_data_dma(struct dw_mci * host,struct mmc_data * data)1083 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1084 {
1085 unsigned long irqflags;
1086 int sg_len;
1087 u32 temp;
1088
1089 host->using_dma = 0;
1090
1091 /* If we don't have a channel, we can't do DMA */
1092 if (!host->use_dma)
1093 return -ENODEV;
1094
1095 sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1096 if (sg_len < 0) {
1097 host->dma_ops->stop(host);
1098 return sg_len;
1099 }
1100
1101 host->using_dma = 1;
1102
1103 if (host->use_dma == TRANS_MODE_IDMAC)
1104 dev_vdbg(host->dev,
1105 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1106 (unsigned long)host->sg_cpu,
1107 (unsigned long)host->sg_dma,
1108 sg_len);
1109
1110 /*
1111 * Decide the MSIZE and RX/TX Watermark.
1112 * If current block size is same with previous size,
1113 * no need to update fifoth.
1114 */
1115 if (host->prev_blksz != data->blksz)
1116 dw_mci_adjust_fifoth(host, data);
1117
1118 /* Enable the DMA interface */
1119 temp = mci_readl(host, CTRL);
1120 temp |= SDMMC_CTRL_DMA_ENABLE;
1121 mci_writel(host, CTRL, temp);
1122
1123 /* Disable RX/TX IRQs, let DMA handle it */
1124 spin_lock_irqsave(&host->irq_lock, irqflags);
1125 temp = mci_readl(host, INTMASK);
1126 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1127 mci_writel(host, INTMASK, temp);
1128 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1129
1130 if (host->dma_ops->start(host, sg_len)) {
1131 host->dma_ops->stop(host);
1132 /* We can't do DMA, try PIO for this one */
1133 dev_dbg(host->dev,
1134 "%s: fall back to PIO mode for current transfer\n",
1135 __func__);
1136 return -ENODEV;
1137 }
1138
1139 return 0;
1140 }
1141
dw_mci_submit_data(struct dw_mci * host,struct mmc_data * data)1142 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1143 {
1144 unsigned long irqflags;
1145 int flags = SG_MITER_ATOMIC;
1146 u32 temp;
1147
1148 data->error = -EINPROGRESS;
1149
1150 WARN_ON(host->data);
1151 host->sg = NULL;
1152 host->data = data;
1153
1154 if (data->flags & MMC_DATA_READ)
1155 host->dir_status = DW_MCI_RECV_STATUS;
1156 else
1157 host->dir_status = DW_MCI_SEND_STATUS;
1158
1159 dw_mci_ctrl_thld(host, data);
1160
1161 if (dw_mci_submit_data_dma(host, data)) {
1162 if (host->data->flags & MMC_DATA_READ)
1163 flags |= SG_MITER_TO_SG;
1164 else
1165 flags |= SG_MITER_FROM_SG;
1166
1167 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1168 host->sg = data->sg;
1169 host->part_buf_start = 0;
1170 host->part_buf_count = 0;
1171
1172 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1173
1174 spin_lock_irqsave(&host->irq_lock, irqflags);
1175 temp = mci_readl(host, INTMASK);
1176 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1177 mci_writel(host, INTMASK, temp);
1178 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1179
1180 temp = mci_readl(host, CTRL);
1181 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1182 mci_writel(host, CTRL, temp);
1183
1184 /*
1185 * Use the initial fifoth_val for PIO mode. If wm_algined
1186 * is set, we set watermark same as data size.
1187 * If next issued data may be transfered by DMA mode,
1188 * prev_blksz should be invalidated.
1189 */
1190 if (host->wm_aligned)
1191 dw_mci_adjust_fifoth(host, data);
1192 else
1193 mci_writel(host, FIFOTH, host->fifoth_val);
1194 host->prev_blksz = 0;
1195 } else {
1196 /*
1197 * Keep the current block size.
1198 * It will be used to decide whether to update
1199 * fifoth register next time.
1200 */
1201 host->prev_blksz = data->blksz;
1202 }
1203 }
1204
dw_mci_setup_bus(struct dw_mci_slot * slot,bool force_clkinit)1205 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1206 {
1207 struct dw_mci *host = slot->host;
1208 unsigned int clock = slot->clock;
1209 u32 div;
1210 u32 clk_en_a;
1211 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1212
1213 /* We must continue to set bit 28 in CMD until the change is complete */
1214 if (host->state == STATE_WAITING_CMD11_DONE)
1215 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1216
1217 slot->mmc->actual_clock = 0;
1218
1219 if (!clock) {
1220 mci_writel(host, CLKENA, 0);
1221 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1222 } else if (clock != host->current_speed || force_clkinit) {
1223 div = host->bus_hz / clock;
1224 if (host->bus_hz % clock && host->bus_hz > clock)
1225 /*
1226 * move the + 1 after the divide to prevent
1227 * over-clocking the card.
1228 */
1229 div += 1;
1230
1231 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1232
1233 if ((clock != slot->__clk_old &&
1234 !test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1235 force_clkinit) {
1236 /* Silent the verbose log if calling from PM context */
1237 if (!force_clkinit)
1238 dev_info(&slot->mmc->class_dev,
1239 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1240 slot->id, host->bus_hz, clock,
1241 div ? ((host->bus_hz / div) >> 1) :
1242 host->bus_hz, div);
1243
1244 /*
1245 * If card is polling, display the message only
1246 * one time at boot time.
1247 */
1248 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1249 slot->mmc->f_min == clock)
1250 set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1251 }
1252
1253 /* disable clock */
1254 mci_writel(host, CLKENA, 0);
1255 mci_writel(host, CLKSRC, 0);
1256
1257 /* inform CIU */
1258 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1259
1260 /* set clock to desired speed */
1261 mci_writel(host, CLKDIV, div);
1262
1263 /* inform CIU */
1264 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1265
1266 /* enable clock; only low power if no SDIO */
1267 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1268 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1269 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1270 mci_writel(host, CLKENA, clk_en_a);
1271
1272 /* inform CIU */
1273 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1274
1275 /* keep the last clock value that was requested from core */
1276 slot->__clk_old = clock;
1277 slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1278 host->bus_hz;
1279 }
1280
1281 host->current_speed = clock;
1282
1283 /* Set the current slot bus width */
1284 mci_writel(host, CTYPE, (slot->ctype << slot->id));
1285 }
1286
dw_mci_set_data_timeout(struct dw_mci * host,unsigned int timeout_ns)1287 static void dw_mci_set_data_timeout(struct dw_mci *host,
1288 unsigned int timeout_ns)
1289 {
1290 const struct dw_mci_drv_data *drv_data = host->drv_data;
1291 u32 clk_div, tmout;
1292 u64 tmp;
1293
1294 if (drv_data && drv_data->set_data_timeout)
1295 return drv_data->set_data_timeout(host, timeout_ns);
1296
1297 clk_div = (mci_readl(host, CLKDIV) & 0xFF) * 2;
1298 if (clk_div == 0)
1299 clk_div = 1;
1300
1301 tmp = DIV_ROUND_UP_ULL((u64)timeout_ns * host->bus_hz, NSEC_PER_SEC);
1302 tmp = DIV_ROUND_UP_ULL(tmp, clk_div);
1303
1304 /* TMOUT[7:0] (RESPONSE_TIMEOUT) */
1305 tmout = 0xFF; /* Set maximum */
1306
1307 /* TMOUT[31:8] (DATA_TIMEOUT) */
1308 if (!tmp || tmp > 0xFFFFFF)
1309 tmout |= (0xFFFFFF << 8);
1310 else
1311 tmout |= (tmp & 0xFFFFFF) << 8;
1312
1313 mci_writel(host, TMOUT, tmout);
1314 dev_dbg(host->dev, "timeout_ns: %u => TMOUT[31:8]: %#08x",
1315 timeout_ns, tmout >> 8);
1316 }
1317
__dw_mci_start_request(struct dw_mci * host,struct dw_mci_slot * slot,struct mmc_command * cmd)1318 static void __dw_mci_start_request(struct dw_mci *host,
1319 struct dw_mci_slot *slot,
1320 struct mmc_command *cmd)
1321 {
1322 struct mmc_request *mrq;
1323 struct mmc_data *data;
1324 u32 cmdflags;
1325
1326 mrq = slot->mrq;
1327
1328 host->mrq = mrq;
1329
1330 host->pending_events = 0;
1331 host->completed_events = 0;
1332 host->cmd_status = 0;
1333 host->data_status = 0;
1334 host->dir_status = 0;
1335
1336 data = cmd->data;
1337 if (data) {
1338 dw_mci_set_data_timeout(host, data->timeout_ns);
1339 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1340 mci_writel(host, BLKSIZ, data->blksz);
1341 }
1342
1343 cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1344
1345 /* this is the first command, send the initialization clock */
1346 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1347 cmdflags |= SDMMC_CMD_INIT;
1348
1349 if (data) {
1350 dw_mci_submit_data(host, data);
1351 wmb(); /* drain writebuffer */
1352 }
1353
1354 dw_mci_start_command(host, cmd, cmdflags);
1355
1356 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1357 unsigned long irqflags;
1358
1359 /*
1360 * Databook says to fail after 2ms w/ no response, but evidence
1361 * shows that sometimes the cmd11 interrupt takes over 130ms.
1362 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1363 * is just about to roll over.
1364 *
1365 * We do this whole thing under spinlock and only if the
1366 * command hasn't already completed (indicating the the irq
1367 * already ran so we don't want the timeout).
1368 */
1369 spin_lock_irqsave(&host->irq_lock, irqflags);
1370 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1371 mod_timer(&host->cmd11_timer,
1372 jiffies + msecs_to_jiffies(500) + 1);
1373 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1374 }
1375
1376 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1377 }
1378
dw_mci_start_request(struct dw_mci * host,struct dw_mci_slot * slot)1379 static void dw_mci_start_request(struct dw_mci *host,
1380 struct dw_mci_slot *slot)
1381 {
1382 struct mmc_request *mrq = slot->mrq;
1383 struct mmc_command *cmd;
1384
1385 cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1386 __dw_mci_start_request(host, slot, cmd);
1387 }
1388
1389 /* must be called with host->lock held */
dw_mci_queue_request(struct dw_mci * host,struct dw_mci_slot * slot,struct mmc_request * mrq)1390 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1391 struct mmc_request *mrq)
1392 {
1393 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1394 host->state);
1395
1396 slot->mrq = mrq;
1397
1398 if (host->state == STATE_WAITING_CMD11_DONE) {
1399 dev_warn(&slot->mmc->class_dev,
1400 "Voltage change didn't complete\n");
1401 /*
1402 * this case isn't expected to happen, so we can
1403 * either crash here or just try to continue on
1404 * in the closest possible state
1405 */
1406 host->state = STATE_IDLE;
1407 }
1408
1409 if (host->state == STATE_IDLE) {
1410 host->state = STATE_SENDING_CMD;
1411 dw_mci_start_request(host, slot);
1412 } else {
1413 list_add_tail(&slot->queue_node, &host->queue);
1414 }
1415 }
1416
dw_mci_request(struct mmc_host * mmc,struct mmc_request * mrq)1417 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1418 {
1419 struct dw_mci_slot *slot = mmc_priv(mmc);
1420 struct dw_mci *host = slot->host;
1421
1422 WARN_ON(slot->mrq);
1423
1424 /*
1425 * The check for card presence and queueing of the request must be
1426 * atomic, otherwise the card could be removed in between and the
1427 * request wouldn't fail until another card was inserted.
1428 */
1429
1430 if (!dw_mci_get_cd(mmc)) {
1431 mrq->cmd->error = -ENOMEDIUM;
1432 mmc_request_done(mmc, mrq);
1433 return;
1434 }
1435
1436 spin_lock_bh(&host->lock);
1437
1438 dw_mci_queue_request(host, slot, mrq);
1439
1440 spin_unlock_bh(&host->lock);
1441 }
1442
dw_mci_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1443 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1444 {
1445 struct dw_mci_slot *slot = mmc_priv(mmc);
1446 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1447 u32 regs;
1448 int ret;
1449
1450 switch (ios->bus_width) {
1451 case MMC_BUS_WIDTH_4:
1452 slot->ctype = SDMMC_CTYPE_4BIT;
1453 break;
1454 case MMC_BUS_WIDTH_8:
1455 slot->ctype = SDMMC_CTYPE_8BIT;
1456 break;
1457 default:
1458 /* set default 1 bit mode */
1459 slot->ctype = SDMMC_CTYPE_1BIT;
1460 }
1461
1462 regs = mci_readl(slot->host, UHS_REG);
1463
1464 /* DDR mode set */
1465 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1466 ios->timing == MMC_TIMING_UHS_DDR50 ||
1467 ios->timing == MMC_TIMING_MMC_HS400)
1468 regs |= ((0x1 << slot->id) << 16);
1469 else
1470 regs &= ~((0x1 << slot->id) << 16);
1471
1472 mci_writel(slot->host, UHS_REG, regs);
1473 slot->host->timing = ios->timing;
1474
1475 /*
1476 * Use mirror of ios->clock to prevent race with mmc
1477 * core ios update when finding the minimum.
1478 */
1479 slot->clock = ios->clock;
1480
1481 if (drv_data && drv_data->set_ios)
1482 drv_data->set_ios(slot->host, ios);
1483
1484 switch (ios->power_mode) {
1485 case MMC_POWER_UP:
1486 if (!IS_ERR(mmc->supply.vmmc)) {
1487 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1488 ios->vdd);
1489 if (ret) {
1490 dev_err(slot->host->dev,
1491 "failed to enable vmmc regulator\n");
1492 /*return, if failed turn on vmmc*/
1493 return;
1494 }
1495 }
1496 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1497 regs = mci_readl(slot->host, PWREN);
1498 regs |= (1 << slot->id);
1499 mci_writel(slot->host, PWREN, regs);
1500 break;
1501 case MMC_POWER_ON:
1502 if (!slot->host->vqmmc_enabled) {
1503 if (!IS_ERR(mmc->supply.vqmmc)) {
1504 ret = regulator_enable(mmc->supply.vqmmc);
1505 if (ret < 0)
1506 dev_err(slot->host->dev,
1507 "failed to enable vqmmc\n");
1508 else
1509 slot->host->vqmmc_enabled = true;
1510
1511 } else {
1512 /* Keep track so we don't reset again */
1513 slot->host->vqmmc_enabled = true;
1514 }
1515
1516 /* Reset our state machine after powering on */
1517 dw_mci_ctrl_reset(slot->host,
1518 SDMMC_CTRL_ALL_RESET_FLAGS);
1519 }
1520
1521 /* Adjust clock / bus width after power is up */
1522 dw_mci_setup_bus(slot, false);
1523
1524 break;
1525 case MMC_POWER_OFF:
1526 /* Turn clock off before power goes down */
1527 dw_mci_setup_bus(slot, false);
1528
1529 if (!IS_ERR(mmc->supply.vmmc))
1530 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1531
1532 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1533 regulator_disable(mmc->supply.vqmmc);
1534 slot->host->vqmmc_enabled = false;
1535
1536 regs = mci_readl(slot->host, PWREN);
1537 regs &= ~(1 << slot->id);
1538 mci_writel(slot->host, PWREN, regs);
1539 break;
1540 default:
1541 break;
1542 }
1543
1544 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1545 slot->host->state = STATE_IDLE;
1546 }
1547
dw_mci_card_busy(struct mmc_host * mmc)1548 static int dw_mci_card_busy(struct mmc_host *mmc)
1549 {
1550 struct dw_mci_slot *slot = mmc_priv(mmc);
1551 u32 status;
1552
1553 /*
1554 * Check the busy bit which is low when DAT[3:0]
1555 * (the data lines) are 0000
1556 */
1557 status = mci_readl(slot->host, STATUS);
1558
1559 return !!(status & SDMMC_STATUS_BUSY);
1560 }
1561
dw_mci_switch_voltage(struct mmc_host * mmc,struct mmc_ios * ios)1562 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1563 {
1564 struct dw_mci_slot *slot = mmc_priv(mmc);
1565 struct dw_mci *host = slot->host;
1566 const struct dw_mci_drv_data *drv_data = host->drv_data;
1567 u32 uhs;
1568 u32 v18 = SDMMC_UHS_18V << slot->id;
1569 int ret;
1570
1571 if (drv_data && drv_data->switch_voltage)
1572 return drv_data->switch_voltage(mmc, ios);
1573
1574 /*
1575 * Program the voltage. Note that some instances of dw_mmc may use
1576 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1577 * does no harm but you need to set the regulator directly. Try both.
1578 */
1579 uhs = mci_readl(host, UHS_REG);
1580 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1581 uhs &= ~v18;
1582 else
1583 uhs |= v18;
1584
1585 if (!IS_ERR(mmc->supply.vqmmc)) {
1586 ret = mmc_regulator_set_vqmmc(mmc, ios);
1587 if (ret < 0) {
1588 dev_dbg(&mmc->class_dev,
1589 "Regulator set error %d - %s V\n",
1590 ret, uhs & v18 ? "1.8" : "3.3");
1591 return ret;
1592 }
1593 }
1594 mci_writel(host, UHS_REG, uhs);
1595
1596 return 0;
1597 }
1598
dw_mci_get_ro(struct mmc_host * mmc)1599 static int dw_mci_get_ro(struct mmc_host *mmc)
1600 {
1601 int read_only;
1602 struct dw_mci_slot *slot = mmc_priv(mmc);
1603 int gpio_ro = mmc_gpio_get_ro(mmc);
1604
1605 /* Use platform get_ro function, else try on board write protect */
1606 if (gpio_ro >= 0)
1607 read_only = gpio_ro;
1608 else
1609 read_only =
1610 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1611
1612 dev_dbg(&mmc->class_dev, "card is %s\n",
1613 read_only ? "read-only" : "read-write");
1614
1615 return read_only;
1616 }
1617
dw_mci_hw_reset(struct mmc_host * mmc)1618 static void dw_mci_hw_reset(struct mmc_host *mmc)
1619 {
1620 struct dw_mci_slot *slot = mmc_priv(mmc);
1621 struct dw_mci *host = slot->host;
1622 int reset;
1623
1624 if (host->use_dma == TRANS_MODE_IDMAC)
1625 dw_mci_idmac_reset(host);
1626
1627 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1628 SDMMC_CTRL_FIFO_RESET))
1629 return;
1630
1631 /*
1632 * According to eMMC spec, card reset procedure:
1633 * tRstW >= 1us: RST_n pulse width
1634 * tRSCA >= 200us: RST_n to Command time
1635 * tRSTH >= 1us: RST_n high period
1636 */
1637 reset = mci_readl(host, RST_N);
1638 reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1639 mci_writel(host, RST_N, reset);
1640 usleep_range(1, 2);
1641 reset |= SDMMC_RST_HWACTIVE << slot->id;
1642 mci_writel(host, RST_N, reset);
1643 usleep_range(200, 300);
1644 }
1645
dw_mci_prepare_sdio_irq(struct dw_mci_slot * slot,bool prepare)1646 static void dw_mci_prepare_sdio_irq(struct dw_mci_slot *slot, bool prepare)
1647 {
1648 struct dw_mci *host = slot->host;
1649 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1650 u32 clk_en_a_old;
1651 u32 clk_en_a;
1652
1653 /*
1654 * Low power mode will stop the card clock when idle. According to the
1655 * description of the CLKENA register we should disable low power mode
1656 * for SDIO cards if we need SDIO interrupts to work.
1657 */
1658
1659 clk_en_a_old = mci_readl(host, CLKENA);
1660 if (prepare) {
1661 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1662 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1663 } else {
1664 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1665 clk_en_a = clk_en_a_old | clken_low_pwr;
1666 }
1667
1668 if (clk_en_a != clk_en_a_old) {
1669 mci_writel(host, CLKENA, clk_en_a);
1670 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT,
1671 0);
1672 }
1673 }
1674
__dw_mci_enable_sdio_irq(struct dw_mci_slot * slot,int enb)1675 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1676 {
1677 struct dw_mci *host = slot->host;
1678 unsigned long irqflags;
1679 u32 int_mask;
1680
1681 spin_lock_irqsave(&host->irq_lock, irqflags);
1682
1683 /* Enable/disable Slot Specific SDIO interrupt */
1684 int_mask = mci_readl(host, INTMASK);
1685 if (enb)
1686 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1687 else
1688 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1689 mci_writel(host, INTMASK, int_mask);
1690
1691 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1692 }
1693
dw_mci_enable_sdio_irq(struct mmc_host * mmc,int enb)1694 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1695 {
1696 struct dw_mci_slot *slot = mmc_priv(mmc);
1697 struct dw_mci *host = slot->host;
1698
1699 dw_mci_prepare_sdio_irq(slot, enb);
1700 __dw_mci_enable_sdio_irq(slot, enb);
1701
1702 /* Avoid runtime suspending the device when SDIO IRQ is enabled */
1703 if (enb)
1704 pm_runtime_get_noresume(host->dev);
1705 else
1706 pm_runtime_put_noidle(host->dev);
1707 }
1708
dw_mci_ack_sdio_irq(struct mmc_host * mmc)1709 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1710 {
1711 struct dw_mci_slot *slot = mmc_priv(mmc);
1712
1713 __dw_mci_enable_sdio_irq(slot, 1);
1714 }
1715
dw_mci_execute_tuning(struct mmc_host * mmc,u32 opcode)1716 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1717 {
1718 struct dw_mci_slot *slot = mmc_priv(mmc);
1719 struct dw_mci *host = slot->host;
1720 const struct dw_mci_drv_data *drv_data = host->drv_data;
1721 int err = -EINVAL;
1722
1723 if (drv_data && drv_data->execute_tuning)
1724 err = drv_data->execute_tuning(slot, opcode);
1725 return err;
1726 }
1727
dw_mci_prepare_hs400_tuning(struct mmc_host * mmc,struct mmc_ios * ios)1728 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1729 struct mmc_ios *ios)
1730 {
1731 struct dw_mci_slot *slot = mmc_priv(mmc);
1732 struct dw_mci *host = slot->host;
1733 const struct dw_mci_drv_data *drv_data = host->drv_data;
1734
1735 if (drv_data && drv_data->prepare_hs400_tuning)
1736 return drv_data->prepare_hs400_tuning(host, ios);
1737
1738 return 0;
1739 }
1740
dw_mci_reset(struct dw_mci * host)1741 static bool dw_mci_reset(struct dw_mci *host)
1742 {
1743 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1744 bool ret = false;
1745 u32 status = 0;
1746
1747 /*
1748 * Resetting generates a block interrupt, hence setting
1749 * the scatter-gather pointer to NULL.
1750 */
1751 if (host->sg) {
1752 sg_miter_stop(&host->sg_miter);
1753 host->sg = NULL;
1754 }
1755
1756 if (host->use_dma)
1757 flags |= SDMMC_CTRL_DMA_RESET;
1758
1759 if (dw_mci_ctrl_reset(host, flags)) {
1760 /*
1761 * In all cases we clear the RAWINTS
1762 * register to clear any interrupts.
1763 */
1764 mci_writel(host, RINTSTS, 0xFFFFFFFF);
1765
1766 if (!host->use_dma) {
1767 ret = true;
1768 goto ciu_out;
1769 }
1770
1771 /* Wait for dma_req to be cleared */
1772 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1773 status,
1774 !(status & SDMMC_STATUS_DMA_REQ),
1775 1, 500 * USEC_PER_MSEC)) {
1776 dev_err(host->dev,
1777 "%s: Timeout waiting for dma_req to be cleared\n",
1778 __func__);
1779 goto ciu_out;
1780 }
1781
1782 /* when using DMA next we reset the fifo again */
1783 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1784 goto ciu_out;
1785 } else {
1786 /* if the controller reset bit did clear, then set clock regs */
1787 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1788 dev_err(host->dev,
1789 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1790 __func__);
1791 goto ciu_out;
1792 }
1793 }
1794
1795 if (host->use_dma == TRANS_MODE_IDMAC)
1796 /* It is also required that we reinit idmac */
1797 dw_mci_idmac_init(host);
1798
1799 ret = true;
1800
1801 ciu_out:
1802 /* After a CTRL reset we need to have CIU set clock registers */
1803 mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1804
1805 return ret;
1806 }
1807
1808 static const struct mmc_host_ops dw_mci_ops = {
1809 .request = dw_mci_request,
1810 .pre_req = dw_mci_pre_req,
1811 .post_req = dw_mci_post_req,
1812 .set_ios = dw_mci_set_ios,
1813 .get_ro = dw_mci_get_ro,
1814 .get_cd = dw_mci_get_cd,
1815 .card_hw_reset = dw_mci_hw_reset,
1816 .enable_sdio_irq = dw_mci_enable_sdio_irq,
1817 .ack_sdio_irq = dw_mci_ack_sdio_irq,
1818 .execute_tuning = dw_mci_execute_tuning,
1819 .card_busy = dw_mci_card_busy,
1820 .start_signal_voltage_switch = dw_mci_switch_voltage,
1821 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
1822 };
1823
1824 #ifdef CONFIG_FAULT_INJECTION
dw_mci_fault_timer(struct hrtimer * t)1825 static enum hrtimer_restart dw_mci_fault_timer(struct hrtimer *t)
1826 {
1827 struct dw_mci *host = container_of(t, struct dw_mci, fault_timer);
1828 unsigned long flags;
1829
1830 spin_lock_irqsave(&host->irq_lock, flags);
1831
1832 /*
1833 * Only inject an error if we haven't already got an error or data over
1834 * interrupt.
1835 */
1836 if (!host->data_status) {
1837 host->data_status = SDMMC_INT_DCRC;
1838 set_bit(EVENT_DATA_ERROR, &host->pending_events);
1839 tasklet_schedule(&host->tasklet);
1840 }
1841
1842 spin_unlock_irqrestore(&host->irq_lock, flags);
1843
1844 return HRTIMER_NORESTART;
1845 }
1846
dw_mci_start_fault_timer(struct dw_mci * host)1847 static void dw_mci_start_fault_timer(struct dw_mci *host)
1848 {
1849 struct mmc_data *data = host->data;
1850
1851 if (!data || data->blocks <= 1)
1852 return;
1853
1854 if (!should_fail(&host->fail_data_crc, 1))
1855 return;
1856
1857 /*
1858 * Try to inject the error at random points during the data transfer.
1859 */
1860 hrtimer_start(&host->fault_timer,
1861 ms_to_ktime(prandom_u32() % 25),
1862 HRTIMER_MODE_REL);
1863 }
1864
dw_mci_stop_fault_timer(struct dw_mci * host)1865 static void dw_mci_stop_fault_timer(struct dw_mci *host)
1866 {
1867 hrtimer_cancel(&host->fault_timer);
1868 }
1869
dw_mci_init_fault(struct dw_mci * host)1870 static void dw_mci_init_fault(struct dw_mci *host)
1871 {
1872 host->fail_data_crc = (struct fault_attr) FAULT_ATTR_INITIALIZER;
1873
1874 hrtimer_init(&host->fault_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1875 host->fault_timer.function = dw_mci_fault_timer;
1876 }
1877 #else
dw_mci_init_fault(struct dw_mci * host)1878 static void dw_mci_init_fault(struct dw_mci *host)
1879 {
1880 }
1881
dw_mci_start_fault_timer(struct dw_mci * host)1882 static void dw_mci_start_fault_timer(struct dw_mci *host)
1883 {
1884 }
1885
dw_mci_stop_fault_timer(struct dw_mci * host)1886 static void dw_mci_stop_fault_timer(struct dw_mci *host)
1887 {
1888 }
1889 #endif
1890
dw_mci_request_end(struct dw_mci * host,struct mmc_request * mrq)1891 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1892 __releases(&host->lock)
1893 __acquires(&host->lock)
1894 {
1895 struct dw_mci_slot *slot;
1896 struct mmc_host *prev_mmc = host->slot->mmc;
1897
1898 WARN_ON(host->cmd || host->data);
1899
1900 host->slot->mrq = NULL;
1901 host->mrq = NULL;
1902 if (!list_empty(&host->queue)) {
1903 slot = list_entry(host->queue.next,
1904 struct dw_mci_slot, queue_node);
1905 list_del(&slot->queue_node);
1906 dev_vdbg(host->dev, "list not empty: %s is next\n",
1907 mmc_hostname(slot->mmc));
1908 host->state = STATE_SENDING_CMD;
1909 dw_mci_start_request(host, slot);
1910 } else {
1911 dev_vdbg(host->dev, "list empty\n");
1912
1913 if (host->state == STATE_SENDING_CMD11)
1914 host->state = STATE_WAITING_CMD11_DONE;
1915 else
1916 host->state = STATE_IDLE;
1917 }
1918
1919 spin_unlock(&host->lock);
1920 mmc_request_done(prev_mmc, mrq);
1921 spin_lock(&host->lock);
1922 }
1923
dw_mci_command_complete(struct dw_mci * host,struct mmc_command * cmd)1924 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1925 {
1926 u32 status = host->cmd_status;
1927
1928 host->cmd_status = 0;
1929
1930 /* Read the response from the card (up to 16 bytes) */
1931 if (cmd->flags & MMC_RSP_PRESENT) {
1932 if (cmd->flags & MMC_RSP_136) {
1933 cmd->resp[3] = mci_readl(host, RESP0);
1934 cmd->resp[2] = mci_readl(host, RESP1);
1935 cmd->resp[1] = mci_readl(host, RESP2);
1936 cmd->resp[0] = mci_readl(host, RESP3);
1937 } else {
1938 cmd->resp[0] = mci_readl(host, RESP0);
1939 cmd->resp[1] = 0;
1940 cmd->resp[2] = 0;
1941 cmd->resp[3] = 0;
1942 }
1943 }
1944
1945 if (status & SDMMC_INT_RTO)
1946 cmd->error = -ETIMEDOUT;
1947 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1948 cmd->error = -EILSEQ;
1949 else if (status & SDMMC_INT_RESP_ERR)
1950 cmd->error = -EIO;
1951 else
1952 cmd->error = 0;
1953
1954 return cmd->error;
1955 }
1956
dw_mci_data_complete(struct dw_mci * host,struct mmc_data * data)1957 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1958 {
1959 u32 status = host->data_status;
1960
1961 if (status & DW_MCI_DATA_ERROR_FLAGS) {
1962 if (status & SDMMC_INT_DRTO) {
1963 data->error = -ETIMEDOUT;
1964 } else if (status & SDMMC_INT_DCRC) {
1965 data->error = -EILSEQ;
1966 } else if (status & SDMMC_INT_EBE) {
1967 if (host->dir_status ==
1968 DW_MCI_SEND_STATUS) {
1969 /*
1970 * No data CRC status was returned.
1971 * The number of bytes transferred
1972 * will be exaggerated in PIO mode.
1973 */
1974 data->bytes_xfered = 0;
1975 data->error = -ETIMEDOUT;
1976 } else if (host->dir_status ==
1977 DW_MCI_RECV_STATUS) {
1978 data->error = -EILSEQ;
1979 }
1980 } else {
1981 /* SDMMC_INT_SBE is included */
1982 data->error = -EILSEQ;
1983 }
1984
1985 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1986
1987 /*
1988 * After an error, there may be data lingering
1989 * in the FIFO
1990 */
1991 dw_mci_reset(host);
1992 } else {
1993 data->bytes_xfered = data->blocks * data->blksz;
1994 data->error = 0;
1995 }
1996
1997 return data->error;
1998 }
1999
dw_mci_set_drto(struct dw_mci * host)2000 static void dw_mci_set_drto(struct dw_mci *host)
2001 {
2002 const struct dw_mci_drv_data *drv_data = host->drv_data;
2003 unsigned int drto_clks;
2004 unsigned int drto_div;
2005 unsigned int drto_ms;
2006 unsigned long irqflags;
2007
2008 if (drv_data && drv_data->get_drto_clks)
2009 drto_clks = drv_data->get_drto_clks(host);
2010 else
2011 drto_clks = mci_readl(host, TMOUT) >> 8;
2012 drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
2013 if (drto_div == 0)
2014 drto_div = 1;
2015
2016 drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
2017 host->bus_hz);
2018
2019 dev_dbg(host->dev, "drto_ms: %u\n", drto_ms);
2020
2021 /* add a bit spare time */
2022 drto_ms += 10;
2023
2024 spin_lock_irqsave(&host->irq_lock, irqflags);
2025 if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2026 mod_timer(&host->dto_timer,
2027 jiffies + msecs_to_jiffies(drto_ms));
2028 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2029 }
2030
dw_mci_clear_pending_cmd_complete(struct dw_mci * host)2031 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
2032 {
2033 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
2034 return false;
2035
2036 /*
2037 * Really be certain that the timer has stopped. This is a bit of
2038 * paranoia and could only really happen if we had really bad
2039 * interrupt latency and the interrupt routine and timeout were
2040 * running concurrently so that the del_timer() in the interrupt
2041 * handler couldn't run.
2042 */
2043 WARN_ON(del_timer_sync(&host->cto_timer));
2044 clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2045
2046 return true;
2047 }
2048
dw_mci_clear_pending_data_complete(struct dw_mci * host)2049 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
2050 {
2051 if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2052 return false;
2053
2054 /* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
2055 WARN_ON(del_timer_sync(&host->dto_timer));
2056 clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2057
2058 return true;
2059 }
2060
dw_mci_tasklet_func(struct tasklet_struct * t)2061 static void dw_mci_tasklet_func(struct tasklet_struct *t)
2062 {
2063 struct dw_mci *host = from_tasklet(host, t, tasklet);
2064 struct mmc_data *data;
2065 struct mmc_command *cmd;
2066 struct mmc_request *mrq;
2067 enum dw_mci_state state;
2068 enum dw_mci_state prev_state;
2069 unsigned int err;
2070
2071 spin_lock(&host->lock);
2072
2073 state = host->state;
2074 data = host->data;
2075 mrq = host->mrq;
2076
2077 do {
2078 prev_state = state;
2079
2080 switch (state) {
2081 case STATE_IDLE:
2082 case STATE_WAITING_CMD11_DONE:
2083 break;
2084
2085 case STATE_SENDING_CMD11:
2086 case STATE_SENDING_CMD:
2087 if (!dw_mci_clear_pending_cmd_complete(host))
2088 break;
2089
2090 cmd = host->cmd;
2091 host->cmd = NULL;
2092 set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
2093 err = dw_mci_command_complete(host, cmd);
2094 if (cmd == mrq->sbc && !err) {
2095 __dw_mci_start_request(host, host->slot,
2096 mrq->cmd);
2097 goto unlock;
2098 }
2099
2100 if (cmd->data && err) {
2101 /*
2102 * During UHS tuning sequence, sending the stop
2103 * command after the response CRC error would
2104 * throw the system into a confused state
2105 * causing all future tuning phases to report
2106 * failure.
2107 *
2108 * In such case controller will move into a data
2109 * transfer state after a response error or
2110 * response CRC error. Let's let that finish
2111 * before trying to send a stop, so we'll go to
2112 * STATE_SENDING_DATA.
2113 *
2114 * Although letting the data transfer take place
2115 * will waste a bit of time (we already know
2116 * the command was bad), it can't cause any
2117 * errors since it's possible it would have
2118 * taken place anyway if this tasklet got
2119 * delayed. Allowing the transfer to take place
2120 * avoids races and keeps things simple.
2121 */
2122 if (err != -ETIMEDOUT &&
2123 host->dir_status == DW_MCI_RECV_STATUS) {
2124 state = STATE_SENDING_DATA;
2125 continue;
2126 }
2127
2128 send_stop_abort(host, data);
2129 dw_mci_stop_dma(host);
2130 state = STATE_SENDING_STOP;
2131 break;
2132 }
2133
2134 if (!cmd->data || err) {
2135 dw_mci_request_end(host, mrq);
2136 goto unlock;
2137 }
2138
2139 prev_state = state = STATE_SENDING_DATA;
2140 fallthrough;
2141
2142 case STATE_SENDING_DATA:
2143 /*
2144 * We could get a data error and never a transfer
2145 * complete so we'd better check for it here.
2146 *
2147 * Note that we don't really care if we also got a
2148 * transfer complete; stopping the DMA and sending an
2149 * abort won't hurt.
2150 */
2151 if (test_and_clear_bit(EVENT_DATA_ERROR,
2152 &host->pending_events)) {
2153 if (!(host->data_status & (SDMMC_INT_DRTO |
2154 SDMMC_INT_EBE)))
2155 send_stop_abort(host, data);
2156 dw_mci_stop_dma(host);
2157 state = STATE_DATA_ERROR;
2158 break;
2159 }
2160
2161 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2162 &host->pending_events)) {
2163 /*
2164 * If all data-related interrupts don't come
2165 * within the given time in reading data state.
2166 */
2167 if (host->dir_status == DW_MCI_RECV_STATUS)
2168 dw_mci_set_drto(host);
2169 break;
2170 }
2171
2172 set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2173
2174 /*
2175 * Handle an EVENT_DATA_ERROR that might have shown up
2176 * before the transfer completed. This might not have
2177 * been caught by the check above because the interrupt
2178 * could have gone off between the previous check and
2179 * the check for transfer complete.
2180 *
2181 * Technically this ought not be needed assuming we
2182 * get a DATA_COMPLETE eventually (we'll notice the
2183 * error and end the request), but it shouldn't hurt.
2184 *
2185 * This has the advantage of sending the stop command.
2186 */
2187 if (test_and_clear_bit(EVENT_DATA_ERROR,
2188 &host->pending_events)) {
2189 if (!(host->data_status & (SDMMC_INT_DRTO |
2190 SDMMC_INT_EBE)))
2191 send_stop_abort(host, data);
2192 dw_mci_stop_dma(host);
2193 state = STATE_DATA_ERROR;
2194 break;
2195 }
2196 prev_state = state = STATE_DATA_BUSY;
2197
2198 fallthrough;
2199
2200 case STATE_DATA_BUSY:
2201 if (!dw_mci_clear_pending_data_complete(host)) {
2202 /*
2203 * If data error interrupt comes but data over
2204 * interrupt doesn't come within the given time.
2205 * in reading data state.
2206 */
2207 if (host->dir_status == DW_MCI_RECV_STATUS)
2208 dw_mci_set_drto(host);
2209 break;
2210 }
2211
2212 dw_mci_stop_fault_timer(host);
2213 host->data = NULL;
2214 set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2215 err = dw_mci_data_complete(host, data);
2216
2217 if (!err) {
2218 if (!data->stop || mrq->sbc) {
2219 if (mrq->sbc && data->stop)
2220 data->stop->error = 0;
2221 dw_mci_request_end(host, mrq);
2222 goto unlock;
2223 }
2224
2225 /* stop command for open-ended transfer*/
2226 if (data->stop)
2227 send_stop_abort(host, data);
2228 } else {
2229 /*
2230 * If we don't have a command complete now we'll
2231 * never get one since we just reset everything;
2232 * better end the request.
2233 *
2234 * If we do have a command complete we'll fall
2235 * through to the SENDING_STOP command and
2236 * everything will be peachy keen.
2237 */
2238 if (!test_bit(EVENT_CMD_COMPLETE,
2239 &host->pending_events)) {
2240 host->cmd = NULL;
2241 dw_mci_request_end(host, mrq);
2242 goto unlock;
2243 }
2244 }
2245
2246 /*
2247 * If err has non-zero,
2248 * stop-abort command has been already issued.
2249 */
2250 prev_state = state = STATE_SENDING_STOP;
2251
2252 fallthrough;
2253
2254 case STATE_SENDING_STOP:
2255 if (!dw_mci_clear_pending_cmd_complete(host))
2256 break;
2257
2258 /* CMD error in data command */
2259 if (mrq->cmd->error && mrq->data)
2260 dw_mci_reset(host);
2261
2262 dw_mci_stop_fault_timer(host);
2263 host->cmd = NULL;
2264 host->data = NULL;
2265
2266 if (!mrq->sbc && mrq->stop)
2267 dw_mci_command_complete(host, mrq->stop);
2268 else
2269 host->cmd_status = 0;
2270
2271 dw_mci_request_end(host, mrq);
2272 goto unlock;
2273
2274 case STATE_DATA_ERROR:
2275 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2276 &host->pending_events))
2277 break;
2278
2279 state = STATE_DATA_BUSY;
2280 break;
2281 }
2282 } while (state != prev_state);
2283
2284 host->state = state;
2285 unlock:
2286 spin_unlock(&host->lock);
2287
2288 }
2289
2290 /* push final bytes to part_buf, only use during push */
dw_mci_set_part_bytes(struct dw_mci * host,void * buf,int cnt)2291 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2292 {
2293 memcpy((void *)&host->part_buf, buf, cnt);
2294 host->part_buf_count = cnt;
2295 }
2296
2297 /* append bytes to part_buf, only use during push */
dw_mci_push_part_bytes(struct dw_mci * host,void * buf,int cnt)2298 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2299 {
2300 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2301 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2302 host->part_buf_count += cnt;
2303 return cnt;
2304 }
2305
2306 /* pull first bytes from part_buf, only use during pull */
dw_mci_pull_part_bytes(struct dw_mci * host,void * buf,int cnt)2307 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2308 {
2309 cnt = min_t(int, cnt, host->part_buf_count);
2310 if (cnt) {
2311 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2312 cnt);
2313 host->part_buf_count -= cnt;
2314 host->part_buf_start += cnt;
2315 }
2316 return cnt;
2317 }
2318
2319 /* pull final bytes from the part_buf, assuming it's just been filled */
dw_mci_pull_final_bytes(struct dw_mci * host,void * buf,int cnt)2320 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2321 {
2322 memcpy(buf, &host->part_buf, cnt);
2323 host->part_buf_start = cnt;
2324 host->part_buf_count = (1 << host->data_shift) - cnt;
2325 }
2326
dw_mci_push_data16(struct dw_mci * host,void * buf,int cnt)2327 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2328 {
2329 struct mmc_data *data = host->data;
2330 int init_cnt = cnt;
2331
2332 /* try and push anything in the part_buf */
2333 if (unlikely(host->part_buf_count)) {
2334 int len = dw_mci_push_part_bytes(host, buf, cnt);
2335
2336 buf += len;
2337 cnt -= len;
2338 if (host->part_buf_count == 2) {
2339 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2340 host->part_buf_count = 0;
2341 }
2342 }
2343 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2344 if (unlikely((unsigned long)buf & 0x1)) {
2345 while (cnt >= 2) {
2346 u16 aligned_buf[64];
2347 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2348 int items = len >> 1;
2349 int i;
2350 /* memcpy from input buffer into aligned buffer */
2351 memcpy(aligned_buf, buf, len);
2352 buf += len;
2353 cnt -= len;
2354 /* push data from aligned buffer into fifo */
2355 for (i = 0; i < items; ++i)
2356 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2357 }
2358 } else
2359 #endif
2360 {
2361 u16 *pdata = buf;
2362
2363 for (; cnt >= 2; cnt -= 2)
2364 mci_fifo_writew(host->fifo_reg, *pdata++);
2365 buf = pdata;
2366 }
2367 /* put anything remaining in the part_buf */
2368 if (cnt) {
2369 dw_mci_set_part_bytes(host, buf, cnt);
2370 /* Push data if we have reached the expected data length */
2371 if ((data->bytes_xfered + init_cnt) ==
2372 (data->blksz * data->blocks))
2373 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2374 }
2375 }
2376
dw_mci_pull_data16(struct dw_mci * host,void * buf,int cnt)2377 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2378 {
2379 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2380 if (unlikely((unsigned long)buf & 0x1)) {
2381 while (cnt >= 2) {
2382 /* pull data from fifo into aligned buffer */
2383 u16 aligned_buf[64];
2384 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2385 int items = len >> 1;
2386 int i;
2387
2388 for (i = 0; i < items; ++i)
2389 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2390 /* memcpy from aligned buffer into output buffer */
2391 memcpy(buf, aligned_buf, len);
2392 buf += len;
2393 cnt -= len;
2394 }
2395 } else
2396 #endif
2397 {
2398 u16 *pdata = buf;
2399
2400 for (; cnt >= 2; cnt -= 2)
2401 *pdata++ = mci_fifo_readw(host->fifo_reg);
2402 buf = pdata;
2403 }
2404 if (cnt) {
2405 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2406 dw_mci_pull_final_bytes(host, buf, cnt);
2407 }
2408 }
2409
dw_mci_push_data32(struct dw_mci * host,void * buf,int cnt)2410 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2411 {
2412 struct mmc_data *data = host->data;
2413 int init_cnt = cnt;
2414
2415 /* try and push anything in the part_buf */
2416 if (unlikely(host->part_buf_count)) {
2417 int len = dw_mci_push_part_bytes(host, buf, cnt);
2418
2419 buf += len;
2420 cnt -= len;
2421 if (host->part_buf_count == 4) {
2422 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2423 host->part_buf_count = 0;
2424 }
2425 }
2426 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2427 if (unlikely((unsigned long)buf & 0x3)) {
2428 while (cnt >= 4) {
2429 u32 aligned_buf[32];
2430 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2431 int items = len >> 2;
2432 int i;
2433 /* memcpy from input buffer into aligned buffer */
2434 memcpy(aligned_buf, buf, len);
2435 buf += len;
2436 cnt -= len;
2437 /* push data from aligned buffer into fifo */
2438 for (i = 0; i < items; ++i)
2439 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2440 }
2441 } else
2442 #endif
2443 {
2444 u32 *pdata = buf;
2445
2446 for (; cnt >= 4; cnt -= 4)
2447 mci_fifo_writel(host->fifo_reg, *pdata++);
2448 buf = pdata;
2449 }
2450 /* put anything remaining in the part_buf */
2451 if (cnt) {
2452 dw_mci_set_part_bytes(host, buf, cnt);
2453 /* Push data if we have reached the expected data length */
2454 if ((data->bytes_xfered + init_cnt) ==
2455 (data->blksz * data->blocks))
2456 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2457 }
2458 }
2459
dw_mci_pull_data32(struct dw_mci * host,void * buf,int cnt)2460 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2461 {
2462 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2463 if (unlikely((unsigned long)buf & 0x3)) {
2464 while (cnt >= 4) {
2465 /* pull data from fifo into aligned buffer */
2466 u32 aligned_buf[32];
2467 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2468 int items = len >> 2;
2469 int i;
2470
2471 for (i = 0; i < items; ++i)
2472 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2473 /* memcpy from aligned buffer into output buffer */
2474 memcpy(buf, aligned_buf, len);
2475 buf += len;
2476 cnt -= len;
2477 }
2478 } else
2479 #endif
2480 {
2481 u32 *pdata = buf;
2482
2483 for (; cnt >= 4; cnt -= 4)
2484 *pdata++ = mci_fifo_readl(host->fifo_reg);
2485 buf = pdata;
2486 }
2487 if (cnt) {
2488 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2489 dw_mci_pull_final_bytes(host, buf, cnt);
2490 }
2491 }
2492
dw_mci_push_data64(struct dw_mci * host,void * buf,int cnt)2493 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2494 {
2495 struct mmc_data *data = host->data;
2496 int init_cnt = cnt;
2497
2498 /* try and push anything in the part_buf */
2499 if (unlikely(host->part_buf_count)) {
2500 int len = dw_mci_push_part_bytes(host, buf, cnt);
2501
2502 buf += len;
2503 cnt -= len;
2504
2505 if (host->part_buf_count == 8) {
2506 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2507 host->part_buf_count = 0;
2508 }
2509 }
2510 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2511 if (unlikely((unsigned long)buf & 0x7)) {
2512 while (cnt >= 8) {
2513 u64 aligned_buf[16];
2514 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2515 int items = len >> 3;
2516 int i;
2517 /* memcpy from input buffer into aligned buffer */
2518 memcpy(aligned_buf, buf, len);
2519 buf += len;
2520 cnt -= len;
2521 /* push data from aligned buffer into fifo */
2522 for (i = 0; i < items; ++i)
2523 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2524 }
2525 } else
2526 #endif
2527 {
2528 u64 *pdata = buf;
2529
2530 for (; cnt >= 8; cnt -= 8)
2531 mci_fifo_writeq(host->fifo_reg, *pdata++);
2532 buf = pdata;
2533 }
2534 /* put anything remaining in the part_buf */
2535 if (cnt) {
2536 dw_mci_set_part_bytes(host, buf, cnt);
2537 /* Push data if we have reached the expected data length */
2538 if ((data->bytes_xfered + init_cnt) ==
2539 (data->blksz * data->blocks))
2540 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2541 }
2542 }
2543
dw_mci_pull_data64(struct dw_mci * host,void * buf,int cnt)2544 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2545 {
2546 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2547 if (unlikely((unsigned long)buf & 0x7)) {
2548 while (cnt >= 8) {
2549 /* pull data from fifo into aligned buffer */
2550 u64 aligned_buf[16];
2551 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2552 int items = len >> 3;
2553 int i;
2554
2555 for (i = 0; i < items; ++i)
2556 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2557
2558 /* memcpy from aligned buffer into output buffer */
2559 memcpy(buf, aligned_buf, len);
2560 buf += len;
2561 cnt -= len;
2562 }
2563 } else
2564 #endif
2565 {
2566 u64 *pdata = buf;
2567
2568 for (; cnt >= 8; cnt -= 8)
2569 *pdata++ = mci_fifo_readq(host->fifo_reg);
2570 buf = pdata;
2571 }
2572 if (cnt) {
2573 host->part_buf = mci_fifo_readq(host->fifo_reg);
2574 dw_mci_pull_final_bytes(host, buf, cnt);
2575 }
2576 }
2577
dw_mci_pull_data(struct dw_mci * host,void * buf,int cnt)2578 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2579 {
2580 int len;
2581
2582 /* get remaining partial bytes */
2583 len = dw_mci_pull_part_bytes(host, buf, cnt);
2584 if (unlikely(len == cnt))
2585 return;
2586 buf += len;
2587 cnt -= len;
2588
2589 /* get the rest of the data */
2590 host->pull_data(host, buf, cnt);
2591 }
2592
dw_mci_read_data_pio(struct dw_mci * host,bool dto)2593 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2594 {
2595 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2596 void *buf;
2597 unsigned int offset;
2598 struct mmc_data *data = host->data;
2599 int shift = host->data_shift;
2600 u32 status;
2601 unsigned int len;
2602 unsigned int remain, fcnt;
2603
2604 do {
2605 if (!sg_miter_next(sg_miter))
2606 goto done;
2607
2608 host->sg = sg_miter->piter.sg;
2609 buf = sg_miter->addr;
2610 remain = sg_miter->length;
2611 offset = 0;
2612
2613 do {
2614 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2615 << shift) + host->part_buf_count;
2616 len = min(remain, fcnt);
2617 if (!len)
2618 break;
2619 dw_mci_pull_data(host, (void *)(buf + offset), len);
2620 data->bytes_xfered += len;
2621 offset += len;
2622 remain -= len;
2623 } while (remain);
2624
2625 sg_miter->consumed = offset;
2626 status = mci_readl(host, MINTSTS);
2627 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2628 /* if the RXDR is ready read again */
2629 } while ((status & SDMMC_INT_RXDR) ||
2630 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2631
2632 if (!remain) {
2633 if (!sg_miter_next(sg_miter))
2634 goto done;
2635 sg_miter->consumed = 0;
2636 }
2637 sg_miter_stop(sg_miter);
2638 return;
2639
2640 done:
2641 sg_miter_stop(sg_miter);
2642 host->sg = NULL;
2643 smp_wmb(); /* drain writebuffer */
2644 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2645 }
2646
dw_mci_write_data_pio(struct dw_mci * host)2647 static void dw_mci_write_data_pio(struct dw_mci *host)
2648 {
2649 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2650 void *buf;
2651 unsigned int offset;
2652 struct mmc_data *data = host->data;
2653 int shift = host->data_shift;
2654 u32 status;
2655 unsigned int len;
2656 unsigned int fifo_depth = host->fifo_depth;
2657 unsigned int remain, fcnt;
2658
2659 do {
2660 if (!sg_miter_next(sg_miter))
2661 goto done;
2662
2663 host->sg = sg_miter->piter.sg;
2664 buf = sg_miter->addr;
2665 remain = sg_miter->length;
2666 offset = 0;
2667
2668 do {
2669 fcnt = ((fifo_depth -
2670 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2671 << shift) - host->part_buf_count;
2672 len = min(remain, fcnt);
2673 if (!len)
2674 break;
2675 host->push_data(host, (void *)(buf + offset), len);
2676 data->bytes_xfered += len;
2677 offset += len;
2678 remain -= len;
2679 } while (remain);
2680
2681 sg_miter->consumed = offset;
2682 status = mci_readl(host, MINTSTS);
2683 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2684 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2685
2686 if (!remain) {
2687 if (!sg_miter_next(sg_miter))
2688 goto done;
2689 sg_miter->consumed = 0;
2690 }
2691 sg_miter_stop(sg_miter);
2692 return;
2693
2694 done:
2695 sg_miter_stop(sg_miter);
2696 host->sg = NULL;
2697 smp_wmb(); /* drain writebuffer */
2698 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2699 }
2700
dw_mci_cmd_interrupt(struct dw_mci * host,u32 status)2701 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2702 {
2703 del_timer(&host->cto_timer);
2704
2705 if (!host->cmd_status)
2706 host->cmd_status = status;
2707
2708 smp_wmb(); /* drain writebuffer */
2709
2710 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2711 tasklet_schedule(&host->tasklet);
2712
2713 dw_mci_start_fault_timer(host);
2714 }
2715
dw_mci_handle_cd(struct dw_mci * host)2716 static void dw_mci_handle_cd(struct dw_mci *host)
2717 {
2718 struct dw_mci_slot *slot = host->slot;
2719
2720 mmc_detect_change(slot->mmc,
2721 msecs_to_jiffies(host->pdata->detect_delay_ms));
2722 }
2723
dw_mci_interrupt(int irq,void * dev_id)2724 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2725 {
2726 struct dw_mci *host = dev_id;
2727 u32 pending;
2728 struct dw_mci_slot *slot = host->slot;
2729
2730 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2731
2732 if (pending) {
2733 /* Check volt switch first, since it can look like an error */
2734 if ((host->state == STATE_SENDING_CMD11) &&
2735 (pending & SDMMC_INT_VOLT_SWITCH)) {
2736 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2737 pending &= ~SDMMC_INT_VOLT_SWITCH;
2738
2739 /*
2740 * Hold the lock; we know cmd11_timer can't be kicked
2741 * off after the lock is released, so safe to delete.
2742 */
2743 spin_lock(&host->irq_lock);
2744 dw_mci_cmd_interrupt(host, pending);
2745 spin_unlock(&host->irq_lock);
2746
2747 del_timer(&host->cmd11_timer);
2748 }
2749
2750 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2751 spin_lock(&host->irq_lock);
2752
2753 del_timer(&host->cto_timer);
2754 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2755 host->cmd_status = pending;
2756 smp_wmb(); /* drain writebuffer */
2757 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2758
2759 spin_unlock(&host->irq_lock);
2760 }
2761
2762 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2763 spin_lock(&host->irq_lock);
2764
2765 if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2766 del_timer(&host->dto_timer);
2767
2768 /* if there is an error report DATA_ERROR */
2769 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2770 host->data_status = pending;
2771 smp_wmb(); /* drain writebuffer */
2772 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2773
2774 if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2775 /* In case of error, we cannot expect a DTO */
2776 set_bit(EVENT_DATA_COMPLETE,
2777 &host->pending_events);
2778
2779 tasklet_schedule(&host->tasklet);
2780
2781 spin_unlock(&host->irq_lock);
2782 }
2783
2784 if (pending & SDMMC_INT_DATA_OVER) {
2785 spin_lock(&host->irq_lock);
2786
2787 del_timer(&host->dto_timer);
2788
2789 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2790 if (!host->data_status)
2791 host->data_status = pending;
2792 smp_wmb(); /* drain writebuffer */
2793 if (host->dir_status == DW_MCI_RECV_STATUS) {
2794 if (host->sg != NULL)
2795 dw_mci_read_data_pio(host, true);
2796 }
2797 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2798 tasklet_schedule(&host->tasklet);
2799
2800 spin_unlock(&host->irq_lock);
2801 }
2802
2803 if (pending & SDMMC_INT_RXDR) {
2804 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2805 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2806 dw_mci_read_data_pio(host, false);
2807 }
2808
2809 if (pending & SDMMC_INT_TXDR) {
2810 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2811 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2812 dw_mci_write_data_pio(host);
2813 }
2814
2815 if (pending & SDMMC_INT_CMD_DONE) {
2816 spin_lock(&host->irq_lock);
2817
2818 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2819 dw_mci_cmd_interrupt(host, pending);
2820
2821 spin_unlock(&host->irq_lock);
2822 }
2823
2824 if (pending & SDMMC_INT_CD) {
2825 mci_writel(host, RINTSTS, SDMMC_INT_CD);
2826 dw_mci_handle_cd(host);
2827 }
2828
2829 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2830 mci_writel(host, RINTSTS,
2831 SDMMC_INT_SDIO(slot->sdio_id));
2832 __dw_mci_enable_sdio_irq(slot, 0);
2833 sdio_signal_irq(slot->mmc);
2834 }
2835
2836 }
2837
2838 if (host->use_dma != TRANS_MODE_IDMAC)
2839 return IRQ_HANDLED;
2840
2841 /* Handle IDMA interrupts */
2842 if (host->dma_64bit_address == 1) {
2843 pending = mci_readl(host, IDSTS64);
2844 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2845 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2846 SDMMC_IDMAC_INT_RI);
2847 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2848 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2849 host->dma_ops->complete((void *)host);
2850 }
2851 } else {
2852 pending = mci_readl(host, IDSTS);
2853 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2854 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2855 SDMMC_IDMAC_INT_RI);
2856 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2857 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2858 host->dma_ops->complete((void *)host);
2859 }
2860 }
2861
2862 return IRQ_HANDLED;
2863 }
2864
dw_mci_init_slot_caps(struct dw_mci_slot * slot)2865 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2866 {
2867 struct dw_mci *host = slot->host;
2868 const struct dw_mci_drv_data *drv_data = host->drv_data;
2869 struct mmc_host *mmc = slot->mmc;
2870 int ctrl_id;
2871
2872 if (host->pdata->caps)
2873 mmc->caps = host->pdata->caps;
2874
2875 if (host->pdata->pm_caps)
2876 mmc->pm_caps = host->pdata->pm_caps;
2877
2878 if (drv_data)
2879 mmc->caps |= drv_data->common_caps;
2880
2881 if (host->dev->of_node) {
2882 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2883 if (ctrl_id < 0)
2884 ctrl_id = 0;
2885 } else {
2886 ctrl_id = to_platform_device(host->dev)->id;
2887 }
2888
2889 if (drv_data && drv_data->caps) {
2890 if (ctrl_id >= drv_data->num_caps) {
2891 dev_err(host->dev, "invalid controller id %d\n",
2892 ctrl_id);
2893 return -EINVAL;
2894 }
2895 mmc->caps |= drv_data->caps[ctrl_id];
2896 }
2897
2898 if (host->pdata->caps2)
2899 mmc->caps2 = host->pdata->caps2;
2900
2901 /* if host has set a minimum_freq, we should respect it */
2902 if (host->minimum_speed)
2903 mmc->f_min = host->minimum_speed;
2904 else
2905 mmc->f_min = DW_MCI_FREQ_MIN;
2906
2907 if (!mmc->f_max)
2908 mmc->f_max = DW_MCI_FREQ_MAX;
2909
2910 /* Process SDIO IRQs through the sdio_irq_work. */
2911 if (mmc->caps & MMC_CAP_SDIO_IRQ)
2912 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2913
2914 return 0;
2915 }
2916
dw_mci_init_slot(struct dw_mci * host)2917 static int dw_mci_init_slot(struct dw_mci *host)
2918 {
2919 struct mmc_host *mmc;
2920 struct dw_mci_slot *slot;
2921 int ret;
2922
2923 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2924 if (!mmc)
2925 return -ENOMEM;
2926
2927 slot = mmc_priv(mmc);
2928 slot->id = 0;
2929 slot->sdio_id = host->sdio_id0 + slot->id;
2930 slot->mmc = mmc;
2931 slot->host = host;
2932 host->slot = slot;
2933
2934 mmc->ops = &dw_mci_ops;
2935
2936 /*if there are external regulators, get them*/
2937 ret = mmc_regulator_get_supply(mmc);
2938 if (ret)
2939 goto err_host_allocated;
2940
2941 if (!mmc->ocr_avail)
2942 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2943
2944 ret = mmc_of_parse(mmc);
2945 if (ret)
2946 goto err_host_allocated;
2947
2948 ret = dw_mci_init_slot_caps(slot);
2949 if (ret)
2950 goto err_host_allocated;
2951
2952 /* Useful defaults if platform data is unset. */
2953 if (host->use_dma == TRANS_MODE_IDMAC) {
2954 mmc->max_segs = host->ring_size;
2955 mmc->max_blk_size = 65535;
2956 mmc->max_seg_size = 0x1000;
2957 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2958 mmc->max_blk_count = mmc->max_req_size / 512;
2959 } else if (host->use_dma == TRANS_MODE_EDMAC) {
2960 mmc->max_segs = 64;
2961 mmc->max_blk_size = 65535;
2962 mmc->max_blk_count = 65535;
2963 mmc->max_req_size =
2964 mmc->max_blk_size * mmc->max_blk_count;
2965 mmc->max_seg_size = mmc->max_req_size;
2966 } else {
2967 /* TRANS_MODE_PIO */
2968 mmc->max_segs = 64;
2969 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2970 mmc->max_blk_count = 512;
2971 mmc->max_req_size = mmc->max_blk_size *
2972 mmc->max_blk_count;
2973 mmc->max_seg_size = mmc->max_req_size;
2974 }
2975
2976 dw_mci_get_cd(mmc);
2977
2978 ret = mmc_add_host(mmc);
2979 if (ret)
2980 goto err_host_allocated;
2981
2982 #if defined(CONFIG_DEBUG_FS)
2983 dw_mci_init_debugfs(slot);
2984 #endif
2985
2986 return 0;
2987
2988 err_host_allocated:
2989 mmc_free_host(mmc);
2990 return ret;
2991 }
2992
dw_mci_cleanup_slot(struct dw_mci_slot * slot)2993 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2994 {
2995 /* Debugfs stuff is cleaned up by mmc core */
2996 mmc_remove_host(slot->mmc);
2997 slot->host->slot = NULL;
2998 mmc_free_host(slot->mmc);
2999 }
3000
dw_mci_init_dma(struct dw_mci * host)3001 static void dw_mci_init_dma(struct dw_mci *host)
3002 {
3003 int addr_config;
3004 struct device *dev = host->dev;
3005
3006 /*
3007 * Check tansfer mode from HCON[17:16]
3008 * Clear the ambiguous description of dw_mmc databook:
3009 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
3010 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
3011 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
3012 * 2b'11: Non DW DMA Interface -> pio only
3013 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
3014 * simpler request/acknowledge handshake mechanism and both of them
3015 * are regarded as external dma master for dw_mmc.
3016 */
3017 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
3018 if (host->use_dma == DMA_INTERFACE_IDMA) {
3019 host->use_dma = TRANS_MODE_IDMAC;
3020 } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
3021 host->use_dma == DMA_INTERFACE_GDMA) {
3022 host->use_dma = TRANS_MODE_EDMAC;
3023 } else {
3024 goto no_dma;
3025 }
3026
3027 /* Determine which DMA interface to use */
3028 if (host->use_dma == TRANS_MODE_IDMAC) {
3029 /*
3030 * Check ADDR_CONFIG bit in HCON to find
3031 * IDMAC address bus width
3032 */
3033 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
3034
3035 if (addr_config == 1) {
3036 /* host supports IDMAC in 64-bit address mode */
3037 host->dma_64bit_address = 1;
3038 dev_info(host->dev,
3039 "IDMAC supports 64-bit address mode.\n");
3040 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
3041 dma_set_coherent_mask(host->dev,
3042 DMA_BIT_MASK(64));
3043 } else {
3044 /* host supports IDMAC in 32-bit address mode */
3045 host->dma_64bit_address = 0;
3046 dev_info(host->dev,
3047 "IDMAC supports 32-bit address mode.\n");
3048 }
3049
3050 /* Alloc memory for sg translation */
3051 host->sg_cpu = dmam_alloc_coherent(host->dev,
3052 DESC_RING_BUF_SZ,
3053 &host->sg_dma, GFP_KERNEL);
3054 if (!host->sg_cpu) {
3055 dev_err(host->dev,
3056 "%s: could not alloc DMA memory\n",
3057 __func__);
3058 goto no_dma;
3059 }
3060
3061 host->dma_ops = &dw_mci_idmac_ops;
3062 dev_info(host->dev, "Using internal DMA controller.\n");
3063 } else {
3064 /* TRANS_MODE_EDMAC: check dma bindings again */
3065 if ((device_property_string_array_count(dev, "dma-names") < 0) ||
3066 !device_property_present(dev, "dmas")) {
3067 goto no_dma;
3068 }
3069 host->dma_ops = &dw_mci_edmac_ops;
3070 dev_info(host->dev, "Using external DMA controller.\n");
3071 }
3072
3073 if (host->dma_ops->init && host->dma_ops->start &&
3074 host->dma_ops->stop && host->dma_ops->cleanup) {
3075 if (host->dma_ops->init(host)) {
3076 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
3077 __func__);
3078 goto no_dma;
3079 }
3080 } else {
3081 dev_err(host->dev, "DMA initialization not found.\n");
3082 goto no_dma;
3083 }
3084
3085 return;
3086
3087 no_dma:
3088 dev_info(host->dev, "Using PIO mode.\n");
3089 host->use_dma = TRANS_MODE_PIO;
3090 }
3091
dw_mci_cmd11_timer(struct timer_list * t)3092 static void dw_mci_cmd11_timer(struct timer_list *t)
3093 {
3094 struct dw_mci *host = from_timer(host, t, cmd11_timer);
3095
3096 if (host->state != STATE_SENDING_CMD11) {
3097 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
3098 return;
3099 }
3100
3101 host->cmd_status = SDMMC_INT_RTO;
3102 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3103 tasklet_schedule(&host->tasklet);
3104 }
3105
dw_mci_cto_timer(struct timer_list * t)3106 static void dw_mci_cto_timer(struct timer_list *t)
3107 {
3108 struct dw_mci *host = from_timer(host, t, cto_timer);
3109 unsigned long irqflags;
3110 u32 pending;
3111
3112 spin_lock_irqsave(&host->irq_lock, irqflags);
3113
3114 /*
3115 * If somehow we have very bad interrupt latency it's remotely possible
3116 * that the timer could fire while the interrupt is still pending or
3117 * while the interrupt is midway through running. Let's be paranoid
3118 * and detect those two cases. Note that this is paranoia is somewhat
3119 * justified because in this function we don't actually cancel the
3120 * pending command in the controller--we just assume it will never come.
3121 */
3122 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3123 if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3124 /* The interrupt should fire; no need to act but we can warn */
3125 dev_warn(host->dev, "Unexpected interrupt latency\n");
3126 goto exit;
3127 }
3128 if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3129 /* Presumably interrupt handler couldn't delete the timer */
3130 dev_warn(host->dev, "CTO timeout when already completed\n");
3131 goto exit;
3132 }
3133
3134 /*
3135 * Continued paranoia to make sure we're in the state we expect.
3136 * This paranoia isn't really justified but it seems good to be safe.
3137 */
3138 switch (host->state) {
3139 case STATE_SENDING_CMD11:
3140 case STATE_SENDING_CMD:
3141 case STATE_SENDING_STOP:
3142 /*
3143 * If CMD_DONE interrupt does NOT come in sending command
3144 * state, we should notify the driver to terminate current
3145 * transfer and report a command timeout to the core.
3146 */
3147 host->cmd_status = SDMMC_INT_RTO;
3148 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3149 tasklet_schedule(&host->tasklet);
3150 break;
3151 default:
3152 dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3153 host->state);
3154 break;
3155 }
3156
3157 exit:
3158 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3159 }
3160
dw_mci_dto_timer(struct timer_list * t)3161 static void dw_mci_dto_timer(struct timer_list *t)
3162 {
3163 struct dw_mci *host = from_timer(host, t, dto_timer);
3164 unsigned long irqflags;
3165 u32 pending;
3166
3167 spin_lock_irqsave(&host->irq_lock, irqflags);
3168
3169 /*
3170 * The DTO timer is much longer than the CTO timer, so it's even less
3171 * likely that we'll these cases, but it pays to be paranoid.
3172 */
3173 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3174 if (pending & SDMMC_INT_DATA_OVER) {
3175 /* The interrupt should fire; no need to act but we can warn */
3176 dev_warn(host->dev, "Unexpected data interrupt latency\n");
3177 goto exit;
3178 }
3179 if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3180 /* Presumably interrupt handler couldn't delete the timer */
3181 dev_warn(host->dev, "DTO timeout when already completed\n");
3182 goto exit;
3183 }
3184
3185 /*
3186 * Continued paranoia to make sure we're in the state we expect.
3187 * This paranoia isn't really justified but it seems good to be safe.
3188 */
3189 switch (host->state) {
3190 case STATE_SENDING_DATA:
3191 case STATE_DATA_BUSY:
3192 /*
3193 * If DTO interrupt does NOT come in sending data state,
3194 * we should notify the driver to terminate current transfer
3195 * and report a data timeout to the core.
3196 */
3197 host->data_status = SDMMC_INT_DRTO;
3198 set_bit(EVENT_DATA_ERROR, &host->pending_events);
3199 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3200 tasklet_schedule(&host->tasklet);
3201 break;
3202 default:
3203 dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3204 host->state);
3205 break;
3206 }
3207
3208 exit:
3209 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3210 }
3211
3212 #ifdef CONFIG_OF
dw_mci_parse_dt(struct dw_mci * host)3213 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3214 {
3215 struct dw_mci_board *pdata;
3216 struct device *dev = host->dev;
3217 const struct dw_mci_drv_data *drv_data = host->drv_data;
3218 int ret;
3219 u32 clock_frequency;
3220
3221 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3222 if (!pdata)
3223 return ERR_PTR(-ENOMEM);
3224
3225 /* find reset controller when exist */
3226 pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3227 if (IS_ERR(pdata->rstc))
3228 return ERR_CAST(pdata->rstc);
3229
3230 if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3231 dev_info(dev,
3232 "fifo-depth property not found, using value of FIFOTH register as default\n");
3233
3234 device_property_read_u32(dev, "card-detect-delay",
3235 &pdata->detect_delay_ms);
3236
3237 device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3238
3239 if (device_property_present(dev, "fifo-watermark-aligned"))
3240 host->wm_aligned = true;
3241
3242 if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3243 pdata->bus_hz = clock_frequency;
3244
3245 if (drv_data && drv_data->parse_dt) {
3246 ret = drv_data->parse_dt(host);
3247 if (ret)
3248 return ERR_PTR(ret);
3249 }
3250
3251 return pdata;
3252 }
3253
3254 #else /* CONFIG_OF */
dw_mci_parse_dt(struct dw_mci * host)3255 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3256 {
3257 return ERR_PTR(-EINVAL);
3258 }
3259 #endif /* CONFIG_OF */
3260
dw_mci_enable_cd(struct dw_mci * host)3261 static void dw_mci_enable_cd(struct dw_mci *host)
3262 {
3263 unsigned long irqflags;
3264 u32 temp;
3265
3266 /*
3267 * No need for CD if all slots have a non-error GPIO
3268 * as well as broken card detection is found.
3269 */
3270 if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3271 return;
3272
3273 if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3274 spin_lock_irqsave(&host->irq_lock, irqflags);
3275 temp = mci_readl(host, INTMASK);
3276 temp |= SDMMC_INT_CD;
3277 mci_writel(host, INTMASK, temp);
3278 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3279 }
3280 }
3281
dw_mci_probe(struct dw_mci * host)3282 int dw_mci_probe(struct dw_mci *host)
3283 {
3284 const struct dw_mci_drv_data *drv_data = host->drv_data;
3285 int width, i, ret = 0;
3286 u32 fifo_size;
3287
3288 if (!host->pdata) {
3289 host->pdata = dw_mci_parse_dt(host);
3290 if (IS_ERR(host->pdata))
3291 return dev_err_probe(host->dev, PTR_ERR(host->pdata),
3292 "platform data not available\n");
3293 }
3294
3295 host->biu_clk = devm_clk_get(host->dev, "biu");
3296 if (IS_ERR(host->biu_clk)) {
3297 dev_dbg(host->dev, "biu clock not available\n");
3298 } else {
3299 ret = clk_prepare_enable(host->biu_clk);
3300 if (ret) {
3301 dev_err(host->dev, "failed to enable biu clock\n");
3302 return ret;
3303 }
3304 }
3305
3306 host->ciu_clk = devm_clk_get(host->dev, "ciu");
3307 if (IS_ERR(host->ciu_clk)) {
3308 dev_dbg(host->dev, "ciu clock not available\n");
3309 host->bus_hz = host->pdata->bus_hz;
3310 } else {
3311 ret = clk_prepare_enable(host->ciu_clk);
3312 if (ret) {
3313 dev_err(host->dev, "failed to enable ciu clock\n");
3314 goto err_clk_biu;
3315 }
3316
3317 if (host->pdata->bus_hz) {
3318 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3319 if (ret)
3320 dev_warn(host->dev,
3321 "Unable to set bus rate to %uHz\n",
3322 host->pdata->bus_hz);
3323 }
3324 host->bus_hz = clk_get_rate(host->ciu_clk);
3325 }
3326
3327 if (!host->bus_hz) {
3328 dev_err(host->dev,
3329 "Platform data must supply bus speed\n");
3330 ret = -ENODEV;
3331 goto err_clk_ciu;
3332 }
3333
3334 if (host->pdata->rstc) {
3335 reset_control_assert(host->pdata->rstc);
3336 usleep_range(10, 50);
3337 reset_control_deassert(host->pdata->rstc);
3338 }
3339
3340 if (drv_data && drv_data->init) {
3341 ret = drv_data->init(host);
3342 if (ret) {
3343 dev_err(host->dev,
3344 "implementation specific init failed\n");
3345 goto err_clk_ciu;
3346 }
3347 }
3348
3349 timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3350 timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3351 timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3352
3353 spin_lock_init(&host->lock);
3354 spin_lock_init(&host->irq_lock);
3355 INIT_LIST_HEAD(&host->queue);
3356
3357 dw_mci_init_fault(host);
3358
3359 /*
3360 * Get the host data width - this assumes that HCON has been set with
3361 * the correct values.
3362 */
3363 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3364 if (!i) {
3365 host->push_data = dw_mci_push_data16;
3366 host->pull_data = dw_mci_pull_data16;
3367 width = 16;
3368 host->data_shift = 1;
3369 } else if (i == 2) {
3370 host->push_data = dw_mci_push_data64;
3371 host->pull_data = dw_mci_pull_data64;
3372 width = 64;
3373 host->data_shift = 3;
3374 } else {
3375 /* Check for a reserved value, and warn if it is */
3376 WARN((i != 1),
3377 "HCON reports a reserved host data width!\n"
3378 "Defaulting to 32-bit access.\n");
3379 host->push_data = dw_mci_push_data32;
3380 host->pull_data = dw_mci_pull_data32;
3381 width = 32;
3382 host->data_shift = 2;
3383 }
3384
3385 /* Reset all blocks */
3386 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3387 ret = -ENODEV;
3388 goto err_clk_ciu;
3389 }
3390
3391 host->dma_ops = host->pdata->dma_ops;
3392 dw_mci_init_dma(host);
3393
3394 /* Clear the interrupts for the host controller */
3395 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3396 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3397
3398 /* Put in max timeout */
3399 mci_writel(host, TMOUT, 0xFFFFFFFF);
3400
3401 /*
3402 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3403 * Tx Mark = fifo_size / 2 DMA Size = 8
3404 */
3405 if (!host->pdata->fifo_depth) {
3406 /*
3407 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3408 * have been overwritten by the bootloader, just like we're
3409 * about to do, so if you know the value for your hardware, you
3410 * should put it in the platform data.
3411 */
3412 fifo_size = mci_readl(host, FIFOTH);
3413 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3414 } else {
3415 fifo_size = host->pdata->fifo_depth;
3416 }
3417 host->fifo_depth = fifo_size;
3418 host->fifoth_val =
3419 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3420 mci_writel(host, FIFOTH, host->fifoth_val);
3421
3422 /* disable clock to CIU */
3423 mci_writel(host, CLKENA, 0);
3424 mci_writel(host, CLKSRC, 0);
3425
3426 /*
3427 * In 2.40a spec, Data offset is changed.
3428 * Need to check the version-id and set data-offset for DATA register.
3429 */
3430 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3431 dev_info(host->dev, "Version ID is %04x\n", host->verid);
3432
3433 if (host->data_addr_override)
3434 host->fifo_reg = host->regs + host->data_addr_override;
3435 else if (host->verid < DW_MMC_240A)
3436 host->fifo_reg = host->regs + DATA_OFFSET;
3437 else
3438 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3439
3440 tasklet_setup(&host->tasklet, dw_mci_tasklet_func);
3441 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3442 host->irq_flags, "dw-mci", host);
3443 if (ret)
3444 goto err_dmaunmap;
3445
3446 /*
3447 * Enable interrupts for command done, data over, data empty,
3448 * receive ready and error such as transmit, receive timeout, crc error
3449 */
3450 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3451 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3452 DW_MCI_ERROR_FLAGS);
3453 /* Enable mci interrupt */
3454 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3455
3456 dev_info(host->dev,
3457 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3458 host->irq, width, fifo_size);
3459
3460 /* We need at least one slot to succeed */
3461 ret = dw_mci_init_slot(host);
3462 if (ret) {
3463 dev_dbg(host->dev, "slot %d init failed\n", i);
3464 goto err_dmaunmap;
3465 }
3466
3467 /* Now that slots are all setup, we can enable card detect */
3468 dw_mci_enable_cd(host);
3469
3470 return 0;
3471
3472 err_dmaunmap:
3473 if (host->use_dma && host->dma_ops->exit)
3474 host->dma_ops->exit(host);
3475
3476 reset_control_assert(host->pdata->rstc);
3477
3478 err_clk_ciu:
3479 clk_disable_unprepare(host->ciu_clk);
3480
3481 err_clk_biu:
3482 clk_disable_unprepare(host->biu_clk);
3483
3484 return ret;
3485 }
3486 EXPORT_SYMBOL(dw_mci_probe);
3487
dw_mci_remove(struct dw_mci * host)3488 void dw_mci_remove(struct dw_mci *host)
3489 {
3490 dev_dbg(host->dev, "remove slot\n");
3491 if (host->slot)
3492 dw_mci_cleanup_slot(host->slot);
3493
3494 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3495 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3496
3497 /* disable clock to CIU */
3498 mci_writel(host, CLKENA, 0);
3499 mci_writel(host, CLKSRC, 0);
3500
3501 if (host->use_dma && host->dma_ops->exit)
3502 host->dma_ops->exit(host);
3503
3504 reset_control_assert(host->pdata->rstc);
3505
3506 clk_disable_unprepare(host->ciu_clk);
3507 clk_disable_unprepare(host->biu_clk);
3508 }
3509 EXPORT_SYMBOL(dw_mci_remove);
3510
3511
3512
3513 #ifdef CONFIG_PM
dw_mci_runtime_suspend(struct device * dev)3514 int dw_mci_runtime_suspend(struct device *dev)
3515 {
3516 struct dw_mci *host = dev_get_drvdata(dev);
3517
3518 if (host->use_dma && host->dma_ops->exit)
3519 host->dma_ops->exit(host);
3520
3521 clk_disable_unprepare(host->ciu_clk);
3522
3523 if (host->slot &&
3524 (mmc_can_gpio_cd(host->slot->mmc) ||
3525 !mmc_card_is_removable(host->slot->mmc)))
3526 clk_disable_unprepare(host->biu_clk);
3527
3528 return 0;
3529 }
3530 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3531
dw_mci_runtime_resume(struct device * dev)3532 int dw_mci_runtime_resume(struct device *dev)
3533 {
3534 int ret = 0;
3535 struct dw_mci *host = dev_get_drvdata(dev);
3536
3537 if (host->slot &&
3538 (mmc_can_gpio_cd(host->slot->mmc) ||
3539 !mmc_card_is_removable(host->slot->mmc))) {
3540 ret = clk_prepare_enable(host->biu_clk);
3541 if (ret)
3542 return ret;
3543 }
3544
3545 ret = clk_prepare_enable(host->ciu_clk);
3546 if (ret)
3547 goto err;
3548
3549 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3550 clk_disable_unprepare(host->ciu_clk);
3551 ret = -ENODEV;
3552 goto err;
3553 }
3554
3555 if (host->use_dma && host->dma_ops->init)
3556 host->dma_ops->init(host);
3557
3558 /*
3559 * Restore the initial value at FIFOTH register
3560 * And Invalidate the prev_blksz with zero
3561 */
3562 mci_writel(host, FIFOTH, host->fifoth_val);
3563 host->prev_blksz = 0;
3564
3565 /* Put in max timeout */
3566 mci_writel(host, TMOUT, 0xFFFFFFFF);
3567
3568 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3569 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3570 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3571 DW_MCI_ERROR_FLAGS);
3572 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3573
3574
3575 if (host->slot && host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3576 dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3577
3578 /* Force setup bus to guarantee available clock output */
3579 dw_mci_setup_bus(host->slot, true);
3580
3581 /* Re-enable SDIO interrupts. */
3582 if (sdio_irq_claimed(host->slot->mmc))
3583 __dw_mci_enable_sdio_irq(host->slot, 1);
3584
3585 /* Now that slots are all setup, we can enable card detect */
3586 dw_mci_enable_cd(host);
3587
3588 return 0;
3589
3590 err:
3591 if (host->slot &&
3592 (mmc_can_gpio_cd(host->slot->mmc) ||
3593 !mmc_card_is_removable(host->slot->mmc)))
3594 clk_disable_unprepare(host->biu_clk);
3595
3596 return ret;
3597 }
3598 EXPORT_SYMBOL(dw_mci_runtime_resume);
3599 #endif /* CONFIG_PM */
3600
dw_mci_init(void)3601 static int __init dw_mci_init(void)
3602 {
3603 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3604 return 0;
3605 }
3606
dw_mci_exit(void)3607 static void __exit dw_mci_exit(void)
3608 {
3609 }
3610
3611 module_init(dw_mci_init);
3612 module_exit(dw_mci_exit);
3613
3614 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3615 MODULE_AUTHOR("NXP Semiconductor VietNam");
3616 MODULE_AUTHOR("Imagination Technologies Ltd");
3617 MODULE_LICENSE("GPL v2");
3618