1 /*
2  * (C) Copyright 2009 Intel Corporation
3  * Author: Jacob Pan (jacob.jun.pan@intel.com)
4  *
5  * Shared with ARM platforms, Jamie Iles, Picochip 2011
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * Support for the Synopsys DesignWare APB Timers.
12  */
13 #include <linux/dw_apb_timer.h>
14 #include <linux/delay.h>
15 #include <linux/kernel.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20 
21 #define APBT_MIN_PERIOD			4
22 #define APBT_MIN_DELTA_USEC		200
23 
24 #define APBTMR_N_LOAD_COUNT		0x00
25 #define APBTMR_N_CURRENT_VALUE		0x04
26 #define APBTMR_N_CONTROL		0x08
27 #define APBTMR_N_EOI			0x0c
28 #define APBTMR_N_INT_STATUS		0x10
29 
30 #define APBTMRS_INT_STATUS		0xa0
31 #define APBTMRS_EOI			0xa4
32 #define APBTMRS_RAW_INT_STATUS		0xa8
33 #define APBTMRS_COMP_VERSION		0xac
34 
35 #define APBTMR_CONTROL_ENABLE		(1 << 0)
36 /* 1: periodic, 0:free running. */
37 #define APBTMR_CONTROL_MODE_PERIODIC	(1 << 1)
38 #define APBTMR_CONTROL_INT		(1 << 2)
39 
40 static inline struct dw_apb_clock_event_device *
ced_to_dw_apb_ced(struct clock_event_device * evt)41 ced_to_dw_apb_ced(struct clock_event_device *evt)
42 {
43 	return container_of(evt, struct dw_apb_clock_event_device, ced);
44 }
45 
46 static inline struct dw_apb_clocksource *
clocksource_to_dw_apb_clocksource(struct clocksource * cs)47 clocksource_to_dw_apb_clocksource(struct clocksource *cs)
48 {
49 	return container_of(cs, struct dw_apb_clocksource, cs);
50 }
51 
apbt_readl(struct dw_apb_timer * timer,unsigned long offs)52 static unsigned long apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
53 {
54 	return readl(timer->base + offs);
55 }
56 
apbt_writel(struct dw_apb_timer * timer,unsigned long val,unsigned long offs)57 static void apbt_writel(struct dw_apb_timer *timer, unsigned long val,
58 		 unsigned long offs)
59 {
60 	writel(val, timer->base + offs);
61 }
62 
apbt_disable_int(struct dw_apb_timer * timer)63 static void apbt_disable_int(struct dw_apb_timer *timer)
64 {
65 	unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
66 
67 	ctrl |= APBTMR_CONTROL_INT;
68 	apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
69 }
70 
71 /**
72  * dw_apb_clockevent_pause() - stop the clock_event_device from running
73  *
74  * @dw_ced:	The APB clock to stop generating events.
75  */
dw_apb_clockevent_pause(struct dw_apb_clock_event_device * dw_ced)76 void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
77 {
78 	disable_irq(dw_ced->timer.irq);
79 	apbt_disable_int(&dw_ced->timer);
80 }
81 
apbt_eoi(struct dw_apb_timer * timer)82 static void apbt_eoi(struct dw_apb_timer *timer)
83 {
84 	apbt_readl(timer, APBTMR_N_EOI);
85 }
86 
dw_apb_clockevent_irq(int irq,void * data)87 static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
88 {
89 	struct clock_event_device *evt = data;
90 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
91 
92 	if (!evt->event_handler) {
93 		pr_info("Spurious APBT timer interrupt %d", irq);
94 		return IRQ_NONE;
95 	}
96 
97 	if (dw_ced->eoi)
98 		dw_ced->eoi(&dw_ced->timer);
99 
100 	evt->event_handler(evt);
101 	return IRQ_HANDLED;
102 }
103 
apbt_enable_int(struct dw_apb_timer * timer)104 static void apbt_enable_int(struct dw_apb_timer *timer)
105 {
106 	unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
107 	/* clear pending intr */
108 	apbt_readl(timer, APBTMR_N_EOI);
109 	ctrl &= ~APBTMR_CONTROL_INT;
110 	apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
111 }
112 
apbt_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)113 static void apbt_set_mode(enum clock_event_mode mode,
114 			  struct clock_event_device *evt)
115 {
116 	unsigned long ctrl;
117 	unsigned long period;
118 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
119 
120 	pr_debug("%s CPU %d mode=%d\n", __func__, first_cpu(*evt->cpumask),
121 		 mode);
122 
123 	switch (mode) {
124 	case CLOCK_EVT_MODE_PERIODIC:
125 		period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
126 		ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
127 		ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
128 		apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
129 		/*
130 		 * DW APB p. 46, have to disable timer before load counter,
131 		 * may cause sync problem.
132 		 */
133 		ctrl &= ~APBTMR_CONTROL_ENABLE;
134 		apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
135 		udelay(1);
136 		pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
137 		apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
138 		ctrl |= APBTMR_CONTROL_ENABLE;
139 		apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
140 		break;
141 
142 	case CLOCK_EVT_MODE_ONESHOT:
143 		ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
144 		/*
145 		 * set free running mode, this mode will let timer reload max
146 		 * timeout which will give time (3min on 25MHz clock) to rearm
147 		 * the next event, therefore emulate the one-shot mode.
148 		 */
149 		ctrl &= ~APBTMR_CONTROL_ENABLE;
150 		ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
151 
152 		apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
153 		/* write again to set free running mode */
154 		apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
155 
156 		/*
157 		 * DW APB p. 46, load counter with all 1s before starting free
158 		 * running mode.
159 		 */
160 		apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
161 		ctrl &= ~APBTMR_CONTROL_INT;
162 		ctrl |= APBTMR_CONTROL_ENABLE;
163 		apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
164 		break;
165 
166 	case CLOCK_EVT_MODE_UNUSED:
167 	case CLOCK_EVT_MODE_SHUTDOWN:
168 		ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
169 		ctrl &= ~APBTMR_CONTROL_ENABLE;
170 		apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
171 		break;
172 
173 	case CLOCK_EVT_MODE_RESUME:
174 		apbt_enable_int(&dw_ced->timer);
175 		break;
176 	}
177 }
178 
apbt_next_event(unsigned long delta,struct clock_event_device * evt)179 static int apbt_next_event(unsigned long delta,
180 			   struct clock_event_device *evt)
181 {
182 	unsigned long ctrl;
183 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
184 
185 	/* Disable timer */
186 	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
187 	ctrl &= ~APBTMR_CONTROL_ENABLE;
188 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
189 	/* write new count */
190 	apbt_writel(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
191 	ctrl |= APBTMR_CONTROL_ENABLE;
192 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
193 
194 	return 0;
195 }
196 
197 /**
198  * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
199  *
200  * @cpu:	The CPU the events will be targeted at.
201  * @name:	The name used for the timer and the IRQ for it.
202  * @rating:	The rating to give the timer.
203  * @base:	I/O base for the timer registers.
204  * @irq:	The interrupt number to use for the timer.
205  * @freq:	The frequency that the timer counts at.
206  *
207  * This creates a clock_event_device for using with the generic clock layer
208  * but does not start and register it.  This should be done with
209  * dw_apb_clockevent_register() as the next step.  If this is the first time
210  * it has been called for a timer then the IRQ will be requested, if not it
211  * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
212  * releasing the IRQ.
213  */
214 struct dw_apb_clock_event_device *
dw_apb_clockevent_init(int cpu,const char * name,unsigned rating,void __iomem * base,int irq,unsigned long freq)215 dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
216 		       void __iomem *base, int irq, unsigned long freq)
217 {
218 	struct dw_apb_clock_event_device *dw_ced =
219 		kzalloc(sizeof(*dw_ced), GFP_KERNEL);
220 	int err;
221 
222 	if (!dw_ced)
223 		return NULL;
224 
225 	dw_ced->timer.base = base;
226 	dw_ced->timer.irq = irq;
227 	dw_ced->timer.freq = freq;
228 
229 	clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
230 	dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
231 						       &dw_ced->ced);
232 	dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
233 	dw_ced->ced.cpumask = cpumask_of(cpu);
234 	dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
235 	dw_ced->ced.set_mode = apbt_set_mode;
236 	dw_ced->ced.set_next_event = apbt_next_event;
237 	dw_ced->ced.irq = dw_ced->timer.irq;
238 	dw_ced->ced.rating = rating;
239 	dw_ced->ced.name = name;
240 
241 	dw_ced->irqaction.name		= dw_ced->ced.name;
242 	dw_ced->irqaction.handler	= dw_apb_clockevent_irq;
243 	dw_ced->irqaction.dev_id	= &dw_ced->ced;
244 	dw_ced->irqaction.irq		= irq;
245 	dw_ced->irqaction.flags		= IRQF_TIMER | IRQF_IRQPOLL |
246 					  IRQF_NOBALANCING |
247 					  IRQF_DISABLED;
248 
249 	dw_ced->eoi = apbt_eoi;
250 	err = setup_irq(irq, &dw_ced->irqaction);
251 	if (err) {
252 		pr_err("failed to request timer irq\n");
253 		kfree(dw_ced);
254 		dw_ced = NULL;
255 	}
256 
257 	return dw_ced;
258 }
259 
260 /**
261  * dw_apb_clockevent_resume() - resume a clock that has been paused.
262  *
263  * @dw_ced:	The APB clock to resume.
264  */
dw_apb_clockevent_resume(struct dw_apb_clock_event_device * dw_ced)265 void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
266 {
267 	enable_irq(dw_ced->timer.irq);
268 }
269 
270 /**
271  * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
272  *
273  * @dw_ced:	The APB clock to stop generating the events.
274  */
dw_apb_clockevent_stop(struct dw_apb_clock_event_device * dw_ced)275 void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
276 {
277 	free_irq(dw_ced->timer.irq, &dw_ced->ced);
278 }
279 
280 /**
281  * dw_apb_clockevent_register() - register the clock with the generic layer
282  *
283  * @dw_ced:	The APB clock to register as a clock_event_device.
284  */
dw_apb_clockevent_register(struct dw_apb_clock_event_device * dw_ced)285 void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
286 {
287 	apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
288 	clockevents_register_device(&dw_ced->ced);
289 	apbt_enable_int(&dw_ced->timer);
290 }
291 
292 /**
293  * dw_apb_clocksource_start() - start the clocksource counting.
294  *
295  * @dw_cs:	The clocksource to start.
296  *
297  * This is used to start the clocksource before registration and can be used
298  * to enable calibration of timers.
299  */
dw_apb_clocksource_start(struct dw_apb_clocksource * dw_cs)300 void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
301 {
302 	/*
303 	 * start count down from 0xffff_ffff. this is done by toggling the
304 	 * enable bit then load initial load count to ~0.
305 	 */
306 	unsigned long ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
307 
308 	ctrl &= ~APBTMR_CONTROL_ENABLE;
309 	apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
310 	apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
311 	/* enable, mask interrupt */
312 	ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
313 	ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
314 	apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
315 	/* read it once to get cached counter value initialized */
316 	dw_apb_clocksource_read(dw_cs);
317 }
318 
__apbt_read_clocksource(struct clocksource * cs)319 static cycle_t __apbt_read_clocksource(struct clocksource *cs)
320 {
321 	unsigned long current_count;
322 	struct dw_apb_clocksource *dw_cs =
323 		clocksource_to_dw_apb_clocksource(cs);
324 
325 	current_count = apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
326 
327 	return (cycle_t)~current_count;
328 }
329 
apbt_restart_clocksource(struct clocksource * cs)330 static void apbt_restart_clocksource(struct clocksource *cs)
331 {
332 	struct dw_apb_clocksource *dw_cs =
333 		clocksource_to_dw_apb_clocksource(cs);
334 
335 	dw_apb_clocksource_start(dw_cs);
336 }
337 
338 /**
339  * dw_apb_clocksource_init() - use an APB timer as a clocksource.
340  *
341  * @rating:	The rating to give the clocksource.
342  * @name:	The name for the clocksource.
343  * @base:	The I/O base for the timer registers.
344  * @freq:	The frequency that the timer counts at.
345  *
346  * This creates a clocksource using an APB timer but does not yet register it
347  * with the clocksource system.  This should be done with
348  * dw_apb_clocksource_register() as the next step.
349  */
350 struct dw_apb_clocksource *
dw_apb_clocksource_init(unsigned rating,const char * name,void __iomem * base,unsigned long freq)351 dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
352 			unsigned long freq)
353 {
354 	struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
355 
356 	if (!dw_cs)
357 		return NULL;
358 
359 	dw_cs->timer.base = base;
360 	dw_cs->timer.freq = freq;
361 	dw_cs->cs.name = name;
362 	dw_cs->cs.rating = rating;
363 	dw_cs->cs.read = __apbt_read_clocksource;
364 	dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
365 	dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
366 	dw_cs->cs.resume = apbt_restart_clocksource;
367 
368 	return dw_cs;
369 }
370 
371 /**
372  * dw_apb_clocksource_register() - register the APB clocksource.
373  *
374  * @dw_cs:	The clocksource to register.
375  */
dw_apb_clocksource_register(struct dw_apb_clocksource * dw_cs)376 void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
377 {
378 	clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
379 }
380 
381 /**
382  * dw_apb_clocksource_read() - read the current value of a clocksource.
383  *
384  * @dw_cs:	The clocksource to read.
385  */
dw_apb_clocksource_read(struct dw_apb_clocksource * dw_cs)386 cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
387 {
388 	return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
389 }
390 
391 /**
392  * dw_apb_clocksource_unregister() - unregister and free a clocksource.
393  *
394  * @dw_cs:	The clocksource to unregister/free.
395  */
dw_apb_clocksource_unregister(struct dw_apb_clocksource * dw_cs)396 void dw_apb_clocksource_unregister(struct dw_apb_clocksource *dw_cs)
397 {
398 	clocksource_unregister(&dw_cs->cs);
399 
400 	kfree(dw_cs);
401 }
402