1 /*
2 * (C) Copyright 2009 Intel Corporation
3 * Author: Jacob Pan (jacob.jun.pan@intel.com)
4 *
5 * Shared with ARM platforms, Jamie Iles, Picochip 2011
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Support for the Synopsys DesignWare APB Timers.
12 */
13 #include <linux/dw_apb_timer.h>
14 #include <linux/delay.h>
15 #include <linux/kernel.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20
21 #define APBT_MIN_PERIOD 4
22 #define APBT_MIN_DELTA_USEC 200
23
24 #define APBTMR_N_LOAD_COUNT 0x00
25 #define APBTMR_N_CURRENT_VALUE 0x04
26 #define APBTMR_N_CONTROL 0x08
27 #define APBTMR_N_EOI 0x0c
28 #define APBTMR_N_INT_STATUS 0x10
29
30 #define APBTMRS_INT_STATUS 0xa0
31 #define APBTMRS_EOI 0xa4
32 #define APBTMRS_RAW_INT_STATUS 0xa8
33 #define APBTMRS_COMP_VERSION 0xac
34
35 #define APBTMR_CONTROL_ENABLE (1 << 0)
36 /* 1: periodic, 0:free running. */
37 #define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
38 #define APBTMR_CONTROL_INT (1 << 2)
39
40 static inline struct dw_apb_clock_event_device *
ced_to_dw_apb_ced(struct clock_event_device * evt)41 ced_to_dw_apb_ced(struct clock_event_device *evt)
42 {
43 return container_of(evt, struct dw_apb_clock_event_device, ced);
44 }
45
46 static inline struct dw_apb_clocksource *
clocksource_to_dw_apb_clocksource(struct clocksource * cs)47 clocksource_to_dw_apb_clocksource(struct clocksource *cs)
48 {
49 return container_of(cs, struct dw_apb_clocksource, cs);
50 }
51
apbt_readl(struct dw_apb_timer * timer,unsigned long offs)52 static unsigned long apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
53 {
54 return readl(timer->base + offs);
55 }
56
apbt_writel(struct dw_apb_timer * timer,unsigned long val,unsigned long offs)57 static void apbt_writel(struct dw_apb_timer *timer, unsigned long val,
58 unsigned long offs)
59 {
60 writel(val, timer->base + offs);
61 }
62
apbt_disable_int(struct dw_apb_timer * timer)63 static void apbt_disable_int(struct dw_apb_timer *timer)
64 {
65 unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
66
67 ctrl |= APBTMR_CONTROL_INT;
68 apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
69 }
70
71 /**
72 * dw_apb_clockevent_pause() - stop the clock_event_device from running
73 *
74 * @dw_ced: The APB clock to stop generating events.
75 */
dw_apb_clockevent_pause(struct dw_apb_clock_event_device * dw_ced)76 void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
77 {
78 disable_irq(dw_ced->timer.irq);
79 apbt_disable_int(&dw_ced->timer);
80 }
81
apbt_eoi(struct dw_apb_timer * timer)82 static void apbt_eoi(struct dw_apb_timer *timer)
83 {
84 apbt_readl(timer, APBTMR_N_EOI);
85 }
86
dw_apb_clockevent_irq(int irq,void * data)87 static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
88 {
89 struct clock_event_device *evt = data;
90 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
91
92 if (!evt->event_handler) {
93 pr_info("Spurious APBT timer interrupt %d", irq);
94 return IRQ_NONE;
95 }
96
97 if (dw_ced->eoi)
98 dw_ced->eoi(&dw_ced->timer);
99
100 evt->event_handler(evt);
101 return IRQ_HANDLED;
102 }
103
apbt_enable_int(struct dw_apb_timer * timer)104 static void apbt_enable_int(struct dw_apb_timer *timer)
105 {
106 unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
107 /* clear pending intr */
108 apbt_readl(timer, APBTMR_N_EOI);
109 ctrl &= ~APBTMR_CONTROL_INT;
110 apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
111 }
112
apbt_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)113 static void apbt_set_mode(enum clock_event_mode mode,
114 struct clock_event_device *evt)
115 {
116 unsigned long ctrl;
117 unsigned long period;
118 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
119
120 pr_debug("%s CPU %d mode=%d\n", __func__, first_cpu(*evt->cpumask),
121 mode);
122
123 switch (mode) {
124 case CLOCK_EVT_MODE_PERIODIC:
125 period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
126 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
127 ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
128 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
129 /*
130 * DW APB p. 46, have to disable timer before load counter,
131 * may cause sync problem.
132 */
133 ctrl &= ~APBTMR_CONTROL_ENABLE;
134 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
135 udelay(1);
136 pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
137 apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
138 ctrl |= APBTMR_CONTROL_ENABLE;
139 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
140 break;
141
142 case CLOCK_EVT_MODE_ONESHOT:
143 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
144 /*
145 * set free running mode, this mode will let timer reload max
146 * timeout which will give time (3min on 25MHz clock) to rearm
147 * the next event, therefore emulate the one-shot mode.
148 */
149 ctrl &= ~APBTMR_CONTROL_ENABLE;
150 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
151
152 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
153 /* write again to set free running mode */
154 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
155
156 /*
157 * DW APB p. 46, load counter with all 1s before starting free
158 * running mode.
159 */
160 apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
161 ctrl &= ~APBTMR_CONTROL_INT;
162 ctrl |= APBTMR_CONTROL_ENABLE;
163 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
164 break;
165
166 case CLOCK_EVT_MODE_UNUSED:
167 case CLOCK_EVT_MODE_SHUTDOWN:
168 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
169 ctrl &= ~APBTMR_CONTROL_ENABLE;
170 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
171 break;
172
173 case CLOCK_EVT_MODE_RESUME:
174 apbt_enable_int(&dw_ced->timer);
175 break;
176 }
177 }
178
apbt_next_event(unsigned long delta,struct clock_event_device * evt)179 static int apbt_next_event(unsigned long delta,
180 struct clock_event_device *evt)
181 {
182 unsigned long ctrl;
183 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
184
185 /* Disable timer */
186 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
187 ctrl &= ~APBTMR_CONTROL_ENABLE;
188 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
189 /* write new count */
190 apbt_writel(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
191 ctrl |= APBTMR_CONTROL_ENABLE;
192 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
193
194 return 0;
195 }
196
197 /**
198 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
199 *
200 * @cpu: The CPU the events will be targeted at.
201 * @name: The name used for the timer and the IRQ for it.
202 * @rating: The rating to give the timer.
203 * @base: I/O base for the timer registers.
204 * @irq: The interrupt number to use for the timer.
205 * @freq: The frequency that the timer counts at.
206 *
207 * This creates a clock_event_device for using with the generic clock layer
208 * but does not start and register it. This should be done with
209 * dw_apb_clockevent_register() as the next step. If this is the first time
210 * it has been called for a timer then the IRQ will be requested, if not it
211 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
212 * releasing the IRQ.
213 */
214 struct dw_apb_clock_event_device *
dw_apb_clockevent_init(int cpu,const char * name,unsigned rating,void __iomem * base,int irq,unsigned long freq)215 dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
216 void __iomem *base, int irq, unsigned long freq)
217 {
218 struct dw_apb_clock_event_device *dw_ced =
219 kzalloc(sizeof(*dw_ced), GFP_KERNEL);
220 int err;
221
222 if (!dw_ced)
223 return NULL;
224
225 dw_ced->timer.base = base;
226 dw_ced->timer.irq = irq;
227 dw_ced->timer.freq = freq;
228
229 clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
230 dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
231 &dw_ced->ced);
232 dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
233 dw_ced->ced.cpumask = cpumask_of(cpu);
234 dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
235 dw_ced->ced.set_mode = apbt_set_mode;
236 dw_ced->ced.set_next_event = apbt_next_event;
237 dw_ced->ced.irq = dw_ced->timer.irq;
238 dw_ced->ced.rating = rating;
239 dw_ced->ced.name = name;
240
241 dw_ced->irqaction.name = dw_ced->ced.name;
242 dw_ced->irqaction.handler = dw_apb_clockevent_irq;
243 dw_ced->irqaction.dev_id = &dw_ced->ced;
244 dw_ced->irqaction.irq = irq;
245 dw_ced->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL |
246 IRQF_NOBALANCING |
247 IRQF_DISABLED;
248
249 dw_ced->eoi = apbt_eoi;
250 err = setup_irq(irq, &dw_ced->irqaction);
251 if (err) {
252 pr_err("failed to request timer irq\n");
253 kfree(dw_ced);
254 dw_ced = NULL;
255 }
256
257 return dw_ced;
258 }
259
260 /**
261 * dw_apb_clockevent_resume() - resume a clock that has been paused.
262 *
263 * @dw_ced: The APB clock to resume.
264 */
dw_apb_clockevent_resume(struct dw_apb_clock_event_device * dw_ced)265 void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
266 {
267 enable_irq(dw_ced->timer.irq);
268 }
269
270 /**
271 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
272 *
273 * @dw_ced: The APB clock to stop generating the events.
274 */
dw_apb_clockevent_stop(struct dw_apb_clock_event_device * dw_ced)275 void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
276 {
277 free_irq(dw_ced->timer.irq, &dw_ced->ced);
278 }
279
280 /**
281 * dw_apb_clockevent_register() - register the clock with the generic layer
282 *
283 * @dw_ced: The APB clock to register as a clock_event_device.
284 */
dw_apb_clockevent_register(struct dw_apb_clock_event_device * dw_ced)285 void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
286 {
287 apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
288 clockevents_register_device(&dw_ced->ced);
289 apbt_enable_int(&dw_ced->timer);
290 }
291
292 /**
293 * dw_apb_clocksource_start() - start the clocksource counting.
294 *
295 * @dw_cs: The clocksource to start.
296 *
297 * This is used to start the clocksource before registration and can be used
298 * to enable calibration of timers.
299 */
dw_apb_clocksource_start(struct dw_apb_clocksource * dw_cs)300 void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
301 {
302 /*
303 * start count down from 0xffff_ffff. this is done by toggling the
304 * enable bit then load initial load count to ~0.
305 */
306 unsigned long ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
307
308 ctrl &= ~APBTMR_CONTROL_ENABLE;
309 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
310 apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
311 /* enable, mask interrupt */
312 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
313 ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
314 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
315 /* read it once to get cached counter value initialized */
316 dw_apb_clocksource_read(dw_cs);
317 }
318
__apbt_read_clocksource(struct clocksource * cs)319 static cycle_t __apbt_read_clocksource(struct clocksource *cs)
320 {
321 unsigned long current_count;
322 struct dw_apb_clocksource *dw_cs =
323 clocksource_to_dw_apb_clocksource(cs);
324
325 current_count = apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
326
327 return (cycle_t)~current_count;
328 }
329
apbt_restart_clocksource(struct clocksource * cs)330 static void apbt_restart_clocksource(struct clocksource *cs)
331 {
332 struct dw_apb_clocksource *dw_cs =
333 clocksource_to_dw_apb_clocksource(cs);
334
335 dw_apb_clocksource_start(dw_cs);
336 }
337
338 /**
339 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
340 *
341 * @rating: The rating to give the clocksource.
342 * @name: The name for the clocksource.
343 * @base: The I/O base for the timer registers.
344 * @freq: The frequency that the timer counts at.
345 *
346 * This creates a clocksource using an APB timer but does not yet register it
347 * with the clocksource system. This should be done with
348 * dw_apb_clocksource_register() as the next step.
349 */
350 struct dw_apb_clocksource *
dw_apb_clocksource_init(unsigned rating,const char * name,void __iomem * base,unsigned long freq)351 dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
352 unsigned long freq)
353 {
354 struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
355
356 if (!dw_cs)
357 return NULL;
358
359 dw_cs->timer.base = base;
360 dw_cs->timer.freq = freq;
361 dw_cs->cs.name = name;
362 dw_cs->cs.rating = rating;
363 dw_cs->cs.read = __apbt_read_clocksource;
364 dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
365 dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
366 dw_cs->cs.resume = apbt_restart_clocksource;
367
368 return dw_cs;
369 }
370
371 /**
372 * dw_apb_clocksource_register() - register the APB clocksource.
373 *
374 * @dw_cs: The clocksource to register.
375 */
dw_apb_clocksource_register(struct dw_apb_clocksource * dw_cs)376 void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
377 {
378 clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
379 }
380
381 /**
382 * dw_apb_clocksource_read() - read the current value of a clocksource.
383 *
384 * @dw_cs: The clocksource to read.
385 */
dw_apb_clocksource_read(struct dw_apb_clocksource * dw_cs)386 cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
387 {
388 return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
389 }
390
391 /**
392 * dw_apb_clocksource_unregister() - unregister and free a clocksource.
393 *
394 * @dw_cs: The clocksource to unregister/free.
395 */
dw_apb_clocksource_unregister(struct dw_apb_clocksource * dw_cs)396 void dw_apb_clocksource_unregister(struct dw_apb_clocksource *dw_cs)
397 {
398 clocksource_unregister(&dw_cs->cs);
399
400 kfree(dw_cs);
401 }
402