1 /*
2  * SPDX-License-Identifier: GPL-2.0
3  * Copyright (c) 2018, The Linux Foundation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/clk-provider.h>
8 #include <linux/iopoll.h>
9 
10 #include "dsi_phy.h"
11 #include "dsi.xml.h"
12 #include "dsi_phy_7nm.xml.h"
13 
14 /*
15  * DSI PLL 7nm - clock diagram (eg: DSI0): TODO: updated CPHY diagram
16  *
17  *           dsi0_pll_out_div_clk  dsi0_pll_bit_clk
18  *                              |                |
19  *                              |                |
20  *                 +---------+  |  +----------+  |  +----+
21  *  dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |-- dsi0_phy_pll_out_byteclk
22  *                 +---------+  |  +----------+  |  +----+
23  *                              |                |
24  *                              |                |         dsi0_pll_by_2_bit_clk
25  *                              |                |          |
26  *                              |                |  +----+  |  |\  dsi0_pclk_mux
27  *                              |                |--| /2 |--o--| \   |
28  *                              |                |  +----+     |  \  |  +---------+
29  *                              |                --------------|  |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk
30  *                              |------------------------------|  /     +---------+
31  *                              |          +-----+             | /
32  *                              -----------| /4? |--o----------|/
33  *                                         +-----+  |           |
34  *                                                  |           |dsiclk_sel
35  *                                                  |
36  *                                                  dsi0_pll_post_out_div_clk
37  */
38 
39 #define VCO_REF_CLK_RATE		19200000
40 #define FRAC_BITS 18
41 
42 /* Hardware is pre V4.1 */
43 #define DSI_PHY_7NM_QUIRK_PRE_V4_1	BIT(0)
44 /* Hardware is V4.1 */
45 #define DSI_PHY_7NM_QUIRK_V4_1		BIT(1)
46 /* Hardware is V4.2 */
47 #define DSI_PHY_7NM_QUIRK_V4_2		BIT(2)
48 /* Hardware is V4.3 */
49 #define DSI_PHY_7NM_QUIRK_V4_3		BIT(3)
50 /* Hardware is V5.2 */
51 #define DSI_PHY_7NM_QUIRK_V5_2		BIT(4)
52 
53 struct dsi_pll_config {
54 	bool enable_ssc;
55 	bool ssc_center;
56 	u32 ssc_freq;
57 	u32 ssc_offset;
58 	u32 ssc_adj_per;
59 
60 	/* out */
61 	u32 decimal_div_start;
62 	u32 frac_div_start;
63 	u32 pll_clock_inverters;
64 	u32 ssc_stepsize;
65 	u32 ssc_div_per;
66 };
67 
68 struct pll_7nm_cached_state {
69 	unsigned long vco_rate;
70 	u8 bit_clk_div;
71 	u8 pix_clk_div;
72 	u8 pll_out_div;
73 	u8 pll_mux;
74 };
75 
76 struct dsi_pll_7nm {
77 	struct clk_hw clk_hw;
78 
79 	struct msm_dsi_phy *phy;
80 
81 	u64 vco_current_rate;
82 
83 	/* protects REG_DSI_7nm_PHY_CMN_CLK_CFG0 register */
84 	spinlock_t postdiv_lock;
85 
86 	struct pll_7nm_cached_state cached_state;
87 
88 	struct dsi_pll_7nm *slave;
89 };
90 
91 #define to_pll_7nm(x)	container_of(x, struct dsi_pll_7nm, clk_hw)
92 
93 /*
94  * Global list of private DSI PLL struct pointers. We need this for bonded DSI
95  * mode, where the master PLL's clk_ops needs access the slave's private data
96  */
97 static struct dsi_pll_7nm *pll_7nm_list[DSI_MAX];
98 
dsi_pll_setup_config(struct dsi_pll_config * config)99 static void dsi_pll_setup_config(struct dsi_pll_config *config)
100 {
101 	config->ssc_freq = 31500;
102 	config->ssc_offset = 4800;
103 	config->ssc_adj_per = 2;
104 
105 	/* TODO: ssc enable */
106 	config->enable_ssc = false;
107 	config->ssc_center = 0;
108 }
109 
dsi_pll_calc_dec_frac(struct dsi_pll_7nm * pll,struct dsi_pll_config * config)110 static void dsi_pll_calc_dec_frac(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
111 {
112 	u64 fref = VCO_REF_CLK_RATE;
113 	u64 pll_freq;
114 	u64 divider;
115 	u64 dec, dec_multiple;
116 	u32 frac;
117 	u64 multiplier;
118 
119 	pll_freq = pll->vco_current_rate;
120 
121 	divider = fref * 2;
122 
123 	multiplier = 1 << FRAC_BITS;
124 	dec_multiple = div_u64(pll_freq * multiplier, divider);
125 	dec = div_u64_rem(dec_multiple, multiplier, &frac);
126 
127 	if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1)
128 		config->pll_clock_inverters = 0x28;
129 	else if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
130 		if (pll_freq <= 1300000000ULL)
131 			config->pll_clock_inverters = 0xa0;
132 		else if (pll_freq <= 2500000000ULL)
133 			config->pll_clock_inverters = 0x20;
134 		else if (pll_freq <= 4000000000ULL)
135 			config->pll_clock_inverters = 0x00;
136 		else
137 			config->pll_clock_inverters = 0x40;
138 	} else {
139 		if (pll_freq <= 1000000000ULL)
140 			config->pll_clock_inverters = 0xa0;
141 		else if (pll_freq <= 2500000000ULL)
142 			config->pll_clock_inverters = 0x20;
143 		else if (pll_freq <= 3020000000ULL)
144 			config->pll_clock_inverters = 0x00;
145 		else
146 			config->pll_clock_inverters = 0x40;
147 	}
148 
149 	config->decimal_div_start = dec;
150 	config->frac_div_start = frac;
151 }
152 
153 #define SSC_CENTER		BIT(0)
154 #define SSC_EN			BIT(1)
155 
dsi_pll_calc_ssc(struct dsi_pll_7nm * pll,struct dsi_pll_config * config)156 static void dsi_pll_calc_ssc(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
157 {
158 	u32 ssc_per;
159 	u32 ssc_mod;
160 	u64 ssc_step_size;
161 	u64 frac;
162 
163 	if (!config->enable_ssc) {
164 		DBG("SSC not enabled\n");
165 		return;
166 	}
167 
168 	ssc_per = DIV_ROUND_CLOSEST(VCO_REF_CLK_RATE, config->ssc_freq) / 2 - 1;
169 	ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
170 	ssc_per -= ssc_mod;
171 
172 	frac = config->frac_div_start;
173 	ssc_step_size = config->decimal_div_start;
174 	ssc_step_size *= (1 << FRAC_BITS);
175 	ssc_step_size += frac;
176 	ssc_step_size *= config->ssc_offset;
177 	ssc_step_size *= (config->ssc_adj_per + 1);
178 	ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
179 	ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
180 
181 	config->ssc_div_per = ssc_per;
182 	config->ssc_stepsize = ssc_step_size;
183 
184 	pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
185 		 config->decimal_div_start, frac, FRAC_BITS);
186 	pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
187 		 ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
188 }
189 
dsi_pll_ssc_commit(struct dsi_pll_7nm * pll,struct dsi_pll_config * config)190 static void dsi_pll_ssc_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
191 {
192 	void __iomem *base = pll->phy->pll_base;
193 
194 	if (config->enable_ssc) {
195 		pr_debug("SSC is enabled\n");
196 
197 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_LOW_1,
198 			      config->ssc_stepsize & 0xff);
199 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_HIGH_1,
200 			      config->ssc_stepsize >> 8);
201 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_LOW_1,
202 			      config->ssc_div_per & 0xff);
203 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_HIGH_1,
204 			      config->ssc_div_per >> 8);
205 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_LOW_1,
206 			      config->ssc_adj_per & 0xff);
207 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_HIGH_1,
208 			      config->ssc_adj_per >> 8);
209 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_CONTROL,
210 			      SSC_EN | (config->ssc_center ? SSC_CENTER : 0));
211 	}
212 }
213 
dsi_pll_config_hzindep_reg(struct dsi_pll_7nm * pll)214 static void dsi_pll_config_hzindep_reg(struct dsi_pll_7nm *pll)
215 {
216 	void __iomem *base = pll->phy->pll_base;
217 	u8 analog_controls_five_1 = 0x01, vco_config_1 = 0x00;
218 
219 	if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1))
220 		if (pll->vco_current_rate >= 3100000000ULL)
221 			analog_controls_five_1 = 0x03;
222 
223 	if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
224 		if (pll->vco_current_rate < 1520000000ULL)
225 			vco_config_1 = 0x08;
226 		else if (pll->vco_current_rate < 2990000000ULL)
227 			vco_config_1 = 0x01;
228 	}
229 
230 	if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_2) ||
231 	    (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3)) {
232 		if (pll->vco_current_rate < 1520000000ULL)
233 			vco_config_1 = 0x08;
234 		else if (pll->vco_current_rate >= 2990000000ULL)
235 			vco_config_1 = 0x01;
236 	}
237 
238 	if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
239 		if (pll->vco_current_rate < 1557000000ULL)
240 			vco_config_1 = 0x08;
241 		else
242 			vco_config_1 = 0x01;
243 	}
244 
245 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE_1,
246 		      analog_controls_five_1);
247 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_VCO_CONFIG_1, vco_config_1);
248 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE, 0x01);
249 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03);
250 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00);
251 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DSM_DIVIDER, 0x00);
252 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e);
253 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40);
254 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE, 0xba);
255 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
256 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_OUTDIV, 0x00);
257 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_OVERRIDE, 0x00);
258 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
259 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x0a);
260 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_BAND_SEL_RATE_1, 0xc0);
261 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x84);
262 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x82);
263 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x4c);
264 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80);
265 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x29);
266 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x2f);
267 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT, 0x2a);
268 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT,
269 		  !(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1) ? 0x3f : 0x22);
270 
271 	if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1)) {
272 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
273 		if (pll->slave)
274 			dsi_phy_write(pll->slave->phy->pll_base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
275 	}
276 }
277 
dsi_pll_commit(struct dsi_pll_7nm * pll,struct dsi_pll_config * config)278 static void dsi_pll_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
279 {
280 	void __iomem *base = pll->phy->pll_base;
281 
282 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12);
283 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1,
284 		      config->decimal_div_start);
285 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1,
286 		      config->frac_div_start & 0xff);
287 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1,
288 		      (config->frac_div_start & 0xff00) >> 8);
289 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1,
290 		      (config->frac_div_start & 0x30000) >> 16);
291 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCKDET_RATE_1, 0x40);
292 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_DELAY, 0x06);
293 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CMODE_1,
294 		      pll->phy->cphy_mode ? 0x00 : 0x10);
295 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CLOCK_INVERTERS,
296 		      config->pll_clock_inverters);
297 }
298 
dsi_pll_7nm_vco_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)299 static int dsi_pll_7nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
300 				     unsigned long parent_rate)
301 {
302 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
303 	struct dsi_pll_config config;
304 
305 	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_7nm->phy->id, rate,
306 	    parent_rate);
307 
308 	pll_7nm->vco_current_rate = rate;
309 
310 	dsi_pll_setup_config(&config);
311 
312 	dsi_pll_calc_dec_frac(pll_7nm, &config);
313 
314 	dsi_pll_calc_ssc(pll_7nm, &config);
315 
316 	dsi_pll_commit(pll_7nm, &config);
317 
318 	dsi_pll_config_hzindep_reg(pll_7nm);
319 
320 	dsi_pll_ssc_commit(pll_7nm, &config);
321 
322 	/* flush, ensure all register writes are done*/
323 	wmb();
324 
325 	return 0;
326 }
327 
dsi_pll_7nm_lock_status(struct dsi_pll_7nm * pll)328 static int dsi_pll_7nm_lock_status(struct dsi_pll_7nm *pll)
329 {
330 	int rc;
331 	u32 status = 0;
332 	u32 const delay_us = 100;
333 	u32 const timeout_us = 5000;
334 
335 	rc = readl_poll_timeout_atomic(pll->phy->pll_base +
336 				       REG_DSI_7nm_PHY_PLL_COMMON_STATUS_ONE,
337 				       status,
338 				       ((status & BIT(0)) > 0),
339 				       delay_us,
340 				       timeout_us);
341 	if (rc)
342 		pr_err("DSI PLL(%d) lock failed, status=0x%08x\n",
343 		       pll->phy->id, status);
344 
345 	return rc;
346 }
347 
dsi_pll_disable_pll_bias(struct dsi_pll_7nm * pll)348 static void dsi_pll_disable_pll_bias(struct dsi_pll_7nm *pll)
349 {
350 	u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
351 
352 	dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0);
353 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data & ~BIT(5));
354 	ndelay(250);
355 }
356 
dsi_pll_enable_pll_bias(struct dsi_pll_7nm * pll)357 static void dsi_pll_enable_pll_bias(struct dsi_pll_7nm *pll)
358 {
359 	u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
360 
361 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data | BIT(5));
362 	dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0xc0);
363 	ndelay(250);
364 }
365 
dsi_pll_disable_global_clk(struct dsi_pll_7nm * pll)366 static void dsi_pll_disable_global_clk(struct dsi_pll_7nm *pll)
367 {
368 	u32 data;
369 
370 	data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
371 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data & ~BIT(5));
372 }
373 
dsi_pll_enable_global_clk(struct dsi_pll_7nm * pll)374 static void dsi_pll_enable_global_clk(struct dsi_pll_7nm *pll)
375 {
376 	u32 data;
377 
378 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x04);
379 
380 	data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
381 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1,
382 		      data | BIT(5) | BIT(4));
383 }
384 
dsi_pll_phy_dig_reset(struct dsi_pll_7nm * pll)385 static void dsi_pll_phy_dig_reset(struct dsi_pll_7nm *pll)
386 {
387 	/*
388 	 * Reset the PHY digital domain. This would be needed when
389 	 * coming out of a CX or analog rail power collapse while
390 	 * ensuring that the pads maintain LP00 or LP11 state
391 	 */
392 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, BIT(0));
393 	wmb(); /* Ensure that the reset is deasserted */
394 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, 0x0);
395 	wmb(); /* Ensure that the reset is deasserted */
396 }
397 
dsi_pll_7nm_vco_prepare(struct clk_hw * hw)398 static int dsi_pll_7nm_vco_prepare(struct clk_hw *hw)
399 {
400 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
401 	int rc;
402 
403 	dsi_pll_enable_pll_bias(pll_7nm);
404 	if (pll_7nm->slave)
405 		dsi_pll_enable_pll_bias(pll_7nm->slave);
406 
407 	/* Start PLL */
408 	dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x01);
409 
410 	/*
411 	 * ensure all PLL configurations are written prior to checking
412 	 * for PLL lock.
413 	 */
414 	wmb();
415 
416 	/* Check for PLL lock */
417 	rc = dsi_pll_7nm_lock_status(pll_7nm);
418 	if (rc) {
419 		pr_err("PLL(%d) lock failed\n", pll_7nm->phy->id);
420 		goto error;
421 	}
422 
423 	pll_7nm->phy->pll_on = true;
424 
425 	/*
426 	 * assert power on reset for PHY digital in case the PLL is
427 	 * enabled after CX of analog domain power collapse. This needs
428 	 * to be done before enabling the global clk.
429 	 */
430 	dsi_pll_phy_dig_reset(pll_7nm);
431 	if (pll_7nm->slave)
432 		dsi_pll_phy_dig_reset(pll_7nm->slave);
433 
434 	dsi_pll_enable_global_clk(pll_7nm);
435 	if (pll_7nm->slave)
436 		dsi_pll_enable_global_clk(pll_7nm->slave);
437 
438 error:
439 	return rc;
440 }
441 
dsi_pll_disable_sub(struct dsi_pll_7nm * pll)442 static void dsi_pll_disable_sub(struct dsi_pll_7nm *pll)
443 {
444 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0);
445 	dsi_pll_disable_pll_bias(pll);
446 }
447 
dsi_pll_7nm_vco_unprepare(struct clk_hw * hw)448 static void dsi_pll_7nm_vco_unprepare(struct clk_hw *hw)
449 {
450 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
451 
452 	/*
453 	 * To avoid any stray glitches while abruptly powering down the PLL
454 	 * make sure to gate the clock using the clock enable bit before
455 	 * powering down the PLL
456 	 */
457 	dsi_pll_disable_global_clk(pll_7nm);
458 	dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0);
459 	dsi_pll_disable_sub(pll_7nm);
460 	if (pll_7nm->slave) {
461 		dsi_pll_disable_global_clk(pll_7nm->slave);
462 		dsi_pll_disable_sub(pll_7nm->slave);
463 	}
464 	/* flush, ensure all register writes are done */
465 	wmb();
466 	pll_7nm->phy->pll_on = false;
467 }
468 
dsi_pll_7nm_vco_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)469 static unsigned long dsi_pll_7nm_vco_recalc_rate(struct clk_hw *hw,
470 						  unsigned long parent_rate)
471 {
472 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
473 	void __iomem *base = pll_7nm->phy->pll_base;
474 	u64 ref_clk = VCO_REF_CLK_RATE;
475 	u64 vco_rate = 0x0;
476 	u64 multiplier;
477 	u32 frac;
478 	u32 dec;
479 	u64 pll_freq, tmp64;
480 
481 	dec = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1);
482 	dec &= 0xff;
483 
484 	frac = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1);
485 	frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1) &
486 		  0xff) << 8);
487 	frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1) &
488 		  0x3) << 16);
489 
490 	/*
491 	 * TODO:
492 	 *	1. Assumes prescaler is disabled
493 	 */
494 	multiplier = 1 << FRAC_BITS;
495 	pll_freq = dec * (ref_clk * 2);
496 	tmp64 = (ref_clk * 2 * frac);
497 	pll_freq += div_u64(tmp64, multiplier);
498 
499 	vco_rate = pll_freq;
500 	pll_7nm->vco_current_rate = vco_rate;
501 
502 	DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x",
503 	    pll_7nm->phy->id, (unsigned long)vco_rate, dec, frac);
504 
505 	return (unsigned long)vco_rate;
506 }
507 
dsi_pll_7nm_clk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)508 static long dsi_pll_7nm_clk_round_rate(struct clk_hw *hw,
509 		unsigned long rate, unsigned long *parent_rate)
510 {
511 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
512 
513 	if      (rate < pll_7nm->phy->cfg->min_pll_rate)
514 		return  pll_7nm->phy->cfg->min_pll_rate;
515 	else if (rate > pll_7nm->phy->cfg->max_pll_rate)
516 		return  pll_7nm->phy->cfg->max_pll_rate;
517 	else
518 		return rate;
519 }
520 
521 static const struct clk_ops clk_ops_dsi_pll_7nm_vco = {
522 	.round_rate = dsi_pll_7nm_clk_round_rate,
523 	.set_rate = dsi_pll_7nm_vco_set_rate,
524 	.recalc_rate = dsi_pll_7nm_vco_recalc_rate,
525 	.prepare = dsi_pll_7nm_vco_prepare,
526 	.unprepare = dsi_pll_7nm_vco_unprepare,
527 };
528 
529 /*
530  * PLL Callbacks
531  */
532 
dsi_7nm_pll_save_state(struct msm_dsi_phy * phy)533 static void dsi_7nm_pll_save_state(struct msm_dsi_phy *phy)
534 {
535 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
536 	struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
537 	void __iomem *phy_base = pll_7nm->phy->base;
538 	u32 cmn_clk_cfg0, cmn_clk_cfg1;
539 
540 	cached->pll_out_div = dsi_phy_read(pll_7nm->phy->pll_base +
541 			REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
542 	cached->pll_out_div &= 0x3;
543 
544 	cmn_clk_cfg0 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0);
545 	cached->bit_clk_div = cmn_clk_cfg0 & 0xf;
546 	cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4;
547 
548 	cmn_clk_cfg1 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
549 	cached->pll_mux = cmn_clk_cfg1 & 0x3;
550 
551 	DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x",
552 	    pll_7nm->phy->id, cached->pll_out_div, cached->bit_clk_div,
553 	    cached->pix_clk_div, cached->pll_mux);
554 }
555 
dsi_7nm_pll_restore_state(struct msm_dsi_phy * phy)556 static int dsi_7nm_pll_restore_state(struct msm_dsi_phy *phy)
557 {
558 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
559 	struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
560 	void __iomem *phy_base = pll_7nm->phy->base;
561 	u32 val;
562 	int ret;
563 
564 	val = dsi_phy_read(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
565 	val &= ~0x3;
566 	val |= cached->pll_out_div;
567 	dsi_phy_write(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE, val);
568 
569 	dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
570 		      cached->bit_clk_div | (cached->pix_clk_div << 4));
571 
572 	val = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
573 	val &= ~0x3;
574 	val |= cached->pll_mux;
575 	dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, val);
576 
577 	ret = dsi_pll_7nm_vco_set_rate(phy->vco_hw,
578 			pll_7nm->vco_current_rate,
579 			VCO_REF_CLK_RATE);
580 	if (ret) {
581 		DRM_DEV_ERROR(&pll_7nm->phy->pdev->dev,
582 			"restore vco rate failed. ret=%d\n", ret);
583 		return ret;
584 	}
585 
586 	DBG("DSI PLL%d", pll_7nm->phy->id);
587 
588 	return 0;
589 }
590 
dsi_7nm_set_usecase(struct msm_dsi_phy * phy)591 static int dsi_7nm_set_usecase(struct msm_dsi_phy *phy)
592 {
593 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
594 	void __iomem *base = phy->base;
595 	u32 data = 0x0;	/* internal PLL */
596 
597 	DBG("DSI PLL%d", pll_7nm->phy->id);
598 
599 	switch (phy->usecase) {
600 	case MSM_DSI_PHY_STANDALONE:
601 		break;
602 	case MSM_DSI_PHY_MASTER:
603 		pll_7nm->slave = pll_7nm_list[(pll_7nm->phy->id + 1) % DSI_MAX];
604 		break;
605 	case MSM_DSI_PHY_SLAVE:
606 		data = 0x1; /* external PLL */
607 		break;
608 	default:
609 		return -EINVAL;
610 	}
611 
612 	/* set PLL src */
613 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, (data << 2));
614 
615 	return 0;
616 }
617 
618 /*
619  * The post dividers and mux clocks are created using the standard divider and
620  * mux API. Unlike the 14nm PHY, the slave PLL doesn't need its dividers/mux
621  * state to follow the master PLL's divider/mux state. Therefore, we don't
622  * require special clock ops that also configure the slave PLL registers
623  */
pll_7nm_register(struct dsi_pll_7nm * pll_7nm,struct clk_hw ** provided_clocks)624 static int pll_7nm_register(struct dsi_pll_7nm *pll_7nm, struct clk_hw **provided_clocks)
625 {
626 	char clk_name[32];
627 	struct clk_init_data vco_init = {
628 		.parent_data = &(const struct clk_parent_data) {
629 			.fw_name = "ref",
630 		},
631 		.num_parents = 1,
632 		.name = clk_name,
633 		.flags = CLK_IGNORE_UNUSED,
634 		.ops = &clk_ops_dsi_pll_7nm_vco,
635 	};
636 	struct device *dev = &pll_7nm->phy->pdev->dev;
637 	struct clk_hw *hw, *pll_out_div, *pll_bit, *pll_by_2_bit;
638 	struct clk_hw *pll_post_out_div, *phy_pll_out_dsi_parent;
639 	int ret;
640 
641 	DBG("DSI%d", pll_7nm->phy->id);
642 
643 	snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_7nm->phy->id);
644 	pll_7nm->clk_hw.init = &vco_init;
645 
646 	ret = devm_clk_hw_register(dev, &pll_7nm->clk_hw);
647 	if (ret)
648 		return ret;
649 
650 	snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
651 
652 	pll_out_div = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
653 			&pll_7nm->clk_hw, CLK_SET_RATE_PARENT,
654 			pll_7nm->phy->pll_base +
655 				REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE,
656 			0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL);
657 	if (IS_ERR(pll_out_div)) {
658 		ret = PTR_ERR(pll_out_div);
659 		goto fail;
660 	}
661 
662 	snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_bit_clk", pll_7nm->phy->id);
663 
664 	/* BIT CLK: DIV_CTRL_3_0 */
665 	pll_bit = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
666 			pll_out_div, CLK_SET_RATE_PARENT,
667 			pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
668 			0, 4, CLK_DIVIDER_ONE_BASED, &pll_7nm->postdiv_lock);
669 	if (IS_ERR(pll_bit)) {
670 		ret = PTR_ERR(pll_bit);
671 		goto fail;
672 	}
673 
674 	snprintf(clk_name, sizeof(clk_name), "dsi%d_phy_pll_out_byteclk", pll_7nm->phy->id);
675 
676 	/* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */
677 	hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name,
678 			pll_bit, CLK_SET_RATE_PARENT, 1,
679 			pll_7nm->phy->cphy_mode ? 7 : 8);
680 	if (IS_ERR(hw)) {
681 		ret = PTR_ERR(hw);
682 		goto fail;
683 	}
684 
685 	provided_clocks[DSI_BYTE_PLL_CLK] = hw;
686 
687 	snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_by_2_bit_clk", pll_7nm->phy->id);
688 
689 	pll_by_2_bit = devm_clk_hw_register_fixed_factor_parent_hw(dev,
690 			clk_name, pll_bit, 0, 1, 2);
691 	if (IS_ERR(pll_by_2_bit)) {
692 		ret = PTR_ERR(pll_by_2_bit);
693 		goto fail;
694 	}
695 
696 	snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id);
697 
698 	if (pll_7nm->phy->cphy_mode)
699 		pll_post_out_div = devm_clk_hw_register_fixed_factor_parent_hw(
700 				dev, clk_name, pll_out_div, 0, 2, 7);
701 	else
702 		pll_post_out_div = devm_clk_hw_register_fixed_factor_parent_hw(
703 				dev, clk_name, pll_out_div, 0, 1, 4);
704 	if (IS_ERR(pll_post_out_div)) {
705 		ret = PTR_ERR(pll_post_out_div);
706 		goto fail;
707 	}
708 
709 	/* in CPHY mode, pclk_mux will always have post_out_div as parent
710 	 * don't register a pclk_mux clock and just use post_out_div instead
711 	 */
712 	if (pll_7nm->phy->cphy_mode) {
713 		u32 data;
714 
715 		data = dsi_phy_read(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
716 		dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data | 3);
717 
718 		phy_pll_out_dsi_parent = pll_post_out_div;
719 	} else {
720 		snprintf(clk_name, sizeof(clk_name), "dsi%d_pclk_mux", pll_7nm->phy->id);
721 
722 		hw = devm_clk_hw_register_mux_parent_hws(dev, clk_name,
723 				((const struct clk_hw *[]){
724 					pll_bit,
725 					pll_by_2_bit,
726 				}), 2, 0, pll_7nm->phy->base +
727 					REG_DSI_7nm_PHY_CMN_CLK_CFG1,
728 				0, 1, 0, NULL);
729 		if (IS_ERR(hw)) {
730 			ret = PTR_ERR(hw);
731 			goto fail;
732 		}
733 
734 		phy_pll_out_dsi_parent = hw;
735 	}
736 
737 	snprintf(clk_name, sizeof(clk_name), "dsi%d_phy_pll_out_dsiclk", pll_7nm->phy->id);
738 
739 	/* PIX CLK DIV : DIV_CTRL_7_4*/
740 	hw = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
741 			phy_pll_out_dsi_parent, 0,
742 			pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
743 			4, 4, CLK_DIVIDER_ONE_BASED, &pll_7nm->postdiv_lock);
744 	if (IS_ERR(hw)) {
745 		ret = PTR_ERR(hw);
746 		goto fail;
747 	}
748 
749 	provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
750 
751 	return 0;
752 
753 fail:
754 
755 	return ret;
756 }
757 
dsi_pll_7nm_init(struct msm_dsi_phy * phy)758 static int dsi_pll_7nm_init(struct msm_dsi_phy *phy)
759 {
760 	struct platform_device *pdev = phy->pdev;
761 	struct dsi_pll_7nm *pll_7nm;
762 	int ret;
763 
764 	pll_7nm = devm_kzalloc(&pdev->dev, sizeof(*pll_7nm), GFP_KERNEL);
765 	if (!pll_7nm)
766 		return -ENOMEM;
767 
768 	DBG("DSI PLL%d", phy->id);
769 
770 	pll_7nm_list[phy->id] = pll_7nm;
771 
772 	spin_lock_init(&pll_7nm->postdiv_lock);
773 
774 	pll_7nm->phy = phy;
775 
776 	ret = pll_7nm_register(pll_7nm, phy->provided_clocks->hws);
777 	if (ret) {
778 		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
779 		return ret;
780 	}
781 
782 	phy->vco_hw = &pll_7nm->clk_hw;
783 
784 	/* TODO: Remove this when we have proper display handover support */
785 	msm_dsi_phy_pll_save_state(phy);
786 
787 	return 0;
788 }
789 
dsi_phy_hw_v4_0_is_pll_on(struct msm_dsi_phy * phy)790 static int dsi_phy_hw_v4_0_is_pll_on(struct msm_dsi_phy *phy)
791 {
792 	void __iomem *base = phy->base;
793 	u32 data = 0;
794 
795 	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL);
796 	mb(); /* make sure read happened */
797 
798 	return (data & BIT(0));
799 }
800 
dsi_phy_hw_v4_0_config_lpcdrx(struct msm_dsi_phy * phy,bool enable)801 static void dsi_phy_hw_v4_0_config_lpcdrx(struct msm_dsi_phy *phy, bool enable)
802 {
803 	void __iomem *lane_base = phy->lane_base;
804 	int phy_lane_0 = 0;	/* TODO: Support all lane swap configs */
805 
806 	/*
807 	 * LPRX and CDRX need to enabled only for physical data lane
808 	 * corresponding to the logical data lane 0
809 	 */
810 	if (enable)
811 		dsi_phy_write(lane_base +
812 			      REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0x3);
813 	else
814 		dsi_phy_write(lane_base +
815 			      REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0);
816 }
817 
dsi_phy_hw_v4_0_lane_settings(struct msm_dsi_phy * phy)818 static void dsi_phy_hw_v4_0_lane_settings(struct msm_dsi_phy *phy)
819 {
820 	int i;
821 	const u8 tx_dctrl_0[] = { 0x00, 0x00, 0x00, 0x04, 0x01 };
822 	const u8 tx_dctrl_1[] = { 0x40, 0x40, 0x40, 0x46, 0x41 };
823 	const u8 *tx_dctrl = tx_dctrl_0;
824 	void __iomem *lane_base = phy->lane_base;
825 
826 	if (!(phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1))
827 		tx_dctrl = tx_dctrl_1;
828 
829 	/* Strength ctrl settings */
830 	for (i = 0; i < 5; i++) {
831 		/*
832 		 * Disable LPRX and CDRX for all lanes. And later on, it will
833 		 * be only enabled for the physical data lane corresponding
834 		 * to the logical data lane 0
835 		 */
836 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_LPRX_CTRL(i), 0);
837 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_PIN_SWAP(i), 0x0);
838 	}
839 
840 	dsi_phy_hw_v4_0_config_lpcdrx(phy, true);
841 
842 	/* other settings */
843 	for (i = 0; i < 5; i++) {
844 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG0(i), 0x0);
845 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG1(i), 0x0);
846 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG2(i), i == 4 ? 0x8a : 0xa);
847 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_TX_DCTRL(i), tx_dctrl[i]);
848 	}
849 }
850 
dsi_7nm_phy_enable(struct msm_dsi_phy * phy,struct msm_dsi_phy_clk_request * clk_req)851 static int dsi_7nm_phy_enable(struct msm_dsi_phy *phy,
852 			      struct msm_dsi_phy_clk_request *clk_req)
853 {
854 	int ret;
855 	u32 status;
856 	u32 const delay_us = 5;
857 	u32 const timeout_us = 1000;
858 	struct msm_dsi_dphy_timing *timing = &phy->timing;
859 	void __iomem *base = phy->base;
860 	bool less_than_1500_mhz;
861 	u32 vreg_ctrl_0, vreg_ctrl_1, lane_ctrl0;
862 	u32 glbl_pemph_ctrl_0;
863 	u32 glbl_str_swi_cal_sel_ctrl, glbl_hstx_str_ctrl_0;
864 	u32 glbl_rescode_top_ctrl, glbl_rescode_bot_ctrl;
865 	u32 data;
866 
867 	DBG("");
868 
869 	if (phy->cphy_mode)
870 		ret = msm_dsi_cphy_timing_calc_v4(timing, clk_req);
871 	else
872 		ret = msm_dsi_dphy_timing_calc_v4(timing, clk_req);
873 	if (ret) {
874 		DRM_DEV_ERROR(&phy->pdev->dev,
875 			      "%s: PHY timing calculation failed\n", __func__);
876 		return -EINVAL;
877 	}
878 
879 	if (dsi_phy_hw_v4_0_is_pll_on(phy))
880 		pr_warn("PLL turned on before configuring PHY\n");
881 
882 	/* Request for REFGEN READY */
883 	if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3) ||
884 	    (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
885 		dsi_phy_write(phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE10, 0x1);
886 		udelay(500);
887 	}
888 
889 	/* wait for REFGEN READY */
890 	ret = readl_poll_timeout_atomic(base + REG_DSI_7nm_PHY_CMN_PHY_STATUS,
891 					status, (status & BIT(0)),
892 					delay_us, timeout_us);
893 	if (ret) {
894 		pr_err("Ref gen not ready. Aborting\n");
895 		return -EINVAL;
896 	}
897 
898 	/* TODO: CPHY enable path (this is for DPHY only) */
899 
900 	/* Alter PHY configurations if data rate less than 1.5GHZ*/
901 	less_than_1500_mhz = (clk_req->bitclk_rate <= 1500000000);
902 
903 	glbl_str_swi_cal_sel_ctrl = 0x00;
904 	if (phy->cphy_mode) {
905 		vreg_ctrl_0 = 0x51;
906 		vreg_ctrl_1 = 0x55;
907 		glbl_hstx_str_ctrl_0 = 0x00;
908 		glbl_pemph_ctrl_0 = 0x11;
909 		lane_ctrl0 = 0x17;
910 	} else {
911 		vreg_ctrl_0 = less_than_1500_mhz ? 0x53 : 0x52;
912 		vreg_ctrl_1 = 0x5c;
913 		glbl_hstx_str_ctrl_0 = 0x88;
914 		glbl_pemph_ctrl_0 = 0x00;
915 		lane_ctrl0 = 0x1f;
916 	}
917 
918 	if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
919 		if (phy->cphy_mode) {
920 			vreg_ctrl_0 = 0x45;
921 			vreg_ctrl_1 = 0x41;
922 			glbl_rescode_top_ctrl = 0x00;
923 			glbl_rescode_bot_ctrl = 0x00;
924 		} else {
925 			vreg_ctrl_0 = 0x44;
926 			vreg_ctrl_1 = 0x19;
927 			glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3c :  0x03;
928 			glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 :  0x3c;
929 		}
930 	} else if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3)) {
931 		if (phy->cphy_mode) {
932 			glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d :  0x01;
933 			glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 :  0x3b;
934 		} else {
935 			glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d :  0x01;
936 			glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 :  0x39;
937 		}
938 	} else if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_2) {
939 		if (phy->cphy_mode) {
940 			glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d :  0x01;
941 			glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 :  0x3b;
942 		} else {
943 			glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3c :  0x00;
944 			glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 :  0x39;
945 		}
946 	} else if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
947 		if (phy->cphy_mode) {
948 			glbl_hstx_str_ctrl_0 = 0x88;
949 			glbl_rescode_top_ctrl = 0x00;
950 			glbl_rescode_bot_ctrl = 0x3c;
951 		} else {
952 			glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d :  0x00;
953 			glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x39 :  0x3c;
954 		}
955 	} else {
956 		if (phy->cphy_mode) {
957 			glbl_str_swi_cal_sel_ctrl = 0x03;
958 			glbl_hstx_str_ctrl_0 = 0x66;
959 		} else {
960 			vreg_ctrl_0 = less_than_1500_mhz ? 0x5B : 0x59;
961 			glbl_str_swi_cal_sel_ctrl = less_than_1500_mhz ? 0x03 : 0x00;
962 			glbl_hstx_str_ctrl_0 = less_than_1500_mhz ? 0x66 : 0x88;
963 		}
964 		glbl_rescode_top_ctrl = 0x03;
965 		glbl_rescode_bot_ctrl = 0x3c;
966 	}
967 
968 	/* de-assert digital and pll power down */
969 	data = BIT(6) | BIT(5);
970 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
971 
972 	/* Assert PLL core reset */
973 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x00);
974 
975 	/* turn off resync FIFO */
976 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0x00);
977 
978 	/* program CMN_CTRL_4 for minor_ver 2 chipsets*/
979 	if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2) ||
980 	    (dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_REVISION_ID0) & (0xf0)) == 0x20)
981 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_4, 0x04);
982 
983 	/* Configure PHY lane swap (TODO: we need to calculate this) */
984 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG0, 0x21);
985 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG1, 0x84);
986 
987 	if (phy->cphy_mode)
988 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_CTRL, BIT(6));
989 
990 	/* Enable LDO */
991 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_0, vreg_ctrl_0);
992 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_1, vreg_ctrl_1);
993 
994 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x00);
995 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL,
996 		      glbl_str_swi_cal_sel_ctrl);
997 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_HSTX_STR_CTRL_0,
998 		      glbl_hstx_str_ctrl_0);
999 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_0,
1000 		      glbl_pemph_ctrl_0);
1001 	if (phy->cphy_mode)
1002 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_1, 0x01);
1003 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL,
1004 		      glbl_rescode_top_ctrl);
1005 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL,
1006 		      glbl_rescode_bot_ctrl);
1007 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_LPTX_STR_CTRL, 0x55);
1008 
1009 	/* Remove power down from all blocks */
1010 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x7f);
1011 
1012 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, lane_ctrl0);
1013 
1014 	/* Select full-rate mode */
1015 	if (!phy->cphy_mode)
1016 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_2, 0x40);
1017 
1018 	ret = dsi_7nm_set_usecase(phy);
1019 	if (ret) {
1020 		DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
1021 			__func__, ret);
1022 		return ret;
1023 	}
1024 
1025 	/* DSI PHY timings */
1026 	if (phy->cphy_mode) {
1027 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00);
1028 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit);
1029 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5,
1030 			      timing->shared_timings.clk_pre);
1031 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->clk_prepare);
1032 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7,
1033 			      timing->shared_timings.clk_post);
1034 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst);
1035 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02);
1036 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04);
1037 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00);
1038 	} else {
1039 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00);
1040 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_1, timing->clk_zero);
1041 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_2, timing->clk_prepare);
1042 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_3, timing->clk_trail);
1043 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit);
1044 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5, timing->hs_zero);
1045 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->hs_prepare);
1046 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7, timing->hs_trail);
1047 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst);
1048 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02);
1049 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04);
1050 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00);
1051 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_12,
1052 			      timing->shared_timings.clk_pre);
1053 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_13,
1054 			      timing->shared_timings.clk_post);
1055 	}
1056 
1057 	/* DSI lane settings */
1058 	dsi_phy_hw_v4_0_lane_settings(phy);
1059 
1060 	DBG("DSI%d PHY enabled", phy->id);
1061 
1062 	return 0;
1063 }
1064 
dsi_7nm_set_continuous_clock(struct msm_dsi_phy * phy,bool enable)1065 static bool dsi_7nm_set_continuous_clock(struct msm_dsi_phy *phy, bool enable)
1066 {
1067 	void __iomem *base = phy->base;
1068 	u32 data;
1069 
1070 	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1);
1071 	if (enable)
1072 		data |= BIT(5) | BIT(6);
1073 	else
1074 		data &= ~(BIT(5) | BIT(6));
1075 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1, data);
1076 
1077 	return enable;
1078 }
1079 
dsi_7nm_phy_disable(struct msm_dsi_phy * phy)1080 static void dsi_7nm_phy_disable(struct msm_dsi_phy *phy)
1081 {
1082 	void __iomem *base = phy->base;
1083 	u32 data;
1084 
1085 	DBG("");
1086 
1087 	if (dsi_phy_hw_v4_0_is_pll_on(phy))
1088 		pr_warn("Turning OFF PHY while PLL is on\n");
1089 
1090 	dsi_phy_hw_v4_0_config_lpcdrx(phy, false);
1091 
1092 	/* Turn off REFGEN Vote */
1093 	if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3) ||
1094 	    (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
1095 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE10, 0x0);
1096 		wmb();
1097 		/* Delay to ensure HW removes vote before PHY shut down */
1098 		udelay(2);
1099 	}
1100 
1101 	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_CTRL_0);
1102 
1103 	/* disable all lanes */
1104 	data &= ~0x1F;
1105 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
1106 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, 0);
1107 
1108 	/* Turn off all PHY blocks */
1109 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x00);
1110 	/* make sure phy is turned off */
1111 	wmb();
1112 
1113 	DBG("DSI%d PHY disabled", phy->id);
1114 }
1115 
1116 static const struct regulator_bulk_data dsi_phy_7nm_36mA_regulators[] = {
1117 	{ .supply = "vdds", .init_load_uA = 36000 },
1118 };
1119 
1120 static const struct regulator_bulk_data dsi_phy_7nm_37750uA_regulators[] = {
1121 	{ .supply = "vdds", .init_load_uA = 37550 },
1122 };
1123 
1124 static const struct regulator_bulk_data dsi_phy_7nm_97800uA_regulators[] = {
1125 	{ .supply = "vdds", .init_load_uA = 97800 },
1126 };
1127 
1128 static const struct regulator_bulk_data dsi_phy_7nm_98400uA_regulators[] = {
1129 	{ .supply = "vdds", .init_load_uA = 98400 },
1130 };
1131 
1132 const struct msm_dsi_phy_cfg dsi_phy_7nm_cfgs = {
1133 	.has_phy_lane = true,
1134 	.regulator_data = dsi_phy_7nm_36mA_regulators,
1135 	.num_regulators = ARRAY_SIZE(dsi_phy_7nm_36mA_regulators),
1136 	.ops = {
1137 		.enable = dsi_7nm_phy_enable,
1138 		.disable = dsi_7nm_phy_disable,
1139 		.pll_init = dsi_pll_7nm_init,
1140 		.save_pll_state = dsi_7nm_pll_save_state,
1141 		.restore_pll_state = dsi_7nm_pll_restore_state,
1142 		.set_continuous_clock = dsi_7nm_set_continuous_clock,
1143 	},
1144 	.min_pll_rate = 600000000UL,
1145 #ifdef CONFIG_64BIT
1146 	.max_pll_rate = 5000000000UL,
1147 #else
1148 	.max_pll_rate = ULONG_MAX,
1149 #endif
1150 	.io_start = { 0xae94400, 0xae96400 },
1151 	.num_dsi_phy = 2,
1152 	.quirks = DSI_PHY_7NM_QUIRK_V4_1,
1153 };
1154 
1155 const struct msm_dsi_phy_cfg dsi_phy_7nm_6375_cfgs = {
1156 	.has_phy_lane = true,
1157 	.ops = {
1158 		.enable = dsi_7nm_phy_enable,
1159 		.disable = dsi_7nm_phy_disable,
1160 		.pll_init = dsi_pll_7nm_init,
1161 		.save_pll_state = dsi_7nm_pll_save_state,
1162 		.restore_pll_state = dsi_7nm_pll_restore_state,
1163 	},
1164 	.min_pll_rate = 600000000UL,
1165 #ifdef CONFIG_64BIT
1166 	.max_pll_rate = 5000000000ULL,
1167 #else
1168 	.max_pll_rate = ULONG_MAX,
1169 #endif
1170 	.io_start = { 0x5e94400 },
1171 	.num_dsi_phy = 1,
1172 	.quirks = DSI_PHY_7NM_QUIRK_V4_1,
1173 };
1174 
1175 const struct msm_dsi_phy_cfg dsi_phy_7nm_8150_cfgs = {
1176 	.has_phy_lane = true,
1177 	.regulator_data = dsi_phy_7nm_36mA_regulators,
1178 	.num_regulators = ARRAY_SIZE(dsi_phy_7nm_36mA_regulators),
1179 	.ops = {
1180 		.enable = dsi_7nm_phy_enable,
1181 		.disable = dsi_7nm_phy_disable,
1182 		.pll_init = dsi_pll_7nm_init,
1183 		.save_pll_state = dsi_7nm_pll_save_state,
1184 		.restore_pll_state = dsi_7nm_pll_restore_state,
1185 		.set_continuous_clock = dsi_7nm_set_continuous_clock,
1186 	},
1187 	.min_pll_rate = 1000000000UL,
1188 	.max_pll_rate = 3500000000UL,
1189 	.io_start = { 0xae94400, 0xae96400 },
1190 	.num_dsi_phy = 2,
1191 	.quirks = DSI_PHY_7NM_QUIRK_PRE_V4_1,
1192 };
1193 
1194 const struct msm_dsi_phy_cfg dsi_phy_7nm_7280_cfgs = {
1195 	.has_phy_lane = true,
1196 	.regulator_data = dsi_phy_7nm_37750uA_regulators,
1197 	.num_regulators = ARRAY_SIZE(dsi_phy_7nm_37750uA_regulators),
1198 	.ops = {
1199 		.enable = dsi_7nm_phy_enable,
1200 		.disable = dsi_7nm_phy_disable,
1201 		.pll_init = dsi_pll_7nm_init,
1202 		.save_pll_state = dsi_7nm_pll_save_state,
1203 		.restore_pll_state = dsi_7nm_pll_restore_state,
1204 	},
1205 	.min_pll_rate = 600000000UL,
1206 #ifdef CONFIG_64BIT
1207 	.max_pll_rate = 5000000000ULL,
1208 #else
1209 	.max_pll_rate = ULONG_MAX,
1210 #endif
1211 	.io_start = { 0xae94400 },
1212 	.num_dsi_phy = 1,
1213 	.quirks = DSI_PHY_7NM_QUIRK_V4_1,
1214 };
1215 
1216 const struct msm_dsi_phy_cfg dsi_phy_5nm_8350_cfgs = {
1217 	.has_phy_lane = true,
1218 	.regulator_data = dsi_phy_7nm_37750uA_regulators,
1219 	.num_regulators = ARRAY_SIZE(dsi_phy_7nm_37750uA_regulators),
1220 	.ops = {
1221 		.enable = dsi_7nm_phy_enable,
1222 		.disable = dsi_7nm_phy_disable,
1223 		.pll_init = dsi_pll_7nm_init,
1224 		.save_pll_state = dsi_7nm_pll_save_state,
1225 		.restore_pll_state = dsi_7nm_pll_restore_state,
1226 		.set_continuous_clock = dsi_7nm_set_continuous_clock,
1227 	},
1228 	.min_pll_rate = 600000000UL,
1229 #ifdef CONFIG_64BIT
1230 	.max_pll_rate = 5000000000UL,
1231 #else
1232 	.max_pll_rate = ULONG_MAX,
1233 #endif
1234 	.io_start = { 0xae94400, 0xae96400 },
1235 	.num_dsi_phy = 2,
1236 	.quirks = DSI_PHY_7NM_QUIRK_V4_2,
1237 };
1238 
1239 const struct msm_dsi_phy_cfg dsi_phy_5nm_8450_cfgs = {
1240 	.has_phy_lane = true,
1241 	.regulator_data = dsi_phy_7nm_97800uA_regulators,
1242 	.num_regulators = ARRAY_SIZE(dsi_phy_7nm_97800uA_regulators),
1243 	.ops = {
1244 		.enable = dsi_7nm_phy_enable,
1245 		.disable = dsi_7nm_phy_disable,
1246 		.pll_init = dsi_pll_7nm_init,
1247 		.save_pll_state = dsi_7nm_pll_save_state,
1248 		.restore_pll_state = dsi_7nm_pll_restore_state,
1249 		.set_continuous_clock = dsi_7nm_set_continuous_clock,
1250 	},
1251 	.min_pll_rate = 600000000UL,
1252 #ifdef CONFIG_64BIT
1253 	.max_pll_rate = 5000000000UL,
1254 #else
1255 	.max_pll_rate = ULONG_MAX,
1256 #endif
1257 	.io_start = { 0xae94400, 0xae96400 },
1258 	.num_dsi_phy = 2,
1259 	.quirks = DSI_PHY_7NM_QUIRK_V4_3,
1260 };
1261 
1262 const struct msm_dsi_phy_cfg dsi_phy_4nm_8550_cfgs = {
1263 	.has_phy_lane = true,
1264 	.regulator_data = dsi_phy_7nm_98400uA_regulators,
1265 	.num_regulators = ARRAY_SIZE(dsi_phy_7nm_98400uA_regulators),
1266 	.ops = {
1267 		.enable = dsi_7nm_phy_enable,
1268 		.disable = dsi_7nm_phy_disable,
1269 		.pll_init = dsi_pll_7nm_init,
1270 		.save_pll_state = dsi_7nm_pll_save_state,
1271 		.restore_pll_state = dsi_7nm_pll_restore_state,
1272 		.set_continuous_clock = dsi_7nm_set_continuous_clock,
1273 	},
1274 	.min_pll_rate = 600000000UL,
1275 #ifdef CONFIG_64BIT
1276 	.max_pll_rate = 5000000000UL,
1277 #else
1278 	.max_pll_rate = ULONG_MAX,
1279 #endif
1280 	.io_start = { 0xae95000, 0xae97000 },
1281 	.num_dsi_phy = 2,
1282 	.quirks = DSI_PHY_7NM_QUIRK_V5_2,
1283 };
1284