1 /*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30
31 #include <linux/bitfield.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/slab.h>
38 #include <linux/vga_switcheroo.h>
39
40 #include <drm/drm_displayid.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_edid.h>
43 #include <drm/drm_encoder.h>
44 #include <drm/drm_print.h>
45
46 #include "drm_crtc_internal.h"
47
oui(u8 first,u8 second,u8 third)48 static int oui(u8 first, u8 second, u8 third)
49 {
50 return (first << 16) | (second << 8) | third;
51 }
52
53 #define EDID_EST_TIMINGS 16
54 #define EDID_STD_TIMINGS 8
55 #define EDID_DETAILED_TIMINGS 4
56
57 /*
58 * EDID blocks out in the wild have a variety of bugs, try to collect
59 * them here (note that userspace may work around broken monitors first,
60 * but fixes should make their way here so that the kernel "just works"
61 * on as many displays as possible).
62 */
63
64 /* First detailed mode wrong, use largest 60Hz mode */
65 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
66 /* Reported 135MHz pixel clock is too high, needs adjustment */
67 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
68 /* Prefer the largest mode at 75 Hz */
69 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
70 /* Detail timing is in cm not mm */
71 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
72 /* Detailed timing descriptors have bogus size values, so just take the
73 * maximum size and use that.
74 */
75 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
76 /* use +hsync +vsync for detailed mode */
77 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
78 /* Force reduced-blanking timings for detailed modes */
79 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
80 /* Force 8bpc */
81 #define EDID_QUIRK_FORCE_8BPC (1 << 8)
82 /* Force 12bpc */
83 #define EDID_QUIRK_FORCE_12BPC (1 << 9)
84 /* Force 6bpc */
85 #define EDID_QUIRK_FORCE_6BPC (1 << 10)
86 /* Force 10bpc */
87 #define EDID_QUIRK_FORCE_10BPC (1 << 11)
88 /* Non desktop display (i.e. HMD) */
89 #define EDID_QUIRK_NON_DESKTOP (1 << 12)
90 /* Cap the DSC target bitrate to 15bpp */
91 #define EDID_QUIRK_CAP_DSC_15BPP (1 << 13)
92
93 #define MICROSOFT_IEEE_OUI 0xca125c
94
95 struct detailed_mode_closure {
96 struct drm_connector *connector;
97 const struct drm_edid *drm_edid;
98 bool preferred;
99 int modes;
100 };
101
102 #define LEVEL_DMT 0
103 #define LEVEL_GTF 1
104 #define LEVEL_GTF2 2
105 #define LEVEL_CVT 3
106
107 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
108 { \
109 .panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
110 product_id), \
111 .quirks = _quirks \
112 }
113
114 static const struct edid_quirk {
115 u32 panel_id;
116 u32 quirks;
117 } edid_quirk_list[] = {
118 /* Acer AL1706 */
119 EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
120 /* Acer F51 */
121 EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
122
123 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
124 EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
125
126 /* BenQ GW2765 */
127 EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
128
129 /* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
130 EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
131
132 /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
133 EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
134
135 /* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
136 EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
137
138 /* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
139 EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
140
141 /* Belinea 10 15 55 */
142 EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
143 EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
144
145 /* Envision Peripherals, Inc. EN-7100e */
146 EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
147 /* Envision EN2028 */
148 EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
149
150 /* Funai Electronics PM36B */
151 EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
152 EDID_QUIRK_DETAILED_IN_CM),
153
154 /* LG 27GP950 */
155 EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
156
157 /* LG 27GN950 */
158 EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
159
160 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
161 EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
162
163 /* LG Philips LCD LP154W01-A5 */
164 EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
165 EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
166
167 /* Samsung SyncMaster 205BW. Note: irony */
168 EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
169 /* Samsung SyncMaster 22[5-6]BW */
170 EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
171 EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
172
173 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
174 EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
175
176 /* ViewSonic VA2026w */
177 EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
178
179 /* Medion MD 30217 PG */
180 EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
181
182 /* Lenovo G50 */
183 EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
184
185 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
186 EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
187
188 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
189 EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
190
191 /* Valve Index Headset */
192 EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
193 EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
194 EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
195 EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
196 EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
197 EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
198 EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
199 EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
200 EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
201 EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
202 EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
203 EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
204 EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
205 EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
206 EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
207 EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
208 EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
209
210 /* HTC Vive and Vive Pro VR Headsets */
211 EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
212 EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
213
214 /* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
215 EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
216 EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
217 EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
218 EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
219
220 /* Windows Mixed Reality Headsets */
221 EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
222 EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
223 EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
224 EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
225 EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
226 EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
227
228 /* Sony PlayStation VR Headset */
229 EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
230
231 /* Sensics VR Headsets */
232 EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
233
234 /* OSVR HDK and HDK2 VR Headsets */
235 EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
236 EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
237 };
238
239 /*
240 * Autogenerated from the DMT spec.
241 * This table is copied from xfree86/modes/xf86EdidModes.c.
242 */
243 static const struct drm_display_mode drm_dmt_modes[] = {
244 /* 0x01 - 640x350@85Hz */
245 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
246 736, 832, 0, 350, 382, 385, 445, 0,
247 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
248 /* 0x02 - 640x400@85Hz */
249 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
250 736, 832, 0, 400, 401, 404, 445, 0,
251 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
252 /* 0x03 - 720x400@85Hz */
253 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
254 828, 936, 0, 400, 401, 404, 446, 0,
255 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
256 /* 0x04 - 640x480@60Hz */
257 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
258 752, 800, 0, 480, 490, 492, 525, 0,
259 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
260 /* 0x05 - 640x480@72Hz */
261 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
262 704, 832, 0, 480, 489, 492, 520, 0,
263 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
264 /* 0x06 - 640x480@75Hz */
265 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
266 720, 840, 0, 480, 481, 484, 500, 0,
267 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
268 /* 0x07 - 640x480@85Hz */
269 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
270 752, 832, 0, 480, 481, 484, 509, 0,
271 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
272 /* 0x08 - 800x600@56Hz */
273 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
274 896, 1024, 0, 600, 601, 603, 625, 0,
275 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
276 /* 0x09 - 800x600@60Hz */
277 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
278 968, 1056, 0, 600, 601, 605, 628, 0,
279 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
280 /* 0x0a - 800x600@72Hz */
281 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
282 976, 1040, 0, 600, 637, 643, 666, 0,
283 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
284 /* 0x0b - 800x600@75Hz */
285 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
286 896, 1056, 0, 600, 601, 604, 625, 0,
287 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
288 /* 0x0c - 800x600@85Hz */
289 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
290 896, 1048, 0, 600, 601, 604, 631, 0,
291 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
292 /* 0x0d - 800x600@120Hz RB */
293 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
294 880, 960, 0, 600, 603, 607, 636, 0,
295 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
296 /* 0x0e - 848x480@60Hz */
297 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
298 976, 1088, 0, 480, 486, 494, 517, 0,
299 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
300 /* 0x0f - 1024x768@43Hz, interlace */
301 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
302 1208, 1264, 0, 768, 768, 776, 817, 0,
303 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
304 DRM_MODE_FLAG_INTERLACE) },
305 /* 0x10 - 1024x768@60Hz */
306 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
307 1184, 1344, 0, 768, 771, 777, 806, 0,
308 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
309 /* 0x11 - 1024x768@70Hz */
310 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
311 1184, 1328, 0, 768, 771, 777, 806, 0,
312 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
313 /* 0x12 - 1024x768@75Hz */
314 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
315 1136, 1312, 0, 768, 769, 772, 800, 0,
316 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
317 /* 0x13 - 1024x768@85Hz */
318 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
319 1168, 1376, 0, 768, 769, 772, 808, 0,
320 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
321 /* 0x14 - 1024x768@120Hz RB */
322 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
323 1104, 1184, 0, 768, 771, 775, 813, 0,
324 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
325 /* 0x15 - 1152x864@75Hz */
326 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
327 1344, 1600, 0, 864, 865, 868, 900, 0,
328 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
329 /* 0x55 - 1280x720@60Hz */
330 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
331 1430, 1650, 0, 720, 725, 730, 750, 0,
332 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
333 /* 0x16 - 1280x768@60Hz RB */
334 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
335 1360, 1440, 0, 768, 771, 778, 790, 0,
336 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
337 /* 0x17 - 1280x768@60Hz */
338 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
339 1472, 1664, 0, 768, 771, 778, 798, 0,
340 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
341 /* 0x18 - 1280x768@75Hz */
342 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
343 1488, 1696, 0, 768, 771, 778, 805, 0,
344 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
345 /* 0x19 - 1280x768@85Hz */
346 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
347 1496, 1712, 0, 768, 771, 778, 809, 0,
348 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
349 /* 0x1a - 1280x768@120Hz RB */
350 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
351 1360, 1440, 0, 768, 771, 778, 813, 0,
352 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
353 /* 0x1b - 1280x800@60Hz RB */
354 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
355 1360, 1440, 0, 800, 803, 809, 823, 0,
356 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
357 /* 0x1c - 1280x800@60Hz */
358 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
359 1480, 1680, 0, 800, 803, 809, 831, 0,
360 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
361 /* 0x1d - 1280x800@75Hz */
362 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
363 1488, 1696, 0, 800, 803, 809, 838, 0,
364 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
365 /* 0x1e - 1280x800@85Hz */
366 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
367 1496, 1712, 0, 800, 803, 809, 843, 0,
368 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
369 /* 0x1f - 1280x800@120Hz RB */
370 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
371 1360, 1440, 0, 800, 803, 809, 847, 0,
372 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
373 /* 0x20 - 1280x960@60Hz */
374 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
375 1488, 1800, 0, 960, 961, 964, 1000, 0,
376 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
377 /* 0x21 - 1280x960@85Hz */
378 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
379 1504, 1728, 0, 960, 961, 964, 1011, 0,
380 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
381 /* 0x22 - 1280x960@120Hz RB */
382 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
383 1360, 1440, 0, 960, 963, 967, 1017, 0,
384 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
385 /* 0x23 - 1280x1024@60Hz */
386 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
387 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
388 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
389 /* 0x24 - 1280x1024@75Hz */
390 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
391 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
392 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
393 /* 0x25 - 1280x1024@85Hz */
394 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
395 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
396 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
397 /* 0x26 - 1280x1024@120Hz RB */
398 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
399 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
400 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
401 /* 0x27 - 1360x768@60Hz */
402 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
403 1536, 1792, 0, 768, 771, 777, 795, 0,
404 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
405 /* 0x28 - 1360x768@120Hz RB */
406 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
407 1440, 1520, 0, 768, 771, 776, 813, 0,
408 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
409 /* 0x51 - 1366x768@60Hz */
410 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
411 1579, 1792, 0, 768, 771, 774, 798, 0,
412 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
413 /* 0x56 - 1366x768@60Hz */
414 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
415 1436, 1500, 0, 768, 769, 772, 800, 0,
416 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
417 /* 0x29 - 1400x1050@60Hz RB */
418 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
419 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
420 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
421 /* 0x2a - 1400x1050@60Hz */
422 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
423 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
424 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
425 /* 0x2b - 1400x1050@75Hz */
426 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
427 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
428 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
429 /* 0x2c - 1400x1050@85Hz */
430 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
431 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
432 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
433 /* 0x2d - 1400x1050@120Hz RB */
434 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
435 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
436 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
437 /* 0x2e - 1440x900@60Hz RB */
438 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
439 1520, 1600, 0, 900, 903, 909, 926, 0,
440 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
441 /* 0x2f - 1440x900@60Hz */
442 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
443 1672, 1904, 0, 900, 903, 909, 934, 0,
444 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
445 /* 0x30 - 1440x900@75Hz */
446 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
447 1688, 1936, 0, 900, 903, 909, 942, 0,
448 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
449 /* 0x31 - 1440x900@85Hz */
450 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
451 1696, 1952, 0, 900, 903, 909, 948, 0,
452 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
453 /* 0x32 - 1440x900@120Hz RB */
454 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
455 1520, 1600, 0, 900, 903, 909, 953, 0,
456 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
457 /* 0x53 - 1600x900@60Hz */
458 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
459 1704, 1800, 0, 900, 901, 904, 1000, 0,
460 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
461 /* 0x33 - 1600x1200@60Hz */
462 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
463 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
464 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
465 /* 0x34 - 1600x1200@65Hz */
466 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
467 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
468 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
469 /* 0x35 - 1600x1200@70Hz */
470 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
471 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
472 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
473 /* 0x36 - 1600x1200@75Hz */
474 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
475 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
476 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
477 /* 0x37 - 1600x1200@85Hz */
478 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
479 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
480 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
481 /* 0x38 - 1600x1200@120Hz RB */
482 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
483 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
484 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
485 /* 0x39 - 1680x1050@60Hz RB */
486 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
487 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
488 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
489 /* 0x3a - 1680x1050@60Hz */
490 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
491 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
492 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
493 /* 0x3b - 1680x1050@75Hz */
494 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
495 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
496 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
497 /* 0x3c - 1680x1050@85Hz */
498 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
499 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
500 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
501 /* 0x3d - 1680x1050@120Hz RB */
502 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
503 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
504 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
505 /* 0x3e - 1792x1344@60Hz */
506 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
507 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
508 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
509 /* 0x3f - 1792x1344@75Hz */
510 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
511 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
512 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
513 /* 0x40 - 1792x1344@120Hz RB */
514 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
515 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
516 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
517 /* 0x41 - 1856x1392@60Hz */
518 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
519 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
520 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
521 /* 0x42 - 1856x1392@75Hz */
522 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
523 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
524 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
525 /* 0x43 - 1856x1392@120Hz RB */
526 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
527 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
528 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
529 /* 0x52 - 1920x1080@60Hz */
530 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
531 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
532 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
533 /* 0x44 - 1920x1200@60Hz RB */
534 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
535 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
536 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
537 /* 0x45 - 1920x1200@60Hz */
538 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
539 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
540 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
541 /* 0x46 - 1920x1200@75Hz */
542 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
543 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
544 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
545 /* 0x47 - 1920x1200@85Hz */
546 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
547 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
548 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
549 /* 0x48 - 1920x1200@120Hz RB */
550 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
551 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
552 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
553 /* 0x49 - 1920x1440@60Hz */
554 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
555 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
556 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
557 /* 0x4a - 1920x1440@75Hz */
558 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
559 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
560 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
561 /* 0x4b - 1920x1440@120Hz RB */
562 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
563 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
564 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
565 /* 0x54 - 2048x1152@60Hz */
566 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
567 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
568 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
569 /* 0x4c - 2560x1600@60Hz RB */
570 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
571 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
572 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
573 /* 0x4d - 2560x1600@60Hz */
574 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
575 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
576 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
577 /* 0x4e - 2560x1600@75Hz */
578 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
579 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
580 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
581 /* 0x4f - 2560x1600@85Hz */
582 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
583 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
584 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
585 /* 0x50 - 2560x1600@120Hz RB */
586 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
587 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
588 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
589 /* 0x57 - 4096x2160@60Hz RB */
590 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
591 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
592 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
593 /* 0x58 - 4096x2160@59.94Hz RB */
594 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
595 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
596 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
597 };
598
599 /*
600 * These more or less come from the DMT spec. The 720x400 modes are
601 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
602 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
603 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
604 * mode.
605 *
606 * The DMT modes have been fact-checked; the rest are mild guesses.
607 */
608 static const struct drm_display_mode edid_est_modes[] = {
609 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
610 968, 1056, 0, 600, 601, 605, 628, 0,
611 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
612 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
613 896, 1024, 0, 600, 601, 603, 625, 0,
614 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
615 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
616 720, 840, 0, 480, 481, 484, 500, 0,
617 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
618 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
619 704, 832, 0, 480, 489, 492, 520, 0,
620 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
621 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
622 768, 864, 0, 480, 483, 486, 525, 0,
623 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
624 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
625 752, 800, 0, 480, 490, 492, 525, 0,
626 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
627 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
628 846, 900, 0, 400, 421, 423, 449, 0,
629 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
630 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
631 846, 900, 0, 400, 412, 414, 449, 0,
632 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
633 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
634 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
635 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
636 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
637 1136, 1312, 0, 768, 769, 772, 800, 0,
638 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
639 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
640 1184, 1328, 0, 768, 771, 777, 806, 0,
641 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
642 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
643 1184, 1344, 0, 768, 771, 777, 806, 0,
644 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
645 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
646 1208, 1264, 0, 768, 768, 776, 817, 0,
647 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
648 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
649 928, 1152, 0, 624, 625, 628, 667, 0,
650 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
651 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
652 896, 1056, 0, 600, 601, 604, 625, 0,
653 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
654 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
655 976, 1040, 0, 600, 637, 643, 666, 0,
656 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
657 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
658 1344, 1600, 0, 864, 865, 868, 900, 0,
659 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
660 };
661
662 struct minimode {
663 short w;
664 short h;
665 short r;
666 short rb;
667 };
668
669 static const struct minimode est3_modes[] = {
670 /* byte 6 */
671 { 640, 350, 85, 0 },
672 { 640, 400, 85, 0 },
673 { 720, 400, 85, 0 },
674 { 640, 480, 85, 0 },
675 { 848, 480, 60, 0 },
676 { 800, 600, 85, 0 },
677 { 1024, 768, 85, 0 },
678 { 1152, 864, 75, 0 },
679 /* byte 7 */
680 { 1280, 768, 60, 1 },
681 { 1280, 768, 60, 0 },
682 { 1280, 768, 75, 0 },
683 { 1280, 768, 85, 0 },
684 { 1280, 960, 60, 0 },
685 { 1280, 960, 85, 0 },
686 { 1280, 1024, 60, 0 },
687 { 1280, 1024, 85, 0 },
688 /* byte 8 */
689 { 1360, 768, 60, 0 },
690 { 1440, 900, 60, 1 },
691 { 1440, 900, 60, 0 },
692 { 1440, 900, 75, 0 },
693 { 1440, 900, 85, 0 },
694 { 1400, 1050, 60, 1 },
695 { 1400, 1050, 60, 0 },
696 { 1400, 1050, 75, 0 },
697 /* byte 9 */
698 { 1400, 1050, 85, 0 },
699 { 1680, 1050, 60, 1 },
700 { 1680, 1050, 60, 0 },
701 { 1680, 1050, 75, 0 },
702 { 1680, 1050, 85, 0 },
703 { 1600, 1200, 60, 0 },
704 { 1600, 1200, 65, 0 },
705 { 1600, 1200, 70, 0 },
706 /* byte 10 */
707 { 1600, 1200, 75, 0 },
708 { 1600, 1200, 85, 0 },
709 { 1792, 1344, 60, 0 },
710 { 1792, 1344, 75, 0 },
711 { 1856, 1392, 60, 0 },
712 { 1856, 1392, 75, 0 },
713 { 1920, 1200, 60, 1 },
714 { 1920, 1200, 60, 0 },
715 /* byte 11 */
716 { 1920, 1200, 75, 0 },
717 { 1920, 1200, 85, 0 },
718 { 1920, 1440, 60, 0 },
719 { 1920, 1440, 75, 0 },
720 };
721
722 static const struct minimode extra_modes[] = {
723 { 1024, 576, 60, 0 },
724 { 1366, 768, 60, 0 },
725 { 1600, 900, 60, 0 },
726 { 1680, 945, 60, 0 },
727 { 1920, 1080, 60, 0 },
728 { 2048, 1152, 60, 0 },
729 { 2048, 1536, 60, 0 },
730 };
731
732 /*
733 * From CEA/CTA-861 spec.
734 *
735 * Do not access directly, instead always use cea_mode_for_vic().
736 */
737 static const struct drm_display_mode edid_cea_modes_1[] = {
738 /* 1 - 640x480@60Hz 4:3 */
739 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
740 752, 800, 0, 480, 490, 492, 525, 0,
741 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
742 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
743 /* 2 - 720x480@60Hz 4:3 */
744 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
745 798, 858, 0, 480, 489, 495, 525, 0,
746 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
747 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
748 /* 3 - 720x480@60Hz 16:9 */
749 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
750 798, 858, 0, 480, 489, 495, 525, 0,
751 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
752 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
753 /* 4 - 1280x720@60Hz 16:9 */
754 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
755 1430, 1650, 0, 720, 725, 730, 750, 0,
756 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
757 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
758 /* 5 - 1920x1080i@60Hz 16:9 */
759 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
760 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
761 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
762 DRM_MODE_FLAG_INTERLACE),
763 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
764 /* 6 - 720(1440)x480i@60Hz 4:3 */
765 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
766 801, 858, 0, 480, 488, 494, 525, 0,
767 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
768 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
769 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
770 /* 7 - 720(1440)x480i@60Hz 16:9 */
771 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
772 801, 858, 0, 480, 488, 494, 525, 0,
773 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
774 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
775 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
776 /* 8 - 720(1440)x240@60Hz 4:3 */
777 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
778 801, 858, 0, 240, 244, 247, 262, 0,
779 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
780 DRM_MODE_FLAG_DBLCLK),
781 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
782 /* 9 - 720(1440)x240@60Hz 16:9 */
783 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
784 801, 858, 0, 240, 244, 247, 262, 0,
785 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
786 DRM_MODE_FLAG_DBLCLK),
787 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
788 /* 10 - 2880x480i@60Hz 4:3 */
789 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
790 3204, 3432, 0, 480, 488, 494, 525, 0,
791 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
792 DRM_MODE_FLAG_INTERLACE),
793 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
794 /* 11 - 2880x480i@60Hz 16:9 */
795 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
796 3204, 3432, 0, 480, 488, 494, 525, 0,
797 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
798 DRM_MODE_FLAG_INTERLACE),
799 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
800 /* 12 - 2880x240@60Hz 4:3 */
801 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
802 3204, 3432, 0, 240, 244, 247, 262, 0,
803 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
804 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
805 /* 13 - 2880x240@60Hz 16:9 */
806 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
807 3204, 3432, 0, 240, 244, 247, 262, 0,
808 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
809 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
810 /* 14 - 1440x480@60Hz 4:3 */
811 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
812 1596, 1716, 0, 480, 489, 495, 525, 0,
813 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
814 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
815 /* 15 - 1440x480@60Hz 16:9 */
816 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
817 1596, 1716, 0, 480, 489, 495, 525, 0,
818 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
819 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
820 /* 16 - 1920x1080@60Hz 16:9 */
821 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
822 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
823 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
824 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
825 /* 17 - 720x576@50Hz 4:3 */
826 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
827 796, 864, 0, 576, 581, 586, 625, 0,
828 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
829 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
830 /* 18 - 720x576@50Hz 16:9 */
831 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
832 796, 864, 0, 576, 581, 586, 625, 0,
833 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
834 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
835 /* 19 - 1280x720@50Hz 16:9 */
836 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
837 1760, 1980, 0, 720, 725, 730, 750, 0,
838 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
839 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
840 /* 20 - 1920x1080i@50Hz 16:9 */
841 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
842 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
843 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
844 DRM_MODE_FLAG_INTERLACE),
845 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
846 /* 21 - 720(1440)x576i@50Hz 4:3 */
847 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
848 795, 864, 0, 576, 580, 586, 625, 0,
849 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
850 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
851 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
852 /* 22 - 720(1440)x576i@50Hz 16:9 */
853 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
854 795, 864, 0, 576, 580, 586, 625, 0,
855 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
856 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
857 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
858 /* 23 - 720(1440)x288@50Hz 4:3 */
859 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
860 795, 864, 0, 288, 290, 293, 312, 0,
861 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
862 DRM_MODE_FLAG_DBLCLK),
863 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
864 /* 24 - 720(1440)x288@50Hz 16:9 */
865 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
866 795, 864, 0, 288, 290, 293, 312, 0,
867 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
868 DRM_MODE_FLAG_DBLCLK),
869 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
870 /* 25 - 2880x576i@50Hz 4:3 */
871 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
872 3180, 3456, 0, 576, 580, 586, 625, 0,
873 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
874 DRM_MODE_FLAG_INTERLACE),
875 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
876 /* 26 - 2880x576i@50Hz 16:9 */
877 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
878 3180, 3456, 0, 576, 580, 586, 625, 0,
879 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
880 DRM_MODE_FLAG_INTERLACE),
881 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
882 /* 27 - 2880x288@50Hz 4:3 */
883 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
884 3180, 3456, 0, 288, 290, 293, 312, 0,
885 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
886 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
887 /* 28 - 2880x288@50Hz 16:9 */
888 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
889 3180, 3456, 0, 288, 290, 293, 312, 0,
890 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
891 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
892 /* 29 - 1440x576@50Hz 4:3 */
893 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
894 1592, 1728, 0, 576, 581, 586, 625, 0,
895 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
896 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
897 /* 30 - 1440x576@50Hz 16:9 */
898 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
899 1592, 1728, 0, 576, 581, 586, 625, 0,
900 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
901 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
902 /* 31 - 1920x1080@50Hz 16:9 */
903 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
904 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
905 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
906 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
907 /* 32 - 1920x1080@24Hz 16:9 */
908 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
909 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
910 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
911 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
912 /* 33 - 1920x1080@25Hz 16:9 */
913 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
914 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
915 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
916 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
917 /* 34 - 1920x1080@30Hz 16:9 */
918 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
919 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
920 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
921 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
922 /* 35 - 2880x480@60Hz 4:3 */
923 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
924 3192, 3432, 0, 480, 489, 495, 525, 0,
925 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
926 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
927 /* 36 - 2880x480@60Hz 16:9 */
928 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
929 3192, 3432, 0, 480, 489, 495, 525, 0,
930 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
931 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
932 /* 37 - 2880x576@50Hz 4:3 */
933 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
934 3184, 3456, 0, 576, 581, 586, 625, 0,
935 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
936 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
937 /* 38 - 2880x576@50Hz 16:9 */
938 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
939 3184, 3456, 0, 576, 581, 586, 625, 0,
940 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
941 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
942 /* 39 - 1920x1080i@50Hz 16:9 */
943 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
944 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
945 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
946 DRM_MODE_FLAG_INTERLACE),
947 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
948 /* 40 - 1920x1080i@100Hz 16:9 */
949 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
950 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
951 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
952 DRM_MODE_FLAG_INTERLACE),
953 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
954 /* 41 - 1280x720@100Hz 16:9 */
955 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
956 1760, 1980, 0, 720, 725, 730, 750, 0,
957 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
958 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
959 /* 42 - 720x576@100Hz 4:3 */
960 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
961 796, 864, 0, 576, 581, 586, 625, 0,
962 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
963 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
964 /* 43 - 720x576@100Hz 16:9 */
965 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
966 796, 864, 0, 576, 581, 586, 625, 0,
967 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
968 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
969 /* 44 - 720(1440)x576i@100Hz 4:3 */
970 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
971 795, 864, 0, 576, 580, 586, 625, 0,
972 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
973 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
974 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
975 /* 45 - 720(1440)x576i@100Hz 16:9 */
976 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
977 795, 864, 0, 576, 580, 586, 625, 0,
978 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
979 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
980 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
981 /* 46 - 1920x1080i@120Hz 16:9 */
982 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
983 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
984 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
985 DRM_MODE_FLAG_INTERLACE),
986 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
987 /* 47 - 1280x720@120Hz 16:9 */
988 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
989 1430, 1650, 0, 720, 725, 730, 750, 0,
990 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
991 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
992 /* 48 - 720x480@120Hz 4:3 */
993 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
994 798, 858, 0, 480, 489, 495, 525, 0,
995 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
996 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
997 /* 49 - 720x480@120Hz 16:9 */
998 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
999 798, 858, 0, 480, 489, 495, 525, 0,
1000 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1001 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1002 /* 50 - 720(1440)x480i@120Hz 4:3 */
1003 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1004 801, 858, 0, 480, 488, 494, 525, 0,
1005 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1006 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1007 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1008 /* 51 - 720(1440)x480i@120Hz 16:9 */
1009 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1010 801, 858, 0, 480, 488, 494, 525, 0,
1011 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1012 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1013 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1014 /* 52 - 720x576@200Hz 4:3 */
1015 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1016 796, 864, 0, 576, 581, 586, 625, 0,
1017 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1018 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1019 /* 53 - 720x576@200Hz 16:9 */
1020 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1021 796, 864, 0, 576, 581, 586, 625, 0,
1022 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1023 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1024 /* 54 - 720(1440)x576i@200Hz 4:3 */
1025 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1026 795, 864, 0, 576, 580, 586, 625, 0,
1027 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1028 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1029 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1030 /* 55 - 720(1440)x576i@200Hz 16:9 */
1031 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1032 795, 864, 0, 576, 580, 586, 625, 0,
1033 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1034 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1035 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1036 /* 56 - 720x480@240Hz 4:3 */
1037 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1038 798, 858, 0, 480, 489, 495, 525, 0,
1039 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1040 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1041 /* 57 - 720x480@240Hz 16:9 */
1042 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1043 798, 858, 0, 480, 489, 495, 525, 0,
1044 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1045 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1046 /* 58 - 720(1440)x480i@240Hz 4:3 */
1047 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1048 801, 858, 0, 480, 488, 494, 525, 0,
1049 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1050 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1051 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1052 /* 59 - 720(1440)x480i@240Hz 16:9 */
1053 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1054 801, 858, 0, 480, 488, 494, 525, 0,
1055 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1056 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1057 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1058 /* 60 - 1280x720@24Hz 16:9 */
1059 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1060 3080, 3300, 0, 720, 725, 730, 750, 0,
1061 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1062 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1063 /* 61 - 1280x720@25Hz 16:9 */
1064 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1065 3740, 3960, 0, 720, 725, 730, 750, 0,
1066 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1067 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1068 /* 62 - 1280x720@30Hz 16:9 */
1069 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1070 3080, 3300, 0, 720, 725, 730, 750, 0,
1071 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1072 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1073 /* 63 - 1920x1080@120Hz 16:9 */
1074 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1075 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1076 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1077 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1078 /* 64 - 1920x1080@100Hz 16:9 */
1079 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1080 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1081 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1082 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1083 /* 65 - 1280x720@24Hz 64:27 */
1084 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1085 3080, 3300, 0, 720, 725, 730, 750, 0,
1086 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1087 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1088 /* 66 - 1280x720@25Hz 64:27 */
1089 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1090 3740, 3960, 0, 720, 725, 730, 750, 0,
1091 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1092 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1093 /* 67 - 1280x720@30Hz 64:27 */
1094 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1095 3080, 3300, 0, 720, 725, 730, 750, 0,
1096 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1097 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1098 /* 68 - 1280x720@50Hz 64:27 */
1099 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1100 1760, 1980, 0, 720, 725, 730, 750, 0,
1101 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1102 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1103 /* 69 - 1280x720@60Hz 64:27 */
1104 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1105 1430, 1650, 0, 720, 725, 730, 750, 0,
1106 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1107 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1108 /* 70 - 1280x720@100Hz 64:27 */
1109 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1110 1760, 1980, 0, 720, 725, 730, 750, 0,
1111 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1112 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1113 /* 71 - 1280x720@120Hz 64:27 */
1114 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1115 1430, 1650, 0, 720, 725, 730, 750, 0,
1116 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1117 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1118 /* 72 - 1920x1080@24Hz 64:27 */
1119 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1120 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1121 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1122 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1123 /* 73 - 1920x1080@25Hz 64:27 */
1124 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1125 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1126 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1127 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1128 /* 74 - 1920x1080@30Hz 64:27 */
1129 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1130 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1131 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1132 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1133 /* 75 - 1920x1080@50Hz 64:27 */
1134 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1135 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1136 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1137 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1138 /* 76 - 1920x1080@60Hz 64:27 */
1139 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1140 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1141 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1142 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1143 /* 77 - 1920x1080@100Hz 64:27 */
1144 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1145 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1146 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1147 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1148 /* 78 - 1920x1080@120Hz 64:27 */
1149 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1150 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1151 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1152 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1153 /* 79 - 1680x720@24Hz 64:27 */
1154 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1155 3080, 3300, 0, 720, 725, 730, 750, 0,
1156 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1157 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1158 /* 80 - 1680x720@25Hz 64:27 */
1159 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1160 2948, 3168, 0, 720, 725, 730, 750, 0,
1161 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1162 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1163 /* 81 - 1680x720@30Hz 64:27 */
1164 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1165 2420, 2640, 0, 720, 725, 730, 750, 0,
1166 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1167 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1168 /* 82 - 1680x720@50Hz 64:27 */
1169 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1170 1980, 2200, 0, 720, 725, 730, 750, 0,
1171 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1172 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1173 /* 83 - 1680x720@60Hz 64:27 */
1174 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1175 1980, 2200, 0, 720, 725, 730, 750, 0,
1176 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1177 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1178 /* 84 - 1680x720@100Hz 64:27 */
1179 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1180 1780, 2000, 0, 720, 725, 730, 825, 0,
1181 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1182 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1183 /* 85 - 1680x720@120Hz 64:27 */
1184 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1185 1780, 2000, 0, 720, 725, 730, 825, 0,
1186 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1187 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1188 /* 86 - 2560x1080@24Hz 64:27 */
1189 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1190 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1191 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1192 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1193 /* 87 - 2560x1080@25Hz 64:27 */
1194 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1195 3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1196 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1197 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1198 /* 88 - 2560x1080@30Hz 64:27 */
1199 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1200 3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1201 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1202 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1203 /* 89 - 2560x1080@50Hz 64:27 */
1204 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1205 3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1206 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1207 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1208 /* 90 - 2560x1080@60Hz 64:27 */
1209 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1210 2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1211 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1212 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1213 /* 91 - 2560x1080@100Hz 64:27 */
1214 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1215 2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1216 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1217 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1218 /* 92 - 2560x1080@120Hz 64:27 */
1219 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1220 3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1221 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1222 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1223 /* 93 - 3840x2160@24Hz 16:9 */
1224 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1225 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1226 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1227 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1228 /* 94 - 3840x2160@25Hz 16:9 */
1229 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1230 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1231 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1232 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1233 /* 95 - 3840x2160@30Hz 16:9 */
1234 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1235 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1236 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1237 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1238 /* 96 - 3840x2160@50Hz 16:9 */
1239 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1240 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1241 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1242 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1243 /* 97 - 3840x2160@60Hz 16:9 */
1244 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1245 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1246 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1247 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1248 /* 98 - 4096x2160@24Hz 256:135 */
1249 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1250 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1251 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1252 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1253 /* 99 - 4096x2160@25Hz 256:135 */
1254 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1255 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1256 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1257 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1258 /* 100 - 4096x2160@30Hz 256:135 */
1259 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1260 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1261 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1262 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1263 /* 101 - 4096x2160@50Hz 256:135 */
1264 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1265 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1266 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1267 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1268 /* 102 - 4096x2160@60Hz 256:135 */
1269 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1270 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1271 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1272 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1273 /* 103 - 3840x2160@24Hz 64:27 */
1274 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1275 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1276 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1277 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1278 /* 104 - 3840x2160@25Hz 64:27 */
1279 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1280 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1281 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1282 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1283 /* 105 - 3840x2160@30Hz 64:27 */
1284 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1285 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1286 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1287 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1288 /* 106 - 3840x2160@50Hz 64:27 */
1289 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1290 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1291 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1292 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1293 /* 107 - 3840x2160@60Hz 64:27 */
1294 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1295 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1296 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1297 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1298 /* 108 - 1280x720@48Hz 16:9 */
1299 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1300 2280, 2500, 0, 720, 725, 730, 750, 0,
1301 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1302 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1303 /* 109 - 1280x720@48Hz 64:27 */
1304 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1305 2280, 2500, 0, 720, 725, 730, 750, 0,
1306 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1307 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1308 /* 110 - 1680x720@48Hz 64:27 */
1309 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1310 2530, 2750, 0, 720, 725, 730, 750, 0,
1311 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1312 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1313 /* 111 - 1920x1080@48Hz 16:9 */
1314 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1315 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1316 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1317 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1318 /* 112 - 1920x1080@48Hz 64:27 */
1319 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1320 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1321 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1322 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1323 /* 113 - 2560x1080@48Hz 64:27 */
1324 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1325 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1326 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1327 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1328 /* 114 - 3840x2160@48Hz 16:9 */
1329 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1330 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1331 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1332 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1333 /* 115 - 4096x2160@48Hz 256:135 */
1334 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1335 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1336 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1337 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1338 /* 116 - 3840x2160@48Hz 64:27 */
1339 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1340 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1341 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1342 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1343 /* 117 - 3840x2160@100Hz 16:9 */
1344 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1345 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1346 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1347 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1348 /* 118 - 3840x2160@120Hz 16:9 */
1349 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1350 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1351 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1352 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1353 /* 119 - 3840x2160@100Hz 64:27 */
1354 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1355 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1356 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1357 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1358 /* 120 - 3840x2160@120Hz 64:27 */
1359 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1360 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1361 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1362 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1363 /* 121 - 5120x2160@24Hz 64:27 */
1364 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1365 7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1366 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1367 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1368 /* 122 - 5120x2160@25Hz 64:27 */
1369 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1370 6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1371 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1372 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1373 /* 123 - 5120x2160@30Hz 64:27 */
1374 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1375 5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1376 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1377 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1378 /* 124 - 5120x2160@48Hz 64:27 */
1379 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1380 5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1381 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1382 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1383 /* 125 - 5120x2160@50Hz 64:27 */
1384 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1385 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1386 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1387 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1388 /* 126 - 5120x2160@60Hz 64:27 */
1389 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1390 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1391 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1392 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1393 /* 127 - 5120x2160@100Hz 64:27 */
1394 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1395 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1396 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1397 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1398 };
1399
1400 /*
1401 * From CEA/CTA-861 spec.
1402 *
1403 * Do not access directly, instead always use cea_mode_for_vic().
1404 */
1405 static const struct drm_display_mode edid_cea_modes_193[] = {
1406 /* 193 - 5120x2160@120Hz 64:27 */
1407 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1408 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1409 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1410 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1411 /* 194 - 7680x4320@24Hz 16:9 */
1412 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1413 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1414 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1415 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1416 /* 195 - 7680x4320@25Hz 16:9 */
1417 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1418 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1419 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1420 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1421 /* 196 - 7680x4320@30Hz 16:9 */
1422 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1423 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1424 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1425 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1426 /* 197 - 7680x4320@48Hz 16:9 */
1427 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1428 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1429 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1430 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1431 /* 198 - 7680x4320@50Hz 16:9 */
1432 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1433 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1434 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1435 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1436 /* 199 - 7680x4320@60Hz 16:9 */
1437 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1438 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1439 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1440 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1441 /* 200 - 7680x4320@100Hz 16:9 */
1442 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1443 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1444 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1445 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1446 /* 201 - 7680x4320@120Hz 16:9 */
1447 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1448 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1449 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1450 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1451 /* 202 - 7680x4320@24Hz 64:27 */
1452 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1453 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1454 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1455 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1456 /* 203 - 7680x4320@25Hz 64:27 */
1457 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1458 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1459 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1460 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1461 /* 204 - 7680x4320@30Hz 64:27 */
1462 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1463 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1464 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1465 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1466 /* 205 - 7680x4320@48Hz 64:27 */
1467 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1468 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1469 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1470 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1471 /* 206 - 7680x4320@50Hz 64:27 */
1472 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1473 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1474 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1475 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1476 /* 207 - 7680x4320@60Hz 64:27 */
1477 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1478 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1479 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1480 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1481 /* 208 - 7680x4320@100Hz 64:27 */
1482 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1483 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1484 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1485 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1486 /* 209 - 7680x4320@120Hz 64:27 */
1487 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1488 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1489 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1490 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1491 /* 210 - 10240x4320@24Hz 64:27 */
1492 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1493 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1494 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1495 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1496 /* 211 - 10240x4320@25Hz 64:27 */
1497 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1498 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1499 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1500 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1501 /* 212 - 10240x4320@30Hz 64:27 */
1502 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1503 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1504 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1505 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1506 /* 213 - 10240x4320@48Hz 64:27 */
1507 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1508 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1509 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1510 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1511 /* 214 - 10240x4320@50Hz 64:27 */
1512 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1513 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1514 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1515 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1516 /* 215 - 10240x4320@60Hz 64:27 */
1517 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1518 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1519 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1520 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1521 /* 216 - 10240x4320@100Hz 64:27 */
1522 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1523 12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1524 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1525 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1526 /* 217 - 10240x4320@120Hz 64:27 */
1527 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1528 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1529 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1530 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1531 /* 218 - 4096x2160@100Hz 256:135 */
1532 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1533 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1534 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1535 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1536 /* 219 - 4096x2160@120Hz 256:135 */
1537 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1538 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1539 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1540 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1541 };
1542
1543 /*
1544 * HDMI 1.4 4k modes. Index using the VIC.
1545 */
1546 static const struct drm_display_mode edid_4k_modes[] = {
1547 /* 0 - dummy, VICs start at 1 */
1548 { },
1549 /* 1 - 3840x2160@30Hz */
1550 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1551 3840, 4016, 4104, 4400, 0,
1552 2160, 2168, 2178, 2250, 0,
1553 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1554 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1555 /* 2 - 3840x2160@25Hz */
1556 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1557 3840, 4896, 4984, 5280, 0,
1558 2160, 2168, 2178, 2250, 0,
1559 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1560 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1561 /* 3 - 3840x2160@24Hz */
1562 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1563 3840, 5116, 5204, 5500, 0,
1564 2160, 2168, 2178, 2250, 0,
1565 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1566 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1567 /* 4 - 4096x2160@24Hz (SMPTE) */
1568 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1569 4096, 5116, 5204, 5500, 0,
1570 2160, 2168, 2178, 2250, 0,
1571 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1572 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1573 };
1574
1575 /*** DDC fetch and block validation ***/
1576
1577 /*
1578 * The opaque EDID type, internal to drm_edid.c.
1579 */
1580 struct drm_edid {
1581 /* Size allocated for edid */
1582 size_t size;
1583 const struct edid *edid;
1584 };
1585
1586 static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1587
edid_hfeeodb_block_count(const struct edid * edid)1588 static int edid_hfeeodb_block_count(const struct edid *edid)
1589 {
1590 int eeodb = edid_hfeeodb_extension_block_count(edid);
1591
1592 return eeodb ? eeodb + 1 : 0;
1593 }
1594
edid_extension_block_count(const struct edid * edid)1595 static int edid_extension_block_count(const struct edid *edid)
1596 {
1597 return edid->extensions;
1598 }
1599
edid_block_count(const struct edid * edid)1600 static int edid_block_count(const struct edid *edid)
1601 {
1602 return edid_extension_block_count(edid) + 1;
1603 }
1604
edid_size_by_blocks(int num_blocks)1605 static int edid_size_by_blocks(int num_blocks)
1606 {
1607 return num_blocks * EDID_LENGTH;
1608 }
1609
edid_size(const struct edid * edid)1610 static int edid_size(const struct edid *edid)
1611 {
1612 return edid_size_by_blocks(edid_block_count(edid));
1613 }
1614
edid_block_data(const struct edid * edid,int index)1615 static const void *edid_block_data(const struct edid *edid, int index)
1616 {
1617 BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1618
1619 return edid + index;
1620 }
1621
edid_extension_block_data(const struct edid * edid,int index)1622 static const void *edid_extension_block_data(const struct edid *edid, int index)
1623 {
1624 return edid_block_data(edid, index + 1);
1625 }
1626
1627 /* EDID block count indicated in EDID, may exceed allocated size */
__drm_edid_block_count(const struct drm_edid * drm_edid)1628 static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1629 {
1630 int num_blocks;
1631
1632 /* Starting point */
1633 num_blocks = edid_block_count(drm_edid->edid);
1634
1635 /* HF-EEODB override */
1636 if (drm_edid->size >= edid_size_by_blocks(2)) {
1637 int eeodb;
1638
1639 /*
1640 * Note: HF-EEODB may specify a smaller extension count than the
1641 * regular one. Unlike in buffer allocation, here we can use it.
1642 */
1643 eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1644 if (eeodb)
1645 num_blocks = eeodb;
1646 }
1647
1648 return num_blocks;
1649 }
1650
1651 /* EDID block count, limited by allocated size */
drm_edid_block_count(const struct drm_edid * drm_edid)1652 static int drm_edid_block_count(const struct drm_edid *drm_edid)
1653 {
1654 /* Limit by allocated size */
1655 return min(__drm_edid_block_count(drm_edid),
1656 (int)drm_edid->size / EDID_LENGTH);
1657 }
1658
1659 /* EDID extension block count, limited by allocated size */
drm_edid_extension_block_count(const struct drm_edid * drm_edid)1660 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1661 {
1662 return drm_edid_block_count(drm_edid) - 1;
1663 }
1664
drm_edid_block_data(const struct drm_edid * drm_edid,int index)1665 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1666 {
1667 return edid_block_data(drm_edid->edid, index);
1668 }
1669
drm_edid_extension_block_data(const struct drm_edid * drm_edid,int index)1670 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1671 int index)
1672 {
1673 return edid_extension_block_data(drm_edid->edid, index);
1674 }
1675
1676 /*
1677 * Initializer helper for legacy interfaces, where we have no choice but to
1678 * trust edid size. Not for general purpose use.
1679 */
drm_edid_legacy_init(struct drm_edid * drm_edid,const struct edid * edid)1680 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1681 const struct edid *edid)
1682 {
1683 if (!edid)
1684 return NULL;
1685
1686 memset(drm_edid, 0, sizeof(*drm_edid));
1687
1688 drm_edid->edid = edid;
1689 drm_edid->size = edid_size(edid);
1690
1691 return drm_edid;
1692 }
1693
1694 /*
1695 * EDID base and extension block iterator.
1696 *
1697 * struct drm_edid_iter iter;
1698 * const u8 *block;
1699 *
1700 * drm_edid_iter_begin(drm_edid, &iter);
1701 * drm_edid_iter_for_each(block, &iter) {
1702 * // do stuff with block
1703 * }
1704 * drm_edid_iter_end(&iter);
1705 */
1706 struct drm_edid_iter {
1707 const struct drm_edid *drm_edid;
1708
1709 /* Current block index. */
1710 int index;
1711 };
1712
drm_edid_iter_begin(const struct drm_edid * drm_edid,struct drm_edid_iter * iter)1713 static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1714 struct drm_edid_iter *iter)
1715 {
1716 memset(iter, 0, sizeof(*iter));
1717
1718 iter->drm_edid = drm_edid;
1719 }
1720
__drm_edid_iter_next(struct drm_edid_iter * iter)1721 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1722 {
1723 const void *block = NULL;
1724
1725 if (!iter->drm_edid)
1726 return NULL;
1727
1728 if (iter->index < drm_edid_block_count(iter->drm_edid))
1729 block = drm_edid_block_data(iter->drm_edid, iter->index++);
1730
1731 return block;
1732 }
1733
1734 #define drm_edid_iter_for_each(__block, __iter) \
1735 while (((__block) = __drm_edid_iter_next(__iter)))
1736
drm_edid_iter_end(struct drm_edid_iter * iter)1737 static void drm_edid_iter_end(struct drm_edid_iter *iter)
1738 {
1739 memset(iter, 0, sizeof(*iter));
1740 }
1741
1742 static const u8 edid_header[] = {
1743 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1744 };
1745
edid_header_fix(void * edid)1746 static void edid_header_fix(void *edid)
1747 {
1748 memcpy(edid, edid_header, sizeof(edid_header));
1749 }
1750
1751 /**
1752 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1753 * @_edid: pointer to raw base EDID block
1754 *
1755 * Sanity check the header of the base EDID block.
1756 *
1757 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1758 */
drm_edid_header_is_valid(const void * _edid)1759 int drm_edid_header_is_valid(const void *_edid)
1760 {
1761 const struct edid *edid = _edid;
1762 int i, score = 0;
1763
1764 for (i = 0; i < sizeof(edid_header); i++) {
1765 if (edid->header[i] == edid_header[i])
1766 score++;
1767 }
1768
1769 return score;
1770 }
1771 EXPORT_SYMBOL(drm_edid_header_is_valid);
1772
1773 static int edid_fixup __read_mostly = 6;
1774 module_param_named(edid_fixup, edid_fixup, int, 0400);
1775 MODULE_PARM_DESC(edid_fixup,
1776 "Minimum number of valid EDID header bytes (0-8, default 6)");
1777
edid_block_compute_checksum(const void * _block)1778 static int edid_block_compute_checksum(const void *_block)
1779 {
1780 const u8 *block = _block;
1781 int i;
1782 u8 csum = 0, crc = 0;
1783
1784 for (i = 0; i < EDID_LENGTH - 1; i++)
1785 csum += block[i];
1786
1787 crc = 0x100 - csum;
1788
1789 return crc;
1790 }
1791
edid_block_get_checksum(const void * _block)1792 static int edid_block_get_checksum(const void *_block)
1793 {
1794 const struct edid *block = _block;
1795
1796 return block->checksum;
1797 }
1798
edid_block_tag(const void * _block)1799 static int edid_block_tag(const void *_block)
1800 {
1801 const u8 *block = _block;
1802
1803 return block[0];
1804 }
1805
edid_block_is_zero(const void * edid)1806 static bool edid_block_is_zero(const void *edid)
1807 {
1808 return !memchr_inv(edid, 0, EDID_LENGTH);
1809 }
1810
1811 /**
1812 * drm_edid_are_equal - compare two edid blobs.
1813 * @edid1: pointer to first blob
1814 * @edid2: pointer to second blob
1815 * This helper can be used during probing to determine if
1816 * edid had changed.
1817 */
drm_edid_are_equal(const struct edid * edid1,const struct edid * edid2)1818 bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1819 {
1820 int edid1_len, edid2_len;
1821 bool edid1_present = edid1 != NULL;
1822 bool edid2_present = edid2 != NULL;
1823
1824 if (edid1_present != edid2_present)
1825 return false;
1826
1827 if (edid1) {
1828 edid1_len = edid_size(edid1);
1829 edid2_len = edid_size(edid2);
1830
1831 if (edid1_len != edid2_len)
1832 return false;
1833
1834 if (memcmp(edid1, edid2, edid1_len))
1835 return false;
1836 }
1837
1838 return true;
1839 }
1840 EXPORT_SYMBOL(drm_edid_are_equal);
1841
1842 enum edid_block_status {
1843 EDID_BLOCK_OK = 0,
1844 EDID_BLOCK_READ_FAIL,
1845 EDID_BLOCK_NULL,
1846 EDID_BLOCK_ZERO,
1847 EDID_BLOCK_HEADER_CORRUPT,
1848 EDID_BLOCK_HEADER_REPAIR,
1849 EDID_BLOCK_HEADER_FIXED,
1850 EDID_BLOCK_CHECKSUM,
1851 EDID_BLOCK_VERSION,
1852 };
1853
edid_block_check(const void * _block,bool is_base_block)1854 static enum edid_block_status edid_block_check(const void *_block,
1855 bool is_base_block)
1856 {
1857 const struct edid *block = _block;
1858
1859 if (!block)
1860 return EDID_BLOCK_NULL;
1861
1862 if (is_base_block) {
1863 int score = drm_edid_header_is_valid(block);
1864
1865 if (score < clamp(edid_fixup, 0, 8)) {
1866 if (edid_block_is_zero(block))
1867 return EDID_BLOCK_ZERO;
1868 else
1869 return EDID_BLOCK_HEADER_CORRUPT;
1870 }
1871
1872 if (score < 8)
1873 return EDID_BLOCK_HEADER_REPAIR;
1874 }
1875
1876 if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1877 if (edid_block_is_zero(block))
1878 return EDID_BLOCK_ZERO;
1879 else
1880 return EDID_BLOCK_CHECKSUM;
1881 }
1882
1883 if (is_base_block) {
1884 if (block->version != 1)
1885 return EDID_BLOCK_VERSION;
1886 }
1887
1888 return EDID_BLOCK_OK;
1889 }
1890
edid_block_status_valid(enum edid_block_status status,int tag)1891 static bool edid_block_status_valid(enum edid_block_status status, int tag)
1892 {
1893 return status == EDID_BLOCK_OK ||
1894 status == EDID_BLOCK_HEADER_FIXED ||
1895 (status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1896 }
1897
edid_block_valid(const void * block,bool base)1898 static bool edid_block_valid(const void *block, bool base)
1899 {
1900 return edid_block_status_valid(edid_block_check(block, base),
1901 edid_block_tag(block));
1902 }
1903
edid_block_status_print(enum edid_block_status status,const struct edid * block,int block_num)1904 static void edid_block_status_print(enum edid_block_status status,
1905 const struct edid *block,
1906 int block_num)
1907 {
1908 switch (status) {
1909 case EDID_BLOCK_OK:
1910 break;
1911 case EDID_BLOCK_READ_FAIL:
1912 pr_debug("EDID block %d read failed\n", block_num);
1913 break;
1914 case EDID_BLOCK_NULL:
1915 pr_debug("EDID block %d pointer is NULL\n", block_num);
1916 break;
1917 case EDID_BLOCK_ZERO:
1918 pr_notice("EDID block %d is all zeroes\n", block_num);
1919 break;
1920 case EDID_BLOCK_HEADER_CORRUPT:
1921 pr_notice("EDID has corrupt header\n");
1922 break;
1923 case EDID_BLOCK_HEADER_REPAIR:
1924 pr_debug("EDID corrupt header needs repair\n");
1925 break;
1926 case EDID_BLOCK_HEADER_FIXED:
1927 pr_debug("EDID corrupt header fixed\n");
1928 break;
1929 case EDID_BLOCK_CHECKSUM:
1930 if (edid_block_status_valid(status, edid_block_tag(block))) {
1931 pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1932 block_num, edid_block_tag(block),
1933 edid_block_compute_checksum(block));
1934 } else {
1935 pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1936 block_num, edid_block_tag(block),
1937 edid_block_compute_checksum(block));
1938 }
1939 break;
1940 case EDID_BLOCK_VERSION:
1941 pr_notice("EDID has major version %d, instead of 1\n",
1942 block->version);
1943 break;
1944 default:
1945 WARN(1, "EDID block %d unknown edid block status code %d\n",
1946 block_num, status);
1947 break;
1948 }
1949 }
1950
edid_block_dump(const char * level,const void * block,int block_num)1951 static void edid_block_dump(const char *level, const void *block, int block_num)
1952 {
1953 enum edid_block_status status;
1954 char prefix[20];
1955
1956 status = edid_block_check(block, block_num == 0);
1957 if (status == EDID_BLOCK_ZERO)
1958 sprintf(prefix, "\t[%02x] ZERO ", block_num);
1959 else if (!edid_block_status_valid(status, edid_block_tag(block)))
1960 sprintf(prefix, "\t[%02x] BAD ", block_num);
1961 else
1962 sprintf(prefix, "\t[%02x] GOOD ", block_num);
1963
1964 print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1965 block, EDID_LENGTH, false);
1966 }
1967
1968 /**
1969 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1970 * @_block: pointer to raw EDID block
1971 * @block_num: type of block to validate (0 for base, extension otherwise)
1972 * @print_bad_edid: if true, dump bad EDID blocks to the console
1973 * @edid_corrupt: if true, the header or checksum is invalid
1974 *
1975 * Validate a base or extension EDID block and optionally dump bad blocks to
1976 * the console.
1977 *
1978 * Return: True if the block is valid, false otherwise.
1979 */
drm_edid_block_valid(u8 * _block,int block_num,bool print_bad_edid,bool * edid_corrupt)1980 bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1981 bool *edid_corrupt)
1982 {
1983 struct edid *block = (struct edid *)_block;
1984 enum edid_block_status status;
1985 bool is_base_block = block_num == 0;
1986 bool valid;
1987
1988 if (WARN_ON(!block))
1989 return false;
1990
1991 status = edid_block_check(block, is_base_block);
1992 if (status == EDID_BLOCK_HEADER_REPAIR) {
1993 DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1994 edid_header_fix(block);
1995
1996 /* Retry with fixed header, update status if that worked. */
1997 status = edid_block_check(block, is_base_block);
1998 if (status == EDID_BLOCK_OK)
1999 status = EDID_BLOCK_HEADER_FIXED;
2000 }
2001
2002 if (edid_corrupt) {
2003 /*
2004 * Unknown major version isn't corrupt but we can't use it. Only
2005 * the base block can reset edid_corrupt to false.
2006 */
2007 if (is_base_block &&
2008 (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2009 *edid_corrupt = false;
2010 else if (status != EDID_BLOCK_OK)
2011 *edid_corrupt = true;
2012 }
2013
2014 edid_block_status_print(status, block, block_num);
2015
2016 /* Determine whether we can use this block with this status. */
2017 valid = edid_block_status_valid(status, edid_block_tag(block));
2018
2019 if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2020 pr_notice("Raw EDID:\n");
2021 edid_block_dump(KERN_NOTICE, block, block_num);
2022 }
2023
2024 return valid;
2025 }
2026 EXPORT_SYMBOL(drm_edid_block_valid);
2027
2028 /**
2029 * drm_edid_is_valid - sanity check EDID data
2030 * @edid: EDID data
2031 *
2032 * Sanity-check an entire EDID record (including extensions)
2033 *
2034 * Return: True if the EDID data is valid, false otherwise.
2035 */
drm_edid_is_valid(struct edid * edid)2036 bool drm_edid_is_valid(struct edid *edid)
2037 {
2038 int i;
2039
2040 if (!edid)
2041 return false;
2042
2043 for (i = 0; i < edid_block_count(edid); i++) {
2044 void *block = (void *)edid_block_data(edid, i);
2045
2046 if (!drm_edid_block_valid(block, i, true, NULL))
2047 return false;
2048 }
2049
2050 return true;
2051 }
2052 EXPORT_SYMBOL(drm_edid_is_valid);
2053
2054 /**
2055 * drm_edid_valid - sanity check EDID data
2056 * @drm_edid: EDID data
2057 *
2058 * Sanity check an EDID. Cross check block count against allocated size and
2059 * checksum the blocks.
2060 *
2061 * Return: True if the EDID data is valid, false otherwise.
2062 */
drm_edid_valid(const struct drm_edid * drm_edid)2063 bool drm_edid_valid(const struct drm_edid *drm_edid)
2064 {
2065 int i;
2066
2067 if (!drm_edid)
2068 return false;
2069
2070 if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2071 return false;
2072
2073 for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2074 const void *block = drm_edid_block_data(drm_edid, i);
2075
2076 if (!edid_block_valid(block, i == 0))
2077 return false;
2078 }
2079
2080 return true;
2081 }
2082 EXPORT_SYMBOL(drm_edid_valid);
2083
edid_filter_invalid_blocks(struct edid * edid,size_t * alloc_size)2084 static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2085 size_t *alloc_size)
2086 {
2087 struct edid *new;
2088 int i, valid_blocks = 0;
2089
2090 /*
2091 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2092 * back to regular extension count here. We don't want to start
2093 * modifying the HF-EEODB extension too.
2094 */
2095 for (i = 0; i < edid_block_count(edid); i++) {
2096 const void *src_block = edid_block_data(edid, i);
2097
2098 if (edid_block_valid(src_block, i == 0)) {
2099 void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2100
2101 memmove(dst_block, src_block, EDID_LENGTH);
2102 valid_blocks++;
2103 }
2104 }
2105
2106 /* We already trusted the base block to be valid here... */
2107 if (WARN_ON(!valid_blocks)) {
2108 kfree(edid);
2109 return NULL;
2110 }
2111
2112 edid->extensions = valid_blocks - 1;
2113 edid->checksum = edid_block_compute_checksum(edid);
2114
2115 *alloc_size = edid_size_by_blocks(valid_blocks);
2116
2117 new = krealloc(edid, *alloc_size, GFP_KERNEL);
2118 if (!new)
2119 kfree(edid);
2120
2121 return new;
2122 }
2123
2124 #define DDC_SEGMENT_ADDR 0x30
2125 /**
2126 * drm_do_probe_ddc_edid() - get EDID information via I2C
2127 * @data: I2C device adapter
2128 * @buf: EDID data buffer to be filled
2129 * @block: 128 byte EDID block to start fetching from
2130 * @len: EDID data buffer length to fetch
2131 *
2132 * Try to fetch EDID information by calling I2C driver functions.
2133 *
2134 * Return: 0 on success or -1 on failure.
2135 */
2136 static int
drm_do_probe_ddc_edid(void * data,u8 * buf,unsigned int block,size_t len)2137 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2138 {
2139 struct i2c_adapter *adapter = data;
2140 unsigned char start = block * EDID_LENGTH;
2141 unsigned char segment = block >> 1;
2142 unsigned char xfers = segment ? 3 : 2;
2143 int ret, retries = 5;
2144
2145 /*
2146 * The core I2C driver will automatically retry the transfer if the
2147 * adapter reports EAGAIN. However, we find that bit-banging transfers
2148 * are susceptible to errors under a heavily loaded machine and
2149 * generate spurious NAKs and timeouts. Retrying the transfer
2150 * of the individual block a few times seems to overcome this.
2151 */
2152 do {
2153 struct i2c_msg msgs[] = {
2154 {
2155 .addr = DDC_SEGMENT_ADDR,
2156 .flags = 0,
2157 .len = 1,
2158 .buf = &segment,
2159 }, {
2160 .addr = DDC_ADDR,
2161 .flags = 0,
2162 .len = 1,
2163 .buf = &start,
2164 }, {
2165 .addr = DDC_ADDR,
2166 .flags = I2C_M_RD,
2167 .len = len,
2168 .buf = buf,
2169 }
2170 };
2171
2172 /*
2173 * Avoid sending the segment addr to not upset non-compliant
2174 * DDC monitors.
2175 */
2176 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2177
2178 if (ret == -ENXIO) {
2179 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2180 adapter->name);
2181 break;
2182 }
2183 } while (ret != xfers && --retries);
2184
2185 return ret == xfers ? 0 : -1;
2186 }
2187
connector_bad_edid(struct drm_connector * connector,const struct edid * edid,int num_blocks)2188 static void connector_bad_edid(struct drm_connector *connector,
2189 const struct edid *edid, int num_blocks)
2190 {
2191 int i;
2192 u8 last_block;
2193
2194 /*
2195 * 0x7e in the EDID is the number of extension blocks. The EDID
2196 * is 1 (base block) + num_ext_blocks big. That means we can think
2197 * of 0x7e in the EDID of the _index_ of the last block in the
2198 * combined chunk of memory.
2199 */
2200 last_block = edid->extensions;
2201
2202 /* Calculate real checksum for the last edid extension block data */
2203 if (last_block < num_blocks)
2204 connector->real_edid_checksum =
2205 edid_block_compute_checksum(edid + last_block);
2206
2207 if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2208 return;
2209
2210 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2211 connector->base.id, connector->name);
2212 for (i = 0; i < num_blocks; i++)
2213 edid_block_dump(KERN_DEBUG, edid + i, i);
2214 }
2215
2216 /* Get override or firmware EDID */
drm_edid_override_get(struct drm_connector * connector)2217 static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2218 {
2219 const struct drm_edid *override = NULL;
2220
2221 mutex_lock(&connector->edid_override_mutex);
2222
2223 if (connector->edid_override)
2224 override = drm_edid_dup(connector->edid_override);
2225
2226 mutex_unlock(&connector->edid_override_mutex);
2227
2228 if (!override)
2229 override = drm_edid_load_firmware(connector);
2230
2231 return IS_ERR(override) ? NULL : override;
2232 }
2233
2234 /* For debugfs edid_override implementation */
drm_edid_override_show(struct drm_connector * connector,struct seq_file * m)2235 int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2236 {
2237 const struct drm_edid *drm_edid;
2238
2239 mutex_lock(&connector->edid_override_mutex);
2240
2241 drm_edid = connector->edid_override;
2242 if (drm_edid)
2243 seq_write(m, drm_edid->edid, drm_edid->size);
2244
2245 mutex_unlock(&connector->edid_override_mutex);
2246
2247 return 0;
2248 }
2249
2250 /* For debugfs edid_override implementation */
drm_edid_override_set(struct drm_connector * connector,const void * edid,size_t size)2251 int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2252 size_t size)
2253 {
2254 const struct drm_edid *drm_edid;
2255
2256 drm_edid = drm_edid_alloc(edid, size);
2257 if (!drm_edid_valid(drm_edid)) {
2258 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2259 connector->base.id, connector->name);
2260 drm_edid_free(drm_edid);
2261 return -EINVAL;
2262 }
2263
2264 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2265 connector->base.id, connector->name);
2266
2267 mutex_lock(&connector->edid_override_mutex);
2268
2269 drm_edid_free(connector->edid_override);
2270 connector->edid_override = drm_edid;
2271
2272 mutex_unlock(&connector->edid_override_mutex);
2273
2274 return 0;
2275 }
2276
2277 /* For debugfs edid_override implementation */
drm_edid_override_reset(struct drm_connector * connector)2278 int drm_edid_override_reset(struct drm_connector *connector)
2279 {
2280 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2281 connector->base.id, connector->name);
2282
2283 mutex_lock(&connector->edid_override_mutex);
2284
2285 drm_edid_free(connector->edid_override);
2286 connector->edid_override = NULL;
2287
2288 mutex_unlock(&connector->edid_override_mutex);
2289
2290 return 0;
2291 }
2292
2293 /**
2294 * drm_edid_override_connector_update - add modes from override/firmware EDID
2295 * @connector: connector we're probing
2296 *
2297 * Add modes from the override/firmware EDID, if available. Only to be used from
2298 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2299 * failed during drm_get_edid() and caused the override/firmware EDID to be
2300 * skipped.
2301 *
2302 * Return: The number of modes added or 0 if we couldn't find any.
2303 */
drm_edid_override_connector_update(struct drm_connector * connector)2304 int drm_edid_override_connector_update(struct drm_connector *connector)
2305 {
2306 const struct drm_edid *override;
2307 int num_modes = 0;
2308
2309 override = drm_edid_override_get(connector);
2310 if (override) {
2311 if (drm_edid_connector_update(connector, override) == 0)
2312 num_modes = drm_edid_connector_add_modes(connector);
2313
2314 drm_edid_free(override);
2315
2316 drm_dbg_kms(connector->dev,
2317 "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2318 connector->base.id, connector->name, num_modes);
2319 }
2320
2321 return num_modes;
2322 }
2323 EXPORT_SYMBOL(drm_edid_override_connector_update);
2324
2325 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2326
edid_block_read(void * block,unsigned int block_num,read_block_fn read_block,void * context)2327 static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2328 read_block_fn read_block,
2329 void *context)
2330 {
2331 enum edid_block_status status;
2332 bool is_base_block = block_num == 0;
2333 int try;
2334
2335 for (try = 0; try < 4; try++) {
2336 if (read_block(context, block, block_num, EDID_LENGTH))
2337 return EDID_BLOCK_READ_FAIL;
2338
2339 status = edid_block_check(block, is_base_block);
2340 if (status == EDID_BLOCK_HEADER_REPAIR) {
2341 edid_header_fix(block);
2342
2343 /* Retry with fixed header, update status if that worked. */
2344 status = edid_block_check(block, is_base_block);
2345 if (status == EDID_BLOCK_OK)
2346 status = EDID_BLOCK_HEADER_FIXED;
2347 }
2348
2349 if (edid_block_status_valid(status, edid_block_tag(block)))
2350 break;
2351
2352 /* Fail early for unrepairable base block all zeros. */
2353 if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2354 break;
2355 }
2356
2357 return status;
2358 }
2359
_drm_do_get_edid(struct drm_connector * connector,read_block_fn read_block,void * context,size_t * size)2360 static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2361 read_block_fn read_block, void *context,
2362 size_t *size)
2363 {
2364 enum edid_block_status status;
2365 int i, num_blocks, invalid_blocks = 0;
2366 const struct drm_edid *override;
2367 struct edid *edid, *new;
2368 size_t alloc_size = EDID_LENGTH;
2369
2370 override = drm_edid_override_get(connector);
2371 if (override) {
2372 alloc_size = override->size;
2373 edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2374 drm_edid_free(override);
2375 if (!edid)
2376 return NULL;
2377 goto ok;
2378 }
2379
2380 edid = kmalloc(alloc_size, GFP_KERNEL);
2381 if (!edid)
2382 return NULL;
2383
2384 status = edid_block_read(edid, 0, read_block, context);
2385
2386 edid_block_status_print(status, edid, 0);
2387
2388 if (status == EDID_BLOCK_READ_FAIL)
2389 goto fail;
2390
2391 /* FIXME: Clarify what a corrupt EDID actually means. */
2392 if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2393 connector->edid_corrupt = false;
2394 else
2395 connector->edid_corrupt = true;
2396
2397 if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2398 if (status == EDID_BLOCK_ZERO)
2399 connector->null_edid_counter++;
2400
2401 connector_bad_edid(connector, edid, 1);
2402 goto fail;
2403 }
2404
2405 if (!edid_extension_block_count(edid))
2406 goto ok;
2407
2408 alloc_size = edid_size(edid);
2409 new = krealloc(edid, alloc_size, GFP_KERNEL);
2410 if (!new)
2411 goto fail;
2412 edid = new;
2413
2414 num_blocks = edid_block_count(edid);
2415 for (i = 1; i < num_blocks; i++) {
2416 void *block = (void *)edid_block_data(edid, i);
2417
2418 status = edid_block_read(block, i, read_block, context);
2419
2420 edid_block_status_print(status, block, i);
2421
2422 if (!edid_block_status_valid(status, edid_block_tag(block))) {
2423 if (status == EDID_BLOCK_READ_FAIL)
2424 goto fail;
2425 invalid_blocks++;
2426 } else if (i == 1) {
2427 /*
2428 * If the first EDID extension is a CTA extension, and
2429 * the first Data Block is HF-EEODB, override the
2430 * extension block count.
2431 *
2432 * Note: HF-EEODB could specify a smaller extension
2433 * count too, but we can't risk allocating a smaller
2434 * amount.
2435 */
2436 int eeodb = edid_hfeeodb_block_count(edid);
2437
2438 if (eeodb > num_blocks) {
2439 num_blocks = eeodb;
2440 alloc_size = edid_size_by_blocks(num_blocks);
2441 new = krealloc(edid, alloc_size, GFP_KERNEL);
2442 if (!new)
2443 goto fail;
2444 edid = new;
2445 }
2446 }
2447 }
2448
2449 if (invalid_blocks) {
2450 connector_bad_edid(connector, edid, num_blocks);
2451
2452 edid = edid_filter_invalid_blocks(edid, &alloc_size);
2453 }
2454
2455 ok:
2456 if (size)
2457 *size = alloc_size;
2458
2459 return edid;
2460
2461 fail:
2462 kfree(edid);
2463 return NULL;
2464 }
2465
2466 /**
2467 * drm_do_get_edid - get EDID data using a custom EDID block read function
2468 * @connector: connector we're probing
2469 * @read_block: EDID block read function
2470 * @context: private data passed to the block read function
2471 *
2472 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2473 * exposes a different interface to read EDID blocks this function can be used
2474 * to get EDID data using a custom block read function.
2475 *
2476 * As in the general case the DDC bus is accessible by the kernel at the I2C
2477 * level, drivers must make all reasonable efforts to expose it as an I2C
2478 * adapter and use drm_get_edid() instead of abusing this function.
2479 *
2480 * The EDID may be overridden using debugfs override_edid or firmware EDID
2481 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2482 * order. Having either of them bypasses actual EDID reads.
2483 *
2484 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2485 */
drm_do_get_edid(struct drm_connector * connector,read_block_fn read_block,void * context)2486 struct edid *drm_do_get_edid(struct drm_connector *connector,
2487 read_block_fn read_block,
2488 void *context)
2489 {
2490 return _drm_do_get_edid(connector, read_block, context, NULL);
2491 }
2492 EXPORT_SYMBOL_GPL(drm_do_get_edid);
2493
2494 /**
2495 * drm_edid_raw - Get a pointer to the raw EDID data.
2496 * @drm_edid: drm_edid container
2497 *
2498 * Get a pointer to the raw EDID data.
2499 *
2500 * This is for transition only. Avoid using this like the plague.
2501 *
2502 * Return: Pointer to raw EDID data.
2503 */
drm_edid_raw(const struct drm_edid * drm_edid)2504 const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2505 {
2506 if (!drm_edid || !drm_edid->size)
2507 return NULL;
2508
2509 /*
2510 * Do not return pointers where relying on EDID extension count would
2511 * lead to buffer overflow.
2512 */
2513 if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2514 return NULL;
2515
2516 return drm_edid->edid;
2517 }
2518 EXPORT_SYMBOL(drm_edid_raw);
2519
2520 /* Allocate struct drm_edid container *without* duplicating the edid data */
_drm_edid_alloc(const void * edid,size_t size)2521 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2522 {
2523 struct drm_edid *drm_edid;
2524
2525 if (!edid || !size || size < EDID_LENGTH)
2526 return NULL;
2527
2528 drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2529 if (drm_edid) {
2530 drm_edid->edid = edid;
2531 drm_edid->size = size;
2532 }
2533
2534 return drm_edid;
2535 }
2536
2537 /**
2538 * drm_edid_alloc - Allocate a new drm_edid container
2539 * @edid: Pointer to raw EDID data
2540 * @size: Size of memory allocated for EDID
2541 *
2542 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2543 * the actual size that has been allocated for the data. There is no validation
2544 * of the raw EDID data against the size, but at least the EDID base block must
2545 * fit in the buffer.
2546 *
2547 * The returned pointer must be freed using drm_edid_free().
2548 *
2549 * Return: drm_edid container, or NULL on errors
2550 */
drm_edid_alloc(const void * edid,size_t size)2551 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2552 {
2553 const struct drm_edid *drm_edid;
2554
2555 if (!edid || !size || size < EDID_LENGTH)
2556 return NULL;
2557
2558 edid = kmemdup(edid, size, GFP_KERNEL);
2559 if (!edid)
2560 return NULL;
2561
2562 drm_edid = _drm_edid_alloc(edid, size);
2563 if (!drm_edid)
2564 kfree(edid);
2565
2566 return drm_edid;
2567 }
2568 EXPORT_SYMBOL(drm_edid_alloc);
2569
2570 /**
2571 * drm_edid_dup - Duplicate a drm_edid container
2572 * @drm_edid: EDID to duplicate
2573 *
2574 * The returned pointer must be freed using drm_edid_free().
2575 *
2576 * Returns: drm_edid container copy, or NULL on errors
2577 */
drm_edid_dup(const struct drm_edid * drm_edid)2578 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2579 {
2580 if (!drm_edid)
2581 return NULL;
2582
2583 return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2584 }
2585 EXPORT_SYMBOL(drm_edid_dup);
2586
2587 /**
2588 * drm_edid_free - Free the drm_edid container
2589 * @drm_edid: EDID to free
2590 */
drm_edid_free(const struct drm_edid * drm_edid)2591 void drm_edid_free(const struct drm_edid *drm_edid)
2592 {
2593 if (!drm_edid)
2594 return;
2595
2596 kfree(drm_edid->edid);
2597 kfree(drm_edid);
2598 }
2599 EXPORT_SYMBOL(drm_edid_free);
2600
2601 /**
2602 * drm_probe_ddc() - probe DDC presence
2603 * @adapter: I2C adapter to probe
2604 *
2605 * Return: True on success, false on failure.
2606 */
2607 bool
drm_probe_ddc(struct i2c_adapter * adapter)2608 drm_probe_ddc(struct i2c_adapter *adapter)
2609 {
2610 unsigned char out;
2611
2612 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2613 }
2614 EXPORT_SYMBOL(drm_probe_ddc);
2615
2616 /**
2617 * drm_get_edid - get EDID data, if available
2618 * @connector: connector we're probing
2619 * @adapter: I2C adapter to use for DDC
2620 *
2621 * Poke the given I2C channel to grab EDID data if possible. If found,
2622 * attach it to the connector.
2623 *
2624 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2625 */
drm_get_edid(struct drm_connector * connector,struct i2c_adapter * adapter)2626 struct edid *drm_get_edid(struct drm_connector *connector,
2627 struct i2c_adapter *adapter)
2628 {
2629 struct edid *edid;
2630
2631 if (connector->force == DRM_FORCE_OFF)
2632 return NULL;
2633
2634 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2635 return NULL;
2636
2637 edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2638 drm_connector_update_edid_property(connector, edid);
2639 return edid;
2640 }
2641 EXPORT_SYMBOL(drm_get_edid);
2642
2643 /**
2644 * drm_edid_read_custom - Read EDID data using given EDID block read function
2645 * @connector: Connector to use
2646 * @read_block: EDID block read function
2647 * @context: Private data passed to the block read function
2648 *
2649 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2650 * exposes a different interface to read EDID blocks this function can be used
2651 * to get EDID data using a custom block read function.
2652 *
2653 * As in the general case the DDC bus is accessible by the kernel at the I2C
2654 * level, drivers must make all reasonable efforts to expose it as an I2C
2655 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2656 * this function.
2657 *
2658 * The EDID may be overridden using debugfs override_edid or firmware EDID
2659 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2660 * order. Having either of them bypasses actual EDID reads.
2661 *
2662 * The returned pointer must be freed using drm_edid_free().
2663 *
2664 * Return: Pointer to EDID, or NULL if probe/read failed.
2665 */
drm_edid_read_custom(struct drm_connector * connector,read_block_fn read_block,void * context)2666 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2667 read_block_fn read_block,
2668 void *context)
2669 {
2670 const struct drm_edid *drm_edid;
2671 struct edid *edid;
2672 size_t size = 0;
2673
2674 edid = _drm_do_get_edid(connector, read_block, context, &size);
2675 if (!edid)
2676 return NULL;
2677
2678 /* Sanity check for now */
2679 drm_WARN_ON(connector->dev, !size);
2680
2681 drm_edid = _drm_edid_alloc(edid, size);
2682 if (!drm_edid)
2683 kfree(edid);
2684
2685 return drm_edid;
2686 }
2687 EXPORT_SYMBOL(drm_edid_read_custom);
2688
2689 /**
2690 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2691 * @connector: Connector to use
2692 * @adapter: I2C adapter to use for DDC
2693 *
2694 * Read EDID using the given I2C adapter.
2695 *
2696 * The EDID may be overridden using debugfs override_edid or firmware EDID
2697 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2698 * order. Having either of them bypasses actual EDID reads.
2699 *
2700 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2701 * using drm_edid_read() instead of this function.
2702 *
2703 * The returned pointer must be freed using drm_edid_free().
2704 *
2705 * Return: Pointer to EDID, or NULL if probe/read failed.
2706 */
drm_edid_read_ddc(struct drm_connector * connector,struct i2c_adapter * adapter)2707 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2708 struct i2c_adapter *adapter)
2709 {
2710 const struct drm_edid *drm_edid;
2711
2712 if (connector->force == DRM_FORCE_OFF)
2713 return NULL;
2714
2715 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2716 return NULL;
2717
2718 drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2719
2720 /* Note: Do *not* call connector updates here. */
2721
2722 return drm_edid;
2723 }
2724 EXPORT_SYMBOL(drm_edid_read_ddc);
2725
2726 /**
2727 * drm_edid_read - Read EDID data using connector's I2C adapter
2728 * @connector: Connector to use
2729 *
2730 * Read EDID using the connector's I2C adapter.
2731 *
2732 * The EDID may be overridden using debugfs override_edid or firmware EDID
2733 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2734 * order. Having either of them bypasses actual EDID reads.
2735 *
2736 * The returned pointer must be freed using drm_edid_free().
2737 *
2738 * Return: Pointer to EDID, or NULL if probe/read failed.
2739 */
drm_edid_read(struct drm_connector * connector)2740 const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2741 {
2742 if (drm_WARN_ON(connector->dev, !connector->ddc))
2743 return NULL;
2744
2745 return drm_edid_read_ddc(connector, connector->ddc);
2746 }
2747 EXPORT_SYMBOL(drm_edid_read);
2748
edid_extract_panel_id(const struct edid * edid)2749 static u32 edid_extract_panel_id(const struct edid *edid)
2750 {
2751 /*
2752 * We represent the ID as a 32-bit number so it can easily be compared
2753 * with "==".
2754 *
2755 * NOTE that we deal with endianness differently for the top half
2756 * of this ID than for the bottom half. The bottom half (the product
2757 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2758 * that's how everyone seems to interpret it. The top half (the mfg_id)
2759 * gets stored as big endian because that makes
2760 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2761 * to write (it's easier to extract the ASCII). It doesn't really
2762 * matter, though, as long as the number here is unique.
2763 */
2764 return (u32)edid->mfg_id[0] << 24 |
2765 (u32)edid->mfg_id[1] << 16 |
2766 (u32)EDID_PRODUCT_ID(edid);
2767 }
2768
2769 /**
2770 * drm_edid_get_panel_id - Get a panel's ID through DDC
2771 * @adapter: I2C adapter to use for DDC
2772 *
2773 * This function reads the first block of the EDID of a panel and (assuming
2774 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2775 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2776 * supposed to be different for each different modem of panel.
2777 *
2778 * This function is intended to be used during early probing on devices where
2779 * more than one panel might be present. Because of its intended use it must
2780 * assume that the EDID of the panel is correct, at least as far as the ID
2781 * is concerned (in other words, we don't process any overrides here).
2782 *
2783 * NOTE: it's expected that this function and drm_do_get_edid() will both
2784 * be read the EDID, but there is no caching between them. Since we're only
2785 * reading the first block, hopefully this extra overhead won't be too big.
2786 *
2787 * Return: A 32-bit ID that should be different for each make/model of panel.
2788 * See the functions drm_edid_encode_panel_id() and
2789 * drm_edid_decode_panel_id() for some details on the structure of this
2790 * ID.
2791 */
2792
drm_edid_get_panel_id(struct i2c_adapter * adapter)2793 u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2794 {
2795 enum edid_block_status status;
2796 void *base_block;
2797 u32 panel_id = 0;
2798
2799 /*
2800 * There are no manufacturer IDs of 0, so if there is a problem reading
2801 * the EDID then we'll just return 0.
2802 */
2803
2804 base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2805 if (!base_block)
2806 return 0;
2807
2808 status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2809
2810 edid_block_status_print(status, base_block, 0);
2811
2812 if (edid_block_status_valid(status, edid_block_tag(base_block)))
2813 panel_id = edid_extract_panel_id(base_block);
2814 else
2815 edid_block_dump(KERN_NOTICE, base_block, 0);
2816
2817 kfree(base_block);
2818
2819 return panel_id;
2820 }
2821 EXPORT_SYMBOL(drm_edid_get_panel_id);
2822
2823 /**
2824 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2825 * @connector: connector we're probing
2826 * @adapter: I2C adapter to use for DDC
2827 *
2828 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2829 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2830 * switch DDC to the GPU which is retrieving EDID.
2831 *
2832 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2833 */
drm_get_edid_switcheroo(struct drm_connector * connector,struct i2c_adapter * adapter)2834 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2835 struct i2c_adapter *adapter)
2836 {
2837 struct drm_device *dev = connector->dev;
2838 struct pci_dev *pdev = to_pci_dev(dev->dev);
2839 struct edid *edid;
2840
2841 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2842 return NULL;
2843
2844 vga_switcheroo_lock_ddc(pdev);
2845 edid = drm_get_edid(connector, adapter);
2846 vga_switcheroo_unlock_ddc(pdev);
2847
2848 return edid;
2849 }
2850 EXPORT_SYMBOL(drm_get_edid_switcheroo);
2851
2852 /**
2853 * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2854 * @connector: connector we're probing
2855 * @adapter: I2C adapter to use for DDC
2856 *
2857 * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2858 * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2859 * temporarily switch DDC to the GPU which is retrieving EDID.
2860 *
2861 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2862 */
drm_edid_read_switcheroo(struct drm_connector * connector,struct i2c_adapter * adapter)2863 const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2864 struct i2c_adapter *adapter)
2865 {
2866 struct drm_device *dev = connector->dev;
2867 struct pci_dev *pdev = to_pci_dev(dev->dev);
2868 const struct drm_edid *drm_edid;
2869
2870 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2871 return NULL;
2872
2873 vga_switcheroo_lock_ddc(pdev);
2874 drm_edid = drm_edid_read_ddc(connector, adapter);
2875 vga_switcheroo_unlock_ddc(pdev);
2876
2877 return drm_edid;
2878 }
2879 EXPORT_SYMBOL(drm_edid_read_switcheroo);
2880
2881 /**
2882 * drm_edid_duplicate - duplicate an EDID and the extensions
2883 * @edid: EDID to duplicate
2884 *
2885 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2886 */
drm_edid_duplicate(const struct edid * edid)2887 struct edid *drm_edid_duplicate(const struct edid *edid)
2888 {
2889 if (!edid)
2890 return NULL;
2891
2892 return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2893 }
2894 EXPORT_SYMBOL(drm_edid_duplicate);
2895
2896 /*** EDID parsing ***/
2897
2898 /**
2899 * edid_get_quirks - return quirk flags for a given EDID
2900 * @drm_edid: EDID to process
2901 *
2902 * This tells subsequent routines what fixes they need to apply.
2903 */
edid_get_quirks(const struct drm_edid * drm_edid)2904 static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2905 {
2906 u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2907 const struct edid_quirk *quirk;
2908 int i;
2909
2910 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2911 quirk = &edid_quirk_list[i];
2912 if (quirk->panel_id == panel_id)
2913 return quirk->quirks;
2914 }
2915
2916 return 0;
2917 }
2918
2919 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2920 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2921
2922 /*
2923 * Walk the mode list for connector, clearing the preferred status on existing
2924 * modes and setting it anew for the right mode ala quirks.
2925 */
edid_fixup_preferred(struct drm_connector * connector)2926 static void edid_fixup_preferred(struct drm_connector *connector)
2927 {
2928 const struct drm_display_info *info = &connector->display_info;
2929 struct drm_display_mode *t, *cur_mode, *preferred_mode;
2930 int target_refresh = 0;
2931 int cur_vrefresh, preferred_vrefresh;
2932
2933 if (list_empty(&connector->probed_modes))
2934 return;
2935
2936 if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2937 target_refresh = 60;
2938 if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2939 target_refresh = 75;
2940
2941 preferred_mode = list_first_entry(&connector->probed_modes,
2942 struct drm_display_mode, head);
2943
2944 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2945 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2946
2947 if (cur_mode == preferred_mode)
2948 continue;
2949
2950 /* Largest mode is preferred */
2951 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2952 preferred_mode = cur_mode;
2953
2954 cur_vrefresh = drm_mode_vrefresh(cur_mode);
2955 preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2956 /* At a given size, try to get closest to target refresh */
2957 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2958 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2959 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2960 preferred_mode = cur_mode;
2961 }
2962 }
2963
2964 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2965 }
2966
2967 static bool
mode_is_rb(const struct drm_display_mode * mode)2968 mode_is_rb(const struct drm_display_mode *mode)
2969 {
2970 return (mode->htotal - mode->hdisplay == 160) &&
2971 (mode->hsync_end - mode->hdisplay == 80) &&
2972 (mode->hsync_end - mode->hsync_start == 32) &&
2973 (mode->vsync_start - mode->vdisplay == 3);
2974 }
2975
2976 /*
2977 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2978 * @dev: Device to duplicate against
2979 * @hsize: Mode width
2980 * @vsize: Mode height
2981 * @fresh: Mode refresh rate
2982 * @rb: Mode reduced-blanking-ness
2983 *
2984 * Walk the DMT mode list looking for a match for the given parameters.
2985 *
2986 * Return: A newly allocated copy of the mode, or NULL if not found.
2987 */
drm_mode_find_dmt(struct drm_device * dev,int hsize,int vsize,int fresh,bool rb)2988 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2989 int hsize, int vsize, int fresh,
2990 bool rb)
2991 {
2992 int i;
2993
2994 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2995 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2996
2997 if (hsize != ptr->hdisplay)
2998 continue;
2999 if (vsize != ptr->vdisplay)
3000 continue;
3001 if (fresh != drm_mode_vrefresh(ptr))
3002 continue;
3003 if (rb != mode_is_rb(ptr))
3004 continue;
3005
3006 return drm_mode_duplicate(dev, ptr);
3007 }
3008
3009 return NULL;
3010 }
3011 EXPORT_SYMBOL(drm_mode_find_dmt);
3012
is_display_descriptor(const struct detailed_timing * descriptor,u8 type)3013 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3014 {
3015 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3016 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3017 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3018
3019 return descriptor->pixel_clock == 0 &&
3020 descriptor->data.other_data.pad1 == 0 &&
3021 descriptor->data.other_data.type == type;
3022 }
3023
is_detailed_timing_descriptor(const struct detailed_timing * descriptor)3024 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3025 {
3026 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3027
3028 return descriptor->pixel_clock != 0;
3029 }
3030
3031 typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3032
3033 static void
cea_for_each_detailed_block(const u8 * ext,detailed_cb * cb,void * closure)3034 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3035 {
3036 int i, n;
3037 u8 d = ext[0x02];
3038 const u8 *det_base = ext + d;
3039
3040 if (d < 4 || d > 127)
3041 return;
3042
3043 n = (127 - d) / 18;
3044 for (i = 0; i < n; i++)
3045 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3046 }
3047
3048 static void
vtb_for_each_detailed_block(const u8 * ext,detailed_cb * cb,void * closure)3049 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3050 {
3051 unsigned int i, n = min((int)ext[0x02], 6);
3052 const u8 *det_base = ext + 5;
3053
3054 if (ext[0x01] != 1)
3055 return; /* unknown version */
3056
3057 for (i = 0; i < n; i++)
3058 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3059 }
3060
drm_for_each_detailed_block(const struct drm_edid * drm_edid,detailed_cb * cb,void * closure)3061 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3062 detailed_cb *cb, void *closure)
3063 {
3064 struct drm_edid_iter edid_iter;
3065 const u8 *ext;
3066 int i;
3067
3068 if (!drm_edid)
3069 return;
3070
3071 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3072 cb(&drm_edid->edid->detailed_timings[i], closure);
3073
3074 drm_edid_iter_begin(drm_edid, &edid_iter);
3075 drm_edid_iter_for_each(ext, &edid_iter) {
3076 switch (*ext) {
3077 case CEA_EXT:
3078 cea_for_each_detailed_block(ext, cb, closure);
3079 break;
3080 case VTB_EXT:
3081 vtb_for_each_detailed_block(ext, cb, closure);
3082 break;
3083 default:
3084 break;
3085 }
3086 }
3087 drm_edid_iter_end(&edid_iter);
3088 }
3089
3090 static void
is_rb(const struct detailed_timing * descriptor,void * data)3091 is_rb(const struct detailed_timing *descriptor, void *data)
3092 {
3093 bool *res = data;
3094
3095 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3096 return;
3097
3098 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3099 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3100
3101 if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3102 descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3103 *res = true;
3104 }
3105
3106 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
3107 static bool
drm_monitor_supports_rb(const struct drm_edid * drm_edid)3108 drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3109 {
3110 if (drm_edid->edid->revision >= 4) {
3111 bool ret = false;
3112
3113 drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3114 return ret;
3115 }
3116
3117 return ((drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
3118 }
3119
3120 static void
find_gtf2(const struct detailed_timing * descriptor,void * data)3121 find_gtf2(const struct detailed_timing *descriptor, void *data)
3122 {
3123 const struct detailed_timing **res = data;
3124
3125 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3126 return;
3127
3128 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3129
3130 if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3131 *res = descriptor;
3132 }
3133
3134 /* Secondary GTF curve kicks in above some break frequency */
3135 static int
drm_gtf2_hbreak(const struct drm_edid * drm_edid)3136 drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3137 {
3138 const struct detailed_timing *descriptor = NULL;
3139
3140 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3141
3142 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3143
3144 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3145 }
3146
3147 static int
drm_gtf2_2c(const struct drm_edid * drm_edid)3148 drm_gtf2_2c(const struct drm_edid *drm_edid)
3149 {
3150 const struct detailed_timing *descriptor = NULL;
3151
3152 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3153
3154 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3155
3156 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3157 }
3158
3159 static int
drm_gtf2_m(const struct drm_edid * drm_edid)3160 drm_gtf2_m(const struct drm_edid *drm_edid)
3161 {
3162 const struct detailed_timing *descriptor = NULL;
3163
3164 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3165
3166 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3167
3168 return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3169 }
3170
3171 static int
drm_gtf2_k(const struct drm_edid * drm_edid)3172 drm_gtf2_k(const struct drm_edid *drm_edid)
3173 {
3174 const struct detailed_timing *descriptor = NULL;
3175
3176 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3177
3178 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3179
3180 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3181 }
3182
3183 static int
drm_gtf2_2j(const struct drm_edid * drm_edid)3184 drm_gtf2_2j(const struct drm_edid *drm_edid)
3185 {
3186 const struct detailed_timing *descriptor = NULL;
3187
3188 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3189
3190 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3191
3192 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3193 }
3194
3195 static void
get_timing_level(const struct detailed_timing * descriptor,void * data)3196 get_timing_level(const struct detailed_timing *descriptor, void *data)
3197 {
3198 int *res = data;
3199
3200 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3201 return;
3202
3203 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3204
3205 switch (descriptor->data.other_data.data.range.flags) {
3206 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3207 *res = LEVEL_GTF;
3208 break;
3209 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3210 *res = LEVEL_GTF2;
3211 break;
3212 case DRM_EDID_CVT_SUPPORT_FLAG:
3213 *res = LEVEL_CVT;
3214 break;
3215 default:
3216 break;
3217 }
3218 }
3219
3220 /* Get standard timing level (CVT/GTF/DMT). */
standard_timing_level(const struct drm_edid * drm_edid)3221 static int standard_timing_level(const struct drm_edid *drm_edid)
3222 {
3223 const struct edid *edid = drm_edid->edid;
3224
3225 if (edid->revision >= 4) {
3226 /*
3227 * If the range descriptor doesn't
3228 * indicate otherwise default to CVT
3229 */
3230 int ret = LEVEL_CVT;
3231
3232 drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3233
3234 return ret;
3235 } else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3236 return LEVEL_GTF2;
3237 } else if (edid->revision >= 2) {
3238 return LEVEL_GTF;
3239 } else {
3240 return LEVEL_DMT;
3241 }
3242 }
3243
3244 /*
3245 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
3246 * monitors fill with ascii space (0x20) instead.
3247 */
3248 static int
bad_std_timing(u8 a,u8 b)3249 bad_std_timing(u8 a, u8 b)
3250 {
3251 return (a == 0x00 && b == 0x00) ||
3252 (a == 0x01 && b == 0x01) ||
3253 (a == 0x20 && b == 0x20);
3254 }
3255
drm_mode_hsync(const struct drm_display_mode * mode)3256 static int drm_mode_hsync(const struct drm_display_mode *mode)
3257 {
3258 if (mode->htotal <= 0)
3259 return 0;
3260
3261 return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3262 }
3263
3264 static struct drm_display_mode *
drm_gtf2_mode(struct drm_device * dev,const struct drm_edid * drm_edid,int hsize,int vsize,int vrefresh_rate)3265 drm_gtf2_mode(struct drm_device *dev,
3266 const struct drm_edid *drm_edid,
3267 int hsize, int vsize, int vrefresh_rate)
3268 {
3269 struct drm_display_mode *mode;
3270
3271 /*
3272 * This is potentially wrong if there's ever a monitor with
3273 * more than one ranges section, each claiming a different
3274 * secondary GTF curve. Please don't do that.
3275 */
3276 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3277 if (!mode)
3278 return NULL;
3279
3280 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3281 drm_mode_destroy(dev, mode);
3282 mode = drm_gtf_mode_complex(dev, hsize, vsize,
3283 vrefresh_rate, 0, 0,
3284 drm_gtf2_m(drm_edid),
3285 drm_gtf2_2c(drm_edid),
3286 drm_gtf2_k(drm_edid),
3287 drm_gtf2_2j(drm_edid));
3288 }
3289
3290 return mode;
3291 }
3292
3293 /*
3294 * Take the standard timing params (in this case width, aspect, and refresh)
3295 * and convert them into a real mode using CVT/GTF/DMT.
3296 */
drm_mode_std(struct drm_connector * connector,const struct drm_edid * drm_edid,const struct std_timing * t)3297 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3298 const struct drm_edid *drm_edid,
3299 const struct std_timing *t)
3300 {
3301 struct drm_device *dev = connector->dev;
3302 struct drm_display_mode *m, *mode = NULL;
3303 int hsize, vsize;
3304 int vrefresh_rate;
3305 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3306 >> EDID_TIMING_ASPECT_SHIFT;
3307 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3308 >> EDID_TIMING_VFREQ_SHIFT;
3309 int timing_level = standard_timing_level(drm_edid);
3310
3311 if (bad_std_timing(t->hsize, t->vfreq_aspect))
3312 return NULL;
3313
3314 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3315 hsize = t->hsize * 8 + 248;
3316 /* vrefresh_rate = vfreq + 60 */
3317 vrefresh_rate = vfreq + 60;
3318 /* the vdisplay is calculated based on the aspect ratio */
3319 if (aspect_ratio == 0) {
3320 if (drm_edid->edid->revision < 3)
3321 vsize = hsize;
3322 else
3323 vsize = (hsize * 10) / 16;
3324 } else if (aspect_ratio == 1)
3325 vsize = (hsize * 3) / 4;
3326 else if (aspect_ratio == 2)
3327 vsize = (hsize * 4) / 5;
3328 else
3329 vsize = (hsize * 9) / 16;
3330
3331 /* HDTV hack, part 1 */
3332 if (vrefresh_rate == 60 &&
3333 ((hsize == 1360 && vsize == 765) ||
3334 (hsize == 1368 && vsize == 769))) {
3335 hsize = 1366;
3336 vsize = 768;
3337 }
3338
3339 /*
3340 * If this connector already has a mode for this size and refresh
3341 * rate (because it came from detailed or CVT info), use that
3342 * instead. This way we don't have to guess at interlace or
3343 * reduced blanking.
3344 */
3345 list_for_each_entry(m, &connector->probed_modes, head)
3346 if (m->hdisplay == hsize && m->vdisplay == vsize &&
3347 drm_mode_vrefresh(m) == vrefresh_rate)
3348 return NULL;
3349
3350 /* HDTV hack, part 2 */
3351 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3352 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3353 false);
3354 if (!mode)
3355 return NULL;
3356 mode->hdisplay = 1366;
3357 mode->hsync_start = mode->hsync_start - 1;
3358 mode->hsync_end = mode->hsync_end - 1;
3359 return mode;
3360 }
3361
3362 /* check whether it can be found in default mode table */
3363 if (drm_monitor_supports_rb(drm_edid)) {
3364 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3365 true);
3366 if (mode)
3367 return mode;
3368 }
3369 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3370 if (mode)
3371 return mode;
3372
3373 /* okay, generate it */
3374 switch (timing_level) {
3375 case LEVEL_DMT:
3376 break;
3377 case LEVEL_GTF:
3378 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3379 break;
3380 case LEVEL_GTF2:
3381 mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3382 break;
3383 case LEVEL_CVT:
3384 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3385 false);
3386 break;
3387 }
3388 return mode;
3389 }
3390
3391 /*
3392 * EDID is delightfully ambiguous about how interlaced modes are to be
3393 * encoded. Our internal representation is of frame height, but some
3394 * HDTV detailed timings are encoded as field height.
3395 *
3396 * The format list here is from CEA, in frame size. Technically we
3397 * should be checking refresh rate too. Whatever.
3398 */
3399 static void
drm_mode_do_interlace_quirk(struct drm_display_mode * mode,const struct detailed_pixel_timing * pt)3400 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3401 const struct detailed_pixel_timing *pt)
3402 {
3403 int i;
3404 static const struct {
3405 int w, h;
3406 } cea_interlaced[] = {
3407 { 1920, 1080 },
3408 { 720, 480 },
3409 { 1440, 480 },
3410 { 2880, 480 },
3411 { 720, 576 },
3412 { 1440, 576 },
3413 { 2880, 576 },
3414 };
3415
3416 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3417 return;
3418
3419 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3420 if ((mode->hdisplay == cea_interlaced[i].w) &&
3421 (mode->vdisplay == cea_interlaced[i].h / 2)) {
3422 mode->vdisplay *= 2;
3423 mode->vsync_start *= 2;
3424 mode->vsync_end *= 2;
3425 mode->vtotal *= 2;
3426 mode->vtotal |= 1;
3427 }
3428 }
3429
3430 mode->flags |= DRM_MODE_FLAG_INTERLACE;
3431 }
3432
3433 /*
3434 * Create a new mode from an EDID detailed timing section. An EDID detailed
3435 * timing block contains enough info for us to create and return a new struct
3436 * drm_display_mode.
3437 */
drm_mode_detailed(struct drm_connector * connector,const struct drm_edid * drm_edid,const struct detailed_timing * timing)3438 static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3439 const struct drm_edid *drm_edid,
3440 const struct detailed_timing *timing)
3441 {
3442 const struct drm_display_info *info = &connector->display_info;
3443 struct drm_device *dev = connector->dev;
3444 struct drm_display_mode *mode;
3445 const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3446 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3447 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3448 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3449 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3450 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3451 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3452 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3453 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3454
3455 /* ignore tiny modes */
3456 if (hactive < 64 || vactive < 64)
3457 return NULL;
3458
3459 if (pt->misc & DRM_EDID_PT_STEREO) {
3460 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3461 connector->base.id, connector->name);
3462 return NULL;
3463 }
3464 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3465 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3466 connector->base.id, connector->name);
3467 }
3468
3469 /* it is incorrect if hsync/vsync width is zero */
3470 if (!hsync_pulse_width || !vsync_pulse_width) {
3471 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3472 connector->base.id, connector->name);
3473 return NULL;
3474 }
3475
3476 if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3477 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3478 if (!mode)
3479 return NULL;
3480
3481 goto set_size;
3482 }
3483
3484 mode = drm_mode_create(dev);
3485 if (!mode)
3486 return NULL;
3487
3488 if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3489 mode->clock = 1088 * 10;
3490 else
3491 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3492
3493 mode->hdisplay = hactive;
3494 mode->hsync_start = mode->hdisplay + hsync_offset;
3495 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3496 mode->htotal = mode->hdisplay + hblank;
3497
3498 mode->vdisplay = vactive;
3499 mode->vsync_start = mode->vdisplay + vsync_offset;
3500 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3501 mode->vtotal = mode->vdisplay + vblank;
3502
3503 /* Some EDIDs have bogus h/vsync_end values */
3504 if (mode->hsync_end > mode->htotal) {
3505 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3506 connector->base.id, connector->name,
3507 mode->hsync_end, mode->htotal);
3508 mode->hsync_end = mode->htotal;
3509 }
3510 if (mode->vsync_end > mode->vtotal) {
3511 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3512 connector->base.id, connector->name,
3513 mode->vsync_end, mode->vtotal);
3514 mode->vsync_end = mode->vtotal;
3515 }
3516
3517 drm_mode_do_interlace_quirk(mode, pt);
3518
3519 if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3520 mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3521 } else {
3522 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3523 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3524 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3525 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3526 }
3527
3528 set_size:
3529 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3530 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3531
3532 if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3533 mode->width_mm *= 10;
3534 mode->height_mm *= 10;
3535 }
3536
3537 if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3538 mode->width_mm = drm_edid->edid->width_cm * 10;
3539 mode->height_mm = drm_edid->edid->height_cm * 10;
3540 }
3541
3542 mode->type = DRM_MODE_TYPE_DRIVER;
3543 drm_mode_set_name(mode);
3544
3545 return mode;
3546 }
3547
3548 static bool
mode_in_hsync_range(const struct drm_display_mode * mode,const struct edid * edid,const u8 * t)3549 mode_in_hsync_range(const struct drm_display_mode *mode,
3550 const struct edid *edid, const u8 *t)
3551 {
3552 int hsync, hmin, hmax;
3553
3554 hmin = t[7];
3555 if (edid->revision >= 4)
3556 hmin += ((t[4] & 0x04) ? 255 : 0);
3557 hmax = t[8];
3558 if (edid->revision >= 4)
3559 hmax += ((t[4] & 0x08) ? 255 : 0);
3560 hsync = drm_mode_hsync(mode);
3561
3562 return (hsync <= hmax && hsync >= hmin);
3563 }
3564
3565 static bool
mode_in_vsync_range(const struct drm_display_mode * mode,const struct edid * edid,const u8 * t)3566 mode_in_vsync_range(const struct drm_display_mode *mode,
3567 const struct edid *edid, const u8 *t)
3568 {
3569 int vsync, vmin, vmax;
3570
3571 vmin = t[5];
3572 if (edid->revision >= 4)
3573 vmin += ((t[4] & 0x01) ? 255 : 0);
3574 vmax = t[6];
3575 if (edid->revision >= 4)
3576 vmax += ((t[4] & 0x02) ? 255 : 0);
3577 vsync = drm_mode_vrefresh(mode);
3578
3579 return (vsync <= vmax && vsync >= vmin);
3580 }
3581
3582 static u32
range_pixel_clock(const struct edid * edid,const u8 * t)3583 range_pixel_clock(const struct edid *edid, const u8 *t)
3584 {
3585 /* unspecified */
3586 if (t[9] == 0 || t[9] == 255)
3587 return 0;
3588
3589 /* 1.4 with CVT support gives us real precision, yay */
3590 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3591 return (t[9] * 10000) - ((t[12] >> 2) * 250);
3592
3593 /* 1.3 is pathetic, so fuzz up a bit */
3594 return t[9] * 10000 + 5001;
3595 }
3596
mode_in_range(const struct drm_display_mode * mode,const struct drm_edid * drm_edid,const struct detailed_timing * timing)3597 static bool mode_in_range(const struct drm_display_mode *mode,
3598 const struct drm_edid *drm_edid,
3599 const struct detailed_timing *timing)
3600 {
3601 const struct edid *edid = drm_edid->edid;
3602 u32 max_clock;
3603 const u8 *t = (const u8 *)timing;
3604
3605 if (!mode_in_hsync_range(mode, edid, t))
3606 return false;
3607
3608 if (!mode_in_vsync_range(mode, edid, t))
3609 return false;
3610
3611 if ((max_clock = range_pixel_clock(edid, t)))
3612 if (mode->clock > max_clock)
3613 return false;
3614
3615 /* 1.4 max horizontal check */
3616 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3617 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3618 return false;
3619
3620 if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3621 return false;
3622
3623 return true;
3624 }
3625
valid_inferred_mode(const struct drm_connector * connector,const struct drm_display_mode * mode)3626 static bool valid_inferred_mode(const struct drm_connector *connector,
3627 const struct drm_display_mode *mode)
3628 {
3629 const struct drm_display_mode *m;
3630 bool ok = false;
3631
3632 list_for_each_entry(m, &connector->probed_modes, head) {
3633 if (mode->hdisplay == m->hdisplay &&
3634 mode->vdisplay == m->vdisplay &&
3635 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3636 return false; /* duplicated */
3637 if (mode->hdisplay <= m->hdisplay &&
3638 mode->vdisplay <= m->vdisplay)
3639 ok = true;
3640 }
3641 return ok;
3642 }
3643
drm_dmt_modes_for_range(struct drm_connector * connector,const struct drm_edid * drm_edid,const struct detailed_timing * timing)3644 static int drm_dmt_modes_for_range(struct drm_connector *connector,
3645 const struct drm_edid *drm_edid,
3646 const struct detailed_timing *timing)
3647 {
3648 int i, modes = 0;
3649 struct drm_display_mode *newmode;
3650 struct drm_device *dev = connector->dev;
3651
3652 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3653 if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3654 valid_inferred_mode(connector, drm_dmt_modes + i)) {
3655 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3656 if (newmode) {
3657 drm_mode_probed_add(connector, newmode);
3658 modes++;
3659 }
3660 }
3661 }
3662
3663 return modes;
3664 }
3665
3666 /* fix up 1366x768 mode from 1368x768;
3667 * GFT/CVT can't express 1366 width which isn't dividable by 8
3668 */
drm_mode_fixup_1366x768(struct drm_display_mode * mode)3669 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3670 {
3671 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3672 mode->hdisplay = 1366;
3673 mode->hsync_start--;
3674 mode->hsync_end--;
3675 drm_mode_set_name(mode);
3676 }
3677 }
3678
drm_gtf_modes_for_range(struct drm_connector * connector,const struct drm_edid * drm_edid,const struct detailed_timing * timing)3679 static int drm_gtf_modes_for_range(struct drm_connector *connector,
3680 const struct drm_edid *drm_edid,
3681 const struct detailed_timing *timing)
3682 {
3683 int i, modes = 0;
3684 struct drm_display_mode *newmode;
3685 struct drm_device *dev = connector->dev;
3686
3687 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3688 const struct minimode *m = &extra_modes[i];
3689
3690 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3691 if (!newmode)
3692 return modes;
3693
3694 drm_mode_fixup_1366x768(newmode);
3695 if (!mode_in_range(newmode, drm_edid, timing) ||
3696 !valid_inferred_mode(connector, newmode)) {
3697 drm_mode_destroy(dev, newmode);
3698 continue;
3699 }
3700
3701 drm_mode_probed_add(connector, newmode);
3702 modes++;
3703 }
3704
3705 return modes;
3706 }
3707
drm_gtf2_modes_for_range(struct drm_connector * connector,const struct drm_edid * drm_edid,const struct detailed_timing * timing)3708 static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3709 const struct drm_edid *drm_edid,
3710 const struct detailed_timing *timing)
3711 {
3712 int i, modes = 0;
3713 struct drm_display_mode *newmode;
3714 struct drm_device *dev = connector->dev;
3715
3716 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3717 const struct minimode *m = &extra_modes[i];
3718
3719 newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3720 if (!newmode)
3721 return modes;
3722
3723 drm_mode_fixup_1366x768(newmode);
3724 if (!mode_in_range(newmode, drm_edid, timing) ||
3725 !valid_inferred_mode(connector, newmode)) {
3726 drm_mode_destroy(dev, newmode);
3727 continue;
3728 }
3729
3730 drm_mode_probed_add(connector, newmode);
3731 modes++;
3732 }
3733
3734 return modes;
3735 }
3736
drm_cvt_modes_for_range(struct drm_connector * connector,const struct drm_edid * drm_edid,const struct detailed_timing * timing)3737 static int drm_cvt_modes_for_range(struct drm_connector *connector,
3738 const struct drm_edid *drm_edid,
3739 const struct detailed_timing *timing)
3740 {
3741 int i, modes = 0;
3742 struct drm_display_mode *newmode;
3743 struct drm_device *dev = connector->dev;
3744 bool rb = drm_monitor_supports_rb(drm_edid);
3745
3746 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3747 const struct minimode *m = &extra_modes[i];
3748
3749 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3750 if (!newmode)
3751 return modes;
3752
3753 drm_mode_fixup_1366x768(newmode);
3754 if (!mode_in_range(newmode, drm_edid, timing) ||
3755 !valid_inferred_mode(connector, newmode)) {
3756 drm_mode_destroy(dev, newmode);
3757 continue;
3758 }
3759
3760 drm_mode_probed_add(connector, newmode);
3761 modes++;
3762 }
3763
3764 return modes;
3765 }
3766
3767 static void
do_inferred_modes(const struct detailed_timing * timing,void * c)3768 do_inferred_modes(const struct detailed_timing *timing, void *c)
3769 {
3770 struct detailed_mode_closure *closure = c;
3771 const struct detailed_non_pixel *data = &timing->data.other_data;
3772 const struct detailed_data_monitor_range *range = &data->data.range;
3773
3774 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3775 return;
3776
3777 closure->modes += drm_dmt_modes_for_range(closure->connector,
3778 closure->drm_edid,
3779 timing);
3780
3781 if (closure->drm_edid->edid->revision < 2)
3782 return; /* GTF not defined yet */
3783
3784 switch (range->flags) {
3785 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3786 closure->modes += drm_gtf2_modes_for_range(closure->connector,
3787 closure->drm_edid,
3788 timing);
3789 break;
3790 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3791 closure->modes += drm_gtf_modes_for_range(closure->connector,
3792 closure->drm_edid,
3793 timing);
3794 break;
3795 case DRM_EDID_CVT_SUPPORT_FLAG:
3796 if (closure->drm_edid->edid->revision < 4)
3797 break;
3798
3799 closure->modes += drm_cvt_modes_for_range(closure->connector,
3800 closure->drm_edid,
3801 timing);
3802 break;
3803 case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3804 default:
3805 break;
3806 }
3807 }
3808
add_inferred_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)3809 static int add_inferred_modes(struct drm_connector *connector,
3810 const struct drm_edid *drm_edid)
3811 {
3812 struct detailed_mode_closure closure = {
3813 .connector = connector,
3814 .drm_edid = drm_edid,
3815 };
3816
3817 if (drm_edid->edid->revision >= 1)
3818 drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3819
3820 return closure.modes;
3821 }
3822
3823 static int
drm_est3_modes(struct drm_connector * connector,const struct detailed_timing * timing)3824 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3825 {
3826 int i, j, m, modes = 0;
3827 struct drm_display_mode *mode;
3828 const u8 *est = ((const u8 *)timing) + 6;
3829
3830 for (i = 0; i < 6; i++) {
3831 for (j = 7; j >= 0; j--) {
3832 m = (i * 8) + (7 - j);
3833 if (m >= ARRAY_SIZE(est3_modes))
3834 break;
3835 if (est[i] & (1 << j)) {
3836 mode = drm_mode_find_dmt(connector->dev,
3837 est3_modes[m].w,
3838 est3_modes[m].h,
3839 est3_modes[m].r,
3840 est3_modes[m].rb);
3841 if (mode) {
3842 drm_mode_probed_add(connector, mode);
3843 modes++;
3844 }
3845 }
3846 }
3847 }
3848
3849 return modes;
3850 }
3851
3852 static void
do_established_modes(const struct detailed_timing * timing,void * c)3853 do_established_modes(const struct detailed_timing *timing, void *c)
3854 {
3855 struct detailed_mode_closure *closure = c;
3856
3857 if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3858 return;
3859
3860 closure->modes += drm_est3_modes(closure->connector, timing);
3861 }
3862
3863 /*
3864 * Get established modes from EDID and add them. Each EDID block contains a
3865 * bitmap of the supported "established modes" list (defined above). Tease them
3866 * out and add them to the global modes list.
3867 */
add_established_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)3868 static int add_established_modes(struct drm_connector *connector,
3869 const struct drm_edid *drm_edid)
3870 {
3871 struct drm_device *dev = connector->dev;
3872 const struct edid *edid = drm_edid->edid;
3873 unsigned long est_bits = edid->established_timings.t1 |
3874 (edid->established_timings.t2 << 8) |
3875 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
3876 int i, modes = 0;
3877 struct detailed_mode_closure closure = {
3878 .connector = connector,
3879 .drm_edid = drm_edid,
3880 };
3881
3882 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3883 if (est_bits & (1<<i)) {
3884 struct drm_display_mode *newmode;
3885
3886 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3887 if (newmode) {
3888 drm_mode_probed_add(connector, newmode);
3889 modes++;
3890 }
3891 }
3892 }
3893
3894 if (edid->revision >= 1)
3895 drm_for_each_detailed_block(drm_edid, do_established_modes,
3896 &closure);
3897
3898 return modes + closure.modes;
3899 }
3900
3901 static void
do_standard_modes(const struct detailed_timing * timing,void * c)3902 do_standard_modes(const struct detailed_timing *timing, void *c)
3903 {
3904 struct detailed_mode_closure *closure = c;
3905 const struct detailed_non_pixel *data = &timing->data.other_data;
3906 struct drm_connector *connector = closure->connector;
3907 int i;
3908
3909 if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3910 return;
3911
3912 for (i = 0; i < 6; i++) {
3913 const struct std_timing *std = &data->data.timings[i];
3914 struct drm_display_mode *newmode;
3915
3916 newmode = drm_mode_std(connector, closure->drm_edid, std);
3917 if (newmode) {
3918 drm_mode_probed_add(connector, newmode);
3919 closure->modes++;
3920 }
3921 }
3922 }
3923
3924 /*
3925 * Get standard modes from EDID and add them. Standard modes can be calculated
3926 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3927 * add them to the list.
3928 */
add_standard_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)3929 static int add_standard_modes(struct drm_connector *connector,
3930 const struct drm_edid *drm_edid)
3931 {
3932 int i, modes = 0;
3933 struct detailed_mode_closure closure = {
3934 .connector = connector,
3935 .drm_edid = drm_edid,
3936 };
3937
3938 for (i = 0; i < EDID_STD_TIMINGS; i++) {
3939 struct drm_display_mode *newmode;
3940
3941 newmode = drm_mode_std(connector, drm_edid,
3942 &drm_edid->edid->standard_timings[i]);
3943 if (newmode) {
3944 drm_mode_probed_add(connector, newmode);
3945 modes++;
3946 }
3947 }
3948
3949 if (drm_edid->edid->revision >= 1)
3950 drm_for_each_detailed_block(drm_edid, do_standard_modes,
3951 &closure);
3952
3953 /* XXX should also look for standard codes in VTB blocks */
3954
3955 return modes + closure.modes;
3956 }
3957
drm_cvt_modes(struct drm_connector * connector,const struct detailed_timing * timing)3958 static int drm_cvt_modes(struct drm_connector *connector,
3959 const struct detailed_timing *timing)
3960 {
3961 int i, j, modes = 0;
3962 struct drm_display_mode *newmode;
3963 struct drm_device *dev = connector->dev;
3964 const struct cvt_timing *cvt;
3965 static const int rates[] = { 60, 85, 75, 60, 50 };
3966 const u8 empty[3] = { 0, 0, 0 };
3967
3968 for (i = 0; i < 4; i++) {
3969 int width, height;
3970
3971 cvt = &(timing->data.other_data.data.cvt[i]);
3972
3973 if (!memcmp(cvt->code, empty, 3))
3974 continue;
3975
3976 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3977 switch (cvt->code[1] & 0x0c) {
3978 /* default - because compiler doesn't see that we've enumerated all cases */
3979 default:
3980 case 0x00:
3981 width = height * 4 / 3;
3982 break;
3983 case 0x04:
3984 width = height * 16 / 9;
3985 break;
3986 case 0x08:
3987 width = height * 16 / 10;
3988 break;
3989 case 0x0c:
3990 width = height * 15 / 9;
3991 break;
3992 }
3993
3994 for (j = 1; j < 5; j++) {
3995 if (cvt->code[2] & (1 << j)) {
3996 newmode = drm_cvt_mode(dev, width, height,
3997 rates[j], j == 0,
3998 false, false);
3999 if (newmode) {
4000 drm_mode_probed_add(connector, newmode);
4001 modes++;
4002 }
4003 }
4004 }
4005 }
4006
4007 return modes;
4008 }
4009
4010 static void
do_cvt_mode(const struct detailed_timing * timing,void * c)4011 do_cvt_mode(const struct detailed_timing *timing, void *c)
4012 {
4013 struct detailed_mode_closure *closure = c;
4014
4015 if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4016 return;
4017
4018 closure->modes += drm_cvt_modes(closure->connector, timing);
4019 }
4020
4021 static int
add_cvt_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)4022 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4023 {
4024 struct detailed_mode_closure closure = {
4025 .connector = connector,
4026 .drm_edid = drm_edid,
4027 };
4028
4029 if (drm_edid->edid->revision >= 3)
4030 drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4031
4032 /* XXX should also look for CVT codes in VTB blocks */
4033
4034 return closure.modes;
4035 }
4036
4037 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4038 struct drm_display_mode *mode);
4039
4040 static void
do_detailed_mode(const struct detailed_timing * timing,void * c)4041 do_detailed_mode(const struct detailed_timing *timing, void *c)
4042 {
4043 struct detailed_mode_closure *closure = c;
4044 struct drm_display_mode *newmode;
4045
4046 if (!is_detailed_timing_descriptor(timing))
4047 return;
4048
4049 newmode = drm_mode_detailed(closure->connector,
4050 closure->drm_edid, timing);
4051 if (!newmode)
4052 return;
4053
4054 if (closure->preferred)
4055 newmode->type |= DRM_MODE_TYPE_PREFERRED;
4056
4057 /*
4058 * Detailed modes are limited to 10kHz pixel clock resolution,
4059 * so fix up anything that looks like CEA/HDMI mode, but the clock
4060 * is just slightly off.
4061 */
4062 fixup_detailed_cea_mode_clock(closure->connector, newmode);
4063
4064 drm_mode_probed_add(closure->connector, newmode);
4065 closure->modes++;
4066 closure->preferred = false;
4067 }
4068
4069 /*
4070 * add_detailed_modes - Add modes from detailed timings
4071 * @connector: attached connector
4072 * @drm_edid: EDID block to scan
4073 */
add_detailed_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)4074 static int add_detailed_modes(struct drm_connector *connector,
4075 const struct drm_edid *drm_edid)
4076 {
4077 struct detailed_mode_closure closure = {
4078 .connector = connector,
4079 .drm_edid = drm_edid,
4080 };
4081
4082 if (drm_edid->edid->revision >= 4)
4083 closure.preferred = true; /* first detailed timing is always preferred */
4084 else
4085 closure.preferred =
4086 drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4087
4088 drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4089
4090 return closure.modes;
4091 }
4092
4093 /* CTA-861-H Table 60 - CTA Tag Codes */
4094 #define CTA_DB_AUDIO 1
4095 #define CTA_DB_VIDEO 2
4096 #define CTA_DB_VENDOR 3
4097 #define CTA_DB_SPEAKER 4
4098 #define CTA_DB_EXTENDED_TAG 7
4099
4100 /* CTA-861-H Table 62 - CTA Extended Tag Codes */
4101 #define CTA_EXT_DB_VIDEO_CAP 0
4102 #define CTA_EXT_DB_VENDOR 1
4103 #define CTA_EXT_DB_HDR_STATIC_METADATA 6
4104 #define CTA_EXT_DB_420_VIDEO_DATA 14
4105 #define CTA_EXT_DB_420_VIDEO_CAP_MAP 15
4106 #define CTA_EXT_DB_HF_EEODB 0x78
4107 #define CTA_EXT_DB_HF_SCDB 0x79
4108
4109 #define EDID_BASIC_AUDIO (1 << 6)
4110 #define EDID_CEA_YCRCB444 (1 << 5)
4111 #define EDID_CEA_YCRCB422 (1 << 4)
4112 #define EDID_CEA_VCDB_QS (1 << 6)
4113
4114 /*
4115 * Search EDID for CEA extension block.
4116 *
4117 * FIXME: Prefer not returning pointers to raw EDID data.
4118 */
drm_find_edid_extension(const struct drm_edid * drm_edid,int ext_id,int * ext_index)4119 const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4120 int ext_id, int *ext_index)
4121 {
4122 const u8 *edid_ext = NULL;
4123 int i;
4124
4125 /* No EDID or EDID extensions */
4126 if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4127 return NULL;
4128
4129 /* Find CEA extension */
4130 for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4131 edid_ext = drm_edid_extension_block_data(drm_edid, i);
4132 if (edid_block_tag(edid_ext) == ext_id)
4133 break;
4134 }
4135
4136 if (i >= drm_edid_extension_block_count(drm_edid))
4137 return NULL;
4138
4139 *ext_index = i + 1;
4140
4141 return edid_ext;
4142 }
4143
4144 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
drm_edid_has_cta_extension(const struct drm_edid * drm_edid)4145 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4146 {
4147 const struct displayid_block *block;
4148 struct displayid_iter iter;
4149 int ext_index = 0;
4150 bool found = false;
4151
4152 /* Look for a top level CEA extension block */
4153 if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4154 return true;
4155
4156 /* CEA blocks can also be found embedded in a DisplayID block */
4157 displayid_iter_edid_begin(drm_edid, &iter);
4158 displayid_iter_for_each(block, &iter) {
4159 if (block->tag == DATA_BLOCK_CTA) {
4160 found = true;
4161 break;
4162 }
4163 }
4164 displayid_iter_end(&iter);
4165
4166 return found;
4167 }
4168
cea_mode_for_vic(u8 vic)4169 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4170 {
4171 BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4172 BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4173
4174 if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4175 return &edid_cea_modes_1[vic - 1];
4176 if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4177 return &edid_cea_modes_193[vic - 193];
4178 return NULL;
4179 }
4180
cea_num_vics(void)4181 static u8 cea_num_vics(void)
4182 {
4183 return 193 + ARRAY_SIZE(edid_cea_modes_193);
4184 }
4185
cea_next_vic(u8 vic)4186 static u8 cea_next_vic(u8 vic)
4187 {
4188 if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4189 vic = 193;
4190 return vic;
4191 }
4192
4193 /*
4194 * Calculate the alternate clock for the CEA mode
4195 * (60Hz vs. 59.94Hz etc.)
4196 */
4197 static unsigned int
cea_mode_alternate_clock(const struct drm_display_mode * cea_mode)4198 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4199 {
4200 unsigned int clock = cea_mode->clock;
4201
4202 if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4203 return clock;
4204
4205 /*
4206 * edid_cea_modes contains the 59.94Hz
4207 * variant for 240 and 480 line modes,
4208 * and the 60Hz variant otherwise.
4209 */
4210 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4211 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4212 else
4213 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4214
4215 return clock;
4216 }
4217
4218 static bool
cea_mode_alternate_timings(u8 vic,struct drm_display_mode * mode)4219 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4220 {
4221 /*
4222 * For certain VICs the spec allows the vertical
4223 * front porch to vary by one or two lines.
4224 *
4225 * cea_modes[] stores the variant with the shortest
4226 * vertical front porch. We can adjust the mode to
4227 * get the other variants by simply increasing the
4228 * vertical front porch length.
4229 */
4230 BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4231 cea_mode_for_vic(9)->vtotal != 262 ||
4232 cea_mode_for_vic(12)->vtotal != 262 ||
4233 cea_mode_for_vic(13)->vtotal != 262 ||
4234 cea_mode_for_vic(23)->vtotal != 312 ||
4235 cea_mode_for_vic(24)->vtotal != 312 ||
4236 cea_mode_for_vic(27)->vtotal != 312 ||
4237 cea_mode_for_vic(28)->vtotal != 312);
4238
4239 if (((vic == 8 || vic == 9 ||
4240 vic == 12 || vic == 13) && mode->vtotal < 263) ||
4241 ((vic == 23 || vic == 24 ||
4242 vic == 27 || vic == 28) && mode->vtotal < 314)) {
4243 mode->vsync_start++;
4244 mode->vsync_end++;
4245 mode->vtotal++;
4246
4247 return true;
4248 }
4249
4250 return false;
4251 }
4252
drm_match_cea_mode_clock_tolerance(const struct drm_display_mode * to_match,unsigned int clock_tolerance)4253 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4254 unsigned int clock_tolerance)
4255 {
4256 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4257 u8 vic;
4258
4259 if (!to_match->clock)
4260 return 0;
4261
4262 if (to_match->picture_aspect_ratio)
4263 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4264
4265 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4266 struct drm_display_mode cea_mode;
4267 unsigned int clock1, clock2;
4268
4269 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4270
4271 /* Check both 60Hz and 59.94Hz */
4272 clock1 = cea_mode.clock;
4273 clock2 = cea_mode_alternate_clock(&cea_mode);
4274
4275 if (abs(to_match->clock - clock1) > clock_tolerance &&
4276 abs(to_match->clock - clock2) > clock_tolerance)
4277 continue;
4278
4279 do {
4280 if (drm_mode_match(to_match, &cea_mode, match_flags))
4281 return vic;
4282 } while (cea_mode_alternate_timings(vic, &cea_mode));
4283 }
4284
4285 return 0;
4286 }
4287
4288 /**
4289 * drm_match_cea_mode - look for a CEA mode matching given mode
4290 * @to_match: display mode
4291 *
4292 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4293 * mode.
4294 */
drm_match_cea_mode(const struct drm_display_mode * to_match)4295 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4296 {
4297 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4298 u8 vic;
4299
4300 if (!to_match->clock)
4301 return 0;
4302
4303 if (to_match->picture_aspect_ratio)
4304 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4305
4306 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4307 struct drm_display_mode cea_mode;
4308 unsigned int clock1, clock2;
4309
4310 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4311
4312 /* Check both 60Hz and 59.94Hz */
4313 clock1 = cea_mode.clock;
4314 clock2 = cea_mode_alternate_clock(&cea_mode);
4315
4316 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4317 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4318 continue;
4319
4320 do {
4321 if (drm_mode_match(to_match, &cea_mode, match_flags))
4322 return vic;
4323 } while (cea_mode_alternate_timings(vic, &cea_mode));
4324 }
4325
4326 return 0;
4327 }
4328 EXPORT_SYMBOL(drm_match_cea_mode);
4329
drm_valid_cea_vic(u8 vic)4330 static bool drm_valid_cea_vic(u8 vic)
4331 {
4332 return cea_mode_for_vic(vic) != NULL;
4333 }
4334
drm_get_cea_aspect_ratio(const u8 video_code)4335 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4336 {
4337 const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4338
4339 if (mode)
4340 return mode->picture_aspect_ratio;
4341
4342 return HDMI_PICTURE_ASPECT_NONE;
4343 }
4344
drm_get_hdmi_aspect_ratio(const u8 video_code)4345 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4346 {
4347 return edid_4k_modes[video_code].picture_aspect_ratio;
4348 }
4349
4350 /*
4351 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4352 * specific block).
4353 */
4354 static unsigned int
hdmi_mode_alternate_clock(const struct drm_display_mode * hdmi_mode)4355 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4356 {
4357 return cea_mode_alternate_clock(hdmi_mode);
4358 }
4359
drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode * to_match,unsigned int clock_tolerance)4360 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4361 unsigned int clock_tolerance)
4362 {
4363 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4364 u8 vic;
4365
4366 if (!to_match->clock)
4367 return 0;
4368
4369 if (to_match->picture_aspect_ratio)
4370 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4371
4372 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4373 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4374 unsigned int clock1, clock2;
4375
4376 /* Make sure to also match alternate clocks */
4377 clock1 = hdmi_mode->clock;
4378 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4379
4380 if (abs(to_match->clock - clock1) > clock_tolerance &&
4381 abs(to_match->clock - clock2) > clock_tolerance)
4382 continue;
4383
4384 if (drm_mode_match(to_match, hdmi_mode, match_flags))
4385 return vic;
4386 }
4387
4388 return 0;
4389 }
4390
4391 /*
4392 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4393 * @to_match: display mode
4394 *
4395 * An HDMI mode is one defined in the HDMI vendor specific block.
4396 *
4397 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4398 */
drm_match_hdmi_mode(const struct drm_display_mode * to_match)4399 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4400 {
4401 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4402 u8 vic;
4403
4404 if (!to_match->clock)
4405 return 0;
4406
4407 if (to_match->picture_aspect_ratio)
4408 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4409
4410 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4411 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4412 unsigned int clock1, clock2;
4413
4414 /* Make sure to also match alternate clocks */
4415 clock1 = hdmi_mode->clock;
4416 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4417
4418 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4419 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4420 drm_mode_match(to_match, hdmi_mode, match_flags))
4421 return vic;
4422 }
4423 return 0;
4424 }
4425
drm_valid_hdmi_vic(u8 vic)4426 static bool drm_valid_hdmi_vic(u8 vic)
4427 {
4428 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4429 }
4430
add_alternate_cea_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)4431 static int add_alternate_cea_modes(struct drm_connector *connector,
4432 const struct drm_edid *drm_edid)
4433 {
4434 struct drm_device *dev = connector->dev;
4435 struct drm_display_mode *mode, *tmp;
4436 LIST_HEAD(list);
4437 int modes = 0;
4438
4439 /* Don't add CTA modes if the CTA extension block is missing */
4440 if (!drm_edid_has_cta_extension(drm_edid))
4441 return 0;
4442
4443 /*
4444 * Go through all probed modes and create a new mode
4445 * with the alternate clock for certain CEA modes.
4446 */
4447 list_for_each_entry(mode, &connector->probed_modes, head) {
4448 const struct drm_display_mode *cea_mode = NULL;
4449 struct drm_display_mode *newmode;
4450 u8 vic = drm_match_cea_mode(mode);
4451 unsigned int clock1, clock2;
4452
4453 if (drm_valid_cea_vic(vic)) {
4454 cea_mode = cea_mode_for_vic(vic);
4455 clock2 = cea_mode_alternate_clock(cea_mode);
4456 } else {
4457 vic = drm_match_hdmi_mode(mode);
4458 if (drm_valid_hdmi_vic(vic)) {
4459 cea_mode = &edid_4k_modes[vic];
4460 clock2 = hdmi_mode_alternate_clock(cea_mode);
4461 }
4462 }
4463
4464 if (!cea_mode)
4465 continue;
4466
4467 clock1 = cea_mode->clock;
4468
4469 if (clock1 == clock2)
4470 continue;
4471
4472 if (mode->clock != clock1 && mode->clock != clock2)
4473 continue;
4474
4475 newmode = drm_mode_duplicate(dev, cea_mode);
4476 if (!newmode)
4477 continue;
4478
4479 /* Carry over the stereo flags */
4480 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4481
4482 /*
4483 * The current mode could be either variant. Make
4484 * sure to pick the "other" clock for the new mode.
4485 */
4486 if (mode->clock != clock1)
4487 newmode->clock = clock1;
4488 else
4489 newmode->clock = clock2;
4490
4491 list_add_tail(&newmode->head, &list);
4492 }
4493
4494 list_for_each_entry_safe(mode, tmp, &list, head) {
4495 list_del(&mode->head);
4496 drm_mode_probed_add(connector, mode);
4497 modes++;
4498 }
4499
4500 return modes;
4501 }
4502
svd_to_vic(u8 svd)4503 static u8 svd_to_vic(u8 svd)
4504 {
4505 /* 0-6 bit vic, 7th bit native mode indicator */
4506 if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192))
4507 return svd & 127;
4508
4509 return svd;
4510 }
4511
4512 /*
4513 * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4514 * the EDID, or NULL on errors.
4515 */
4516 static struct drm_display_mode *
drm_display_mode_from_vic_index(struct drm_connector * connector,int vic_index)4517 drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4518 {
4519 const struct drm_display_info *info = &connector->display_info;
4520 struct drm_device *dev = connector->dev;
4521
4522 if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4523 return NULL;
4524
4525 return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4526 }
4527
4528 /*
4529 * do_y420vdb_modes - Parse YCBCR 420 only modes
4530 * @connector: connector corresponding to the HDMI sink
4531 * @svds: start of the data block of CEA YCBCR 420 VDB
4532 * @len: length of the CEA YCBCR 420 VDB
4533 *
4534 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4535 * which contains modes which can be supported in YCBCR 420
4536 * output format only.
4537 */
do_y420vdb_modes(struct drm_connector * connector,const u8 * svds,u8 svds_len)4538 static int do_y420vdb_modes(struct drm_connector *connector,
4539 const u8 *svds, u8 svds_len)
4540 {
4541 struct drm_device *dev = connector->dev;
4542 int modes = 0, i;
4543
4544 for (i = 0; i < svds_len; i++) {
4545 u8 vic = svd_to_vic(svds[i]);
4546 struct drm_display_mode *newmode;
4547
4548 if (!drm_valid_cea_vic(vic))
4549 continue;
4550
4551 newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4552 if (!newmode)
4553 break;
4554 drm_mode_probed_add(connector, newmode);
4555 modes++;
4556 }
4557
4558 return modes;
4559 }
4560
4561 /**
4562 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4563 * @dev: DRM device
4564 * @video_code: CEA VIC of the mode
4565 *
4566 * Creates a new mode matching the specified CEA VIC.
4567 *
4568 * Returns: A new drm_display_mode on success or NULL on failure
4569 */
4570 struct drm_display_mode *
drm_display_mode_from_cea_vic(struct drm_device * dev,u8 video_code)4571 drm_display_mode_from_cea_vic(struct drm_device *dev,
4572 u8 video_code)
4573 {
4574 const struct drm_display_mode *cea_mode;
4575 struct drm_display_mode *newmode;
4576
4577 cea_mode = cea_mode_for_vic(video_code);
4578 if (!cea_mode)
4579 return NULL;
4580
4581 newmode = drm_mode_duplicate(dev, cea_mode);
4582 if (!newmode)
4583 return NULL;
4584
4585 return newmode;
4586 }
4587 EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4588
4589 /* Add modes based on VICs parsed in parse_cta_vdb() */
add_cta_vdb_modes(struct drm_connector * connector)4590 static int add_cta_vdb_modes(struct drm_connector *connector)
4591 {
4592 const struct drm_display_info *info = &connector->display_info;
4593 int i, modes = 0;
4594
4595 if (!info->vics)
4596 return 0;
4597
4598 for (i = 0; i < info->vics_len; i++) {
4599 struct drm_display_mode *mode;
4600
4601 mode = drm_display_mode_from_vic_index(connector, i);
4602 if (mode) {
4603 drm_mode_probed_add(connector, mode);
4604 modes++;
4605 }
4606 }
4607
4608 return modes;
4609 }
4610
4611 struct stereo_mandatory_mode {
4612 int width, height, vrefresh;
4613 unsigned int flags;
4614 };
4615
4616 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4617 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4618 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4619 { 1920, 1080, 50,
4620 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4621 { 1920, 1080, 60,
4622 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4623 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4624 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4625 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4626 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4627 };
4628
4629 static bool
stereo_match_mandatory(const struct drm_display_mode * mode,const struct stereo_mandatory_mode * stereo_mode)4630 stereo_match_mandatory(const struct drm_display_mode *mode,
4631 const struct stereo_mandatory_mode *stereo_mode)
4632 {
4633 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4634
4635 return mode->hdisplay == stereo_mode->width &&
4636 mode->vdisplay == stereo_mode->height &&
4637 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4638 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4639 }
4640
add_hdmi_mandatory_stereo_modes(struct drm_connector * connector)4641 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4642 {
4643 struct drm_device *dev = connector->dev;
4644 const struct drm_display_mode *mode;
4645 struct list_head stereo_modes;
4646 int modes = 0, i;
4647
4648 INIT_LIST_HEAD(&stereo_modes);
4649
4650 list_for_each_entry(mode, &connector->probed_modes, head) {
4651 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4652 const struct stereo_mandatory_mode *mandatory;
4653 struct drm_display_mode *new_mode;
4654
4655 if (!stereo_match_mandatory(mode,
4656 &stereo_mandatory_modes[i]))
4657 continue;
4658
4659 mandatory = &stereo_mandatory_modes[i];
4660 new_mode = drm_mode_duplicate(dev, mode);
4661 if (!new_mode)
4662 continue;
4663
4664 new_mode->flags |= mandatory->flags;
4665 list_add_tail(&new_mode->head, &stereo_modes);
4666 modes++;
4667 }
4668 }
4669
4670 list_splice_tail(&stereo_modes, &connector->probed_modes);
4671
4672 return modes;
4673 }
4674
add_hdmi_mode(struct drm_connector * connector,u8 vic)4675 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4676 {
4677 struct drm_device *dev = connector->dev;
4678 struct drm_display_mode *newmode;
4679
4680 if (!drm_valid_hdmi_vic(vic)) {
4681 drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4682 connector->base.id, connector->name, vic);
4683 return 0;
4684 }
4685
4686 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4687 if (!newmode)
4688 return 0;
4689
4690 drm_mode_probed_add(connector, newmode);
4691
4692 return 1;
4693 }
4694
add_3d_struct_modes(struct drm_connector * connector,u16 structure,int vic_index)4695 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4696 int vic_index)
4697 {
4698 struct drm_display_mode *newmode;
4699 int modes = 0;
4700
4701 if (structure & (1 << 0)) {
4702 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4703 if (newmode) {
4704 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4705 drm_mode_probed_add(connector, newmode);
4706 modes++;
4707 }
4708 }
4709 if (structure & (1 << 6)) {
4710 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4711 if (newmode) {
4712 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4713 drm_mode_probed_add(connector, newmode);
4714 modes++;
4715 }
4716 }
4717 if (structure & (1 << 8)) {
4718 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4719 if (newmode) {
4720 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4721 drm_mode_probed_add(connector, newmode);
4722 modes++;
4723 }
4724 }
4725
4726 return modes;
4727 }
4728
hdmi_vsdb_latency_present(const u8 * db)4729 static bool hdmi_vsdb_latency_present(const u8 *db)
4730 {
4731 return db[8] & BIT(7);
4732 }
4733
hdmi_vsdb_i_latency_present(const u8 * db)4734 static bool hdmi_vsdb_i_latency_present(const u8 *db)
4735 {
4736 return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4737 }
4738
hdmi_vsdb_latency_length(const u8 * db)4739 static int hdmi_vsdb_latency_length(const u8 *db)
4740 {
4741 if (hdmi_vsdb_i_latency_present(db))
4742 return 4;
4743 else if (hdmi_vsdb_latency_present(db))
4744 return 2;
4745 else
4746 return 0;
4747 }
4748
4749 /*
4750 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4751 * @connector: connector corresponding to the HDMI sink
4752 * @db: start of the CEA vendor specific block
4753 * @len: length of the CEA block payload, ie. one can access up to db[len]
4754 *
4755 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4756 * also adds the stereo 3d modes when applicable.
4757 */
4758 static int
do_hdmi_vsdb_modes(struct drm_connector * connector,const u8 * db,u8 len)4759 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4760 {
4761 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4762 u8 vic_len, hdmi_3d_len = 0;
4763 u16 mask;
4764 u16 structure_all;
4765
4766 if (len < 8)
4767 goto out;
4768
4769 /* no HDMI_Video_Present */
4770 if (!(db[8] & (1 << 5)))
4771 goto out;
4772
4773 offset += hdmi_vsdb_latency_length(db);
4774
4775 /* the declared length is not long enough for the 2 first bytes
4776 * of additional video format capabilities */
4777 if (len < (8 + offset + 2))
4778 goto out;
4779
4780 /* 3D_Present */
4781 offset++;
4782 if (db[8 + offset] & (1 << 7)) {
4783 modes += add_hdmi_mandatory_stereo_modes(connector);
4784
4785 /* 3D_Multi_present */
4786 multi_present = (db[8 + offset] & 0x60) >> 5;
4787 }
4788
4789 offset++;
4790 vic_len = db[8 + offset] >> 5;
4791 hdmi_3d_len = db[8 + offset] & 0x1f;
4792
4793 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4794 u8 vic;
4795
4796 vic = db[9 + offset + i];
4797 modes += add_hdmi_mode(connector, vic);
4798 }
4799 offset += 1 + vic_len;
4800
4801 if (multi_present == 1)
4802 multi_len = 2;
4803 else if (multi_present == 2)
4804 multi_len = 4;
4805 else
4806 multi_len = 0;
4807
4808 if (len < (8 + offset + hdmi_3d_len - 1))
4809 goto out;
4810
4811 if (hdmi_3d_len < multi_len)
4812 goto out;
4813
4814 if (multi_present == 1 || multi_present == 2) {
4815 /* 3D_Structure_ALL */
4816 structure_all = (db[8 + offset] << 8) | db[9 + offset];
4817
4818 /* check if 3D_MASK is present */
4819 if (multi_present == 2)
4820 mask = (db[10 + offset] << 8) | db[11 + offset];
4821 else
4822 mask = 0xffff;
4823
4824 for (i = 0; i < 16; i++) {
4825 if (mask & (1 << i))
4826 modes += add_3d_struct_modes(connector,
4827 structure_all, i);
4828 }
4829 }
4830
4831 offset += multi_len;
4832
4833 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4834 int vic_index;
4835 struct drm_display_mode *newmode = NULL;
4836 unsigned int newflag = 0;
4837 bool detail_present;
4838
4839 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4840
4841 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4842 break;
4843
4844 /* 2D_VIC_order_X */
4845 vic_index = db[8 + offset + i] >> 4;
4846
4847 /* 3D_Structure_X */
4848 switch (db[8 + offset + i] & 0x0f) {
4849 case 0:
4850 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4851 break;
4852 case 6:
4853 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4854 break;
4855 case 8:
4856 /* 3D_Detail_X */
4857 if ((db[9 + offset + i] >> 4) == 1)
4858 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4859 break;
4860 }
4861
4862 if (newflag != 0) {
4863 newmode = drm_display_mode_from_vic_index(connector,
4864 vic_index);
4865
4866 if (newmode) {
4867 newmode->flags |= newflag;
4868 drm_mode_probed_add(connector, newmode);
4869 modes++;
4870 }
4871 }
4872
4873 if (detail_present)
4874 i++;
4875 }
4876
4877 out:
4878 return modes;
4879 }
4880
4881 static int
cea_revision(const u8 * cea)4882 cea_revision(const u8 *cea)
4883 {
4884 /*
4885 * FIXME is this correct for the DispID variant?
4886 * The DispID spec doesn't really specify whether
4887 * this is the revision of the CEA extension or
4888 * the DispID CEA data block. And the only value
4889 * given as an example is 0.
4890 */
4891 return cea[1];
4892 }
4893
4894 /*
4895 * CTA Data Block iterator.
4896 *
4897 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4898 * CTA Data Blocks.
4899 *
4900 * struct cea_db *db:
4901 * struct cea_db_iter iter;
4902 *
4903 * cea_db_iter_edid_begin(edid, &iter);
4904 * cea_db_iter_for_each(db, &iter) {
4905 * // do stuff with db
4906 * }
4907 * cea_db_iter_end(&iter);
4908 */
4909 struct cea_db_iter {
4910 struct drm_edid_iter edid_iter;
4911 struct displayid_iter displayid_iter;
4912
4913 /* Current Data Block Collection. */
4914 const u8 *collection;
4915
4916 /* Current Data Block index in current collection. */
4917 int index;
4918
4919 /* End index in current collection. */
4920 int end;
4921 };
4922
4923 /* CTA-861-H section 7.4 CTA Data BLock Collection */
4924 struct cea_db {
4925 u8 tag_length;
4926 u8 data[];
4927 } __packed;
4928
cea_db_tag(const struct cea_db * db)4929 static int cea_db_tag(const struct cea_db *db)
4930 {
4931 return db->tag_length >> 5;
4932 }
4933
cea_db_payload_len(const void * _db)4934 static int cea_db_payload_len(const void *_db)
4935 {
4936 /* FIXME: Transition to passing struct cea_db * everywhere. */
4937 const struct cea_db *db = _db;
4938
4939 return db->tag_length & 0x1f;
4940 }
4941
cea_db_data(const struct cea_db * db)4942 static const void *cea_db_data(const struct cea_db *db)
4943 {
4944 return db->data;
4945 }
4946
cea_db_is_extended_tag(const struct cea_db * db,int tag)4947 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4948 {
4949 return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4950 cea_db_payload_len(db) >= 1 &&
4951 db->data[0] == tag;
4952 }
4953
cea_db_is_vendor(const struct cea_db * db,int vendor_oui)4954 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4955 {
4956 const u8 *data = cea_db_data(db);
4957
4958 return cea_db_tag(db) == CTA_DB_VENDOR &&
4959 cea_db_payload_len(db) >= 3 &&
4960 oui(data[2], data[1], data[0]) == vendor_oui;
4961 }
4962
cea_db_iter_edid_begin(const struct drm_edid * drm_edid,struct cea_db_iter * iter)4963 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4964 struct cea_db_iter *iter)
4965 {
4966 memset(iter, 0, sizeof(*iter));
4967
4968 drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4969 displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4970 }
4971
4972 static const struct cea_db *
__cea_db_iter_current_block(const struct cea_db_iter * iter)4973 __cea_db_iter_current_block(const struct cea_db_iter *iter)
4974 {
4975 const struct cea_db *db;
4976
4977 if (!iter->collection)
4978 return NULL;
4979
4980 db = (const struct cea_db *)&iter->collection[iter->index];
4981
4982 if (iter->index + sizeof(*db) <= iter->end &&
4983 iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4984 return db;
4985
4986 return NULL;
4987 }
4988
4989 /*
4990 * References:
4991 * - CTA-861-H section 7.3.3 CTA Extension Version 3
4992 */
cea_db_collection_size(const u8 * cta)4993 static int cea_db_collection_size(const u8 *cta)
4994 {
4995 u8 d = cta[2];
4996
4997 if (d < 4 || d > 127)
4998 return 0;
4999
5000 return d - 4;
5001 }
5002
5003 /*
5004 * References:
5005 * - VESA E-EDID v1.4
5006 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5007 */
__cea_db_iter_edid_next(struct cea_db_iter * iter)5008 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5009 {
5010 const u8 *ext;
5011
5012 drm_edid_iter_for_each(ext, &iter->edid_iter) {
5013 int size;
5014
5015 /* Only support CTA Extension revision 3+ */
5016 if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5017 continue;
5018
5019 size = cea_db_collection_size(ext);
5020 if (!size)
5021 continue;
5022
5023 iter->index = 4;
5024 iter->end = iter->index + size;
5025
5026 return ext;
5027 }
5028
5029 return NULL;
5030 }
5031
5032 /*
5033 * References:
5034 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5035 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5036 *
5037 * Note that the above do not specify any connection between DisplayID Data
5038 * Block revision and CTA Extension versions.
5039 */
__cea_db_iter_displayid_next(struct cea_db_iter * iter)5040 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5041 {
5042 const struct displayid_block *block;
5043
5044 displayid_iter_for_each(block, &iter->displayid_iter) {
5045 if (block->tag != DATA_BLOCK_CTA)
5046 continue;
5047
5048 /*
5049 * The displayid iterator has already verified the block bounds
5050 * in displayid_iter_block().
5051 */
5052 iter->index = sizeof(*block);
5053 iter->end = iter->index + block->num_bytes;
5054
5055 return block;
5056 }
5057
5058 return NULL;
5059 }
5060
__cea_db_iter_next(struct cea_db_iter * iter)5061 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5062 {
5063 const struct cea_db *db;
5064
5065 if (iter->collection) {
5066 /* Current collection should always be valid. */
5067 db = __cea_db_iter_current_block(iter);
5068 if (WARN_ON(!db)) {
5069 iter->collection = NULL;
5070 return NULL;
5071 }
5072
5073 /* Next block in CTA Data Block Collection */
5074 iter->index += sizeof(*db) + cea_db_payload_len(db);
5075
5076 db = __cea_db_iter_current_block(iter);
5077 if (db)
5078 return db;
5079 }
5080
5081 for (;;) {
5082 /*
5083 * Find the next CTA Data Block Collection. First iterate all
5084 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5085 *
5086 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5087 * Extension, it's recommended that DisplayID extensions are
5088 * exposed after all of the CTA Extensions.
5089 */
5090 iter->collection = __cea_db_iter_edid_next(iter);
5091 if (!iter->collection)
5092 iter->collection = __cea_db_iter_displayid_next(iter);
5093
5094 if (!iter->collection)
5095 return NULL;
5096
5097 db = __cea_db_iter_current_block(iter);
5098 if (db)
5099 return db;
5100 }
5101 }
5102
5103 #define cea_db_iter_for_each(__db, __iter) \
5104 while (((__db) = __cea_db_iter_next(__iter)))
5105
cea_db_iter_end(struct cea_db_iter * iter)5106 static void cea_db_iter_end(struct cea_db_iter *iter)
5107 {
5108 displayid_iter_end(&iter->displayid_iter);
5109 drm_edid_iter_end(&iter->edid_iter);
5110
5111 memset(iter, 0, sizeof(*iter));
5112 }
5113
cea_db_is_hdmi_vsdb(const struct cea_db * db)5114 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5115 {
5116 return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5117 cea_db_payload_len(db) >= 5;
5118 }
5119
cea_db_is_hdmi_forum_vsdb(const struct cea_db * db)5120 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5121 {
5122 return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5123 cea_db_payload_len(db) >= 7;
5124 }
5125
cea_db_is_hdmi_forum_eeodb(const void * db)5126 static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5127 {
5128 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5129 cea_db_payload_len(db) >= 2;
5130 }
5131
cea_db_is_microsoft_vsdb(const struct cea_db * db)5132 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5133 {
5134 return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5135 cea_db_payload_len(db) == 21;
5136 }
5137
cea_db_is_vcdb(const struct cea_db * db)5138 static bool cea_db_is_vcdb(const struct cea_db *db)
5139 {
5140 return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5141 cea_db_payload_len(db) == 2;
5142 }
5143
cea_db_is_hdmi_forum_scdb(const struct cea_db * db)5144 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5145 {
5146 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5147 cea_db_payload_len(db) >= 7;
5148 }
5149
cea_db_is_y420cmdb(const struct cea_db * db)5150 static bool cea_db_is_y420cmdb(const struct cea_db *db)
5151 {
5152 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5153 }
5154
cea_db_is_y420vdb(const struct cea_db * db)5155 static bool cea_db_is_y420vdb(const struct cea_db *db)
5156 {
5157 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5158 }
5159
cea_db_is_hdmi_hdr_metadata_block(const struct cea_db * db)5160 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5161 {
5162 return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5163 cea_db_payload_len(db) >= 3;
5164 }
5165
5166 /*
5167 * Get the HF-EEODB override extension block count from EDID.
5168 *
5169 * The passed in EDID may be partially read, as long as it has at least two
5170 * blocks (base block and one extension block) if EDID extension count is > 0.
5171 *
5172 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5173 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5174 * iterators instead.
5175 *
5176 * References:
5177 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5178 */
edid_hfeeodb_extension_block_count(const struct edid * edid)5179 static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5180 {
5181 const u8 *cta;
5182
5183 /* No extensions according to base block, no HF-EEODB. */
5184 if (!edid_extension_block_count(edid))
5185 return 0;
5186
5187 /* HF-EEODB is always in the first EDID extension block only */
5188 cta = edid_extension_block_data(edid, 0);
5189 if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5190 return 0;
5191
5192 /* Need to have the data block collection, and at least 3 bytes. */
5193 if (cea_db_collection_size(cta) < 3)
5194 return 0;
5195
5196 /*
5197 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5198 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5199 * through 6 of Block 1 of the E-EDID.
5200 */
5201 if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5202 return 0;
5203
5204 return cta[4 + 2];
5205 }
5206
5207 /*
5208 * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5209 *
5210 * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5211 * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5212 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5213 * support YCBCR420 output too.
5214 */
parse_cta_y420cmdb(struct drm_connector * connector,const struct cea_db * db,u64 * y420cmdb_map)5215 static void parse_cta_y420cmdb(struct drm_connector *connector,
5216 const struct cea_db *db, u64 *y420cmdb_map)
5217 {
5218 struct drm_display_info *info = &connector->display_info;
5219 int i, map_len = cea_db_payload_len(db) - 1;
5220 const u8 *data = cea_db_data(db) + 1;
5221 u64 map = 0;
5222
5223 if (map_len == 0) {
5224 /* All CEA modes support ycbcr420 sampling also.*/
5225 map = U64_MAX;
5226 goto out;
5227 }
5228
5229 /*
5230 * This map indicates which of the existing CEA block modes
5231 * from VDB can support YCBCR420 output too. So if bit=0 is
5232 * set, first mode from VDB can support YCBCR420 output too.
5233 * We will parse and keep this map, before parsing VDB itself
5234 * to avoid going through the same block again and again.
5235 *
5236 * Spec is not clear about max possible size of this block.
5237 * Clamping max bitmap block size at 8 bytes. Every byte can
5238 * address 8 CEA modes, in this way this map can address
5239 * 8*8 = first 64 SVDs.
5240 */
5241 if (WARN_ON_ONCE(map_len > 8))
5242 map_len = 8;
5243
5244 for (i = 0; i < map_len; i++)
5245 map |= (u64)data[i] << (8 * i);
5246
5247 out:
5248 if (map)
5249 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5250
5251 *y420cmdb_map = map;
5252 }
5253
add_cea_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)5254 static int add_cea_modes(struct drm_connector *connector,
5255 const struct drm_edid *drm_edid)
5256 {
5257 const struct cea_db *db;
5258 struct cea_db_iter iter;
5259 int modes;
5260
5261 /* CTA VDB block VICs parsed earlier */
5262 modes = add_cta_vdb_modes(connector);
5263
5264 cea_db_iter_edid_begin(drm_edid, &iter);
5265 cea_db_iter_for_each(db, &iter) {
5266 if (cea_db_is_hdmi_vsdb(db)) {
5267 modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5268 cea_db_payload_len(db));
5269 } else if (cea_db_is_y420vdb(db)) {
5270 const u8 *vdb420 = cea_db_data(db) + 1;
5271
5272 /* Add 4:2:0(only) modes present in EDID */
5273 modes += do_y420vdb_modes(connector, vdb420,
5274 cea_db_payload_len(db) - 1);
5275 }
5276 }
5277 cea_db_iter_end(&iter);
5278
5279 return modes;
5280 }
5281
fixup_detailed_cea_mode_clock(struct drm_connector * connector,struct drm_display_mode * mode)5282 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5283 struct drm_display_mode *mode)
5284 {
5285 const struct drm_display_mode *cea_mode;
5286 int clock1, clock2, clock;
5287 u8 vic;
5288 const char *type;
5289
5290 /*
5291 * allow 5kHz clock difference either way to account for
5292 * the 10kHz clock resolution limit of detailed timings.
5293 */
5294 vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5295 if (drm_valid_cea_vic(vic)) {
5296 type = "CEA";
5297 cea_mode = cea_mode_for_vic(vic);
5298 clock1 = cea_mode->clock;
5299 clock2 = cea_mode_alternate_clock(cea_mode);
5300 } else {
5301 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5302 if (drm_valid_hdmi_vic(vic)) {
5303 type = "HDMI";
5304 cea_mode = &edid_4k_modes[vic];
5305 clock1 = cea_mode->clock;
5306 clock2 = hdmi_mode_alternate_clock(cea_mode);
5307 } else {
5308 return;
5309 }
5310 }
5311
5312 /* pick whichever is closest */
5313 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5314 clock = clock1;
5315 else
5316 clock = clock2;
5317
5318 if (mode->clock == clock)
5319 return;
5320
5321 drm_dbg_kms(connector->dev,
5322 "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5323 connector->base.id, connector->name,
5324 type, vic, mode->clock, clock);
5325 mode->clock = clock;
5326 }
5327
drm_calculate_luminance_range(struct drm_connector * connector)5328 static void drm_calculate_luminance_range(struct drm_connector *connector)
5329 {
5330 struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5331 struct drm_luminance_range_info *luminance_range =
5332 &connector->display_info.luminance_range;
5333 static const u8 pre_computed_values[] = {
5334 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5335 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5336 };
5337 u32 max_avg, min_cll, max, min, q, r;
5338
5339 if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5340 return;
5341
5342 max_avg = hdr_metadata->max_fall;
5343 min_cll = hdr_metadata->min_cll;
5344
5345 /*
5346 * From the specification (CTA-861-G), for calculating the maximum
5347 * luminance we need to use:
5348 * Luminance = 50*2**(CV/32)
5349 * Where CV is a one-byte value.
5350 * For calculating this expression we may need float point precision;
5351 * to avoid this complexity level, we take advantage that CV is divided
5352 * by a constant. From the Euclids division algorithm, we know that CV
5353 * can be written as: CV = 32*q + r. Next, we replace CV in the
5354 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5355 * need to pre-compute the value of r/32. For pre-computing the values
5356 * We just used the following Ruby line:
5357 * (0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5358 * The results of the above expressions can be verified at
5359 * pre_computed_values.
5360 */
5361 q = max_avg >> 5;
5362 r = max_avg % 32;
5363 max = (1 << q) * pre_computed_values[r];
5364
5365 /* min luminance: maxLum * (CV/255)^2 / 100 */
5366 q = DIV_ROUND_CLOSEST(min_cll, 255);
5367 min = max * DIV_ROUND_CLOSEST((q * q), 100);
5368
5369 luminance_range->min_luminance = min;
5370 luminance_range->max_luminance = max;
5371 }
5372
eotf_supported(const u8 * edid_ext)5373 static uint8_t eotf_supported(const u8 *edid_ext)
5374 {
5375 return edid_ext[2] &
5376 (BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5377 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5378 BIT(HDMI_EOTF_SMPTE_ST2084) |
5379 BIT(HDMI_EOTF_BT_2100_HLG));
5380 }
5381
hdr_metadata_type(const u8 * edid_ext)5382 static uint8_t hdr_metadata_type(const u8 *edid_ext)
5383 {
5384 return edid_ext[3] &
5385 BIT(HDMI_STATIC_METADATA_TYPE1);
5386 }
5387
5388 static void
drm_parse_hdr_metadata_block(struct drm_connector * connector,const u8 * db)5389 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5390 {
5391 u16 len;
5392
5393 len = cea_db_payload_len(db);
5394
5395 connector->hdr_sink_metadata.hdmi_type1.eotf =
5396 eotf_supported(db);
5397 connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5398 hdr_metadata_type(db);
5399
5400 if (len >= 4)
5401 connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5402 if (len >= 5)
5403 connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5404 if (len >= 6) {
5405 connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5406
5407 /* Calculate only when all values are available */
5408 drm_calculate_luminance_range(connector);
5409 }
5410 }
5411
5412 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5413 static void
drm_parse_hdmi_vsdb_audio(struct drm_connector * connector,const u8 * db)5414 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5415 {
5416 u8 len = cea_db_payload_len(db);
5417
5418 if (len >= 6 && (db[6] & (1 << 7)))
5419 connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5420
5421 if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5422 connector->latency_present[0] = true;
5423 connector->video_latency[0] = db[9];
5424 connector->audio_latency[0] = db[10];
5425 }
5426
5427 if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5428 connector->latency_present[1] = true;
5429 connector->video_latency[1] = db[11];
5430 connector->audio_latency[1] = db[12];
5431 }
5432
5433 drm_dbg_kms(connector->dev,
5434 "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5435 connector->base.id, connector->name,
5436 connector->latency_present[0], connector->latency_present[1],
5437 connector->video_latency[0], connector->video_latency[1],
5438 connector->audio_latency[0], connector->audio_latency[1]);
5439 }
5440
5441 static void
monitor_name(const struct detailed_timing * timing,void * data)5442 monitor_name(const struct detailed_timing *timing, void *data)
5443 {
5444 const char **res = data;
5445
5446 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5447 return;
5448
5449 *res = timing->data.other_data.data.str.str;
5450 }
5451
get_monitor_name(const struct drm_edid * drm_edid,char name[13])5452 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5453 {
5454 const char *edid_name = NULL;
5455 int mnl;
5456
5457 if (!drm_edid || !name)
5458 return 0;
5459
5460 drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5461 for (mnl = 0; edid_name && mnl < 13; mnl++) {
5462 if (edid_name[mnl] == 0x0a)
5463 break;
5464
5465 name[mnl] = edid_name[mnl];
5466 }
5467
5468 return mnl;
5469 }
5470
5471 /**
5472 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5473 * @edid: monitor EDID information
5474 * @name: pointer to a character array to hold the name of the monitor
5475 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5476 *
5477 */
drm_edid_get_monitor_name(const struct edid * edid,char * name,int bufsize)5478 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5479 {
5480 int name_length = 0;
5481
5482 if (bufsize <= 0)
5483 return;
5484
5485 if (edid) {
5486 char buf[13];
5487 struct drm_edid drm_edid = {
5488 .edid = edid,
5489 .size = edid_size(edid),
5490 };
5491
5492 name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5493 memcpy(name, buf, name_length);
5494 }
5495
5496 name[name_length] = '\0';
5497 }
5498 EXPORT_SYMBOL(drm_edid_get_monitor_name);
5499
clear_eld(struct drm_connector * connector)5500 static void clear_eld(struct drm_connector *connector)
5501 {
5502 memset(connector->eld, 0, sizeof(connector->eld));
5503
5504 connector->latency_present[0] = false;
5505 connector->latency_present[1] = false;
5506 connector->video_latency[0] = 0;
5507 connector->audio_latency[0] = 0;
5508 connector->video_latency[1] = 0;
5509 connector->audio_latency[1] = 0;
5510 }
5511
5512 /*
5513 * drm_edid_to_eld - build ELD from EDID
5514 * @connector: connector corresponding to the HDMI/DP sink
5515 * @drm_edid: EDID to parse
5516 *
5517 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5518 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5519 */
drm_edid_to_eld(struct drm_connector * connector,const struct drm_edid * drm_edid)5520 static void drm_edid_to_eld(struct drm_connector *connector,
5521 const struct drm_edid *drm_edid)
5522 {
5523 const struct drm_display_info *info = &connector->display_info;
5524 const struct cea_db *db;
5525 struct cea_db_iter iter;
5526 uint8_t *eld = connector->eld;
5527 int total_sad_count = 0;
5528 int mnl;
5529
5530 if (!drm_edid)
5531 return;
5532
5533 mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5534 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5535 connector->base.id, connector->name,
5536 &eld[DRM_ELD_MONITOR_NAME_STRING]);
5537
5538 eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5539 eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5540
5541 eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5542
5543 eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5544 eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5545 eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5546 eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5547
5548 cea_db_iter_edid_begin(drm_edid, &iter);
5549 cea_db_iter_for_each(db, &iter) {
5550 const u8 *data = cea_db_data(db);
5551 int len = cea_db_payload_len(db);
5552 int sad_count;
5553
5554 switch (cea_db_tag(db)) {
5555 case CTA_DB_AUDIO:
5556 /* Audio Data Block, contains SADs */
5557 sad_count = min(len / 3, 15 - total_sad_count);
5558 if (sad_count >= 1)
5559 memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5560 data, sad_count * 3);
5561 total_sad_count += sad_count;
5562 break;
5563 case CTA_DB_SPEAKER:
5564 /* Speaker Allocation Data Block */
5565 if (len >= 1)
5566 eld[DRM_ELD_SPEAKER] = data[0];
5567 break;
5568 case CTA_DB_VENDOR:
5569 /* HDMI Vendor-Specific Data Block */
5570 if (cea_db_is_hdmi_vsdb(db))
5571 drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5572 break;
5573 default:
5574 break;
5575 }
5576 }
5577 cea_db_iter_end(&iter);
5578
5579 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5580
5581 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5582 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5583 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5584 else
5585 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5586
5587 eld[DRM_ELD_BASELINE_ELD_LEN] =
5588 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5589
5590 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5591 connector->base.id, connector->name,
5592 drm_eld_size(eld), total_sad_count);
5593 }
5594
_drm_edid_to_sad(const struct drm_edid * drm_edid,struct cea_sad ** sads)5595 static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5596 struct cea_sad **sads)
5597 {
5598 const struct cea_db *db;
5599 struct cea_db_iter iter;
5600 int count = 0;
5601
5602 cea_db_iter_edid_begin(drm_edid, &iter);
5603 cea_db_iter_for_each(db, &iter) {
5604 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5605 int j;
5606
5607 count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5608 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
5609 if (!*sads)
5610 return -ENOMEM;
5611 for (j = 0; j < count; j++) {
5612 const u8 *sad = &db->data[j * 3];
5613
5614 (*sads)[j].format = (sad[0] & 0x78) >> 3;
5615 (*sads)[j].channels = sad[0] & 0x7;
5616 (*sads)[j].freq = sad[1] & 0x7F;
5617 (*sads)[j].byte2 = sad[2];
5618 }
5619 break;
5620 }
5621 }
5622 cea_db_iter_end(&iter);
5623
5624 DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5625
5626 return count;
5627 }
5628
5629 /**
5630 * drm_edid_to_sad - extracts SADs from EDID
5631 * @edid: EDID to parse
5632 * @sads: pointer that will be set to the extracted SADs
5633 *
5634 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5635 *
5636 * Note: The returned pointer needs to be freed using kfree().
5637 *
5638 * Return: The number of found SADs or negative number on error.
5639 */
drm_edid_to_sad(const struct edid * edid,struct cea_sad ** sads)5640 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5641 {
5642 struct drm_edid drm_edid;
5643
5644 return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5645 }
5646 EXPORT_SYMBOL(drm_edid_to_sad);
5647
_drm_edid_to_speaker_allocation(const struct drm_edid * drm_edid,u8 ** sadb)5648 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5649 u8 **sadb)
5650 {
5651 const struct cea_db *db;
5652 struct cea_db_iter iter;
5653 int count = 0;
5654
5655 cea_db_iter_edid_begin(drm_edid, &iter);
5656 cea_db_iter_for_each(db, &iter) {
5657 if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5658 cea_db_payload_len(db) == 3) {
5659 *sadb = kmemdup(db->data, cea_db_payload_len(db),
5660 GFP_KERNEL);
5661 if (!*sadb)
5662 return -ENOMEM;
5663 count = cea_db_payload_len(db);
5664 break;
5665 }
5666 }
5667 cea_db_iter_end(&iter);
5668
5669 DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5670
5671 return count;
5672 }
5673
5674 /**
5675 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5676 * @edid: EDID to parse
5677 * @sadb: pointer to the speaker block
5678 *
5679 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5680 *
5681 * Note: The returned pointer needs to be freed using kfree().
5682 *
5683 * Return: The number of found Speaker Allocation Blocks or negative number on
5684 * error.
5685 */
drm_edid_to_speaker_allocation(const struct edid * edid,u8 ** sadb)5686 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5687 {
5688 struct drm_edid drm_edid;
5689
5690 return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5691 sadb);
5692 }
5693 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5694
5695 /**
5696 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5697 * @connector: connector associated with the HDMI/DP sink
5698 * @mode: the display mode
5699 *
5700 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5701 * the sink doesn't support audio or video.
5702 */
drm_av_sync_delay(struct drm_connector * connector,const struct drm_display_mode * mode)5703 int drm_av_sync_delay(struct drm_connector *connector,
5704 const struct drm_display_mode *mode)
5705 {
5706 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5707 int a, v;
5708
5709 if (!connector->latency_present[0])
5710 return 0;
5711 if (!connector->latency_present[1])
5712 i = 0;
5713
5714 a = connector->audio_latency[i];
5715 v = connector->video_latency[i];
5716
5717 /*
5718 * HDMI/DP sink doesn't support audio or video?
5719 */
5720 if (a == 255 || v == 255)
5721 return 0;
5722
5723 /*
5724 * Convert raw EDID values to millisecond.
5725 * Treat unknown latency as 0ms.
5726 */
5727 if (a)
5728 a = min(2 * (a - 1), 500);
5729 if (v)
5730 v = min(2 * (v - 1), 500);
5731
5732 return max(v - a, 0);
5733 }
5734 EXPORT_SYMBOL(drm_av_sync_delay);
5735
_drm_detect_hdmi_monitor(const struct drm_edid * drm_edid)5736 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5737 {
5738 const struct cea_db *db;
5739 struct cea_db_iter iter;
5740 bool hdmi = false;
5741
5742 /*
5743 * Because HDMI identifier is in Vendor Specific Block,
5744 * search it from all data blocks of CEA extension.
5745 */
5746 cea_db_iter_edid_begin(drm_edid, &iter);
5747 cea_db_iter_for_each(db, &iter) {
5748 if (cea_db_is_hdmi_vsdb(db)) {
5749 hdmi = true;
5750 break;
5751 }
5752 }
5753 cea_db_iter_end(&iter);
5754
5755 return hdmi;
5756 }
5757
5758 /**
5759 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5760 * @edid: monitor EDID information
5761 *
5762 * Parse the CEA extension according to CEA-861-B.
5763 *
5764 * Drivers that have added the modes parsed from EDID to drm_display_info
5765 * should use &drm_display_info.is_hdmi instead of calling this function.
5766 *
5767 * Return: True if the monitor is HDMI, false if not or unknown.
5768 */
drm_detect_hdmi_monitor(const struct edid * edid)5769 bool drm_detect_hdmi_monitor(const struct edid *edid)
5770 {
5771 struct drm_edid drm_edid;
5772
5773 return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5774 }
5775 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5776
_drm_detect_monitor_audio(const struct drm_edid * drm_edid)5777 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5778 {
5779 struct drm_edid_iter edid_iter;
5780 const struct cea_db *db;
5781 struct cea_db_iter iter;
5782 const u8 *edid_ext;
5783 bool has_audio = false;
5784
5785 drm_edid_iter_begin(drm_edid, &edid_iter);
5786 drm_edid_iter_for_each(edid_ext, &edid_iter) {
5787 if (edid_ext[0] == CEA_EXT) {
5788 has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5789 if (has_audio)
5790 break;
5791 }
5792 }
5793 drm_edid_iter_end(&edid_iter);
5794
5795 if (has_audio) {
5796 DRM_DEBUG_KMS("Monitor has basic audio support\n");
5797 goto end;
5798 }
5799
5800 cea_db_iter_edid_begin(drm_edid, &iter);
5801 cea_db_iter_for_each(db, &iter) {
5802 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5803 const u8 *data = cea_db_data(db);
5804 int i;
5805
5806 for (i = 0; i < cea_db_payload_len(db); i += 3)
5807 DRM_DEBUG_KMS("CEA audio format %d\n",
5808 (data[i] >> 3) & 0xf);
5809 has_audio = true;
5810 break;
5811 }
5812 }
5813 cea_db_iter_end(&iter);
5814
5815 end:
5816 return has_audio;
5817 }
5818
5819 /**
5820 * drm_detect_monitor_audio - check monitor audio capability
5821 * @edid: EDID block to scan
5822 *
5823 * Monitor should have CEA extension block.
5824 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5825 * audio' only. If there is any audio extension block and supported
5826 * audio format, assume at least 'basic audio' support, even if 'basic
5827 * audio' is not defined in EDID.
5828 *
5829 * Return: True if the monitor supports audio, false otherwise.
5830 */
drm_detect_monitor_audio(const struct edid * edid)5831 bool drm_detect_monitor_audio(const struct edid *edid)
5832 {
5833 struct drm_edid drm_edid;
5834
5835 return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5836 }
5837 EXPORT_SYMBOL(drm_detect_monitor_audio);
5838
5839
5840 /**
5841 * drm_default_rgb_quant_range - default RGB quantization range
5842 * @mode: display mode
5843 *
5844 * Determine the default RGB quantization range for the mode,
5845 * as specified in CEA-861.
5846 *
5847 * Return: The default RGB quantization range for the mode
5848 */
5849 enum hdmi_quantization_range
drm_default_rgb_quant_range(const struct drm_display_mode * mode)5850 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5851 {
5852 /* All CEA modes other than VIC 1 use limited quantization range. */
5853 return drm_match_cea_mode(mode) > 1 ?
5854 HDMI_QUANTIZATION_RANGE_LIMITED :
5855 HDMI_QUANTIZATION_RANGE_FULL;
5856 }
5857 EXPORT_SYMBOL(drm_default_rgb_quant_range);
5858
5859 /* CTA-861 Video Data Block (CTA VDB) */
parse_cta_vdb(struct drm_connector * connector,const struct cea_db * db)5860 static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5861 {
5862 struct drm_display_info *info = &connector->display_info;
5863 int i, vic_index, len = cea_db_payload_len(db);
5864 const u8 *svds = cea_db_data(db);
5865 u8 *vics;
5866
5867 if (!len)
5868 return;
5869
5870 /* Gracefully handle multiple VDBs, however unlikely that is */
5871 vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5872 if (!vics)
5873 return;
5874
5875 vic_index = info->vics_len;
5876 info->vics_len += len;
5877 info->vics = vics;
5878
5879 for (i = 0; i < len; i++) {
5880 u8 vic = svd_to_vic(svds[i]);
5881
5882 if (!drm_valid_cea_vic(vic))
5883 vic = 0;
5884
5885 info->vics[vic_index++] = vic;
5886 }
5887 }
5888
5889 /*
5890 * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5891 *
5892 * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5893 * using the VICs themselves.
5894 */
update_cta_y420cmdb(struct drm_connector * connector,u64 y420cmdb_map)5895 static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5896 {
5897 struct drm_display_info *info = &connector->display_info;
5898 struct drm_hdmi_info *hdmi = &info->hdmi;
5899 int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5900
5901 for (i = 0; i < len; i++) {
5902 u8 vic = info->vics[i];
5903
5904 if (vic && y420cmdb_map & BIT_ULL(i))
5905 bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5906 }
5907 }
5908
cta_vdb_has_vic(const struct drm_connector * connector,u8 vic)5909 static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5910 {
5911 const struct drm_display_info *info = &connector->display_info;
5912 int i;
5913
5914 if (!vic || !info->vics)
5915 return false;
5916
5917 for (i = 0; i < info->vics_len; i++) {
5918 if (info->vics[i] == vic)
5919 return true;
5920 }
5921
5922 return false;
5923 }
5924
5925 /* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
parse_cta_y420vdb(struct drm_connector * connector,const struct cea_db * db)5926 static void parse_cta_y420vdb(struct drm_connector *connector,
5927 const struct cea_db *db)
5928 {
5929 struct drm_display_info *info = &connector->display_info;
5930 struct drm_hdmi_info *hdmi = &info->hdmi;
5931 const u8 *svds = cea_db_data(db) + 1;
5932 int i;
5933
5934 for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5935 u8 vic = svd_to_vic(svds[i]);
5936
5937 if (!drm_valid_cea_vic(vic))
5938 continue;
5939
5940 bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5941 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5942 }
5943 }
5944
drm_parse_vcdb(struct drm_connector * connector,const u8 * db)5945 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5946 {
5947 struct drm_display_info *info = &connector->display_info;
5948
5949 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5950 connector->base.id, connector->name, db[2]);
5951
5952 if (db[2] & EDID_CEA_VCDB_QS)
5953 info->rgb_quant_range_selectable = true;
5954 }
5955
5956 static
drm_get_max_frl_rate(int max_frl_rate,u8 * max_lanes,u8 * max_rate_per_lane)5957 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5958 {
5959 switch (max_frl_rate) {
5960 case 1:
5961 *max_lanes = 3;
5962 *max_rate_per_lane = 3;
5963 break;
5964 case 2:
5965 *max_lanes = 3;
5966 *max_rate_per_lane = 6;
5967 break;
5968 case 3:
5969 *max_lanes = 4;
5970 *max_rate_per_lane = 6;
5971 break;
5972 case 4:
5973 *max_lanes = 4;
5974 *max_rate_per_lane = 8;
5975 break;
5976 case 5:
5977 *max_lanes = 4;
5978 *max_rate_per_lane = 10;
5979 break;
5980 case 6:
5981 *max_lanes = 4;
5982 *max_rate_per_lane = 12;
5983 break;
5984 case 0:
5985 default:
5986 *max_lanes = 0;
5987 *max_rate_per_lane = 0;
5988 }
5989 }
5990
drm_parse_ycbcr420_deep_color_info(struct drm_connector * connector,const u8 * db)5991 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
5992 const u8 *db)
5993 {
5994 u8 dc_mask;
5995 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
5996
5997 dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
5998 hdmi->y420_dc_modes = dc_mask;
5999 }
6000
drm_parse_dsc_info(struct drm_hdmi_dsc_cap * hdmi_dsc,const u8 * hf_scds)6001 static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6002 const u8 *hf_scds)
6003 {
6004 hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6005
6006 if (!hdmi_dsc->v_1p2)
6007 return;
6008
6009 hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6010 hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6011
6012 if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6013 hdmi_dsc->bpc_supported = 16;
6014 else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6015 hdmi_dsc->bpc_supported = 12;
6016 else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6017 hdmi_dsc->bpc_supported = 10;
6018 else
6019 /* Supports min 8 BPC if DSC 1.2 is supported*/
6020 hdmi_dsc->bpc_supported = 8;
6021
6022 if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6023 u8 dsc_max_slices;
6024 u8 dsc_max_frl_rate;
6025
6026 dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6027 drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6028 &hdmi_dsc->max_frl_rate_per_lane);
6029
6030 dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6031
6032 switch (dsc_max_slices) {
6033 case 1:
6034 hdmi_dsc->max_slices = 1;
6035 hdmi_dsc->clk_per_slice = 340;
6036 break;
6037 case 2:
6038 hdmi_dsc->max_slices = 2;
6039 hdmi_dsc->clk_per_slice = 340;
6040 break;
6041 case 3:
6042 hdmi_dsc->max_slices = 4;
6043 hdmi_dsc->clk_per_slice = 340;
6044 break;
6045 case 4:
6046 hdmi_dsc->max_slices = 8;
6047 hdmi_dsc->clk_per_slice = 340;
6048 break;
6049 case 5:
6050 hdmi_dsc->max_slices = 8;
6051 hdmi_dsc->clk_per_slice = 400;
6052 break;
6053 case 6:
6054 hdmi_dsc->max_slices = 12;
6055 hdmi_dsc->clk_per_slice = 400;
6056 break;
6057 case 7:
6058 hdmi_dsc->max_slices = 16;
6059 hdmi_dsc->clk_per_slice = 400;
6060 break;
6061 case 0:
6062 default:
6063 hdmi_dsc->max_slices = 0;
6064 hdmi_dsc->clk_per_slice = 0;
6065 }
6066 }
6067
6068 if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6069 hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6070 }
6071
6072 /* Sink Capability Data Structure */
drm_parse_hdmi_forum_scds(struct drm_connector * connector,const u8 * hf_scds)6073 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6074 const u8 *hf_scds)
6075 {
6076 struct drm_display_info *info = &connector->display_info;
6077 struct drm_hdmi_info *hdmi = &info->hdmi;
6078 struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6079 int max_tmds_clock = 0;
6080 u8 max_frl_rate = 0;
6081 bool dsc_support = false;
6082
6083 info->has_hdmi_infoframe = true;
6084
6085 if (hf_scds[6] & 0x80) {
6086 hdmi->scdc.supported = true;
6087 if (hf_scds[6] & 0x40)
6088 hdmi->scdc.read_request = true;
6089 }
6090
6091 /*
6092 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6093 * And as per the spec, three factors confirm this:
6094 * * Availability of a HF-VSDB block in EDID (check)
6095 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6096 * * SCDC support available (let's check)
6097 * Lets check it out.
6098 */
6099
6100 if (hf_scds[5]) {
6101 struct drm_scdc *scdc = &hdmi->scdc;
6102
6103 /* max clock is 5000 KHz times block value */
6104 max_tmds_clock = hf_scds[5] * 5000;
6105
6106 if (max_tmds_clock > 340000) {
6107 info->max_tmds_clock = max_tmds_clock;
6108 }
6109
6110 if (scdc->supported) {
6111 scdc->scrambling.supported = true;
6112
6113 /* Few sinks support scrambling for clocks < 340M */
6114 if ((hf_scds[6] & 0x8))
6115 scdc->scrambling.low_rates = true;
6116 }
6117 }
6118
6119 if (hf_scds[7]) {
6120 max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6121 drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6122 &hdmi->max_frl_rate_per_lane);
6123 }
6124
6125 drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6126
6127 if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6128 drm_parse_dsc_info(hdmi_dsc, hf_scds);
6129 dsc_support = true;
6130 }
6131
6132 drm_dbg_kms(connector->dev,
6133 "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6134 connector->base.id, connector->name,
6135 max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6136 }
6137
drm_parse_hdmi_deep_color_info(struct drm_connector * connector,const u8 * hdmi)6138 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6139 const u8 *hdmi)
6140 {
6141 struct drm_display_info *info = &connector->display_info;
6142 unsigned int dc_bpc = 0;
6143
6144 /* HDMI supports at least 8 bpc */
6145 info->bpc = 8;
6146
6147 if (cea_db_payload_len(hdmi) < 6)
6148 return;
6149
6150 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6151 dc_bpc = 10;
6152 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6153 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6154 connector->base.id, connector->name);
6155 }
6156
6157 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6158 dc_bpc = 12;
6159 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6160 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6161 connector->base.id, connector->name);
6162 }
6163
6164 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6165 dc_bpc = 16;
6166 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6167 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6168 connector->base.id, connector->name);
6169 }
6170
6171 if (dc_bpc == 0) {
6172 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6173 connector->base.id, connector->name);
6174 return;
6175 }
6176
6177 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6178 connector->base.id, connector->name, dc_bpc);
6179 info->bpc = dc_bpc;
6180
6181 /* YCRCB444 is optional according to spec. */
6182 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6183 info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6184 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6185 connector->base.id, connector->name);
6186 }
6187
6188 /*
6189 * Spec says that if any deep color mode is supported at all,
6190 * then deep color 36 bit must be supported.
6191 */
6192 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6193 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6194 connector->base.id, connector->name);
6195 }
6196 }
6197
6198 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6199 static void
drm_parse_hdmi_vsdb_video(struct drm_connector * connector,const u8 * db)6200 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6201 {
6202 struct drm_display_info *info = &connector->display_info;
6203 u8 len = cea_db_payload_len(db);
6204
6205 info->is_hdmi = true;
6206
6207 if (len >= 6)
6208 info->dvi_dual = db[6] & 1;
6209 if (len >= 7)
6210 info->max_tmds_clock = db[7] * 5000;
6211
6212 /*
6213 * Try to infer whether the sink supports HDMI infoframes.
6214 *
6215 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6216 * supports infoframes if HDMI_Video_present is set.
6217 */
6218 if (len >= 8 && db[8] & BIT(5))
6219 info->has_hdmi_infoframe = true;
6220
6221 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6222 connector->base.id, connector->name,
6223 info->dvi_dual, info->max_tmds_clock);
6224
6225 drm_parse_hdmi_deep_color_info(connector, db);
6226 }
6227
6228 /*
6229 * See EDID extension for head-mounted and specialized monitors, specified at:
6230 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6231 */
drm_parse_microsoft_vsdb(struct drm_connector * connector,const u8 * db)6232 static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6233 const u8 *db)
6234 {
6235 struct drm_display_info *info = &connector->display_info;
6236 u8 version = db[4];
6237 bool desktop_usage = db[5] & BIT(6);
6238
6239 /* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6240 if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6241 info->non_desktop = true;
6242
6243 drm_dbg_kms(connector->dev,
6244 "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6245 connector->base.id, connector->name, version, db[5]);
6246 }
6247
drm_parse_cea_ext(struct drm_connector * connector,const struct drm_edid * drm_edid)6248 static void drm_parse_cea_ext(struct drm_connector *connector,
6249 const struct drm_edid *drm_edid)
6250 {
6251 struct drm_display_info *info = &connector->display_info;
6252 struct drm_edid_iter edid_iter;
6253 const struct cea_db *db;
6254 struct cea_db_iter iter;
6255 const u8 *edid_ext;
6256 u64 y420cmdb_map = 0;
6257
6258 drm_edid_iter_begin(drm_edid, &edid_iter);
6259 drm_edid_iter_for_each(edid_ext, &edid_iter) {
6260 if (edid_ext[0] != CEA_EXT)
6261 continue;
6262
6263 if (!info->cea_rev)
6264 info->cea_rev = edid_ext[1];
6265
6266 if (info->cea_rev != edid_ext[1])
6267 drm_dbg_kms(connector->dev,
6268 "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6269 connector->base.id, connector->name,
6270 info->cea_rev, edid_ext[1]);
6271
6272 /* The existence of a CTA extension should imply RGB support */
6273 info->color_formats = DRM_COLOR_FORMAT_RGB444;
6274 if (edid_ext[3] & EDID_CEA_YCRCB444)
6275 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6276 if (edid_ext[3] & EDID_CEA_YCRCB422)
6277 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6278 if (edid_ext[3] & EDID_BASIC_AUDIO)
6279 info->has_audio = true;
6280
6281 }
6282 drm_edid_iter_end(&edid_iter);
6283
6284 cea_db_iter_edid_begin(drm_edid, &iter);
6285 cea_db_iter_for_each(db, &iter) {
6286 /* FIXME: convert parsers to use struct cea_db */
6287 const u8 *data = (const u8 *)db;
6288
6289 if (cea_db_is_hdmi_vsdb(db))
6290 drm_parse_hdmi_vsdb_video(connector, data);
6291 else if (cea_db_is_hdmi_forum_vsdb(db) ||
6292 cea_db_is_hdmi_forum_scdb(db))
6293 drm_parse_hdmi_forum_scds(connector, data);
6294 else if (cea_db_is_microsoft_vsdb(db))
6295 drm_parse_microsoft_vsdb(connector, data);
6296 else if (cea_db_is_y420cmdb(db))
6297 parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6298 else if (cea_db_is_y420vdb(db))
6299 parse_cta_y420vdb(connector, db);
6300 else if (cea_db_is_vcdb(db))
6301 drm_parse_vcdb(connector, data);
6302 else if (cea_db_is_hdmi_hdr_metadata_block(db))
6303 drm_parse_hdr_metadata_block(connector, data);
6304 else if (cea_db_tag(db) == CTA_DB_VIDEO)
6305 parse_cta_vdb(connector, db);
6306 else if (cea_db_tag(db) == CTA_DB_AUDIO)
6307 info->has_audio = true;
6308 }
6309 cea_db_iter_end(&iter);
6310
6311 if (y420cmdb_map)
6312 update_cta_y420cmdb(connector, y420cmdb_map);
6313 }
6314
6315 static
get_monitor_range(const struct detailed_timing * timing,void * c)6316 void get_monitor_range(const struct detailed_timing *timing, void *c)
6317 {
6318 struct detailed_mode_closure *closure = c;
6319 struct drm_display_info *info = &closure->connector->display_info;
6320 struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6321 const struct detailed_non_pixel *data = &timing->data.other_data;
6322 const struct detailed_data_monitor_range *range = &data->data.range;
6323 const struct edid *edid = closure->drm_edid->edid;
6324
6325 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6326 return;
6327
6328 /*
6329 * These limits are used to determine the VRR refresh
6330 * rate range. Only the "range limits only" variant
6331 * of the range descriptor seems to guarantee that
6332 * any and all timings are accepted by the sink, as
6333 * opposed to just timings conforming to the indicated
6334 * formula (GTF/GTF2/CVT). Thus other variants of the
6335 * range descriptor are not accepted here.
6336 */
6337 if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6338 return;
6339
6340 monitor_range->min_vfreq = range->min_vfreq;
6341 monitor_range->max_vfreq = range->max_vfreq;
6342
6343 if (edid->revision >= 4) {
6344 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6345 monitor_range->min_vfreq += 255;
6346 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6347 monitor_range->max_vfreq += 255;
6348 }
6349 }
6350
drm_get_monitor_range(struct drm_connector * connector,const struct drm_edid * drm_edid)6351 static void drm_get_monitor_range(struct drm_connector *connector,
6352 const struct drm_edid *drm_edid)
6353 {
6354 const struct drm_display_info *info = &connector->display_info;
6355 struct detailed_mode_closure closure = {
6356 .connector = connector,
6357 .drm_edid = drm_edid,
6358 };
6359
6360 if (drm_edid->edid->revision < 4)
6361 return;
6362
6363 if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6364 return;
6365
6366 drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6367
6368 drm_dbg_kms(connector->dev,
6369 "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6370 connector->base.id, connector->name,
6371 info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6372 }
6373
drm_parse_vesa_mso_data(struct drm_connector * connector,const struct displayid_block * block)6374 static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6375 const struct displayid_block *block)
6376 {
6377 struct displayid_vesa_vendor_specific_block *vesa =
6378 (struct displayid_vesa_vendor_specific_block *)block;
6379 struct drm_display_info *info = &connector->display_info;
6380
6381 if (block->num_bytes < 3) {
6382 drm_dbg_kms(connector->dev,
6383 "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6384 connector->base.id, connector->name, block->num_bytes);
6385 return;
6386 }
6387
6388 if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6389 return;
6390
6391 if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6392 drm_dbg_kms(connector->dev,
6393 "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6394 connector->base.id, connector->name);
6395 return;
6396 }
6397
6398 switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6399 default:
6400 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6401 connector->base.id, connector->name);
6402 fallthrough;
6403 case 0:
6404 info->mso_stream_count = 0;
6405 break;
6406 case 1:
6407 info->mso_stream_count = 2; /* 2 or 4 links */
6408 break;
6409 case 2:
6410 info->mso_stream_count = 4; /* 4 links */
6411 break;
6412 }
6413
6414 if (!info->mso_stream_count) {
6415 info->mso_pixel_overlap = 0;
6416 return;
6417 }
6418
6419 info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6420 if (info->mso_pixel_overlap > 8) {
6421 drm_dbg_kms(connector->dev,
6422 "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6423 connector->base.id, connector->name,
6424 info->mso_pixel_overlap);
6425 info->mso_pixel_overlap = 8;
6426 }
6427
6428 drm_dbg_kms(connector->dev,
6429 "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6430 connector->base.id, connector->name,
6431 info->mso_stream_count, info->mso_pixel_overlap);
6432 }
6433
drm_update_mso(struct drm_connector * connector,const struct drm_edid * drm_edid)6434 static void drm_update_mso(struct drm_connector *connector,
6435 const struct drm_edid *drm_edid)
6436 {
6437 const struct displayid_block *block;
6438 struct displayid_iter iter;
6439
6440 displayid_iter_edid_begin(drm_edid, &iter);
6441 displayid_iter_for_each(block, &iter) {
6442 if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6443 drm_parse_vesa_mso_data(connector, block);
6444 }
6445 displayid_iter_end(&iter);
6446 }
6447
6448 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6449 * all of the values which would have been set from EDID
6450 */
drm_reset_display_info(struct drm_connector * connector)6451 static void drm_reset_display_info(struct drm_connector *connector)
6452 {
6453 struct drm_display_info *info = &connector->display_info;
6454
6455 info->width_mm = 0;
6456 info->height_mm = 0;
6457
6458 info->bpc = 0;
6459 info->color_formats = 0;
6460 info->cea_rev = 0;
6461 info->max_tmds_clock = 0;
6462 info->dvi_dual = false;
6463 info->is_hdmi = false;
6464 info->has_audio = false;
6465 info->has_hdmi_infoframe = false;
6466 info->rgb_quant_range_selectable = false;
6467 memset(&info->hdmi, 0, sizeof(info->hdmi));
6468
6469 info->edid_hdmi_rgb444_dc_modes = 0;
6470 info->edid_hdmi_ycbcr444_dc_modes = 0;
6471
6472 info->non_desktop = 0;
6473 memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6474 memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6475
6476 info->mso_stream_count = 0;
6477 info->mso_pixel_overlap = 0;
6478 info->max_dsc_bpp = 0;
6479
6480 kfree(info->vics);
6481 info->vics = NULL;
6482 info->vics_len = 0;
6483
6484 info->quirks = 0;
6485 }
6486
update_displayid_info(struct drm_connector * connector,const struct drm_edid * drm_edid)6487 static void update_displayid_info(struct drm_connector *connector,
6488 const struct drm_edid *drm_edid)
6489 {
6490 struct drm_display_info *info = &connector->display_info;
6491 const struct displayid_block *block;
6492 struct displayid_iter iter;
6493
6494 displayid_iter_edid_begin(drm_edid, &iter);
6495 displayid_iter_for_each(block, &iter) {
6496 if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6497 (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6498 displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6499 info->non_desktop = true;
6500
6501 /*
6502 * We're only interested in the base section here, no need to
6503 * iterate further.
6504 */
6505 break;
6506 }
6507 displayid_iter_end(&iter);
6508 }
6509
update_display_info(struct drm_connector * connector,const struct drm_edid * drm_edid)6510 static void update_display_info(struct drm_connector *connector,
6511 const struct drm_edid *drm_edid)
6512 {
6513 struct drm_display_info *info = &connector->display_info;
6514 const struct edid *edid;
6515
6516 drm_reset_display_info(connector);
6517 clear_eld(connector);
6518
6519 if (!drm_edid)
6520 return;
6521
6522 edid = drm_edid->edid;
6523
6524 info->quirks = edid_get_quirks(drm_edid);
6525
6526 info->width_mm = edid->width_cm * 10;
6527 info->height_mm = edid->height_cm * 10;
6528
6529 drm_get_monitor_range(connector, drm_edid);
6530
6531 if (edid->revision < 3)
6532 goto out;
6533
6534 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
6535 goto out;
6536
6537 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6538 drm_parse_cea_ext(connector, drm_edid);
6539
6540 update_displayid_info(connector, drm_edid);
6541
6542 /*
6543 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6544 *
6545 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6546 * tells us to assume 8 bpc color depth if the EDID doesn't have
6547 * extensions which tell otherwise.
6548 */
6549 if (info->bpc == 0 && edid->revision == 3 &&
6550 edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6551 info->bpc = 8;
6552 drm_dbg_kms(connector->dev,
6553 "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6554 connector->base.id, connector->name, info->bpc);
6555 }
6556
6557 /* Only defined for 1.4 with digital displays */
6558 if (edid->revision < 4)
6559 goto out;
6560
6561 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6562 case DRM_EDID_DIGITAL_DEPTH_6:
6563 info->bpc = 6;
6564 break;
6565 case DRM_EDID_DIGITAL_DEPTH_8:
6566 info->bpc = 8;
6567 break;
6568 case DRM_EDID_DIGITAL_DEPTH_10:
6569 info->bpc = 10;
6570 break;
6571 case DRM_EDID_DIGITAL_DEPTH_12:
6572 info->bpc = 12;
6573 break;
6574 case DRM_EDID_DIGITAL_DEPTH_14:
6575 info->bpc = 14;
6576 break;
6577 case DRM_EDID_DIGITAL_DEPTH_16:
6578 info->bpc = 16;
6579 break;
6580 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6581 default:
6582 info->bpc = 0;
6583 break;
6584 }
6585
6586 drm_dbg_kms(connector->dev,
6587 "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6588 connector->base.id, connector->name, info->bpc);
6589
6590 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6591 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6592 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6593 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6594
6595 drm_update_mso(connector, drm_edid);
6596
6597 out:
6598 if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6599 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6600 connector->base.id, connector->name,
6601 info->non_desktop ? " (redundant quirk)" : "");
6602 info->non_desktop = true;
6603 }
6604
6605 if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6606 info->max_dsc_bpp = 15;
6607
6608 if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6609 info->bpc = 6;
6610
6611 if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6612 info->bpc = 8;
6613
6614 if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6615 info->bpc = 10;
6616
6617 if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6618 info->bpc = 12;
6619
6620 /* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6621 drm_edid_to_eld(connector, drm_edid);
6622 }
6623
drm_mode_displayid_detailed(struct drm_device * dev,struct displayid_detailed_timings_1 * timings,bool type_7)6624 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6625 struct displayid_detailed_timings_1 *timings,
6626 bool type_7)
6627 {
6628 struct drm_display_mode *mode;
6629 unsigned pixel_clock = (timings->pixel_clock[0] |
6630 (timings->pixel_clock[1] << 8) |
6631 (timings->pixel_clock[2] << 16)) + 1;
6632 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6633 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6634 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6635 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6636 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6637 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6638 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6639 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6640 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6641 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6642
6643 mode = drm_mode_create(dev);
6644 if (!mode)
6645 return NULL;
6646
6647 /* resolution is kHz for type VII, and 10 kHz for type I */
6648 mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6649 mode->hdisplay = hactive;
6650 mode->hsync_start = mode->hdisplay + hsync;
6651 mode->hsync_end = mode->hsync_start + hsync_width;
6652 mode->htotal = mode->hdisplay + hblank;
6653
6654 mode->vdisplay = vactive;
6655 mode->vsync_start = mode->vdisplay + vsync;
6656 mode->vsync_end = mode->vsync_start + vsync_width;
6657 mode->vtotal = mode->vdisplay + vblank;
6658
6659 mode->flags = 0;
6660 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6661 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6662 mode->type = DRM_MODE_TYPE_DRIVER;
6663
6664 if (timings->flags & 0x80)
6665 mode->type |= DRM_MODE_TYPE_PREFERRED;
6666 drm_mode_set_name(mode);
6667
6668 return mode;
6669 }
6670
add_displayid_detailed_1_modes(struct drm_connector * connector,const struct displayid_block * block)6671 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6672 const struct displayid_block *block)
6673 {
6674 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6675 int i;
6676 int num_timings;
6677 struct drm_display_mode *newmode;
6678 int num_modes = 0;
6679 bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6680 /* blocks must be multiple of 20 bytes length */
6681 if (block->num_bytes % 20)
6682 return 0;
6683
6684 num_timings = block->num_bytes / 20;
6685 for (i = 0; i < num_timings; i++) {
6686 struct displayid_detailed_timings_1 *timings = &det->timings[i];
6687
6688 newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6689 if (!newmode)
6690 continue;
6691
6692 drm_mode_probed_add(connector, newmode);
6693 num_modes++;
6694 }
6695 return num_modes;
6696 }
6697
add_displayid_detailed_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)6698 static int add_displayid_detailed_modes(struct drm_connector *connector,
6699 const struct drm_edid *drm_edid)
6700 {
6701 const struct displayid_block *block;
6702 struct displayid_iter iter;
6703 int num_modes = 0;
6704
6705 displayid_iter_edid_begin(drm_edid, &iter);
6706 displayid_iter_for_each(block, &iter) {
6707 if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6708 block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6709 num_modes += add_displayid_detailed_1_modes(connector, block);
6710 }
6711 displayid_iter_end(&iter);
6712
6713 return num_modes;
6714 }
6715
_drm_edid_connector_add_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)6716 static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6717 const struct drm_edid *drm_edid)
6718 {
6719 const struct drm_display_info *info = &connector->display_info;
6720 int num_modes = 0;
6721
6722 if (!drm_edid)
6723 return 0;
6724
6725 /*
6726 * EDID spec says modes should be preferred in this order:
6727 * - preferred detailed mode
6728 * - other detailed modes from base block
6729 * - detailed modes from extension blocks
6730 * - CVT 3-byte code modes
6731 * - standard timing codes
6732 * - established timing codes
6733 * - modes inferred from GTF or CVT range information
6734 *
6735 * We get this pretty much right.
6736 *
6737 * XXX order for additional mode types in extension blocks?
6738 */
6739 num_modes += add_detailed_modes(connector, drm_edid);
6740 num_modes += add_cvt_modes(connector, drm_edid);
6741 num_modes += add_standard_modes(connector, drm_edid);
6742 num_modes += add_established_modes(connector, drm_edid);
6743 num_modes += add_cea_modes(connector, drm_edid);
6744 num_modes += add_alternate_cea_modes(connector, drm_edid);
6745 num_modes += add_displayid_detailed_modes(connector, drm_edid);
6746 if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6747 num_modes += add_inferred_modes(connector, drm_edid);
6748
6749 if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6750 edid_fixup_preferred(connector);
6751
6752 return num_modes;
6753 }
6754
6755 static void _drm_update_tile_info(struct drm_connector *connector,
6756 const struct drm_edid *drm_edid);
6757
_drm_edid_connector_property_update(struct drm_connector * connector,const struct drm_edid * drm_edid)6758 static int _drm_edid_connector_property_update(struct drm_connector *connector,
6759 const struct drm_edid *drm_edid)
6760 {
6761 struct drm_device *dev = connector->dev;
6762 int ret;
6763
6764 if (connector->edid_blob_ptr) {
6765 const struct edid *old_edid = connector->edid_blob_ptr->data;
6766
6767 if (old_edid) {
6768 if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6769 connector->epoch_counter++;
6770 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6771 connector->base.id, connector->name,
6772 connector->epoch_counter);
6773 }
6774 }
6775 }
6776
6777 ret = drm_property_replace_global_blob(dev,
6778 &connector->edid_blob_ptr,
6779 drm_edid ? drm_edid->size : 0,
6780 drm_edid ? drm_edid->edid : NULL,
6781 &connector->base,
6782 dev->mode_config.edid_property);
6783 if (ret) {
6784 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6785 connector->base.id, connector->name, ret);
6786 goto out;
6787 }
6788
6789 ret = drm_object_property_set_value(&connector->base,
6790 dev->mode_config.non_desktop_property,
6791 connector->display_info.non_desktop);
6792 if (ret) {
6793 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6794 connector->base.id, connector->name, ret);
6795 goto out;
6796 }
6797
6798 ret = drm_connector_set_tile_property(connector);
6799 if (ret) {
6800 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6801 connector->base.id, connector->name, ret);
6802 goto out;
6803 }
6804
6805 out:
6806 return ret;
6807 }
6808
6809 /**
6810 * drm_edid_connector_update - Update connector information from EDID
6811 * @connector: Connector
6812 * @drm_edid: EDID
6813 *
6814 * Update the connector display info, ELD, HDR metadata, relevant properties,
6815 * etc. from the passed in EDID.
6816 *
6817 * If EDID is NULL, reset the information.
6818 *
6819 * Must be called before calling drm_edid_connector_add_modes().
6820 *
6821 * Return: 0 on success, negative error on errors.
6822 */
drm_edid_connector_update(struct drm_connector * connector,const struct drm_edid * drm_edid)6823 int drm_edid_connector_update(struct drm_connector *connector,
6824 const struct drm_edid *drm_edid)
6825 {
6826 update_display_info(connector, drm_edid);
6827
6828 _drm_update_tile_info(connector, drm_edid);
6829
6830 return _drm_edid_connector_property_update(connector, drm_edid);
6831 }
6832 EXPORT_SYMBOL(drm_edid_connector_update);
6833
6834 /**
6835 * drm_edid_connector_add_modes - Update probed modes from the EDID property
6836 * @connector: Connector
6837 *
6838 * Add the modes from the previously updated EDID property to the connector
6839 * probed modes list.
6840 *
6841 * drm_edid_connector_update() must have been called before this to update the
6842 * EDID property.
6843 *
6844 * Return: The number of modes added, or 0 if we couldn't find any.
6845 */
drm_edid_connector_add_modes(struct drm_connector * connector)6846 int drm_edid_connector_add_modes(struct drm_connector *connector)
6847 {
6848 const struct drm_edid *drm_edid = NULL;
6849 int count;
6850
6851 if (connector->edid_blob_ptr)
6852 drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6853 connector->edid_blob_ptr->length);
6854
6855 count = _drm_edid_connector_add_modes(connector, drm_edid);
6856
6857 drm_edid_free(drm_edid);
6858
6859 return count;
6860 }
6861 EXPORT_SYMBOL(drm_edid_connector_add_modes);
6862
6863 /**
6864 * drm_connector_update_edid_property - update the edid property of a connector
6865 * @connector: drm connector
6866 * @edid: new value of the edid property
6867 *
6868 * This function creates a new blob modeset object and assigns its id to the
6869 * connector's edid property.
6870 * Since we also parse tile information from EDID's displayID block, we also
6871 * set the connector's tile property here. See drm_connector_set_tile_property()
6872 * for more details.
6873 *
6874 * This function is deprecated. Use drm_edid_connector_update() instead.
6875 *
6876 * Returns:
6877 * Zero on success, negative errno on failure.
6878 */
drm_connector_update_edid_property(struct drm_connector * connector,const struct edid * edid)6879 int drm_connector_update_edid_property(struct drm_connector *connector,
6880 const struct edid *edid)
6881 {
6882 struct drm_edid drm_edid;
6883
6884 return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
6885 }
6886 EXPORT_SYMBOL(drm_connector_update_edid_property);
6887
6888 /**
6889 * drm_add_edid_modes - add modes from EDID data, if available
6890 * @connector: connector we're probing
6891 * @edid: EDID data
6892 *
6893 * Add the specified modes to the connector's mode list. Also fills out the
6894 * &drm_display_info structure and ELD in @connector with any information which
6895 * can be derived from the edid.
6896 *
6897 * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6898 *
6899 * Return: The number of modes added or 0 if we couldn't find any.
6900 */
drm_add_edid_modes(struct drm_connector * connector,struct edid * edid)6901 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6902 {
6903 struct drm_edid _drm_edid;
6904 const struct drm_edid *drm_edid;
6905
6906 if (edid && !drm_edid_is_valid(edid)) {
6907 drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6908 connector->base.id, connector->name);
6909 edid = NULL;
6910 }
6911
6912 drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6913
6914 update_display_info(connector, drm_edid);
6915
6916 return _drm_edid_connector_add_modes(connector, drm_edid);
6917 }
6918 EXPORT_SYMBOL(drm_add_edid_modes);
6919
6920 /**
6921 * drm_add_modes_noedid - add modes for the connectors without EDID
6922 * @connector: connector we're probing
6923 * @hdisplay: the horizontal display limit
6924 * @vdisplay: the vertical display limit
6925 *
6926 * Add the specified modes to the connector's mode list. Only when the
6927 * hdisplay/vdisplay is not beyond the given limit, it will be added.
6928 *
6929 * Return: The number of modes added or 0 if we couldn't find any.
6930 */
drm_add_modes_noedid(struct drm_connector * connector,int hdisplay,int vdisplay)6931 int drm_add_modes_noedid(struct drm_connector *connector,
6932 int hdisplay, int vdisplay)
6933 {
6934 int i, count, num_modes = 0;
6935 struct drm_display_mode *mode;
6936 struct drm_device *dev = connector->dev;
6937
6938 count = ARRAY_SIZE(drm_dmt_modes);
6939 if (hdisplay < 0)
6940 hdisplay = 0;
6941 if (vdisplay < 0)
6942 vdisplay = 0;
6943
6944 for (i = 0; i < count; i++) {
6945 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6946
6947 if (hdisplay && vdisplay) {
6948 /*
6949 * Only when two are valid, they will be used to check
6950 * whether the mode should be added to the mode list of
6951 * the connector.
6952 */
6953 if (ptr->hdisplay > hdisplay ||
6954 ptr->vdisplay > vdisplay)
6955 continue;
6956 }
6957 if (drm_mode_vrefresh(ptr) > 61)
6958 continue;
6959 mode = drm_mode_duplicate(dev, ptr);
6960 if (mode) {
6961 drm_mode_probed_add(connector, mode);
6962 num_modes++;
6963 }
6964 }
6965 return num_modes;
6966 }
6967 EXPORT_SYMBOL(drm_add_modes_noedid);
6968
6969 /**
6970 * drm_set_preferred_mode - Sets the preferred mode of a connector
6971 * @connector: connector whose mode list should be processed
6972 * @hpref: horizontal resolution of preferred mode
6973 * @vpref: vertical resolution of preferred mode
6974 *
6975 * Marks a mode as preferred if it matches the resolution specified by @hpref
6976 * and @vpref.
6977 */
drm_set_preferred_mode(struct drm_connector * connector,int hpref,int vpref)6978 void drm_set_preferred_mode(struct drm_connector *connector,
6979 int hpref, int vpref)
6980 {
6981 struct drm_display_mode *mode;
6982
6983 list_for_each_entry(mode, &connector->probed_modes, head) {
6984 if (mode->hdisplay == hpref &&
6985 mode->vdisplay == vpref)
6986 mode->type |= DRM_MODE_TYPE_PREFERRED;
6987 }
6988 }
6989 EXPORT_SYMBOL(drm_set_preferred_mode);
6990
is_hdmi2_sink(const struct drm_connector * connector)6991 static bool is_hdmi2_sink(const struct drm_connector *connector)
6992 {
6993 /*
6994 * FIXME: sil-sii8620 doesn't have a connector around when
6995 * we need one, so we have to be prepared for a NULL connector.
6996 */
6997 if (!connector)
6998 return true;
6999
7000 return connector->display_info.hdmi.scdc.supported ||
7001 connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7002 }
7003
drm_mode_hdmi_vic(const struct drm_connector * connector,const struct drm_display_mode * mode)7004 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7005 const struct drm_display_mode *mode)
7006 {
7007 bool has_hdmi_infoframe = connector ?
7008 connector->display_info.has_hdmi_infoframe : false;
7009
7010 if (!has_hdmi_infoframe)
7011 return 0;
7012
7013 /* No HDMI VIC when signalling 3D video format */
7014 if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7015 return 0;
7016
7017 return drm_match_hdmi_mode(mode);
7018 }
7019
drm_mode_cea_vic(const struct drm_connector * connector,const struct drm_display_mode * mode)7020 static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7021 const struct drm_display_mode *mode)
7022 {
7023 /*
7024 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7025 * we should send its VIC in vendor infoframes, else send the
7026 * VIC in AVI infoframes. Lets check if this mode is present in
7027 * HDMI 1.4b 4K modes
7028 */
7029 if (drm_mode_hdmi_vic(connector, mode))
7030 return 0;
7031
7032 return drm_match_cea_mode(mode);
7033 }
7034
7035 /*
7036 * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7037 * conform to HDMI 1.4.
7038 *
7039 * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7040 * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7041 *
7042 * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7043 * version.
7044 */
vic_for_avi_infoframe(const struct drm_connector * connector,u8 vic)7045 static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7046 {
7047 if (!is_hdmi2_sink(connector) && vic > 64 &&
7048 !cta_vdb_has_vic(connector, vic))
7049 return 0;
7050
7051 return vic;
7052 }
7053
7054 /**
7055 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7056 * data from a DRM display mode
7057 * @frame: HDMI AVI infoframe
7058 * @connector: the connector
7059 * @mode: DRM display mode
7060 *
7061 * Return: 0 on success or a negative error code on failure.
7062 */
7063 int
drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe * frame,const struct drm_connector * connector,const struct drm_display_mode * mode)7064 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7065 const struct drm_connector *connector,
7066 const struct drm_display_mode *mode)
7067 {
7068 enum hdmi_picture_aspect picture_aspect;
7069 u8 vic, hdmi_vic;
7070
7071 if (!frame || !mode)
7072 return -EINVAL;
7073
7074 hdmi_avi_infoframe_init(frame);
7075
7076 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7077 frame->pixel_repeat = 1;
7078
7079 vic = drm_mode_cea_vic(connector, mode);
7080 hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7081
7082 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7083
7084 /*
7085 * As some drivers don't support atomic, we can't use connector state.
7086 * So just initialize the frame with default values, just the same way
7087 * as it's done with other properties here.
7088 */
7089 frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7090 frame->itc = 0;
7091
7092 /*
7093 * Populate picture aspect ratio from either
7094 * user input (if specified) or from the CEA/HDMI mode lists.
7095 */
7096 picture_aspect = mode->picture_aspect_ratio;
7097 if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7098 if (vic)
7099 picture_aspect = drm_get_cea_aspect_ratio(vic);
7100 else if (hdmi_vic)
7101 picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7102 }
7103
7104 /*
7105 * The infoframe can't convey anything but none, 4:3
7106 * and 16:9, so if the user has asked for anything else
7107 * we can only satisfy it by specifying the right VIC.
7108 */
7109 if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7110 if (vic) {
7111 if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7112 return -EINVAL;
7113 } else if (hdmi_vic) {
7114 if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7115 return -EINVAL;
7116 } else {
7117 return -EINVAL;
7118 }
7119
7120 picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7121 }
7122
7123 frame->video_code = vic_for_avi_infoframe(connector, vic);
7124 frame->picture_aspect = picture_aspect;
7125 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7126 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7127
7128 return 0;
7129 }
7130 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7131
7132 /**
7133 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7134 * quantization range information
7135 * @frame: HDMI AVI infoframe
7136 * @connector: the connector
7137 * @mode: DRM display mode
7138 * @rgb_quant_range: RGB quantization range (Q)
7139 */
7140 void
drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe * frame,const struct drm_connector * connector,const struct drm_display_mode * mode,enum hdmi_quantization_range rgb_quant_range)7141 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7142 const struct drm_connector *connector,
7143 const struct drm_display_mode *mode,
7144 enum hdmi_quantization_range rgb_quant_range)
7145 {
7146 const struct drm_display_info *info = &connector->display_info;
7147
7148 /*
7149 * CEA-861:
7150 * "A Source shall not send a non-zero Q value that does not correspond
7151 * to the default RGB Quantization Range for the transmitted Picture
7152 * unless the Sink indicates support for the Q bit in a Video
7153 * Capabilities Data Block."
7154 *
7155 * HDMI 2.0 recommends sending non-zero Q when it does match the
7156 * default RGB quantization range for the mode, even when QS=0.
7157 */
7158 if (info->rgb_quant_range_selectable ||
7159 rgb_quant_range == drm_default_rgb_quant_range(mode))
7160 frame->quantization_range = rgb_quant_range;
7161 else
7162 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7163
7164 /*
7165 * CEA-861-F:
7166 * "When transmitting any RGB colorimetry, the Source should set the
7167 * YQ-field to match the RGB Quantization Range being transmitted
7168 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7169 * set YQ=1) and the Sink shall ignore the YQ-field."
7170 *
7171 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7172 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7173 * good way to tell which version of CEA-861 the sink supports, so
7174 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7175 * on CEA-861-F.
7176 */
7177 if (!is_hdmi2_sink(connector) ||
7178 rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7179 frame->ycc_quantization_range =
7180 HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7181 else
7182 frame->ycc_quantization_range =
7183 HDMI_YCC_QUANTIZATION_RANGE_FULL;
7184 }
7185 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7186
7187 static enum hdmi_3d_structure
s3d_structure_from_display_mode(const struct drm_display_mode * mode)7188 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7189 {
7190 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7191
7192 switch (layout) {
7193 case DRM_MODE_FLAG_3D_FRAME_PACKING:
7194 return HDMI_3D_STRUCTURE_FRAME_PACKING;
7195 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7196 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7197 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7198 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7199 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7200 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7201 case DRM_MODE_FLAG_3D_L_DEPTH:
7202 return HDMI_3D_STRUCTURE_L_DEPTH;
7203 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7204 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7205 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7206 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7207 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7208 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7209 default:
7210 return HDMI_3D_STRUCTURE_INVALID;
7211 }
7212 }
7213
7214 /**
7215 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7216 * data from a DRM display mode
7217 * @frame: HDMI vendor infoframe
7218 * @connector: the connector
7219 * @mode: DRM display mode
7220 *
7221 * Note that there's is a need to send HDMI vendor infoframes only when using a
7222 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7223 * function will return -EINVAL, error that can be safely ignored.
7224 *
7225 * Return: 0 on success or a negative error code on failure.
7226 */
7227 int
drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe * frame,const struct drm_connector * connector,const struct drm_display_mode * mode)7228 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7229 const struct drm_connector *connector,
7230 const struct drm_display_mode *mode)
7231 {
7232 /*
7233 * FIXME: sil-sii8620 doesn't have a connector around when
7234 * we need one, so we have to be prepared for a NULL connector.
7235 */
7236 bool has_hdmi_infoframe = connector ?
7237 connector->display_info.has_hdmi_infoframe : false;
7238 int err;
7239
7240 if (!frame || !mode)
7241 return -EINVAL;
7242
7243 if (!has_hdmi_infoframe)
7244 return -EINVAL;
7245
7246 err = hdmi_vendor_infoframe_init(frame);
7247 if (err < 0)
7248 return err;
7249
7250 /*
7251 * Even if it's not absolutely necessary to send the infoframe
7252 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7253 * know that the sink can handle it. This is based on a
7254 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7255 * have trouble realizing that they should switch from 3D to 2D
7256 * mode if the source simply stops sending the infoframe when
7257 * it wants to switch from 3D to 2D.
7258 */
7259 frame->vic = drm_mode_hdmi_vic(connector, mode);
7260 frame->s3d_struct = s3d_structure_from_display_mode(mode);
7261
7262 return 0;
7263 }
7264 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7265
drm_parse_tiled_block(struct drm_connector * connector,const struct displayid_block * block)7266 static void drm_parse_tiled_block(struct drm_connector *connector,
7267 const struct displayid_block *block)
7268 {
7269 const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7270 u16 w, h;
7271 u8 tile_v_loc, tile_h_loc;
7272 u8 num_v_tile, num_h_tile;
7273 struct drm_tile_group *tg;
7274
7275 w = tile->tile_size[0] | tile->tile_size[1] << 8;
7276 h = tile->tile_size[2] | tile->tile_size[3] << 8;
7277
7278 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7279 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7280 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7281 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7282
7283 connector->has_tile = true;
7284 if (tile->tile_cap & 0x80)
7285 connector->tile_is_single_monitor = true;
7286
7287 connector->num_h_tile = num_h_tile + 1;
7288 connector->num_v_tile = num_v_tile + 1;
7289 connector->tile_h_loc = tile_h_loc;
7290 connector->tile_v_loc = tile_v_loc;
7291 connector->tile_h_size = w + 1;
7292 connector->tile_v_size = h + 1;
7293
7294 drm_dbg_kms(connector->dev,
7295 "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7296 connector->base.id, connector->name,
7297 tile->tile_cap,
7298 connector->tile_h_size, connector->tile_v_size,
7299 connector->num_h_tile, connector->num_v_tile,
7300 connector->tile_h_loc, connector->tile_v_loc,
7301 tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7302
7303 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7304 if (!tg)
7305 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7306 if (!tg)
7307 return;
7308
7309 if (connector->tile_group != tg) {
7310 /* if we haven't got a pointer,
7311 take the reference, drop ref to old tile group */
7312 if (connector->tile_group)
7313 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7314 connector->tile_group = tg;
7315 } else {
7316 /* if same tile group, then release the ref we just took. */
7317 drm_mode_put_tile_group(connector->dev, tg);
7318 }
7319 }
7320
displayid_is_tiled_block(const struct displayid_iter * iter,const struct displayid_block * block)7321 static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7322 const struct displayid_block *block)
7323 {
7324 return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 &&
7325 block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7326 (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7327 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7328 }
7329
_drm_update_tile_info(struct drm_connector * connector,const struct drm_edid * drm_edid)7330 static void _drm_update_tile_info(struct drm_connector *connector,
7331 const struct drm_edid *drm_edid)
7332 {
7333 const struct displayid_block *block;
7334 struct displayid_iter iter;
7335
7336 connector->has_tile = false;
7337
7338 displayid_iter_edid_begin(drm_edid, &iter);
7339 displayid_iter_for_each(block, &iter) {
7340 if (displayid_is_tiled_block(&iter, block))
7341 drm_parse_tiled_block(connector, block);
7342 }
7343 displayid_iter_end(&iter);
7344
7345 if (!connector->has_tile && connector->tile_group) {
7346 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7347 connector->tile_group = NULL;
7348 }
7349 }
7350