1 /*
2 * Copyright © 2009 Keith Packard
3 *
4 * Permission to use, copy, modify, distribute, and sell this software and its
5 * documentation for any purpose is hereby granted without fee, provided that
6 * the above copyright notice appear in all copies and that both that copyright
7 * notice and this permission notice appear in supporting documentation, and
8 * that the name of the copyright holders not be used in advertising or
9 * publicity pertaining to distribution of the software without specific,
10 * written prior permission. The copyright holders make no representations
11 * about the suitability of this software for any purpose. It is provided "as
12 * is" without express or implied warranty.
13 *
14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20 * OF THIS SOFTWARE.
21 */
22
23 #include <linux/backlight.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/i2c.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/string_helpers.h>
33 #include <linux/dynamic_debug.h>
34
35 #include <drm/display/drm_dp_helper.h>
36 #include <drm/display/drm_dp_mst_helper.h>
37 #include <drm/drm_edid.h>
38 #include <drm/drm_print.h>
39 #include <drm/drm_vblank.h>
40 #include <drm/drm_panel.h>
41
42 #include "drm_dp_helper_internal.h"
43
44 DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
45 "DRM_UT_CORE",
46 "DRM_UT_DRIVER",
47 "DRM_UT_KMS",
48 "DRM_UT_PRIME",
49 "DRM_UT_ATOMIC",
50 "DRM_UT_VBL",
51 "DRM_UT_STATE",
52 "DRM_UT_LEASE",
53 "DRM_UT_DP",
54 "DRM_UT_DRMRES");
55
56 struct dp_aux_backlight {
57 struct backlight_device *base;
58 struct drm_dp_aux *aux;
59 struct drm_edp_backlight_info info;
60 bool enabled;
61 };
62
63 /**
64 * DOC: dp helpers
65 *
66 * These functions contain some common logic and helpers at various abstraction
67 * levels to deal with Display Port sink devices and related things like DP aux
68 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
69 * blocks, ...
70 */
71
72 /* Helpers for DP link training */
dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE],int r)73 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
74 {
75 return link_status[r - DP_LANE0_1_STATUS];
76 }
77
dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)78 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
79 int lane)
80 {
81 int i = DP_LANE0_1_STATUS + (lane >> 1);
82 int s = (lane & 1) * 4;
83 u8 l = dp_link_status(link_status, i);
84
85 return (l >> s) & 0xf;
86 }
87
drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)88 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
89 int lane_count)
90 {
91 u8 lane_align;
92 u8 lane_status;
93 int lane;
94
95 lane_align = dp_link_status(link_status,
96 DP_LANE_ALIGN_STATUS_UPDATED);
97 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
98 return false;
99 for (lane = 0; lane < lane_count; lane++) {
100 lane_status = dp_get_lane_status(link_status, lane);
101 if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
102 return false;
103 }
104 return true;
105 }
106 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
107
drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)108 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
109 int lane_count)
110 {
111 int lane;
112 u8 lane_status;
113
114 for (lane = 0; lane < lane_count; lane++) {
115 lane_status = dp_get_lane_status(link_status, lane);
116 if ((lane_status & DP_LANE_CR_DONE) == 0)
117 return false;
118 }
119 return true;
120 }
121 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
122
drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)123 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
124 int lane)
125 {
126 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
127 int s = ((lane & 1) ?
128 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
129 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
130 u8 l = dp_link_status(link_status, i);
131
132 return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
133 }
134 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
135
drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)136 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
137 int lane)
138 {
139 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
140 int s = ((lane & 1) ?
141 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
142 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
143 u8 l = dp_link_status(link_status, i);
144
145 return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
146 }
147 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
148
149 /* DP 2.0 128b/132b */
drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)150 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
151 int lane)
152 {
153 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
154 int s = ((lane & 1) ?
155 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
156 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
157 u8 l = dp_link_status(link_status, i);
158
159 return (l >> s) & 0xf;
160 }
161 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
162
163 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)164 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
165 int lane_count)
166 {
167 u8 lane_align, lane_status;
168 int lane;
169
170 lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
171 if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
172 return false;
173
174 for (lane = 0; lane < lane_count; lane++) {
175 lane_status = dp_get_lane_status(link_status, lane);
176 if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
177 return false;
178 }
179 return true;
180 }
181 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
182
183 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)184 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
185 int lane_count)
186 {
187 u8 lane_status;
188 int lane;
189
190 for (lane = 0; lane < lane_count; lane++) {
191 lane_status = dp_get_lane_status(link_status, lane);
192 if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
193 return false;
194 }
195 return true;
196 }
197 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
198
199 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])200 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
201 {
202 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
203
204 return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
205 }
206 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
207
208 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])209 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
210 {
211 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
212
213 return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
214 }
215 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
216
217 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])218 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
219 {
220 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
221
222 return status & DP_128B132B_LT_FAILED;
223 }
224 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
225
__8b10b_clock_recovery_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)226 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
227 {
228 if (rd_interval > 4)
229 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
230 aux->name, rd_interval);
231
232 if (rd_interval == 0)
233 return 100;
234
235 return rd_interval * 4 * USEC_PER_MSEC;
236 }
237
__8b10b_channel_eq_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)238 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
239 {
240 if (rd_interval > 4)
241 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
242 aux->name, rd_interval);
243
244 if (rd_interval == 0)
245 return 400;
246
247 return rd_interval * 4 * USEC_PER_MSEC;
248 }
249
__128b132b_channel_eq_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)250 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
251 {
252 switch (rd_interval) {
253 default:
254 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
255 aux->name, rd_interval);
256 fallthrough;
257 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
258 return 400;
259 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
260 return 4000;
261 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
262 return 8000;
263 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
264 return 12000;
265 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
266 return 16000;
267 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
268 return 32000;
269 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
270 return 64000;
271 }
272 }
273
274 /*
275 * The link training delays are different for:
276 *
277 * - Clock recovery vs. channel equalization
278 * - DPRX vs. LTTPR
279 * - 128b/132b vs. 8b/10b
280 * - DPCD rev 1.3 vs. later
281 *
282 * Get the correct delay in us, reading DPCD if necessary.
283 */
__read_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr,bool cr)284 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
285 enum drm_dp_phy dp_phy, bool uhbr, bool cr)
286 {
287 int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
288 unsigned int offset;
289 u8 rd_interval, mask;
290
291 if (dp_phy == DP_PHY_DPRX) {
292 if (uhbr) {
293 if (cr)
294 return 100;
295
296 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
297 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
298 parse = __128b132b_channel_eq_delay_us;
299 } else {
300 if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
301 return 100;
302
303 offset = DP_TRAINING_AUX_RD_INTERVAL;
304 mask = DP_TRAINING_AUX_RD_MASK;
305 if (cr)
306 parse = __8b10b_clock_recovery_delay_us;
307 else
308 parse = __8b10b_channel_eq_delay_us;
309 }
310 } else {
311 if (uhbr) {
312 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
313 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
314 parse = __128b132b_channel_eq_delay_us;
315 } else {
316 if (cr)
317 return 100;
318
319 offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
320 mask = DP_TRAINING_AUX_RD_MASK;
321 parse = __8b10b_channel_eq_delay_us;
322 }
323 }
324
325 if (offset < DP_RECEIVER_CAP_SIZE) {
326 rd_interval = dpcd[offset];
327 } else {
328 if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
329 drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
330 aux->name);
331 /* arbitrary default delay */
332 return 400;
333 }
334 }
335
336 return parse(aux, rd_interval & mask);
337 }
338
drm_dp_read_clock_recovery_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr)339 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
340 enum drm_dp_phy dp_phy, bool uhbr)
341 {
342 return __read_delay(aux, dpcd, dp_phy, uhbr, true);
343 }
344 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
345
drm_dp_read_channel_eq_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr)346 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
347 enum drm_dp_phy dp_phy, bool uhbr)
348 {
349 return __read_delay(aux, dpcd, dp_phy, uhbr, false);
350 }
351 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
352
353 /* Per DP 2.0 Errata */
drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux * aux)354 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
355 {
356 int unit;
357 u8 val;
358
359 if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
360 drm_err(aux->drm_dev, "%s: failed rd interval read\n",
361 aux->name);
362 /* default to max */
363 val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
364 }
365
366 unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
367 val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
368
369 return (val + 1) * unit * 1000;
370 }
371 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
372
drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])373 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
374 const u8 dpcd[DP_RECEIVER_CAP_SIZE])
375 {
376 u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
377 DP_TRAINING_AUX_RD_MASK;
378 int delay_us;
379
380 if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
381 delay_us = 100;
382 else
383 delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
384
385 usleep_range(delay_us, delay_us * 2);
386 }
387 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
388
__drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux * aux,u8 rd_interval)389 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
390 u8 rd_interval)
391 {
392 int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
393
394 usleep_range(delay_us, delay_us * 2);
395 }
396
drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])397 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
398 const u8 dpcd[DP_RECEIVER_CAP_SIZE])
399 {
400 __drm_dp_link_train_channel_eq_delay(aux,
401 dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
402 DP_TRAINING_AUX_RD_MASK);
403 }
404 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
405
406 /**
407 * drm_dp_phy_name() - Get the name of the given DP PHY
408 * @dp_phy: The DP PHY identifier
409 *
410 * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
411 * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
412 * non-NULL and valid.
413 *
414 * Returns: Name of the DP PHY.
415 */
drm_dp_phy_name(enum drm_dp_phy dp_phy)416 const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
417 {
418 static const char * const phy_names[] = {
419 [DP_PHY_DPRX] = "DPRX",
420 [DP_PHY_LTTPR1] = "LTTPR 1",
421 [DP_PHY_LTTPR2] = "LTTPR 2",
422 [DP_PHY_LTTPR3] = "LTTPR 3",
423 [DP_PHY_LTTPR4] = "LTTPR 4",
424 [DP_PHY_LTTPR5] = "LTTPR 5",
425 [DP_PHY_LTTPR6] = "LTTPR 6",
426 [DP_PHY_LTTPR7] = "LTTPR 7",
427 [DP_PHY_LTTPR8] = "LTTPR 8",
428 };
429
430 if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
431 WARN_ON(!phy_names[dp_phy]))
432 return "<INVALID DP PHY>";
433
434 return phy_names[dp_phy];
435 }
436 EXPORT_SYMBOL(drm_dp_phy_name);
437
drm_dp_lttpr_link_train_clock_recovery_delay(void)438 void drm_dp_lttpr_link_train_clock_recovery_delay(void)
439 {
440 usleep_range(100, 200);
441 }
442 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
443
dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE],int r)444 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
445 {
446 return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
447 }
448
drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux * aux,const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])449 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
450 const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
451 {
452 u8 interval = dp_lttpr_phy_cap(phy_cap,
453 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
454 DP_TRAINING_AUX_RD_MASK;
455
456 __drm_dp_link_train_channel_eq_delay(aux, interval);
457 }
458 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
459
drm_dp_link_rate_to_bw_code(int link_rate)460 u8 drm_dp_link_rate_to_bw_code(int link_rate)
461 {
462 switch (link_rate) {
463 case 1000000:
464 return DP_LINK_BW_10;
465 case 1350000:
466 return DP_LINK_BW_13_5;
467 case 2000000:
468 return DP_LINK_BW_20;
469 default:
470 /* Spec says link_bw = link_rate / 0.27Gbps */
471 return link_rate / 27000;
472 }
473 }
474 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
475
drm_dp_bw_code_to_link_rate(u8 link_bw)476 int drm_dp_bw_code_to_link_rate(u8 link_bw)
477 {
478 switch (link_bw) {
479 case DP_LINK_BW_10:
480 return 1000000;
481 case DP_LINK_BW_13_5:
482 return 1350000;
483 case DP_LINK_BW_20:
484 return 2000000;
485 default:
486 /* Spec says link_rate = link_bw * 0.27Gbps */
487 return link_bw * 27000;
488 }
489 }
490 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
491
492 #define AUX_RETRY_INTERVAL 500 /* us */
493
494 static inline void
drm_dp_dump_access(const struct drm_dp_aux * aux,u8 request,uint offset,void * buffer,int ret)495 drm_dp_dump_access(const struct drm_dp_aux *aux,
496 u8 request, uint offset, void *buffer, int ret)
497 {
498 const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
499
500 if (ret > 0)
501 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
502 aux->name, offset, arrow, ret, min(ret, 20), buffer);
503 else
504 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
505 aux->name, offset, arrow, ret);
506 }
507
508 /**
509 * DOC: dp helpers
510 *
511 * The DisplayPort AUX channel is an abstraction to allow generic, driver-
512 * independent access to AUX functionality. Drivers can take advantage of
513 * this by filling in the fields of the drm_dp_aux structure.
514 *
515 * Transactions are described using a hardware-independent drm_dp_aux_msg
516 * structure, which is passed into a driver's .transfer() implementation.
517 * Both native and I2C-over-AUX transactions are supported.
518 */
519
drm_dp_dpcd_access(struct drm_dp_aux * aux,u8 request,unsigned int offset,void * buffer,size_t size)520 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
521 unsigned int offset, void *buffer, size_t size)
522 {
523 struct drm_dp_aux_msg msg;
524 unsigned int retry, native_reply;
525 int err = 0, ret = 0;
526
527 memset(&msg, 0, sizeof(msg));
528 msg.address = offset;
529 msg.request = request;
530 msg.buffer = buffer;
531 msg.size = size;
532
533 mutex_lock(&aux->hw_mutex);
534
535 /*
536 * The specification doesn't give any recommendation on how often to
537 * retry native transactions. We used to retry 7 times like for
538 * aux i2c transactions but real world devices this wasn't
539 * sufficient, bump to 32 which makes Dell 4k monitors happier.
540 */
541 for (retry = 0; retry < 32; retry++) {
542 if (ret != 0 && ret != -ETIMEDOUT) {
543 usleep_range(AUX_RETRY_INTERVAL,
544 AUX_RETRY_INTERVAL + 100);
545 }
546
547 ret = aux->transfer(aux, &msg);
548 if (ret >= 0) {
549 native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
550 if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
551 if (ret == size)
552 goto unlock;
553
554 ret = -EPROTO;
555 } else
556 ret = -EIO;
557 }
558
559 /*
560 * We want the error we return to be the error we received on
561 * the first transaction, since we may get a different error the
562 * next time we retry
563 */
564 if (!err)
565 err = ret;
566 }
567
568 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
569 aux->name, err);
570 ret = err;
571
572 unlock:
573 mutex_unlock(&aux->hw_mutex);
574 return ret;
575 }
576
577 /**
578 * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
579 * @aux: DisplayPort AUX channel (SST)
580 * @offset: address of the register to probe
581 *
582 * Probe the provided DPCD address by reading 1 byte from it. The function can
583 * be used to trigger some side-effect the read access has, like waking up the
584 * sink, without the need for the read-out value.
585 *
586 * Returns 0 if the read access suceeded, or a negative error code on failure.
587 */
drm_dp_dpcd_probe(struct drm_dp_aux * aux,unsigned int offset)588 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
589 {
590 u8 buffer;
591 int ret;
592
593 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
594 WARN_ON(ret == 0);
595
596 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
597
598 return ret < 0 ? ret : 0;
599 }
600 EXPORT_SYMBOL(drm_dp_dpcd_probe);
601
602 /**
603 * drm_dp_dpcd_read() - read a series of bytes from the DPCD
604 * @aux: DisplayPort AUX channel (SST or MST)
605 * @offset: address of the (first) register to read
606 * @buffer: buffer to store the register values
607 * @size: number of bytes in @buffer
608 *
609 * Returns the number of bytes transferred on success, or a negative error
610 * code on failure. -EIO is returned if the request was NAKed by the sink or
611 * if the retry count was exceeded. If not all bytes were transferred, this
612 * function returns -EPROTO. Errors from the underlying AUX channel transfer
613 * function, with the exception of -EBUSY (which causes the transaction to
614 * be retried), are propagated to the caller.
615 */
drm_dp_dpcd_read(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)616 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
617 void *buffer, size_t size)
618 {
619 int ret;
620
621 /*
622 * HP ZR24w corrupts the first DPCD access after entering power save
623 * mode. Eg. on a read, the entire buffer will be filled with the same
624 * byte. Do a throw away read to avoid corrupting anything we care
625 * about. Afterwards things will work correctly until the monitor
626 * gets woken up and subsequently re-enters power save mode.
627 *
628 * The user pressing any button on the monitor is enough to wake it
629 * up, so there is no particularly good place to do the workaround.
630 * We just have to do it before any DPCD access and hope that the
631 * monitor doesn't power down exactly after the throw away read.
632 */
633 if (!aux->is_remote) {
634 ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
635 if (ret < 0)
636 return ret;
637 }
638
639 if (aux->is_remote)
640 ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
641 else
642 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
643 buffer, size);
644
645 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
646 return ret;
647 }
648 EXPORT_SYMBOL(drm_dp_dpcd_read);
649
650 /**
651 * drm_dp_dpcd_write() - write a series of bytes to the DPCD
652 * @aux: DisplayPort AUX channel (SST or MST)
653 * @offset: address of the (first) register to write
654 * @buffer: buffer containing the values to write
655 * @size: number of bytes in @buffer
656 *
657 * Returns the number of bytes transferred on success, or a negative error
658 * code on failure. -EIO is returned if the request was NAKed by the sink or
659 * if the retry count was exceeded. If not all bytes were transferred, this
660 * function returns -EPROTO. Errors from the underlying AUX channel transfer
661 * function, with the exception of -EBUSY (which causes the transaction to
662 * be retried), are propagated to the caller.
663 */
drm_dp_dpcd_write(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)664 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
665 void *buffer, size_t size)
666 {
667 int ret;
668
669 if (aux->is_remote)
670 ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
671 else
672 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
673 buffer, size);
674
675 drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
676 return ret;
677 }
678 EXPORT_SYMBOL(drm_dp_dpcd_write);
679
680 /**
681 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
682 * @aux: DisplayPort AUX channel
683 * @status: buffer to store the link status in (must be at least 6 bytes)
684 *
685 * Returns the number of bytes transferred on success or a negative error
686 * code on failure.
687 */
drm_dp_dpcd_read_link_status(struct drm_dp_aux * aux,u8 status[DP_LINK_STATUS_SIZE])688 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
689 u8 status[DP_LINK_STATUS_SIZE])
690 {
691 return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
692 DP_LINK_STATUS_SIZE);
693 }
694 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
695
696 /**
697 * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
698 * @aux: DisplayPort AUX channel
699 * @dp_phy: the DP PHY to get the link status for
700 * @link_status: buffer to return the status in
701 *
702 * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
703 * layout of the returned @link_status matches the DPCD register layout of the
704 * DPRX PHY link status.
705 *
706 * Returns 0 if the information was read successfully or a negative error code
707 * on failure.
708 */
drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux * aux,enum drm_dp_phy dp_phy,u8 link_status[DP_LINK_STATUS_SIZE])709 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
710 enum drm_dp_phy dp_phy,
711 u8 link_status[DP_LINK_STATUS_SIZE])
712 {
713 int ret;
714
715 if (dp_phy == DP_PHY_DPRX) {
716 ret = drm_dp_dpcd_read(aux,
717 DP_LANE0_1_STATUS,
718 link_status,
719 DP_LINK_STATUS_SIZE);
720
721 if (ret < 0)
722 return ret;
723
724 WARN_ON(ret != DP_LINK_STATUS_SIZE);
725
726 return 0;
727 }
728
729 ret = drm_dp_dpcd_read(aux,
730 DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
731 link_status,
732 DP_LINK_STATUS_SIZE - 1);
733
734 if (ret < 0)
735 return ret;
736
737 WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
738
739 /* Convert the LTTPR to the sink PHY link status layout */
740 memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
741 &link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
742 DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
743 link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
744
745 return 0;
746 }
747 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
748
is_edid_digital_input_dp(const struct edid * edid)749 static bool is_edid_digital_input_dp(const struct edid *edid)
750 {
751 return edid && edid->revision >= 4 &&
752 edid->input & DRM_EDID_INPUT_DIGITAL &&
753 (edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
754 }
755
756 /**
757 * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
758 * @dpcd: DisplayPort configuration data
759 * @port_cap: port capabilities
760 * @type: port type to be checked. Can be:
761 * %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
762 * %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
763 * %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
764 *
765 * Caveat: Only works with DPCD 1.1+ port caps.
766 *
767 * Returns: whether the downstream facing port matches the type.
768 */
drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],u8 type)769 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
770 const u8 port_cap[4], u8 type)
771 {
772 return drm_dp_is_branch(dpcd) &&
773 dpcd[DP_DPCD_REV] >= 0x11 &&
774 (port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
775 }
776 EXPORT_SYMBOL(drm_dp_downstream_is_type);
777
778 /**
779 * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
780 * @dpcd: DisplayPort configuration data
781 * @port_cap: port capabilities
782 * @edid: EDID
783 *
784 * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
785 */
drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)786 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
787 const u8 port_cap[4],
788 const struct edid *edid)
789 {
790 if (dpcd[DP_DPCD_REV] < 0x11) {
791 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
792 case DP_DWN_STRM_PORT_TYPE_TMDS:
793 return true;
794 default:
795 return false;
796 }
797 }
798
799 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
800 case DP_DS_PORT_TYPE_DP_DUALMODE:
801 if (is_edid_digital_input_dp(edid))
802 return false;
803 fallthrough;
804 case DP_DS_PORT_TYPE_DVI:
805 case DP_DS_PORT_TYPE_HDMI:
806 return true;
807 default:
808 return false;
809 }
810 }
811 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
812
813 /**
814 * drm_dp_send_real_edid_checksum() - send back real edid checksum value
815 * @aux: DisplayPort AUX channel
816 * @real_edid_checksum: real edid checksum for the last block
817 *
818 * Returns:
819 * True on success
820 */
drm_dp_send_real_edid_checksum(struct drm_dp_aux * aux,u8 real_edid_checksum)821 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
822 u8 real_edid_checksum)
823 {
824 u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
825
826 if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
827 &auto_test_req, 1) < 1) {
828 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
829 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
830 return false;
831 }
832 auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
833
834 if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
835 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
836 aux->name, DP_TEST_REQUEST);
837 return false;
838 }
839 link_edid_read &= DP_TEST_LINK_EDID_READ;
840
841 if (!auto_test_req || !link_edid_read) {
842 drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
843 aux->name);
844 return false;
845 }
846
847 if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
848 &auto_test_req, 1) < 1) {
849 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
850 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
851 return false;
852 }
853
854 /* send back checksum for the last edid extension block data */
855 if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
856 &real_edid_checksum, 1) < 1) {
857 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
858 aux->name, DP_TEST_EDID_CHECKSUM);
859 return false;
860 }
861
862 test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
863 if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
864 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
865 aux->name, DP_TEST_RESPONSE);
866 return false;
867 }
868
869 return true;
870 }
871 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
872
drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])873 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
874 {
875 u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
876
877 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
878 port_count = 4;
879
880 return port_count;
881 }
882
drm_dp_read_extended_dpcd_caps(struct drm_dp_aux * aux,u8 dpcd[DP_RECEIVER_CAP_SIZE])883 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
884 u8 dpcd[DP_RECEIVER_CAP_SIZE])
885 {
886 u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
887 int ret;
888
889 /*
890 * Prior to DP1.3 the bit represented by
891 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
892 * If it is set DP_DPCD_REV at 0000h could be at a value less than
893 * the true capability of the panel. The only way to check is to
894 * then compare 0000h and 2200h.
895 */
896 if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
897 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
898 return 0;
899
900 ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
901 sizeof(dpcd_ext));
902 if (ret < 0)
903 return ret;
904 if (ret != sizeof(dpcd_ext))
905 return -EIO;
906
907 if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
908 drm_dbg_kms(aux->drm_dev,
909 "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
910 aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
911 return 0;
912 }
913
914 if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
915 return 0;
916
917 drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
918
919 memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
920
921 return 0;
922 }
923
924 /**
925 * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
926 * available
927 * @aux: DisplayPort AUX channel
928 * @dpcd: Buffer to store the resulting DPCD in
929 *
930 * Attempts to read the base DPCD caps for @aux. Additionally, this function
931 * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
932 * present.
933 *
934 * Returns: %0 if the DPCD was read successfully, negative error code
935 * otherwise.
936 */
drm_dp_read_dpcd_caps(struct drm_dp_aux * aux,u8 dpcd[DP_RECEIVER_CAP_SIZE])937 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
938 u8 dpcd[DP_RECEIVER_CAP_SIZE])
939 {
940 int ret;
941
942 ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
943 if (ret < 0)
944 return ret;
945 if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
946 return -EIO;
947
948 ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
949 if (ret < 0)
950 return ret;
951
952 drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
953
954 return ret;
955 }
956 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
957
958 /**
959 * drm_dp_read_downstream_info() - read DPCD downstream port info if available
960 * @aux: DisplayPort AUX channel
961 * @dpcd: A cached copy of the port's DPCD
962 * @downstream_ports: buffer to store the downstream port info in
963 *
964 * See also:
965 * drm_dp_downstream_max_clock()
966 * drm_dp_downstream_max_bpc()
967 *
968 * Returns: 0 if either the downstream port info was read successfully or
969 * there was no downstream info to read, or a negative error code otherwise.
970 */
drm_dp_read_downstream_info(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])971 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
972 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
973 u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
974 {
975 int ret;
976 u8 len;
977
978 memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
979
980 /* No downstream info to read */
981 if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
982 return 0;
983
984 /* Some branches advertise having 0 downstream ports, despite also advertising they have a
985 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
986 * some branches do it we need to handle it regardless.
987 */
988 len = drm_dp_downstream_port_count(dpcd);
989 if (!len)
990 return 0;
991
992 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
993 len *= 4;
994
995 ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
996 if (ret < 0)
997 return ret;
998 if (ret != len)
999 return -EIO;
1000
1001 drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1002
1003 return 0;
1004 }
1005 EXPORT_SYMBOL(drm_dp_read_downstream_info);
1006
1007 /**
1008 * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1009 * @dpcd: DisplayPort configuration data
1010 * @port_cap: port capabilities
1011 *
1012 * Returns: Downstream facing port max dot clock in kHz on success,
1013 * or 0 if max clock not defined
1014 */
drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1015 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1016 const u8 port_cap[4])
1017 {
1018 if (!drm_dp_is_branch(dpcd))
1019 return 0;
1020
1021 if (dpcd[DP_DPCD_REV] < 0x11)
1022 return 0;
1023
1024 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1025 case DP_DS_PORT_TYPE_VGA:
1026 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1027 return 0;
1028 return port_cap[1] * 8000;
1029 default:
1030 return 0;
1031 }
1032 }
1033 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1034
1035 /**
1036 * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1037 * @dpcd: DisplayPort configuration data
1038 * @port_cap: port capabilities
1039 * @edid: EDID
1040 *
1041 * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1042 * or 0 if max TMDS clock not defined
1043 */
drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)1044 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1045 const u8 port_cap[4],
1046 const struct edid *edid)
1047 {
1048 if (!drm_dp_is_branch(dpcd))
1049 return 0;
1050
1051 if (dpcd[DP_DPCD_REV] < 0x11) {
1052 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1053 case DP_DWN_STRM_PORT_TYPE_TMDS:
1054 return 165000;
1055 default:
1056 return 0;
1057 }
1058 }
1059
1060 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1061 case DP_DS_PORT_TYPE_DP_DUALMODE:
1062 if (is_edid_digital_input_dp(edid))
1063 return 0;
1064 /*
1065 * It's left up to the driver to check the
1066 * DP dual mode adapter's max TMDS clock.
1067 *
1068 * Unfortunately it looks like branch devices
1069 * may not fordward that the DP dual mode i2c
1070 * access so we just usually get i2c nak :(
1071 */
1072 fallthrough;
1073 case DP_DS_PORT_TYPE_HDMI:
1074 /*
1075 * We should perhaps assume 165 MHz when detailed cap
1076 * info is not available. But looks like many typical
1077 * branch devices fall into that category and so we'd
1078 * probably end up with users complaining that they can't
1079 * get high resolution modes with their favorite dongle.
1080 *
1081 * So let's limit to 300 MHz instead since DPCD 1.4
1082 * HDMI 2.0 DFPs are required to have the detailed cap
1083 * info. So it's more likely we're dealing with a HDMI 1.4
1084 * compatible* device here.
1085 */
1086 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1087 return 300000;
1088 return port_cap[1] * 2500;
1089 case DP_DS_PORT_TYPE_DVI:
1090 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1091 return 165000;
1092 /* FIXME what to do about DVI dual link? */
1093 return port_cap[1] * 2500;
1094 default:
1095 return 0;
1096 }
1097 }
1098 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1099
1100 /**
1101 * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1102 * @dpcd: DisplayPort configuration data
1103 * @port_cap: port capabilities
1104 * @edid: EDID
1105 *
1106 * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1107 * or 0 if max TMDS clock not defined
1108 */
drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)1109 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1110 const u8 port_cap[4],
1111 const struct edid *edid)
1112 {
1113 if (!drm_dp_is_branch(dpcd))
1114 return 0;
1115
1116 if (dpcd[DP_DPCD_REV] < 0x11) {
1117 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1118 case DP_DWN_STRM_PORT_TYPE_TMDS:
1119 return 25000;
1120 default:
1121 return 0;
1122 }
1123 }
1124
1125 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1126 case DP_DS_PORT_TYPE_DP_DUALMODE:
1127 if (is_edid_digital_input_dp(edid))
1128 return 0;
1129 fallthrough;
1130 case DP_DS_PORT_TYPE_DVI:
1131 case DP_DS_PORT_TYPE_HDMI:
1132 /*
1133 * Unclear whether the protocol converter could
1134 * utilize pixel replication. Assume it won't.
1135 */
1136 return 25000;
1137 default:
1138 return 0;
1139 }
1140 }
1141 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1142
1143 /**
1144 * drm_dp_downstream_max_bpc() - extract downstream facing port max
1145 * bits per component
1146 * @dpcd: DisplayPort configuration data
1147 * @port_cap: downstream facing port capabilities
1148 * @edid: EDID
1149 *
1150 * Returns: Max bpc on success or 0 if max bpc not defined
1151 */
drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)1152 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1153 const u8 port_cap[4],
1154 const struct edid *edid)
1155 {
1156 if (!drm_dp_is_branch(dpcd))
1157 return 0;
1158
1159 if (dpcd[DP_DPCD_REV] < 0x11) {
1160 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1161 case DP_DWN_STRM_PORT_TYPE_DP:
1162 return 0;
1163 default:
1164 return 8;
1165 }
1166 }
1167
1168 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1169 case DP_DS_PORT_TYPE_DP:
1170 return 0;
1171 case DP_DS_PORT_TYPE_DP_DUALMODE:
1172 if (is_edid_digital_input_dp(edid))
1173 return 0;
1174 fallthrough;
1175 case DP_DS_PORT_TYPE_HDMI:
1176 case DP_DS_PORT_TYPE_DVI:
1177 case DP_DS_PORT_TYPE_VGA:
1178 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1179 return 8;
1180
1181 switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1182 case DP_DS_8BPC:
1183 return 8;
1184 case DP_DS_10BPC:
1185 return 10;
1186 case DP_DS_12BPC:
1187 return 12;
1188 case DP_DS_16BPC:
1189 return 16;
1190 default:
1191 return 8;
1192 }
1193 break;
1194 default:
1195 return 8;
1196 }
1197 }
1198 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1199
1200 /**
1201 * drm_dp_downstream_420_passthrough() - determine downstream facing port
1202 * YCbCr 4:2:0 pass-through capability
1203 * @dpcd: DisplayPort configuration data
1204 * @port_cap: downstream facing port capabilities
1205 *
1206 * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1207 */
drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1208 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1209 const u8 port_cap[4])
1210 {
1211 if (!drm_dp_is_branch(dpcd))
1212 return false;
1213
1214 if (dpcd[DP_DPCD_REV] < 0x13)
1215 return false;
1216
1217 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1218 case DP_DS_PORT_TYPE_DP:
1219 return true;
1220 case DP_DS_PORT_TYPE_HDMI:
1221 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1222 return false;
1223
1224 return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1225 default:
1226 return false;
1227 }
1228 }
1229 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1230
1231 /**
1232 * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1233 * YCbCr 4:4:4->4:2:0 conversion capability
1234 * @dpcd: DisplayPort configuration data
1235 * @port_cap: downstream facing port capabilities
1236 *
1237 * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1238 */
drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1239 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1240 const u8 port_cap[4])
1241 {
1242 if (!drm_dp_is_branch(dpcd))
1243 return false;
1244
1245 if (dpcd[DP_DPCD_REV] < 0x13)
1246 return false;
1247
1248 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1249 case DP_DS_PORT_TYPE_HDMI:
1250 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1251 return false;
1252
1253 return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1254 default:
1255 return false;
1256 }
1257 }
1258 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1259
1260 /**
1261 * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1262 * RGB->YCbCr conversion capability
1263 * @dpcd: DisplayPort configuration data
1264 * @port_cap: downstream facing port capabilities
1265 * @color_spc: Colorspace for which conversion cap is sought
1266 *
1267 * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1268 * colorspace.
1269 */
drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],u8 color_spc)1270 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1271 const u8 port_cap[4],
1272 u8 color_spc)
1273 {
1274 if (!drm_dp_is_branch(dpcd))
1275 return false;
1276
1277 if (dpcd[DP_DPCD_REV] < 0x13)
1278 return false;
1279
1280 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1281 case DP_DS_PORT_TYPE_HDMI:
1282 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1283 return false;
1284
1285 return port_cap[3] & color_spc;
1286 default:
1287 return false;
1288 }
1289 }
1290 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1291
1292 /**
1293 * drm_dp_downstream_mode() - return a mode for downstream facing port
1294 * @dev: DRM device
1295 * @dpcd: DisplayPort configuration data
1296 * @port_cap: port capabilities
1297 *
1298 * Provides a suitable mode for downstream facing ports without EDID.
1299 *
1300 * Returns: A new drm_display_mode on success or NULL on failure
1301 */
1302 struct drm_display_mode *
drm_dp_downstream_mode(struct drm_device * dev,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1303 drm_dp_downstream_mode(struct drm_device *dev,
1304 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1305 const u8 port_cap[4])
1306
1307 {
1308 u8 vic;
1309
1310 if (!drm_dp_is_branch(dpcd))
1311 return NULL;
1312
1313 if (dpcd[DP_DPCD_REV] < 0x11)
1314 return NULL;
1315
1316 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1317 case DP_DS_PORT_TYPE_NON_EDID:
1318 switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1319 case DP_DS_NON_EDID_720x480i_60:
1320 vic = 6;
1321 break;
1322 case DP_DS_NON_EDID_720x480i_50:
1323 vic = 21;
1324 break;
1325 case DP_DS_NON_EDID_1920x1080i_60:
1326 vic = 5;
1327 break;
1328 case DP_DS_NON_EDID_1920x1080i_50:
1329 vic = 20;
1330 break;
1331 case DP_DS_NON_EDID_1280x720_60:
1332 vic = 4;
1333 break;
1334 case DP_DS_NON_EDID_1280x720_50:
1335 vic = 19;
1336 break;
1337 default:
1338 return NULL;
1339 }
1340 return drm_display_mode_from_cea_vic(dev, vic);
1341 default:
1342 return NULL;
1343 }
1344 }
1345 EXPORT_SYMBOL(drm_dp_downstream_mode);
1346
1347 /**
1348 * drm_dp_downstream_id() - identify branch device
1349 * @aux: DisplayPort AUX channel
1350 * @id: DisplayPort branch device id
1351 *
1352 * Returns branch device id on success or NULL on failure
1353 */
drm_dp_downstream_id(struct drm_dp_aux * aux,char id[6])1354 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1355 {
1356 return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1357 }
1358 EXPORT_SYMBOL(drm_dp_downstream_id);
1359
1360 /**
1361 * drm_dp_downstream_debug() - debug DP branch devices
1362 * @m: pointer for debugfs file
1363 * @dpcd: DisplayPort configuration data
1364 * @port_cap: port capabilities
1365 * @edid: EDID
1366 * @aux: DisplayPort AUX channel
1367 *
1368 */
drm_dp_downstream_debug(struct seq_file * m,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid,struct drm_dp_aux * aux)1369 void drm_dp_downstream_debug(struct seq_file *m,
1370 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1371 const u8 port_cap[4],
1372 const struct edid *edid,
1373 struct drm_dp_aux *aux)
1374 {
1375 bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1376 DP_DETAILED_CAP_INFO_AVAILABLE;
1377 int clk;
1378 int bpc;
1379 char id[7];
1380 int len;
1381 uint8_t rev[2];
1382 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1383 bool branch_device = drm_dp_is_branch(dpcd);
1384
1385 seq_printf(m, "\tDP branch device present: %s\n",
1386 str_yes_no(branch_device));
1387
1388 if (!branch_device)
1389 return;
1390
1391 switch (type) {
1392 case DP_DS_PORT_TYPE_DP:
1393 seq_puts(m, "\t\tType: DisplayPort\n");
1394 break;
1395 case DP_DS_PORT_TYPE_VGA:
1396 seq_puts(m, "\t\tType: VGA\n");
1397 break;
1398 case DP_DS_PORT_TYPE_DVI:
1399 seq_puts(m, "\t\tType: DVI\n");
1400 break;
1401 case DP_DS_PORT_TYPE_HDMI:
1402 seq_puts(m, "\t\tType: HDMI\n");
1403 break;
1404 case DP_DS_PORT_TYPE_NON_EDID:
1405 seq_puts(m, "\t\tType: others without EDID support\n");
1406 break;
1407 case DP_DS_PORT_TYPE_DP_DUALMODE:
1408 seq_puts(m, "\t\tType: DP++\n");
1409 break;
1410 case DP_DS_PORT_TYPE_WIRELESS:
1411 seq_puts(m, "\t\tType: Wireless\n");
1412 break;
1413 default:
1414 seq_puts(m, "\t\tType: N/A\n");
1415 }
1416
1417 memset(id, 0, sizeof(id));
1418 drm_dp_downstream_id(aux, id);
1419 seq_printf(m, "\t\tID: %s\n", id);
1420
1421 len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1422 if (len > 0)
1423 seq_printf(m, "\t\tHW: %d.%d\n",
1424 (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1425
1426 len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1427 if (len > 0)
1428 seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1429
1430 if (detailed_cap_info) {
1431 clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1432 if (clk > 0)
1433 seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1434
1435 clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, edid);
1436 if (clk > 0)
1437 seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1438
1439 clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, edid);
1440 if (clk > 0)
1441 seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1442
1443 bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, edid);
1444
1445 if (bpc > 0)
1446 seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1447 }
1448 }
1449 EXPORT_SYMBOL(drm_dp_downstream_debug);
1450
1451 /**
1452 * drm_dp_subconnector_type() - get DP branch device type
1453 * @dpcd: DisplayPort configuration data
1454 * @port_cap: port capabilities
1455 */
1456 enum drm_mode_subconnector
drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1457 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1458 const u8 port_cap[4])
1459 {
1460 int type;
1461 if (!drm_dp_is_branch(dpcd))
1462 return DRM_MODE_SUBCONNECTOR_Native;
1463 /* DP 1.0 approach */
1464 if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1465 type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1466 DP_DWN_STRM_PORT_TYPE_MASK;
1467
1468 switch (type) {
1469 case DP_DWN_STRM_PORT_TYPE_TMDS:
1470 /* Can be HDMI or DVI-D, DVI-D is a safer option */
1471 return DRM_MODE_SUBCONNECTOR_DVID;
1472 case DP_DWN_STRM_PORT_TYPE_ANALOG:
1473 /* Can be VGA or DVI-A, VGA is more popular */
1474 return DRM_MODE_SUBCONNECTOR_VGA;
1475 case DP_DWN_STRM_PORT_TYPE_DP:
1476 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1477 case DP_DWN_STRM_PORT_TYPE_OTHER:
1478 default:
1479 return DRM_MODE_SUBCONNECTOR_Unknown;
1480 }
1481 }
1482 type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1483
1484 switch (type) {
1485 case DP_DS_PORT_TYPE_DP:
1486 case DP_DS_PORT_TYPE_DP_DUALMODE:
1487 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1488 case DP_DS_PORT_TYPE_VGA:
1489 return DRM_MODE_SUBCONNECTOR_VGA;
1490 case DP_DS_PORT_TYPE_DVI:
1491 return DRM_MODE_SUBCONNECTOR_DVID;
1492 case DP_DS_PORT_TYPE_HDMI:
1493 return DRM_MODE_SUBCONNECTOR_HDMIA;
1494 case DP_DS_PORT_TYPE_WIRELESS:
1495 return DRM_MODE_SUBCONNECTOR_Wireless;
1496 case DP_DS_PORT_TYPE_NON_EDID:
1497 default:
1498 return DRM_MODE_SUBCONNECTOR_Unknown;
1499 }
1500 }
1501 EXPORT_SYMBOL(drm_dp_subconnector_type);
1502
1503 /**
1504 * drm_dp_set_subconnector_property - set subconnector for DP connector
1505 * @connector: connector to set property on
1506 * @status: connector status
1507 * @dpcd: DisplayPort configuration data
1508 * @port_cap: port capabilities
1509 *
1510 * Called by a driver on every detect event.
1511 */
drm_dp_set_subconnector_property(struct drm_connector * connector,enum drm_connector_status status,const u8 * dpcd,const u8 port_cap[4])1512 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1513 enum drm_connector_status status,
1514 const u8 *dpcd,
1515 const u8 port_cap[4])
1516 {
1517 enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1518
1519 if (status == connector_status_connected)
1520 subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1521 drm_object_property_set_value(&connector->base,
1522 connector->dev->mode_config.dp_subconnector_property,
1523 subconnector);
1524 }
1525 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1526
1527 /**
1528 * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1529 * count
1530 * @connector: The DRM connector to check
1531 * @dpcd: A cached copy of the connector's DPCD RX capabilities
1532 * @desc: A cached copy of the connector's DP descriptor
1533 *
1534 * See also: drm_dp_read_sink_count()
1535 *
1536 * Returns: %True if the (e)DP connector has a valid sink count that should
1537 * be probed, %false otherwise.
1538 */
drm_dp_read_sink_count_cap(struct drm_connector * connector,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const struct drm_dp_desc * desc)1539 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1540 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1541 const struct drm_dp_desc *desc)
1542 {
1543 /* Some eDP panels don't set a valid value for the sink count */
1544 return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1545 dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1546 dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1547 !drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1548 }
1549 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1550
1551 /**
1552 * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1553 * @aux: The DP AUX channel to use
1554 *
1555 * See also: drm_dp_read_sink_count_cap()
1556 *
1557 * Returns: The current sink count reported by @aux, or a negative error code
1558 * otherwise.
1559 */
drm_dp_read_sink_count(struct drm_dp_aux * aux)1560 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1561 {
1562 u8 count;
1563 int ret;
1564
1565 ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1566 if (ret < 0)
1567 return ret;
1568 if (ret != 1)
1569 return -EIO;
1570
1571 return DP_GET_SINK_COUNT(count);
1572 }
1573 EXPORT_SYMBOL(drm_dp_read_sink_count);
1574
1575 /*
1576 * I2C-over-AUX implementation
1577 */
1578
drm_dp_i2c_functionality(struct i2c_adapter * adapter)1579 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1580 {
1581 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1582 I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1583 I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1584 I2C_FUNC_10BIT_ADDR;
1585 }
1586
drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg * msg)1587 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1588 {
1589 /*
1590 * In case of i2c defer or short i2c ack reply to a write,
1591 * we need to switch to WRITE_STATUS_UPDATE to drain the
1592 * rest of the message
1593 */
1594 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1595 msg->request &= DP_AUX_I2C_MOT;
1596 msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1597 }
1598 }
1599
1600 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1601 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1602 #define AUX_STOP_LEN 4
1603 #define AUX_CMD_LEN 4
1604 #define AUX_ADDRESS_LEN 20
1605 #define AUX_REPLY_PAD_LEN 4
1606 #define AUX_LENGTH_LEN 8
1607
1608 /*
1609 * Calculate the duration of the AUX request/reply in usec. Gives the
1610 * "best" case estimate, ie. successful while as short as possible.
1611 */
drm_dp_aux_req_duration(const struct drm_dp_aux_msg * msg)1612 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1613 {
1614 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1615 AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1616
1617 if ((msg->request & DP_AUX_I2C_READ) == 0)
1618 len += msg->size * 8;
1619
1620 return len;
1621 }
1622
drm_dp_aux_reply_duration(const struct drm_dp_aux_msg * msg)1623 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1624 {
1625 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1626 AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1627
1628 /*
1629 * For read we expect what was asked. For writes there will
1630 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1631 */
1632 if (msg->request & DP_AUX_I2C_READ)
1633 len += msg->size * 8;
1634
1635 return len;
1636 }
1637
1638 #define I2C_START_LEN 1
1639 #define I2C_STOP_LEN 1
1640 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1641 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1642
1643 /*
1644 * Calculate the length of the i2c transfer in usec, assuming
1645 * the i2c bus speed is as specified. Gives the "worst"
1646 * case estimate, ie. successful while as long as possible.
1647 * Doesn't account the "MOT" bit, and instead assumes each
1648 * message includes a START, ADDRESS and STOP. Neither does it
1649 * account for additional random variables such as clock stretching.
1650 */
drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)1651 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1652 int i2c_speed_khz)
1653 {
1654 /* AUX bitrate is 1MHz, i2c bitrate as specified */
1655 return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1656 msg->size * I2C_DATA_LEN +
1657 I2C_STOP_LEN) * 1000, i2c_speed_khz);
1658 }
1659
1660 /*
1661 * Determine how many retries should be attempted to successfully transfer
1662 * the specified message, based on the estimated durations of the
1663 * i2c and AUX transfers.
1664 */
drm_dp_i2c_retry_count(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)1665 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1666 int i2c_speed_khz)
1667 {
1668 int aux_time_us = drm_dp_aux_req_duration(msg) +
1669 drm_dp_aux_reply_duration(msg);
1670 int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1671
1672 return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1673 }
1674
1675 /*
1676 * FIXME currently assumes 10 kHz as some real world devices seem
1677 * to require it. We should query/set the speed via DPCD if supported.
1678 */
1679 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1680 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1681 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1682 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1683
1684 /*
1685 * Transfer a single I2C-over-AUX message and handle various error conditions,
1686 * retrying the transaction as appropriate. It is assumed that the
1687 * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1688 * reply field.
1689 *
1690 * Returns bytes transferred on success, or a negative error code on failure.
1691 */
drm_dp_i2c_do_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)1692 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1693 {
1694 unsigned int retry, defer_i2c;
1695 int ret;
1696 /*
1697 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1698 * is required to retry at least seven times upon receiving AUX_DEFER
1699 * before giving up the AUX transaction.
1700 *
1701 * We also try to account for the i2c bus speed.
1702 */
1703 int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1704
1705 for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1706 ret = aux->transfer(aux, msg);
1707 if (ret < 0) {
1708 if (ret == -EBUSY)
1709 continue;
1710
1711 /*
1712 * While timeouts can be errors, they're usually normal
1713 * behavior (for instance, when a driver tries to
1714 * communicate with a non-existent DisplayPort device).
1715 * Avoid spamming the kernel log with timeout errors.
1716 */
1717 if (ret == -ETIMEDOUT)
1718 drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1719 aux->name);
1720 else
1721 drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1722 aux->name, ret);
1723 return ret;
1724 }
1725
1726
1727 switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1728 case DP_AUX_NATIVE_REPLY_ACK:
1729 /*
1730 * For I2C-over-AUX transactions this isn't enough, we
1731 * need to check for the I2C ACK reply.
1732 */
1733 break;
1734
1735 case DP_AUX_NATIVE_REPLY_NACK:
1736 drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1737 aux->name, ret, msg->size);
1738 return -EREMOTEIO;
1739
1740 case DP_AUX_NATIVE_REPLY_DEFER:
1741 drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1742 /*
1743 * We could check for I2C bit rate capabilities and if
1744 * available adjust this interval. We could also be
1745 * more careful with DP-to-legacy adapters where a
1746 * long legacy cable may force very low I2C bit rates.
1747 *
1748 * For now just defer for long enough to hopefully be
1749 * safe for all use-cases.
1750 */
1751 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1752 continue;
1753
1754 default:
1755 drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1756 aux->name, msg->reply);
1757 return -EREMOTEIO;
1758 }
1759
1760 switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1761 case DP_AUX_I2C_REPLY_ACK:
1762 /*
1763 * Both native ACK and I2C ACK replies received. We
1764 * can assume the transfer was successful.
1765 */
1766 if (ret != msg->size)
1767 drm_dp_i2c_msg_write_status_update(msg);
1768 return ret;
1769
1770 case DP_AUX_I2C_REPLY_NACK:
1771 drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1772 aux->name, ret, msg->size);
1773 aux->i2c_nack_count++;
1774 return -EREMOTEIO;
1775
1776 case DP_AUX_I2C_REPLY_DEFER:
1777 drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1778 /* DP Compliance Test 4.2.2.5 Requirement:
1779 * Must have at least 7 retries for I2C defers on the
1780 * transaction to pass this test
1781 */
1782 aux->i2c_defer_count++;
1783 if (defer_i2c < 7)
1784 defer_i2c++;
1785 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1786 drm_dp_i2c_msg_write_status_update(msg);
1787
1788 continue;
1789
1790 default:
1791 drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
1792 aux->name, msg->reply);
1793 return -EREMOTEIO;
1794 }
1795 }
1796
1797 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
1798 return -EREMOTEIO;
1799 }
1800
drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg * msg,const struct i2c_msg * i2c_msg)1801 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1802 const struct i2c_msg *i2c_msg)
1803 {
1804 msg->request = (i2c_msg->flags & I2C_M_RD) ?
1805 DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1806 if (!(i2c_msg->flags & I2C_M_STOP))
1807 msg->request |= DP_AUX_I2C_MOT;
1808 }
1809
1810 /*
1811 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1812 *
1813 * Returns an error code on failure, or a recommended transfer size on success.
1814 */
drm_dp_i2c_drain_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * orig_msg)1815 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1816 {
1817 int err, ret = orig_msg->size;
1818 struct drm_dp_aux_msg msg = *orig_msg;
1819
1820 while (msg.size > 0) {
1821 err = drm_dp_i2c_do_msg(aux, &msg);
1822 if (err <= 0)
1823 return err == 0 ? -EPROTO : err;
1824
1825 if (err < msg.size && err < ret) {
1826 drm_dbg_kms(aux->drm_dev,
1827 "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1828 aux->name, msg.size, err);
1829 ret = err;
1830 }
1831
1832 msg.size -= err;
1833 msg.buffer += err;
1834 }
1835
1836 return ret;
1837 }
1838
1839 /*
1840 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1841 * packets to be as large as possible. If not, the I2C transactions never
1842 * succeed. Hence the default is maximum.
1843 */
1844 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1845 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1846 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1847 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1848
drm_dp_i2c_xfer(struct i2c_adapter * adapter,struct i2c_msg * msgs,int num)1849 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1850 int num)
1851 {
1852 struct drm_dp_aux *aux = adapter->algo_data;
1853 unsigned int i, j;
1854 unsigned transfer_size;
1855 struct drm_dp_aux_msg msg;
1856 int err = 0;
1857
1858 dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1859
1860 memset(&msg, 0, sizeof(msg));
1861
1862 for (i = 0; i < num; i++) {
1863 msg.address = msgs[i].addr;
1864 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1865 /* Send a bare address packet to start the transaction.
1866 * Zero sized messages specify an address only (bare
1867 * address) transaction.
1868 */
1869 msg.buffer = NULL;
1870 msg.size = 0;
1871 err = drm_dp_i2c_do_msg(aux, &msg);
1872
1873 /*
1874 * Reset msg.request in case in case it got
1875 * changed into a WRITE_STATUS_UPDATE.
1876 */
1877 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1878
1879 if (err < 0)
1880 break;
1881 /* We want each transaction to be as large as possible, but
1882 * we'll go to smaller sizes if the hardware gives us a
1883 * short reply.
1884 */
1885 transfer_size = dp_aux_i2c_transfer_size;
1886 for (j = 0; j < msgs[i].len; j += msg.size) {
1887 msg.buffer = msgs[i].buf + j;
1888 msg.size = min(transfer_size, msgs[i].len - j);
1889
1890 err = drm_dp_i2c_drain_msg(aux, &msg);
1891
1892 /*
1893 * Reset msg.request in case in case it got
1894 * changed into a WRITE_STATUS_UPDATE.
1895 */
1896 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1897
1898 if (err < 0)
1899 break;
1900 transfer_size = err;
1901 }
1902 if (err < 0)
1903 break;
1904 }
1905 if (err >= 0)
1906 err = num;
1907 /* Send a bare address packet to close out the transaction.
1908 * Zero sized messages specify an address only (bare
1909 * address) transaction.
1910 */
1911 msg.request &= ~DP_AUX_I2C_MOT;
1912 msg.buffer = NULL;
1913 msg.size = 0;
1914 (void)drm_dp_i2c_do_msg(aux, &msg);
1915
1916 return err;
1917 }
1918
1919 static const struct i2c_algorithm drm_dp_i2c_algo = {
1920 .functionality = drm_dp_i2c_functionality,
1921 .master_xfer = drm_dp_i2c_xfer,
1922 };
1923
i2c_to_aux(struct i2c_adapter * i2c)1924 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1925 {
1926 return container_of(i2c, struct drm_dp_aux, ddc);
1927 }
1928
lock_bus(struct i2c_adapter * i2c,unsigned int flags)1929 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1930 {
1931 mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1932 }
1933
trylock_bus(struct i2c_adapter * i2c,unsigned int flags)1934 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1935 {
1936 return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1937 }
1938
unlock_bus(struct i2c_adapter * i2c,unsigned int flags)1939 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1940 {
1941 mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1942 }
1943
1944 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1945 .lock_bus = lock_bus,
1946 .trylock_bus = trylock_bus,
1947 .unlock_bus = unlock_bus,
1948 };
1949
drm_dp_aux_get_crc(struct drm_dp_aux * aux,u8 * crc)1950 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1951 {
1952 u8 buf, count;
1953 int ret;
1954
1955 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1956 if (ret < 0)
1957 return ret;
1958
1959 WARN_ON(!(buf & DP_TEST_SINK_START));
1960
1961 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
1962 if (ret < 0)
1963 return ret;
1964
1965 count = buf & DP_TEST_COUNT_MASK;
1966 if (count == aux->crc_count)
1967 return -EAGAIN; /* No CRC yet */
1968
1969 aux->crc_count = count;
1970
1971 /*
1972 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
1973 * per component (RGB or CrYCb).
1974 */
1975 ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
1976 if (ret < 0)
1977 return ret;
1978
1979 return 0;
1980 }
1981
drm_dp_aux_crc_work(struct work_struct * work)1982 static void drm_dp_aux_crc_work(struct work_struct *work)
1983 {
1984 struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
1985 crc_work);
1986 struct drm_crtc *crtc;
1987 u8 crc_bytes[6];
1988 uint32_t crcs[3];
1989 int ret;
1990
1991 if (WARN_ON(!aux->crtc))
1992 return;
1993
1994 crtc = aux->crtc;
1995 while (crtc->crc.opened) {
1996 drm_crtc_wait_one_vblank(crtc);
1997 if (!crtc->crc.opened)
1998 break;
1999
2000 ret = drm_dp_aux_get_crc(aux, crc_bytes);
2001 if (ret == -EAGAIN) {
2002 usleep_range(1000, 2000);
2003 ret = drm_dp_aux_get_crc(aux, crc_bytes);
2004 }
2005
2006 if (ret == -EAGAIN) {
2007 drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2008 aux->name, ret);
2009 continue;
2010 } else if (ret) {
2011 drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2012 continue;
2013 }
2014
2015 crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2016 crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2017 crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2018 drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2019 }
2020 }
2021
2022 /**
2023 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2024 * @aux: DisplayPort AUX channel
2025 *
2026 * Used for remote aux channel in general. Merely initialize the crc work
2027 * struct.
2028 */
drm_dp_remote_aux_init(struct drm_dp_aux * aux)2029 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2030 {
2031 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2032 }
2033 EXPORT_SYMBOL(drm_dp_remote_aux_init);
2034
2035 /**
2036 * drm_dp_aux_init() - minimally initialise an aux channel
2037 * @aux: DisplayPort AUX channel
2038 *
2039 * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2040 * the outside world, call drm_dp_aux_init() first. For drivers which are
2041 * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2042 * &drm_connector), you must still call drm_dp_aux_register() once the connector
2043 * has been registered to allow userspace access to the auxiliary DP channel.
2044 * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2045 * early as possible so that the &drm_device that corresponds to the AUX adapter
2046 * may be mentioned in debugging output from the DRM DP helpers.
2047 *
2048 * For devices which use a separate platform device for their AUX adapters, this
2049 * may be called as early as required by the driver.
2050 *
2051 */
drm_dp_aux_init(struct drm_dp_aux * aux)2052 void drm_dp_aux_init(struct drm_dp_aux *aux)
2053 {
2054 mutex_init(&aux->hw_mutex);
2055 mutex_init(&aux->cec.lock);
2056 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2057
2058 aux->ddc.algo = &drm_dp_i2c_algo;
2059 aux->ddc.algo_data = aux;
2060 aux->ddc.retries = 3;
2061
2062 aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2063 }
2064 EXPORT_SYMBOL(drm_dp_aux_init);
2065
2066 /**
2067 * drm_dp_aux_register() - initialise and register aux channel
2068 * @aux: DisplayPort AUX channel
2069 *
2070 * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2071 * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2072 * initialized. For devices which are grandparents of their AUX channels,
2073 * &drm_dp_aux.dev will typically be the &drm_connector &device which
2074 * corresponds to @aux. For these devices, it's advised to call
2075 * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2076 * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2077 * Functions which don't follow this will likely Oops when
2078 * %CONFIG_DRM_DP_AUX_CHARDEV is enabled.
2079 *
2080 * For devices where the AUX channel is a device that exists independently of
2081 * the &drm_device that uses it, such as SoCs and bridge devices, it is
2082 * recommended to call drm_dp_aux_register() after a &drm_device has been
2083 * assigned to &drm_dp_aux.drm_dev, and likewise to call
2084 * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2085 * with the AUX channel (e.g. on bridge detach).
2086 *
2087 * Drivers which need to use the aux channel before either of the two points
2088 * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2089 * channel before registration.
2090 *
2091 * Returns 0 on success or a negative error code on failure.
2092 */
drm_dp_aux_register(struct drm_dp_aux * aux)2093 int drm_dp_aux_register(struct drm_dp_aux *aux)
2094 {
2095 int ret;
2096
2097 WARN_ON_ONCE(!aux->drm_dev);
2098
2099 if (!aux->ddc.algo)
2100 drm_dp_aux_init(aux);
2101
2102 aux->ddc.class = I2C_CLASS_DDC;
2103 aux->ddc.owner = THIS_MODULE;
2104 aux->ddc.dev.parent = aux->dev;
2105
2106 strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2107 sizeof(aux->ddc.name));
2108
2109 ret = drm_dp_aux_register_devnode(aux);
2110 if (ret)
2111 return ret;
2112
2113 ret = i2c_add_adapter(&aux->ddc);
2114 if (ret) {
2115 drm_dp_aux_unregister_devnode(aux);
2116 return ret;
2117 }
2118
2119 return 0;
2120 }
2121 EXPORT_SYMBOL(drm_dp_aux_register);
2122
2123 /**
2124 * drm_dp_aux_unregister() - unregister an AUX adapter
2125 * @aux: DisplayPort AUX channel
2126 */
drm_dp_aux_unregister(struct drm_dp_aux * aux)2127 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2128 {
2129 drm_dp_aux_unregister_devnode(aux);
2130 i2c_del_adapter(&aux->ddc);
2131 }
2132 EXPORT_SYMBOL(drm_dp_aux_unregister);
2133
2134 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2135
2136 /**
2137 * drm_dp_psr_setup_time() - PSR setup in time usec
2138 * @psr_cap: PSR capabilities from DPCD
2139 *
2140 * Returns:
2141 * PSR setup time for the panel in microseconds, negative
2142 * error code on failure.
2143 */
drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])2144 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2145 {
2146 static const u16 psr_setup_time_us[] = {
2147 PSR_SETUP_TIME(330),
2148 PSR_SETUP_TIME(275),
2149 PSR_SETUP_TIME(220),
2150 PSR_SETUP_TIME(165),
2151 PSR_SETUP_TIME(110),
2152 PSR_SETUP_TIME(55),
2153 PSR_SETUP_TIME(0),
2154 };
2155 int i;
2156
2157 i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2158 if (i >= ARRAY_SIZE(psr_setup_time_us))
2159 return -EINVAL;
2160
2161 return psr_setup_time_us[i];
2162 }
2163 EXPORT_SYMBOL(drm_dp_psr_setup_time);
2164
2165 #undef PSR_SETUP_TIME
2166
2167 /**
2168 * drm_dp_start_crc() - start capture of frame CRCs
2169 * @aux: DisplayPort AUX channel
2170 * @crtc: CRTC displaying the frames whose CRCs are to be captured
2171 *
2172 * Returns 0 on success or a negative error code on failure.
2173 */
drm_dp_start_crc(struct drm_dp_aux * aux,struct drm_crtc * crtc)2174 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2175 {
2176 u8 buf;
2177 int ret;
2178
2179 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2180 if (ret < 0)
2181 return ret;
2182
2183 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2184 if (ret < 0)
2185 return ret;
2186
2187 aux->crc_count = 0;
2188 aux->crtc = crtc;
2189 schedule_work(&aux->crc_work);
2190
2191 return 0;
2192 }
2193 EXPORT_SYMBOL(drm_dp_start_crc);
2194
2195 /**
2196 * drm_dp_stop_crc() - stop capture of frame CRCs
2197 * @aux: DisplayPort AUX channel
2198 *
2199 * Returns 0 on success or a negative error code on failure.
2200 */
drm_dp_stop_crc(struct drm_dp_aux * aux)2201 int drm_dp_stop_crc(struct drm_dp_aux *aux)
2202 {
2203 u8 buf;
2204 int ret;
2205
2206 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2207 if (ret < 0)
2208 return ret;
2209
2210 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2211 if (ret < 0)
2212 return ret;
2213
2214 flush_work(&aux->crc_work);
2215 aux->crtc = NULL;
2216
2217 return 0;
2218 }
2219 EXPORT_SYMBOL(drm_dp_stop_crc);
2220
2221 struct dpcd_quirk {
2222 u8 oui[3];
2223 u8 device_id[6];
2224 bool is_branch;
2225 u32 quirks;
2226 };
2227
2228 #define OUI(first, second, third) { (first), (second), (third) }
2229 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2230 { (first), (second), (third), (fourth), (fifth), (sixth) }
2231
2232 #define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0)
2233
2234 static const struct dpcd_quirk dpcd_quirk_list[] = {
2235 /* Analogix 7737 needs reduced M and N at HBR2 link rates */
2236 { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2237 /* LG LP140WF6-SPM1 eDP panel */
2238 { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2239 /* Apple panels need some additional handling to support PSR */
2240 { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2241 /* CH7511 seems to leave SINK_COUNT zeroed */
2242 { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2243 /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2244 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2245 /* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2246 { OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2247 };
2248
2249 #undef OUI
2250
2251 /*
2252 * Get a bit mask of DPCD quirks for the sink/branch device identified by
2253 * ident. The quirk data is shared but it's up to the drivers to act on the
2254 * data.
2255 *
2256 * For now, only the OUI (first three bytes) is used, but this may be extended
2257 * to device identification string and hardware/firmware revisions later.
2258 */
2259 static u32
drm_dp_get_quirks(const struct drm_dp_dpcd_ident * ident,bool is_branch)2260 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2261 {
2262 const struct dpcd_quirk *quirk;
2263 u32 quirks = 0;
2264 int i;
2265 u8 any_device[] = DEVICE_ID_ANY;
2266
2267 for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2268 quirk = &dpcd_quirk_list[i];
2269
2270 if (quirk->is_branch != is_branch)
2271 continue;
2272
2273 if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2274 continue;
2275
2276 if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2277 memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2278 continue;
2279
2280 quirks |= quirk->quirks;
2281 }
2282
2283 return quirks;
2284 }
2285
2286 #undef DEVICE_ID_ANY
2287 #undef DEVICE_ID
2288
2289 /**
2290 * drm_dp_read_desc - read sink/branch descriptor from DPCD
2291 * @aux: DisplayPort AUX channel
2292 * @desc: Device descriptor to fill from DPCD
2293 * @is_branch: true for branch devices, false for sink devices
2294 *
2295 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2296 * identification.
2297 *
2298 * Returns 0 on success or a negative error code on failure.
2299 */
drm_dp_read_desc(struct drm_dp_aux * aux,struct drm_dp_desc * desc,bool is_branch)2300 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2301 bool is_branch)
2302 {
2303 struct drm_dp_dpcd_ident *ident = &desc->ident;
2304 unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2305 int ret, dev_id_len;
2306
2307 ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2308 if (ret < 0)
2309 return ret;
2310
2311 desc->quirks = drm_dp_get_quirks(ident, is_branch);
2312
2313 dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
2314
2315 drm_dbg_kms(aux->drm_dev,
2316 "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2317 aux->name, is_branch ? "branch" : "sink",
2318 (int)sizeof(ident->oui), ident->oui, dev_id_len,
2319 ident->device_id, ident->hw_rev >> 4, ident->hw_rev & 0xf,
2320 ident->sw_major_rev, ident->sw_minor_rev, desc->quirks);
2321
2322 return 0;
2323 }
2324 EXPORT_SYMBOL(drm_dp_read_desc);
2325
2326 /**
2327 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2328 * supported by the DSC sink.
2329 * @dsc_dpcd: DSC capabilities from DPCD
2330 * @is_edp: true if its eDP, false for DP
2331 *
2332 * Read the slice capabilities DPCD register from DSC sink to get
2333 * the maximum slice count supported. This is used to populate
2334 * the DSC parameters in the &struct drm_dsc_config by the driver.
2335 * Driver creates an infoframe using these parameters to populate
2336 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2337 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2338 *
2339 * Returns:
2340 * Maximum slice count supported by DSC sink or 0 its invalid
2341 */
drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],bool is_edp)2342 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2343 bool is_edp)
2344 {
2345 u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2346
2347 if (is_edp) {
2348 /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2349 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2350 return 4;
2351 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2352 return 2;
2353 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2354 return 1;
2355 } else {
2356 /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2357 u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2358
2359 if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2360 return 24;
2361 if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2362 return 20;
2363 if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2364 return 16;
2365 if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2366 return 12;
2367 if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2368 return 10;
2369 if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2370 return 8;
2371 if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2372 return 6;
2373 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2374 return 4;
2375 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2376 return 2;
2377 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2378 return 1;
2379 }
2380
2381 return 0;
2382 }
2383 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2384
2385 /**
2386 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2387 * @dsc_dpcd: DSC capabilities from DPCD
2388 *
2389 * Read the DSC DPCD register to parse the line buffer depth in bits which is
2390 * number of bits of precision within the decoder line buffer supported by
2391 * the DSC sink. This is used to populate the DSC parameters in the
2392 * &struct drm_dsc_config by the driver.
2393 * Driver creates an infoframe using these parameters to populate
2394 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2395 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2396 *
2397 * Returns:
2398 * Line buffer depth supported by DSC panel or 0 its invalid
2399 */
drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])2400 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2401 {
2402 u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2403
2404 switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2405 case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2406 return 9;
2407 case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2408 return 10;
2409 case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2410 return 11;
2411 case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2412 return 12;
2413 case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2414 return 13;
2415 case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2416 return 14;
2417 case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2418 return 15;
2419 case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2420 return 16;
2421 case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2422 return 8;
2423 }
2424
2425 return 0;
2426 }
2427 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2428
2429 /**
2430 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2431 * values supported by the DSC sink.
2432 * @dsc_dpcd: DSC capabilities from DPCD
2433 * @dsc_bpc: An array to be filled by this helper with supported
2434 * input bpcs.
2435 *
2436 * Read the DSC DPCD from the sink device to parse the supported bits per
2437 * component values. This is used to populate the DSC parameters
2438 * in the &struct drm_dsc_config by the driver.
2439 * Driver creates an infoframe using these parameters to populate
2440 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2441 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2442 *
2443 * Returns:
2444 * Number of input BPC values parsed from the DPCD
2445 */
drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],u8 dsc_bpc[3])2446 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2447 u8 dsc_bpc[3])
2448 {
2449 int num_bpc = 0;
2450 u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2451
2452 if (color_depth & DP_DSC_12_BPC)
2453 dsc_bpc[num_bpc++] = 12;
2454 if (color_depth & DP_DSC_10_BPC)
2455 dsc_bpc[num_bpc++] = 10;
2456 if (color_depth & DP_DSC_8_BPC)
2457 dsc_bpc[num_bpc++] = 8;
2458
2459 return num_bpc;
2460 }
2461 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2462
drm_dp_read_lttpr_regs(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],int address,u8 * buf,int buf_size)2463 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2464 const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2465 u8 *buf, int buf_size)
2466 {
2467 /*
2468 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2469 * corrupted values when reading from the 0xF0000- range with a block
2470 * size bigger than 1.
2471 */
2472 int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2473 int offset;
2474 int ret;
2475
2476 for (offset = 0; offset < buf_size; offset += block_size) {
2477 ret = drm_dp_dpcd_read(aux,
2478 address + offset,
2479 &buf[offset], block_size);
2480 if (ret < 0)
2481 return ret;
2482
2483 WARN_ON(ret != block_size);
2484 }
2485
2486 return 0;
2487 }
2488
2489 /**
2490 * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2491 * @aux: DisplayPort AUX channel
2492 * @dpcd: DisplayPort configuration data
2493 * @caps: buffer to return the capability info in
2494 *
2495 * Read capabilities common to all LTTPRs.
2496 *
2497 * Returns 0 on success or a negative error code on failure.
2498 */
drm_dp_read_lttpr_common_caps(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2499 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2500 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2501 u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2502 {
2503 return drm_dp_read_lttpr_regs(aux, dpcd,
2504 DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2505 caps, DP_LTTPR_COMMON_CAP_SIZE);
2506 }
2507 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2508
2509 /**
2510 * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2511 * @aux: DisplayPort AUX channel
2512 * @dpcd: DisplayPort configuration data
2513 * @dp_phy: LTTPR PHY to read the capabilities for
2514 * @caps: buffer to return the capability info in
2515 *
2516 * Read the capabilities for the given LTTPR PHY.
2517 *
2518 * Returns 0 on success or a negative error code on failure.
2519 */
drm_dp_read_lttpr_phy_caps(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,u8 caps[DP_LTTPR_PHY_CAP_SIZE])2520 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2521 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2522 enum drm_dp_phy dp_phy,
2523 u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2524 {
2525 return drm_dp_read_lttpr_regs(aux, dpcd,
2526 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2527 caps, DP_LTTPR_PHY_CAP_SIZE);
2528 }
2529 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2530
dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE],int r)2531 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2532 {
2533 return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2534 }
2535
2536 /**
2537 * drm_dp_lttpr_count - get the number of detected LTTPRs
2538 * @caps: LTTPR common capabilities
2539 *
2540 * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2541 *
2542 * Returns:
2543 * -ERANGE if more than supported number (8) of LTTPRs are detected
2544 * -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2545 * otherwise the number of detected LTTPRs
2546 */
drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2547 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2548 {
2549 u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2550
2551 switch (hweight8(count)) {
2552 case 0:
2553 return 0;
2554 case 1:
2555 return 8 - ilog2(count);
2556 case 8:
2557 return -ERANGE;
2558 default:
2559 return -EINVAL;
2560 }
2561 }
2562 EXPORT_SYMBOL(drm_dp_lttpr_count);
2563
2564 /**
2565 * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2566 * @caps: LTTPR common capabilities
2567 *
2568 * Returns the maximum link rate supported by all detected LTTPRs.
2569 */
drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2570 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2571 {
2572 u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2573
2574 return drm_dp_bw_code_to_link_rate(rate);
2575 }
2576 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2577
2578 /**
2579 * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2580 * @caps: LTTPR common capabilities
2581 *
2582 * Returns the maximum lane count supported by all detected LTTPRs.
2583 */
drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2584 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2585 {
2586 u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2587
2588 return max_lanes & DP_MAX_LANE_COUNT_MASK;
2589 }
2590 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2591
2592 /**
2593 * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2594 * @caps: LTTPR PHY capabilities
2595 *
2596 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2597 * voltage swing level 3.
2598 */
2599 bool
drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])2600 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2601 {
2602 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2603
2604 return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2605 }
2606 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2607
2608 /**
2609 * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2610 * @caps: LTTPR PHY capabilities
2611 *
2612 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2613 * pre-emphasis level 3.
2614 */
2615 bool
drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])2616 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2617 {
2618 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2619
2620 return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2621 }
2622 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2623
2624 /**
2625 * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2626 * @aux: DisplayPort AUX channel
2627 * @data: DP phy compliance test parameters.
2628 *
2629 * Returns 0 on success or a negative error code on failure.
2630 */
drm_dp_get_phy_test_pattern(struct drm_dp_aux * aux,struct drm_dp_phy_test_params * data)2631 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2632 struct drm_dp_phy_test_params *data)
2633 {
2634 int err;
2635 u8 rate, lanes;
2636
2637 err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2638 if (err < 0)
2639 return err;
2640 data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2641
2642 err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2643 if (err < 0)
2644 return err;
2645 data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2646
2647 if (lanes & DP_ENHANCED_FRAME_CAP)
2648 data->enhanced_frame_cap = true;
2649
2650 err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2651 if (err < 0)
2652 return err;
2653
2654 switch (data->phy_pattern) {
2655 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2656 err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2657 &data->custom80, sizeof(data->custom80));
2658 if (err < 0)
2659 return err;
2660
2661 break;
2662 case DP_PHY_TEST_PATTERN_CP2520:
2663 err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2664 &data->hbr2_reset,
2665 sizeof(data->hbr2_reset));
2666 if (err < 0)
2667 return err;
2668 }
2669
2670 return 0;
2671 }
2672 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2673
2674 /**
2675 * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2676 * @aux: DisplayPort AUX channel
2677 * @data: DP phy compliance test parameters.
2678 * @dp_rev: DP revision to use for compliance testing
2679 *
2680 * Returns 0 on success or a negative error code on failure.
2681 */
drm_dp_set_phy_test_pattern(struct drm_dp_aux * aux,struct drm_dp_phy_test_params * data,u8 dp_rev)2682 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2683 struct drm_dp_phy_test_params *data, u8 dp_rev)
2684 {
2685 int err, i;
2686 u8 test_pattern;
2687
2688 test_pattern = data->phy_pattern;
2689 if (dp_rev < 0x12) {
2690 test_pattern = (test_pattern << 2) &
2691 DP_LINK_QUAL_PATTERN_11_MASK;
2692 err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2693 test_pattern);
2694 if (err < 0)
2695 return err;
2696 } else {
2697 for (i = 0; i < data->num_lanes; i++) {
2698 err = drm_dp_dpcd_writeb(aux,
2699 DP_LINK_QUAL_LANE0_SET + i,
2700 test_pattern);
2701 if (err < 0)
2702 return err;
2703 }
2704 }
2705
2706 return 0;
2707 }
2708 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2709
dp_pixelformat_get_name(enum dp_pixelformat pixelformat)2710 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2711 {
2712 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2713 return "Invalid";
2714
2715 switch (pixelformat) {
2716 case DP_PIXELFORMAT_RGB:
2717 return "RGB";
2718 case DP_PIXELFORMAT_YUV444:
2719 return "YUV444";
2720 case DP_PIXELFORMAT_YUV422:
2721 return "YUV422";
2722 case DP_PIXELFORMAT_YUV420:
2723 return "YUV420";
2724 case DP_PIXELFORMAT_Y_ONLY:
2725 return "Y_ONLY";
2726 case DP_PIXELFORMAT_RAW:
2727 return "RAW";
2728 default:
2729 return "Reserved";
2730 }
2731 }
2732
dp_colorimetry_get_name(enum dp_pixelformat pixelformat,enum dp_colorimetry colorimetry)2733 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2734 enum dp_colorimetry colorimetry)
2735 {
2736 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2737 return "Invalid";
2738
2739 switch (colorimetry) {
2740 case DP_COLORIMETRY_DEFAULT:
2741 switch (pixelformat) {
2742 case DP_PIXELFORMAT_RGB:
2743 return "sRGB";
2744 case DP_PIXELFORMAT_YUV444:
2745 case DP_PIXELFORMAT_YUV422:
2746 case DP_PIXELFORMAT_YUV420:
2747 return "BT.601";
2748 case DP_PIXELFORMAT_Y_ONLY:
2749 return "DICOM PS3.14";
2750 case DP_PIXELFORMAT_RAW:
2751 return "Custom Color Profile";
2752 default:
2753 return "Reserved";
2754 }
2755 case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2756 switch (pixelformat) {
2757 case DP_PIXELFORMAT_RGB:
2758 return "Wide Fixed";
2759 case DP_PIXELFORMAT_YUV444:
2760 case DP_PIXELFORMAT_YUV422:
2761 case DP_PIXELFORMAT_YUV420:
2762 return "BT.709";
2763 default:
2764 return "Reserved";
2765 }
2766 case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2767 switch (pixelformat) {
2768 case DP_PIXELFORMAT_RGB:
2769 return "Wide Float";
2770 case DP_PIXELFORMAT_YUV444:
2771 case DP_PIXELFORMAT_YUV422:
2772 case DP_PIXELFORMAT_YUV420:
2773 return "xvYCC 601";
2774 default:
2775 return "Reserved";
2776 }
2777 case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2778 switch (pixelformat) {
2779 case DP_PIXELFORMAT_RGB:
2780 return "OpRGB";
2781 case DP_PIXELFORMAT_YUV444:
2782 case DP_PIXELFORMAT_YUV422:
2783 case DP_PIXELFORMAT_YUV420:
2784 return "xvYCC 709";
2785 default:
2786 return "Reserved";
2787 }
2788 case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2789 switch (pixelformat) {
2790 case DP_PIXELFORMAT_RGB:
2791 return "DCI-P3";
2792 case DP_PIXELFORMAT_YUV444:
2793 case DP_PIXELFORMAT_YUV422:
2794 case DP_PIXELFORMAT_YUV420:
2795 return "sYCC 601";
2796 default:
2797 return "Reserved";
2798 }
2799 case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2800 switch (pixelformat) {
2801 case DP_PIXELFORMAT_RGB:
2802 return "Custom Profile";
2803 case DP_PIXELFORMAT_YUV444:
2804 case DP_PIXELFORMAT_YUV422:
2805 case DP_PIXELFORMAT_YUV420:
2806 return "OpYCC 601";
2807 default:
2808 return "Reserved";
2809 }
2810 case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2811 switch (pixelformat) {
2812 case DP_PIXELFORMAT_RGB:
2813 return "BT.2020 RGB";
2814 case DP_PIXELFORMAT_YUV444:
2815 case DP_PIXELFORMAT_YUV422:
2816 case DP_PIXELFORMAT_YUV420:
2817 return "BT.2020 CYCC";
2818 default:
2819 return "Reserved";
2820 }
2821 case DP_COLORIMETRY_BT2020_YCC:
2822 switch (pixelformat) {
2823 case DP_PIXELFORMAT_YUV444:
2824 case DP_PIXELFORMAT_YUV422:
2825 case DP_PIXELFORMAT_YUV420:
2826 return "BT.2020 YCC";
2827 default:
2828 return "Reserved";
2829 }
2830 default:
2831 return "Invalid";
2832 }
2833 }
2834
dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)2835 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2836 {
2837 switch (dynamic_range) {
2838 case DP_DYNAMIC_RANGE_VESA:
2839 return "VESA range";
2840 case DP_DYNAMIC_RANGE_CTA:
2841 return "CTA range";
2842 default:
2843 return "Invalid";
2844 }
2845 }
2846
dp_content_type_get_name(enum dp_content_type content_type)2847 static const char *dp_content_type_get_name(enum dp_content_type content_type)
2848 {
2849 switch (content_type) {
2850 case DP_CONTENT_TYPE_NOT_DEFINED:
2851 return "Not defined";
2852 case DP_CONTENT_TYPE_GRAPHICS:
2853 return "Graphics";
2854 case DP_CONTENT_TYPE_PHOTO:
2855 return "Photo";
2856 case DP_CONTENT_TYPE_VIDEO:
2857 return "Video";
2858 case DP_CONTENT_TYPE_GAME:
2859 return "Game";
2860 default:
2861 return "Reserved";
2862 }
2863 }
2864
drm_dp_vsc_sdp_log(const char * level,struct device * dev,const struct drm_dp_vsc_sdp * vsc)2865 void drm_dp_vsc_sdp_log(const char *level, struct device *dev,
2866 const struct drm_dp_vsc_sdp *vsc)
2867 {
2868 #define DP_SDP_LOG(fmt, ...) dev_printk(level, dev, fmt, ##__VA_ARGS__)
2869 DP_SDP_LOG("DP SDP: %s, revision %u, length %u\n", "VSC",
2870 vsc->revision, vsc->length);
2871 DP_SDP_LOG(" pixelformat: %s\n",
2872 dp_pixelformat_get_name(vsc->pixelformat));
2873 DP_SDP_LOG(" colorimetry: %s\n",
2874 dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2875 DP_SDP_LOG(" bpc: %u\n", vsc->bpc);
2876 DP_SDP_LOG(" dynamic range: %s\n",
2877 dp_dynamic_range_get_name(vsc->dynamic_range));
2878 DP_SDP_LOG(" content type: %s\n",
2879 dp_content_type_get_name(vsc->content_type));
2880 #undef DP_SDP_LOG
2881 }
2882 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2883
2884 /**
2885 * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
2886 * @dpcd: DisplayPort configuration data
2887 * @port_cap: port capabilities
2888 *
2889 * Returns maximum frl bandwidth supported by PCON in GBPS,
2890 * returns 0 if not supported.
2891 */
drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])2892 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2893 const u8 port_cap[4])
2894 {
2895 int bw;
2896 u8 buf;
2897
2898 buf = port_cap[2];
2899 bw = buf & DP_PCON_MAX_FRL_BW;
2900
2901 switch (bw) {
2902 case DP_PCON_MAX_9GBPS:
2903 return 9;
2904 case DP_PCON_MAX_18GBPS:
2905 return 18;
2906 case DP_PCON_MAX_24GBPS:
2907 return 24;
2908 case DP_PCON_MAX_32GBPS:
2909 return 32;
2910 case DP_PCON_MAX_40GBPS:
2911 return 40;
2912 case DP_PCON_MAX_48GBPS:
2913 return 48;
2914 case DP_PCON_MAX_0GBPS:
2915 default:
2916 return 0;
2917 }
2918
2919 return 0;
2920 }
2921 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
2922
2923 /**
2924 * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
2925 * @aux: DisplayPort AUX channel
2926 * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
2927 *
2928 * Returns 0 if success, else returns negative error code.
2929 */
drm_dp_pcon_frl_prepare(struct drm_dp_aux * aux,bool enable_frl_ready_hpd)2930 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
2931 {
2932 int ret;
2933 u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
2934 DP_PCON_ENABLE_LINK_FRL_MODE;
2935
2936 if (enable_frl_ready_hpd)
2937 buf |= DP_PCON_ENABLE_HPD_READY;
2938
2939 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
2940
2941 return ret;
2942 }
2943 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
2944
2945 /**
2946 * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
2947 * @aux: DisplayPort AUX channel
2948 *
2949 * Returns true if success, else returns false.
2950 */
drm_dp_pcon_is_frl_ready(struct drm_dp_aux * aux)2951 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
2952 {
2953 int ret;
2954 u8 buf;
2955
2956 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
2957 if (ret < 0)
2958 return false;
2959
2960 if (buf & DP_PCON_FRL_READY)
2961 return true;
2962
2963 return false;
2964 }
2965 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
2966
2967 /**
2968 * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
2969 * @aux: DisplayPort AUX channel
2970 * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
2971 * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
2972 * In Concurrent Mode, the FRL link bring up can be done along with
2973 * DP Link training. In Sequential mode, the FRL link bring up is done prior to
2974 * the DP Link training.
2975 *
2976 * Returns 0 if success, else returns negative error code.
2977 */
2978
drm_dp_pcon_frl_configure_1(struct drm_dp_aux * aux,int max_frl_gbps,u8 frl_mode)2979 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
2980 u8 frl_mode)
2981 {
2982 int ret;
2983 u8 buf;
2984
2985 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
2986 if (ret < 0)
2987 return ret;
2988
2989 if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
2990 buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
2991 else
2992 buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
2993
2994 switch (max_frl_gbps) {
2995 case 9:
2996 buf |= DP_PCON_ENABLE_MAX_BW_9GBPS;
2997 break;
2998 case 18:
2999 buf |= DP_PCON_ENABLE_MAX_BW_18GBPS;
3000 break;
3001 case 24:
3002 buf |= DP_PCON_ENABLE_MAX_BW_24GBPS;
3003 break;
3004 case 32:
3005 buf |= DP_PCON_ENABLE_MAX_BW_32GBPS;
3006 break;
3007 case 40:
3008 buf |= DP_PCON_ENABLE_MAX_BW_40GBPS;
3009 break;
3010 case 48:
3011 buf |= DP_PCON_ENABLE_MAX_BW_48GBPS;
3012 break;
3013 case 0:
3014 buf |= DP_PCON_ENABLE_MAX_BW_0GBPS;
3015 break;
3016 default:
3017 return -EINVAL;
3018 }
3019
3020 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3021 if (ret < 0)
3022 return ret;
3023
3024 return 0;
3025 }
3026 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3027
3028 /**
3029 * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3030 * @aux: DisplayPort AUX channel
3031 * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3032 * @frl_type : FRL training type, can be Extended, or Normal.
3033 * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3034 * starting from min, and stops when link training is successful. In Extended
3035 * FRL training, all frl bw selected in the mask are trained by the PCON.
3036 *
3037 * Returns 0 if success, else returns negative error code.
3038 */
drm_dp_pcon_frl_configure_2(struct drm_dp_aux * aux,int max_frl_mask,u8 frl_type)3039 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3040 u8 frl_type)
3041 {
3042 int ret;
3043 u8 buf = max_frl_mask;
3044
3045 if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3046 buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3047 else
3048 buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3049
3050 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3051 if (ret < 0)
3052 return ret;
3053
3054 return 0;
3055 }
3056 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3057
3058 /**
3059 * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3060 * @aux: DisplayPort AUX channel
3061 *
3062 * Returns 0 if success, else returns negative error code.
3063 */
drm_dp_pcon_reset_frl_config(struct drm_dp_aux * aux)3064 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3065 {
3066 int ret;
3067
3068 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3069 if (ret < 0)
3070 return ret;
3071
3072 return 0;
3073 }
3074 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3075
3076 /**
3077 * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3078 * @aux: DisplayPort AUX channel
3079 *
3080 * Returns 0 if success, else returns negative error code.
3081 */
drm_dp_pcon_frl_enable(struct drm_dp_aux * aux)3082 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3083 {
3084 int ret;
3085 u8 buf = 0;
3086
3087 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3088 if (ret < 0)
3089 return ret;
3090 if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3091 drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3092 aux->name);
3093 return -EINVAL;
3094 }
3095 buf |= DP_PCON_ENABLE_HDMI_LINK;
3096 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3097 if (ret < 0)
3098 return ret;
3099
3100 return 0;
3101 }
3102 EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3103
3104 /**
3105 * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3106 * @aux: DisplayPort AUX channel
3107 *
3108 * Returns true if link is active else returns false.
3109 */
drm_dp_pcon_hdmi_link_active(struct drm_dp_aux * aux)3110 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3111 {
3112 u8 buf;
3113 int ret;
3114
3115 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3116 if (ret < 0)
3117 return false;
3118
3119 return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3120 }
3121 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3122
3123 /**
3124 * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3125 * @aux: DisplayPort AUX channel
3126 * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3127 * Valid only if the MODE returned is FRL. For Normal Link training mode
3128 * only 1 of the bits will be set, but in case of Extended mode, more than
3129 * one bits can be set.
3130 *
3131 * Returns the link mode : TMDS or FRL on success, else returns negative error
3132 * code.
3133 */
drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux * aux,u8 * frl_trained_mask)3134 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3135 {
3136 u8 buf;
3137 int mode;
3138 int ret;
3139
3140 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3141 if (ret < 0)
3142 return ret;
3143
3144 mode = buf & DP_PCON_HDMI_LINK_MODE;
3145
3146 if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3147 *frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3148
3149 return mode;
3150 }
3151 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3152
3153 /**
3154 * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3155 * during link failure between PCON and HDMI sink
3156 * @aux: DisplayPort AUX channel
3157 * @connector: DRM connector
3158 * code.
3159 **/
3160
drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux * aux,struct drm_connector * connector)3161 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3162 struct drm_connector *connector)
3163 {
3164 u8 buf, error_count;
3165 int i, num_error;
3166 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3167
3168 for (i = 0; i < hdmi->max_lanes; i++) {
3169 if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3170 return;
3171
3172 error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3173 switch (error_count) {
3174 case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3175 num_error = 100;
3176 break;
3177 case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3178 num_error = 10;
3179 break;
3180 case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3181 num_error = 3;
3182 break;
3183 default:
3184 num_error = 0;
3185 }
3186
3187 drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3188 aux->name, num_error, i);
3189 }
3190 }
3191 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3192
3193 /*
3194 * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3195 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3196 *
3197 * Returns true is PCON encoder is DSC 1.2 else returns false.
3198 */
drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3199 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3200 {
3201 u8 buf;
3202 u8 major_v, minor_v;
3203
3204 buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3205 major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3206 minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3207
3208 if (major_v == 1 && minor_v == 2)
3209 return true;
3210
3211 return false;
3212 }
3213 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3214
3215 /*
3216 * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3217 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3218 *
3219 * Returns maximum no. of slices supported by the PCON DSC Encoder.
3220 */
drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3221 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3222 {
3223 u8 slice_cap1, slice_cap2;
3224
3225 slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3226 slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3227
3228 if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3229 return 24;
3230 if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3231 return 20;
3232 if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3233 return 16;
3234 if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3235 return 12;
3236 if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3237 return 10;
3238 if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3239 return 8;
3240 if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3241 return 6;
3242 if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3243 return 4;
3244 if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3245 return 2;
3246 if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3247 return 1;
3248
3249 return 0;
3250 }
3251 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3252
3253 /*
3254 * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3255 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3256 *
3257 * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3258 */
drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3259 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3260 {
3261 u8 buf;
3262
3263 buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3264
3265 return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3266 }
3267 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3268
3269 /*
3270 * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3271 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3272 *
3273 * Returns the bpp precision supported by the PCON encoder.
3274 */
drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3275 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3276 {
3277 u8 buf;
3278
3279 buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3280
3281 switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3282 case DP_PCON_DSC_ONE_16TH_BPP:
3283 return 16;
3284 case DP_PCON_DSC_ONE_8TH_BPP:
3285 return 8;
3286 case DP_PCON_DSC_ONE_4TH_BPP:
3287 return 4;
3288 case DP_PCON_DSC_ONE_HALF_BPP:
3289 return 2;
3290 case DP_PCON_DSC_ONE_BPP:
3291 return 1;
3292 }
3293
3294 return 0;
3295 }
3296 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3297
3298 static
drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux * aux,u8 pps_buf_config)3299 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3300 {
3301 u8 buf;
3302 int ret;
3303
3304 ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3305 if (ret < 0)
3306 return ret;
3307
3308 buf |= DP_PCON_ENABLE_DSC_ENCODER;
3309
3310 if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3311 buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3312 buf |= pps_buf_config << 2;
3313 }
3314
3315 ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3316 if (ret < 0)
3317 return ret;
3318
3319 return 0;
3320 }
3321
3322 /**
3323 * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3324 * for DSC1.2 between PCON & HDMI2.1 sink
3325 * @aux: DisplayPort AUX channel
3326 *
3327 * Returns 0 on success, else returns negative error code.
3328 */
drm_dp_pcon_pps_default(struct drm_dp_aux * aux)3329 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3330 {
3331 int ret;
3332
3333 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3334 if (ret < 0)
3335 return ret;
3336
3337 return 0;
3338 }
3339 EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3340
3341 /**
3342 * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3343 * HDMI sink
3344 * @aux: DisplayPort AUX channel
3345 * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3346 *
3347 * Returns 0 on success, else returns negative error code.
3348 */
drm_dp_pcon_pps_override_buf(struct drm_dp_aux * aux,u8 pps_buf[128])3349 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3350 {
3351 int ret;
3352
3353 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3354 if (ret < 0)
3355 return ret;
3356
3357 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3358 if (ret < 0)
3359 return ret;
3360
3361 return 0;
3362 }
3363 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3364
3365 /*
3366 * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3367 * override registers
3368 * @aux: DisplayPort AUX channel
3369 * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3370 * bits_per_pixel.
3371 *
3372 * Returns 0 on success, else returns negative error code.
3373 */
drm_dp_pcon_pps_override_param(struct drm_dp_aux * aux,u8 pps_param[6])3374 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3375 {
3376 int ret;
3377
3378 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3379 if (ret < 0)
3380 return ret;
3381 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3382 if (ret < 0)
3383 return ret;
3384 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3385 if (ret < 0)
3386 return ret;
3387
3388 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3389 if (ret < 0)
3390 return ret;
3391
3392 return 0;
3393 }
3394 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3395
3396 /*
3397 * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3398 * @aux: displayPort AUX channel
3399 * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3400 *
3401 * Returns 0 on success, else returns negative error code.
3402 */
drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux * aux,u8 color_spc)3403 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3404 {
3405 int ret;
3406 u8 buf;
3407
3408 ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3409 if (ret < 0)
3410 return ret;
3411
3412 if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3413 buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3414 else
3415 buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3416
3417 ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3418 if (ret < 0)
3419 return ret;
3420
3421 return 0;
3422 }
3423 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3424
3425 /**
3426 * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3427 * @aux: The DP AUX channel to use
3428 * @bl: Backlight capability info from drm_edp_backlight_init()
3429 * @level: The brightness level to set
3430 *
3431 * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3432 * already have been enabled by the driver by calling drm_edp_backlight_enable().
3433 *
3434 * Returns: %0 on success, negative error code on failure
3435 */
drm_edp_backlight_set_level(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,u16 level)3436 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3437 u16 level)
3438 {
3439 int ret;
3440 u8 buf[2] = { 0 };
3441
3442 /* The panel uses the PWM for controlling brightness levels */
3443 if (!bl->aux_set)
3444 return 0;
3445
3446 if (bl->lsb_reg_used) {
3447 buf[0] = (level & 0xff00) >> 8;
3448 buf[1] = (level & 0x00ff);
3449 } else {
3450 buf[0] = level;
3451 }
3452
3453 ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3454 if (ret != sizeof(buf)) {
3455 drm_err(aux->drm_dev,
3456 "%s: Failed to write aux backlight level: %d\n",
3457 aux->name, ret);
3458 return ret < 0 ? ret : -EIO;
3459 }
3460
3461 return 0;
3462 }
3463 EXPORT_SYMBOL(drm_edp_backlight_set_level);
3464
3465 static int
drm_edp_backlight_set_enable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,bool enable)3466 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3467 bool enable)
3468 {
3469 int ret;
3470 u8 buf;
3471
3472 /* This panel uses the EDP_BL_PWR GPIO for enablement */
3473 if (!bl->aux_enable)
3474 return 0;
3475
3476 ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3477 if (ret != 1) {
3478 drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3479 aux->name, ret);
3480 return ret < 0 ? ret : -EIO;
3481 }
3482 if (enable)
3483 buf |= DP_EDP_BACKLIGHT_ENABLE;
3484 else
3485 buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3486
3487 ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3488 if (ret != 1) {
3489 drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3490 aux->name, ret);
3491 return ret < 0 ? ret : -EIO;
3492 }
3493
3494 return 0;
3495 }
3496
3497 /**
3498 * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3499 * @aux: The DP AUX channel to use
3500 * @bl: Backlight capability info from drm_edp_backlight_init()
3501 * @level: The initial backlight level to set via AUX, if there is one
3502 *
3503 * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3504 * restoring any important backlight state such as the given backlight level, the brightness byte
3505 * count, backlight frequency, etc.
3506 *
3507 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3508 * that the driver handle enabling/disabling the panel through implementation-specific means using
3509 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3510 * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3511 * the EDP_BL_PWR GPIO.
3512 *
3513 * Returns: %0 on success, negative error code on failure.
3514 */
drm_edp_backlight_enable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,const u16 level)3515 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3516 const u16 level)
3517 {
3518 int ret;
3519 u8 dpcd_buf;
3520
3521 if (bl->aux_set)
3522 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
3523 else
3524 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
3525
3526 if (bl->pwmgen_bit_count) {
3527 ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
3528 if (ret != 1)
3529 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3530 aux->name, ret);
3531 }
3532
3533 if (bl->pwm_freq_pre_divider) {
3534 ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
3535 if (ret != 1)
3536 drm_dbg_kms(aux->drm_dev,
3537 "%s: Failed to write aux backlight frequency: %d\n",
3538 aux->name, ret);
3539 else
3540 dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
3541 }
3542
3543 ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
3544 if (ret != 1) {
3545 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
3546 aux->name, ret);
3547 return ret < 0 ? ret : -EIO;
3548 }
3549
3550 ret = drm_edp_backlight_set_level(aux, bl, level);
3551 if (ret < 0)
3552 return ret;
3553 ret = drm_edp_backlight_set_enable(aux, bl, true);
3554 if (ret < 0)
3555 return ret;
3556
3557 return 0;
3558 }
3559 EXPORT_SYMBOL(drm_edp_backlight_enable);
3560
3561 /**
3562 * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3563 * @aux: The DP AUX channel to use
3564 * @bl: Backlight capability info from drm_edp_backlight_init()
3565 *
3566 * This function handles disabling DPCD backlight controls on a panel over AUX.
3567 *
3568 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3569 * that the driver handle enabling/disabling the panel through implementation-specific means using
3570 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3571 * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3572 * the EDP_BL_PWR GPIO.
3573 *
3574 * Returns: %0 on success or no-op, negative error code on failure.
3575 */
drm_edp_backlight_disable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl)3576 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3577 {
3578 int ret;
3579
3580 ret = drm_edp_backlight_set_enable(aux, bl, false);
3581 if (ret < 0)
3582 return ret;
3583
3584 return 0;
3585 }
3586 EXPORT_SYMBOL(drm_edp_backlight_disable);
3587
3588 static inline int
drm_edp_backlight_probe_max(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u16 driver_pwm_freq_hz,const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])3589 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3590 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
3591 {
3592 int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3593 int ret;
3594 u8 pn, pn_min, pn_max;
3595
3596 if (!bl->aux_set)
3597 return 0;
3598
3599 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
3600 if (ret != 1) {
3601 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
3602 aux->name, ret);
3603 return -ENODEV;
3604 }
3605
3606 pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3607 bl->max = (1 << pn) - 1;
3608 if (!driver_pwm_freq_hz)
3609 return 0;
3610
3611 /*
3612 * Set PWM Frequency divider to match desired frequency provided by the driver.
3613 * The PWM Frequency is calculated as 27Mhz / (F x P).
3614 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3615 * EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3616 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3617 * EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3618 */
3619
3620 /* Find desired value of (F x P)
3621 * Note that, if F x P is out of supported range, the maximum value or minimum value will
3622 * applied automatically. So no need to check that.
3623 */
3624 fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
3625
3626 /* Use highest possible value of Pn for more granularity of brightness adjustment while
3627 * satisfying the conditions below.
3628 * - Pn is in the range of Pn_min and Pn_max
3629 * - F is in the range of 1 and 255
3630 * - FxP is within 25% of desired value.
3631 * Note: 25% is arbitrary value and may need some tweak.
3632 */
3633 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
3634 if (ret != 1) {
3635 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
3636 aux->name, ret);
3637 return 0;
3638 }
3639 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
3640 if (ret != 1) {
3641 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
3642 aux->name, ret);
3643 return 0;
3644 }
3645 pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3646 pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3647
3648 /* Ensure frequency is within 25% of desired value */
3649 fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
3650 fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
3651 if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
3652 drm_dbg_kms(aux->drm_dev,
3653 "%s: Driver defined backlight frequency (%d) out of range\n",
3654 aux->name, driver_pwm_freq_hz);
3655 return 0;
3656 }
3657
3658 for (pn = pn_max; pn >= pn_min; pn--) {
3659 f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
3660 fxp_actual = f << pn;
3661 if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
3662 break;
3663 }
3664
3665 ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
3666 if (ret != 1) {
3667 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3668 aux->name, ret);
3669 return 0;
3670 }
3671 bl->pwmgen_bit_count = pn;
3672 bl->max = (1 << pn) - 1;
3673
3674 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
3675 bl->pwm_freq_pre_divider = f;
3676 drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
3677 aux->name, driver_pwm_freq_hz);
3678 }
3679
3680 return 0;
3681 }
3682
3683 static inline int
drm_edp_backlight_probe_state(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u8 * current_mode)3684 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3685 u8 *current_mode)
3686 {
3687 int ret;
3688 u8 buf[2];
3689 u8 mode_reg;
3690
3691 ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
3692 if (ret != 1) {
3693 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
3694 aux->name, ret);
3695 return ret < 0 ? ret : -EIO;
3696 }
3697
3698 *current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
3699 if (!bl->aux_set)
3700 return 0;
3701
3702 if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
3703 int size = 1 + bl->lsb_reg_used;
3704
3705 ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
3706 if (ret != size) {
3707 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
3708 aux->name, ret);
3709 return ret < 0 ? ret : -EIO;
3710 }
3711
3712 if (bl->lsb_reg_used)
3713 return (buf[0] << 8) | buf[1];
3714 else
3715 return buf[0];
3716 }
3717
3718 /*
3719 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
3720 * the driver should assume max brightness
3721 */
3722 return bl->max;
3723 }
3724
3725 /**
3726 * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
3727 * interface.
3728 * @aux: The DP aux device to use for probing
3729 * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
3730 * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
3731 * @edp_dpcd: A cached copy of the eDP DPCD
3732 * @current_level: Where to store the probed brightness level, if any
3733 * @current_mode: Where to store the currently set backlight control mode
3734 *
3735 * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
3736 * along with also probing the current and maximum supported brightness levels.
3737 *
3738 * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
3739 * default frequency from the panel is used.
3740 *
3741 * Returns: %0 on success, negative error code on failure.
3742 */
3743 int
drm_edp_backlight_init(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u16 driver_pwm_freq_hz,const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],u16 * current_level,u8 * current_mode)3744 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3745 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
3746 u16 *current_level, u8 *current_mode)
3747 {
3748 int ret;
3749
3750 if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
3751 bl->aux_enable = true;
3752 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
3753 bl->aux_set = true;
3754 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
3755 bl->lsb_reg_used = true;
3756
3757 /* Sanity check caps */
3758 if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
3759 drm_dbg_kms(aux->drm_dev,
3760 "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
3761 aux->name);
3762 return -EINVAL;
3763 }
3764
3765 ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
3766 if (ret < 0)
3767 return ret;
3768
3769 ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
3770 if (ret < 0)
3771 return ret;
3772 *current_level = ret;
3773
3774 drm_dbg_kms(aux->drm_dev,
3775 "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
3776 aux->name, bl->aux_set, bl->aux_enable, *current_mode);
3777 if (bl->aux_set) {
3778 drm_dbg_kms(aux->drm_dev,
3779 "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
3780 aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
3781 bl->lsb_reg_used);
3782 }
3783
3784 return 0;
3785 }
3786 EXPORT_SYMBOL(drm_edp_backlight_init);
3787
3788 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
3789 (IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
3790
dp_aux_backlight_update_status(struct backlight_device * bd)3791 static int dp_aux_backlight_update_status(struct backlight_device *bd)
3792 {
3793 struct dp_aux_backlight *bl = bl_get_data(bd);
3794 u16 brightness = backlight_get_brightness(bd);
3795 int ret = 0;
3796
3797 if (!backlight_is_blank(bd)) {
3798 if (!bl->enabled) {
3799 drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
3800 bl->enabled = true;
3801 return 0;
3802 }
3803 ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
3804 } else {
3805 if (bl->enabled) {
3806 drm_edp_backlight_disable(bl->aux, &bl->info);
3807 bl->enabled = false;
3808 }
3809 }
3810
3811 return ret;
3812 }
3813
3814 static const struct backlight_ops dp_aux_bl_ops = {
3815 .update_status = dp_aux_backlight_update_status,
3816 };
3817
3818 /**
3819 * drm_panel_dp_aux_backlight - create and use DP AUX backlight
3820 * @panel: DRM panel
3821 * @aux: The DP AUX channel to use
3822 *
3823 * Use this function to create and handle backlight if your panel
3824 * supports backlight control over DP AUX channel using DPCD
3825 * registers as per VESA's standard backlight control interface.
3826 *
3827 * When the panel is enabled backlight will be enabled after a
3828 * successful call to &drm_panel_funcs.enable()
3829 *
3830 * When the panel is disabled backlight will be disabled before the
3831 * call to &drm_panel_funcs.disable().
3832 *
3833 * A typical implementation for a panel driver supporting backlight
3834 * control over DP AUX will call this function at probe time.
3835 * Backlight will then be handled transparently without requiring
3836 * any intervention from the driver.
3837 *
3838 * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
3839 *
3840 * Return: 0 on success or a negative error code on failure.
3841 */
drm_panel_dp_aux_backlight(struct drm_panel * panel,struct drm_dp_aux * aux)3842 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
3843 {
3844 struct dp_aux_backlight *bl;
3845 struct backlight_properties props = { 0 };
3846 u16 current_level;
3847 u8 current_mode;
3848 u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
3849 int ret;
3850
3851 if (!panel || !panel->dev || !aux)
3852 return -EINVAL;
3853
3854 ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
3855 EDP_DISPLAY_CTL_CAP_SIZE);
3856 if (ret < 0)
3857 return ret;
3858
3859 if (!drm_edp_backlight_supported(edp_dpcd)) {
3860 DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
3861 return 0;
3862 }
3863
3864 bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
3865 if (!bl)
3866 return -ENOMEM;
3867
3868 bl->aux = aux;
3869
3870 ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
3871 ¤t_level, ¤t_mode);
3872 if (ret < 0)
3873 return ret;
3874
3875 props.type = BACKLIGHT_RAW;
3876 props.brightness = current_level;
3877 props.max_brightness = bl->info.max;
3878
3879 bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
3880 panel->dev, bl,
3881 &dp_aux_bl_ops, &props);
3882 if (IS_ERR(bl->base))
3883 return PTR_ERR(bl->base);
3884
3885 backlight_disable(bl->base);
3886
3887 panel->backlight = bl->base;
3888
3889 return 0;
3890 }
3891 EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
3892
3893 #endif
3894