1 /*
2 * Copyright © 2009 Keith Packard
3 *
4 * Permission to use, copy, modify, distribute, and sell this software and its
5 * documentation for any purpose is hereby granted without fee, provided that
6 * the above copyright notice appear in all copies and that both that copyright
7 * notice and this permission notice appear in supporting documentation, and
8 * that the name of the copyright holders not be used in advertising or
9 * publicity pertaining to distribution of the software without specific,
10 * written prior permission. The copyright holders make no representations
11 * about the suitability of this software for any purpose. It is provided "as
12 * is" without express or implied warranty.
13 *
14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20 * OF THIS SOFTWARE.
21 */
22
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/i2c.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/seq_file.h>
31 #include <linux/string_helpers.h>
32
33 #include <drm/display/drm_dp_helper.h>
34 #include <drm/display/drm_dp_mst_helper.h>
35 #include <drm/drm_print.h>
36 #include <drm/drm_vblank.h>
37 #include <drm/drm_panel.h>
38
39 #include "drm_dp_helper_internal.h"
40
41 struct dp_aux_backlight {
42 struct backlight_device *base;
43 struct drm_dp_aux *aux;
44 struct drm_edp_backlight_info info;
45 bool enabled;
46 };
47
48 /**
49 * DOC: dp helpers
50 *
51 * These functions contain some common logic and helpers at various abstraction
52 * levels to deal with Display Port sink devices and related things like DP aux
53 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
54 * blocks, ...
55 */
56
57 /* Helpers for DP link training */
dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE],int r)58 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
59 {
60 return link_status[r - DP_LANE0_1_STATUS];
61 }
62
dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)63 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
64 int lane)
65 {
66 int i = DP_LANE0_1_STATUS + (lane >> 1);
67 int s = (lane & 1) * 4;
68 u8 l = dp_link_status(link_status, i);
69
70 return (l >> s) & 0xf;
71 }
72
drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)73 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
74 int lane_count)
75 {
76 u8 lane_align;
77 u8 lane_status;
78 int lane;
79
80 lane_align = dp_link_status(link_status,
81 DP_LANE_ALIGN_STATUS_UPDATED);
82 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
83 return false;
84 for (lane = 0; lane < lane_count; lane++) {
85 lane_status = dp_get_lane_status(link_status, lane);
86 if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
87 return false;
88 }
89 return true;
90 }
91 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
92
drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)93 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
94 int lane_count)
95 {
96 int lane;
97 u8 lane_status;
98
99 for (lane = 0; lane < lane_count; lane++) {
100 lane_status = dp_get_lane_status(link_status, lane);
101 if ((lane_status & DP_LANE_CR_DONE) == 0)
102 return false;
103 }
104 return true;
105 }
106 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
107
drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)108 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
109 int lane)
110 {
111 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
112 int s = ((lane & 1) ?
113 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
114 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
115 u8 l = dp_link_status(link_status, i);
116
117 return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
118 }
119 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
120
drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)121 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
122 int lane)
123 {
124 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
125 int s = ((lane & 1) ?
126 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
127 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
128 u8 l = dp_link_status(link_status, i);
129
130 return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
131 }
132 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
133
134 /* DP 2.0 128b/132b */
drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)135 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
136 int lane)
137 {
138 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
139 int s = ((lane & 1) ?
140 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
141 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
142 u8 l = dp_link_status(link_status, i);
143
144 return (l >> s) & 0xf;
145 }
146 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
147
148 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)149 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
150 int lane_count)
151 {
152 u8 lane_align, lane_status;
153 int lane;
154
155 lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
156 if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
157 return false;
158
159 for (lane = 0; lane < lane_count; lane++) {
160 lane_status = dp_get_lane_status(link_status, lane);
161 if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
162 return false;
163 }
164 return true;
165 }
166 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
167
168 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)169 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
170 int lane_count)
171 {
172 u8 lane_status;
173 int lane;
174
175 for (lane = 0; lane < lane_count; lane++) {
176 lane_status = dp_get_lane_status(link_status, lane);
177 if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
178 return false;
179 }
180 return true;
181 }
182 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
183
184 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])185 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
186 {
187 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
188
189 return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
190 }
191 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
192
193 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])194 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
195 {
196 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
197
198 return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
199 }
200 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
201
202 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])203 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
204 {
205 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
206
207 return status & DP_128B132B_LT_FAILED;
208 }
209 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
210
__8b10b_clock_recovery_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)211 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
212 {
213 if (rd_interval > 4)
214 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
215 aux->name, rd_interval);
216
217 if (rd_interval == 0)
218 return 100;
219
220 return rd_interval * 4 * USEC_PER_MSEC;
221 }
222
__8b10b_channel_eq_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)223 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
224 {
225 if (rd_interval > 4)
226 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
227 aux->name, rd_interval);
228
229 if (rd_interval == 0)
230 return 400;
231
232 return rd_interval * 4 * USEC_PER_MSEC;
233 }
234
__128b132b_channel_eq_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)235 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
236 {
237 switch (rd_interval) {
238 default:
239 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
240 aux->name, rd_interval);
241 fallthrough;
242 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
243 return 400;
244 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
245 return 4000;
246 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
247 return 8000;
248 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
249 return 12000;
250 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
251 return 16000;
252 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
253 return 32000;
254 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
255 return 64000;
256 }
257 }
258
259 /*
260 * The link training delays are different for:
261 *
262 * - Clock recovery vs. channel equalization
263 * - DPRX vs. LTTPR
264 * - 128b/132b vs. 8b/10b
265 * - DPCD rev 1.3 vs. later
266 *
267 * Get the correct delay in us, reading DPCD if necessary.
268 */
__read_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr,bool cr)269 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
270 enum drm_dp_phy dp_phy, bool uhbr, bool cr)
271 {
272 int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
273 unsigned int offset;
274 u8 rd_interval, mask;
275
276 if (dp_phy == DP_PHY_DPRX) {
277 if (uhbr) {
278 if (cr)
279 return 100;
280
281 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
282 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
283 parse = __128b132b_channel_eq_delay_us;
284 } else {
285 if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
286 return 100;
287
288 offset = DP_TRAINING_AUX_RD_INTERVAL;
289 mask = DP_TRAINING_AUX_RD_MASK;
290 if (cr)
291 parse = __8b10b_clock_recovery_delay_us;
292 else
293 parse = __8b10b_channel_eq_delay_us;
294 }
295 } else {
296 if (uhbr) {
297 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
298 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
299 parse = __128b132b_channel_eq_delay_us;
300 } else {
301 if (cr)
302 return 100;
303
304 offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
305 mask = DP_TRAINING_AUX_RD_MASK;
306 parse = __8b10b_channel_eq_delay_us;
307 }
308 }
309
310 if (offset < DP_RECEIVER_CAP_SIZE) {
311 rd_interval = dpcd[offset];
312 } else {
313 if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
314 drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
315 aux->name);
316 /* arbitrary default delay */
317 return 400;
318 }
319 }
320
321 return parse(aux, rd_interval & mask);
322 }
323
drm_dp_read_clock_recovery_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr)324 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
325 enum drm_dp_phy dp_phy, bool uhbr)
326 {
327 return __read_delay(aux, dpcd, dp_phy, uhbr, true);
328 }
329 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
330
drm_dp_read_channel_eq_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr)331 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
332 enum drm_dp_phy dp_phy, bool uhbr)
333 {
334 return __read_delay(aux, dpcd, dp_phy, uhbr, false);
335 }
336 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
337
338 /* Per DP 2.0 Errata */
drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux * aux)339 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
340 {
341 int unit;
342 u8 val;
343
344 if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
345 drm_err(aux->drm_dev, "%s: failed rd interval read\n",
346 aux->name);
347 /* default to max */
348 val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
349 }
350
351 unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
352 val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
353
354 return (val + 1) * unit * 1000;
355 }
356 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
357
drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])358 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
359 const u8 dpcd[DP_RECEIVER_CAP_SIZE])
360 {
361 u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
362 DP_TRAINING_AUX_RD_MASK;
363 int delay_us;
364
365 if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
366 delay_us = 100;
367 else
368 delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
369
370 usleep_range(delay_us, delay_us * 2);
371 }
372 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
373
__drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux * aux,u8 rd_interval)374 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
375 u8 rd_interval)
376 {
377 int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
378
379 usleep_range(delay_us, delay_us * 2);
380 }
381
drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])382 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
383 const u8 dpcd[DP_RECEIVER_CAP_SIZE])
384 {
385 __drm_dp_link_train_channel_eq_delay(aux,
386 dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
387 DP_TRAINING_AUX_RD_MASK);
388 }
389 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
390
drm_dp_lttpr_link_train_clock_recovery_delay(void)391 void drm_dp_lttpr_link_train_clock_recovery_delay(void)
392 {
393 usleep_range(100, 200);
394 }
395 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
396
dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE],int r)397 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
398 {
399 return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
400 }
401
drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux * aux,const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])402 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
403 const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
404 {
405 u8 interval = dp_lttpr_phy_cap(phy_cap,
406 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
407 DP_TRAINING_AUX_RD_MASK;
408
409 __drm_dp_link_train_channel_eq_delay(aux, interval);
410 }
411 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
412
drm_dp_link_rate_to_bw_code(int link_rate)413 u8 drm_dp_link_rate_to_bw_code(int link_rate)
414 {
415 switch (link_rate) {
416 case 1000000:
417 return DP_LINK_BW_10;
418 case 1350000:
419 return DP_LINK_BW_13_5;
420 case 2000000:
421 return DP_LINK_BW_20;
422 default:
423 /* Spec says link_bw = link_rate / 0.27Gbps */
424 return link_rate / 27000;
425 }
426 }
427 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
428
drm_dp_bw_code_to_link_rate(u8 link_bw)429 int drm_dp_bw_code_to_link_rate(u8 link_bw)
430 {
431 switch (link_bw) {
432 case DP_LINK_BW_10:
433 return 1000000;
434 case DP_LINK_BW_13_5:
435 return 1350000;
436 case DP_LINK_BW_20:
437 return 2000000;
438 default:
439 /* Spec says link_rate = link_bw * 0.27Gbps */
440 return link_bw * 27000;
441 }
442 }
443 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
444
445 #define AUX_RETRY_INTERVAL 500 /* us */
446
447 static inline void
drm_dp_dump_access(const struct drm_dp_aux * aux,u8 request,uint offset,void * buffer,int ret)448 drm_dp_dump_access(const struct drm_dp_aux *aux,
449 u8 request, uint offset, void *buffer, int ret)
450 {
451 const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
452
453 if (ret > 0)
454 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
455 aux->name, offset, arrow, ret, min(ret, 20), buffer);
456 else
457 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
458 aux->name, offset, arrow, ret);
459 }
460
461 /**
462 * DOC: dp helpers
463 *
464 * The DisplayPort AUX channel is an abstraction to allow generic, driver-
465 * independent access to AUX functionality. Drivers can take advantage of
466 * this by filling in the fields of the drm_dp_aux structure.
467 *
468 * Transactions are described using a hardware-independent drm_dp_aux_msg
469 * structure, which is passed into a driver's .transfer() implementation.
470 * Both native and I2C-over-AUX transactions are supported.
471 */
472
drm_dp_dpcd_access(struct drm_dp_aux * aux,u8 request,unsigned int offset,void * buffer,size_t size)473 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
474 unsigned int offset, void *buffer, size_t size)
475 {
476 struct drm_dp_aux_msg msg;
477 unsigned int retry, native_reply;
478 int err = 0, ret = 0;
479
480 memset(&msg, 0, sizeof(msg));
481 msg.address = offset;
482 msg.request = request;
483 msg.buffer = buffer;
484 msg.size = size;
485
486 mutex_lock(&aux->hw_mutex);
487
488 /*
489 * The specification doesn't give any recommendation on how often to
490 * retry native transactions. We used to retry 7 times like for
491 * aux i2c transactions but real world devices this wasn't
492 * sufficient, bump to 32 which makes Dell 4k monitors happier.
493 */
494 for (retry = 0; retry < 32; retry++) {
495 if (ret != 0 && ret != -ETIMEDOUT) {
496 usleep_range(AUX_RETRY_INTERVAL,
497 AUX_RETRY_INTERVAL + 100);
498 }
499
500 ret = aux->transfer(aux, &msg);
501 if (ret >= 0) {
502 native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
503 if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
504 if (ret == size)
505 goto unlock;
506
507 ret = -EPROTO;
508 } else
509 ret = -EIO;
510 }
511
512 /*
513 * We want the error we return to be the error we received on
514 * the first transaction, since we may get a different error the
515 * next time we retry
516 */
517 if (!err)
518 err = ret;
519 }
520
521 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
522 aux->name, err);
523 ret = err;
524
525 unlock:
526 mutex_unlock(&aux->hw_mutex);
527 return ret;
528 }
529
530 /**
531 * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
532 * @aux: DisplayPort AUX channel (SST)
533 * @offset: address of the register to probe
534 *
535 * Probe the provided DPCD address by reading 1 byte from it. The function can
536 * be used to trigger some side-effect the read access has, like waking up the
537 * sink, without the need for the read-out value.
538 *
539 * Returns 0 if the read access suceeded, or a negative error code on failure.
540 */
drm_dp_dpcd_probe(struct drm_dp_aux * aux,unsigned int offset)541 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
542 {
543 u8 buffer;
544 int ret;
545
546 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
547 WARN_ON(ret == 0);
548
549 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
550
551 return ret < 0 ? ret : 0;
552 }
553 EXPORT_SYMBOL(drm_dp_dpcd_probe);
554
555 /**
556 * drm_dp_dpcd_read() - read a series of bytes from the DPCD
557 * @aux: DisplayPort AUX channel (SST or MST)
558 * @offset: address of the (first) register to read
559 * @buffer: buffer to store the register values
560 * @size: number of bytes in @buffer
561 *
562 * Returns the number of bytes transferred on success, or a negative error
563 * code on failure. -EIO is returned if the request was NAKed by the sink or
564 * if the retry count was exceeded. If not all bytes were transferred, this
565 * function returns -EPROTO. Errors from the underlying AUX channel transfer
566 * function, with the exception of -EBUSY (which causes the transaction to
567 * be retried), are propagated to the caller.
568 */
drm_dp_dpcd_read(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)569 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
570 void *buffer, size_t size)
571 {
572 int ret;
573
574 /*
575 * HP ZR24w corrupts the first DPCD access after entering power save
576 * mode. Eg. on a read, the entire buffer will be filled with the same
577 * byte. Do a throw away read to avoid corrupting anything we care
578 * about. Afterwards things will work correctly until the monitor
579 * gets woken up and subsequently re-enters power save mode.
580 *
581 * The user pressing any button on the monitor is enough to wake it
582 * up, so there is no particularly good place to do the workaround.
583 * We just have to do it before any DPCD access and hope that the
584 * monitor doesn't power down exactly after the throw away read.
585 */
586 if (!aux->is_remote) {
587 ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
588 if (ret < 0)
589 return ret;
590 }
591
592 if (aux->is_remote)
593 ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
594 else
595 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
596 buffer, size);
597
598 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
599 return ret;
600 }
601 EXPORT_SYMBOL(drm_dp_dpcd_read);
602
603 /**
604 * drm_dp_dpcd_write() - write a series of bytes to the DPCD
605 * @aux: DisplayPort AUX channel (SST or MST)
606 * @offset: address of the (first) register to write
607 * @buffer: buffer containing the values to write
608 * @size: number of bytes in @buffer
609 *
610 * Returns the number of bytes transferred on success, or a negative error
611 * code on failure. -EIO is returned if the request was NAKed by the sink or
612 * if the retry count was exceeded. If not all bytes were transferred, this
613 * function returns -EPROTO. Errors from the underlying AUX channel transfer
614 * function, with the exception of -EBUSY (which causes the transaction to
615 * be retried), are propagated to the caller.
616 */
drm_dp_dpcd_write(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)617 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
618 void *buffer, size_t size)
619 {
620 int ret;
621
622 if (aux->is_remote)
623 ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
624 else
625 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
626 buffer, size);
627
628 drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
629 return ret;
630 }
631 EXPORT_SYMBOL(drm_dp_dpcd_write);
632
633 /**
634 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
635 * @aux: DisplayPort AUX channel
636 * @status: buffer to store the link status in (must be at least 6 bytes)
637 *
638 * Returns the number of bytes transferred on success or a negative error
639 * code on failure.
640 */
drm_dp_dpcd_read_link_status(struct drm_dp_aux * aux,u8 status[DP_LINK_STATUS_SIZE])641 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
642 u8 status[DP_LINK_STATUS_SIZE])
643 {
644 return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
645 DP_LINK_STATUS_SIZE);
646 }
647 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
648
649 /**
650 * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
651 * @aux: DisplayPort AUX channel
652 * @dp_phy: the DP PHY to get the link status for
653 * @link_status: buffer to return the status in
654 *
655 * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
656 * layout of the returned @link_status matches the DPCD register layout of the
657 * DPRX PHY link status.
658 *
659 * Returns 0 if the information was read successfully or a negative error code
660 * on failure.
661 */
drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux * aux,enum drm_dp_phy dp_phy,u8 link_status[DP_LINK_STATUS_SIZE])662 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
663 enum drm_dp_phy dp_phy,
664 u8 link_status[DP_LINK_STATUS_SIZE])
665 {
666 int ret;
667
668 if (dp_phy == DP_PHY_DPRX) {
669 ret = drm_dp_dpcd_read(aux,
670 DP_LANE0_1_STATUS,
671 link_status,
672 DP_LINK_STATUS_SIZE);
673
674 if (ret < 0)
675 return ret;
676
677 WARN_ON(ret != DP_LINK_STATUS_SIZE);
678
679 return 0;
680 }
681
682 ret = drm_dp_dpcd_read(aux,
683 DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
684 link_status,
685 DP_LINK_STATUS_SIZE - 1);
686
687 if (ret < 0)
688 return ret;
689
690 WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
691
692 /* Convert the LTTPR to the sink PHY link status layout */
693 memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
694 &link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
695 DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
696 link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
697
698 return 0;
699 }
700 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
701
is_edid_digital_input_dp(const struct edid * edid)702 static bool is_edid_digital_input_dp(const struct edid *edid)
703 {
704 return edid && edid->revision >= 4 &&
705 edid->input & DRM_EDID_INPUT_DIGITAL &&
706 (edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
707 }
708
709 /**
710 * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
711 * @dpcd: DisplayPort configuration data
712 * @port_cap: port capabilities
713 * @type: port type to be checked. Can be:
714 * %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
715 * %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
716 * %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
717 *
718 * Caveat: Only works with DPCD 1.1+ port caps.
719 *
720 * Returns: whether the downstream facing port matches the type.
721 */
drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],u8 type)722 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
723 const u8 port_cap[4], u8 type)
724 {
725 return drm_dp_is_branch(dpcd) &&
726 dpcd[DP_DPCD_REV] >= 0x11 &&
727 (port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
728 }
729 EXPORT_SYMBOL(drm_dp_downstream_is_type);
730
731 /**
732 * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
733 * @dpcd: DisplayPort configuration data
734 * @port_cap: port capabilities
735 * @edid: EDID
736 *
737 * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
738 */
drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)739 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
740 const u8 port_cap[4],
741 const struct edid *edid)
742 {
743 if (dpcd[DP_DPCD_REV] < 0x11) {
744 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
745 case DP_DWN_STRM_PORT_TYPE_TMDS:
746 return true;
747 default:
748 return false;
749 }
750 }
751
752 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
753 case DP_DS_PORT_TYPE_DP_DUALMODE:
754 if (is_edid_digital_input_dp(edid))
755 return false;
756 fallthrough;
757 case DP_DS_PORT_TYPE_DVI:
758 case DP_DS_PORT_TYPE_HDMI:
759 return true;
760 default:
761 return false;
762 }
763 }
764 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
765
766 /**
767 * drm_dp_send_real_edid_checksum() - send back real edid checksum value
768 * @aux: DisplayPort AUX channel
769 * @real_edid_checksum: real edid checksum for the last block
770 *
771 * Returns:
772 * True on success
773 */
drm_dp_send_real_edid_checksum(struct drm_dp_aux * aux,u8 real_edid_checksum)774 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
775 u8 real_edid_checksum)
776 {
777 u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
778
779 if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
780 &auto_test_req, 1) < 1) {
781 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
782 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
783 return false;
784 }
785 auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
786
787 if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
788 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
789 aux->name, DP_TEST_REQUEST);
790 return false;
791 }
792 link_edid_read &= DP_TEST_LINK_EDID_READ;
793
794 if (!auto_test_req || !link_edid_read) {
795 drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
796 aux->name);
797 return false;
798 }
799
800 if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
801 &auto_test_req, 1) < 1) {
802 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
803 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
804 return false;
805 }
806
807 /* send back checksum for the last edid extension block data */
808 if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
809 &real_edid_checksum, 1) < 1) {
810 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
811 aux->name, DP_TEST_EDID_CHECKSUM);
812 return false;
813 }
814
815 test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
816 if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
817 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
818 aux->name, DP_TEST_RESPONSE);
819 return false;
820 }
821
822 return true;
823 }
824 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
825
drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])826 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
827 {
828 u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
829
830 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
831 port_count = 4;
832
833 return port_count;
834 }
835
drm_dp_read_extended_dpcd_caps(struct drm_dp_aux * aux,u8 dpcd[DP_RECEIVER_CAP_SIZE])836 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
837 u8 dpcd[DP_RECEIVER_CAP_SIZE])
838 {
839 u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
840 int ret;
841
842 /*
843 * Prior to DP1.3 the bit represented by
844 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
845 * If it is set DP_DPCD_REV at 0000h could be at a value less than
846 * the true capability of the panel. The only way to check is to
847 * then compare 0000h and 2200h.
848 */
849 if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
850 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
851 return 0;
852
853 ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
854 sizeof(dpcd_ext));
855 if (ret < 0)
856 return ret;
857 if (ret != sizeof(dpcd_ext))
858 return -EIO;
859
860 if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
861 drm_dbg_kms(aux->drm_dev,
862 "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
863 aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
864 return 0;
865 }
866
867 if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
868 return 0;
869
870 drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
871
872 memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
873
874 return 0;
875 }
876
877 /**
878 * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
879 * available
880 * @aux: DisplayPort AUX channel
881 * @dpcd: Buffer to store the resulting DPCD in
882 *
883 * Attempts to read the base DPCD caps for @aux. Additionally, this function
884 * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
885 * present.
886 *
887 * Returns: %0 if the DPCD was read successfully, negative error code
888 * otherwise.
889 */
drm_dp_read_dpcd_caps(struct drm_dp_aux * aux,u8 dpcd[DP_RECEIVER_CAP_SIZE])890 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
891 u8 dpcd[DP_RECEIVER_CAP_SIZE])
892 {
893 int ret;
894
895 ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
896 if (ret < 0)
897 return ret;
898 if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
899 return -EIO;
900
901 ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
902 if (ret < 0)
903 return ret;
904
905 drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
906
907 return ret;
908 }
909 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
910
911 /**
912 * drm_dp_read_downstream_info() - read DPCD downstream port info if available
913 * @aux: DisplayPort AUX channel
914 * @dpcd: A cached copy of the port's DPCD
915 * @downstream_ports: buffer to store the downstream port info in
916 *
917 * See also:
918 * drm_dp_downstream_max_clock()
919 * drm_dp_downstream_max_bpc()
920 *
921 * Returns: 0 if either the downstream port info was read successfully or
922 * there was no downstream info to read, or a negative error code otherwise.
923 */
drm_dp_read_downstream_info(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])924 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
925 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
926 u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
927 {
928 int ret;
929 u8 len;
930
931 memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
932
933 /* No downstream info to read */
934 if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
935 return 0;
936
937 /* Some branches advertise having 0 downstream ports, despite also advertising they have a
938 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
939 * some branches do it we need to handle it regardless.
940 */
941 len = drm_dp_downstream_port_count(dpcd);
942 if (!len)
943 return 0;
944
945 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
946 len *= 4;
947
948 ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
949 if (ret < 0)
950 return ret;
951 if (ret != len)
952 return -EIO;
953
954 drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
955
956 return 0;
957 }
958 EXPORT_SYMBOL(drm_dp_read_downstream_info);
959
960 /**
961 * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
962 * @dpcd: DisplayPort configuration data
963 * @port_cap: port capabilities
964 *
965 * Returns: Downstream facing port max dot clock in kHz on success,
966 * or 0 if max clock not defined
967 */
drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])968 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
969 const u8 port_cap[4])
970 {
971 if (!drm_dp_is_branch(dpcd))
972 return 0;
973
974 if (dpcd[DP_DPCD_REV] < 0x11)
975 return 0;
976
977 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
978 case DP_DS_PORT_TYPE_VGA:
979 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
980 return 0;
981 return port_cap[1] * 8000;
982 default:
983 return 0;
984 }
985 }
986 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
987
988 /**
989 * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
990 * @dpcd: DisplayPort configuration data
991 * @port_cap: port capabilities
992 * @edid: EDID
993 *
994 * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
995 * or 0 if max TMDS clock not defined
996 */
drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)997 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
998 const u8 port_cap[4],
999 const struct edid *edid)
1000 {
1001 if (!drm_dp_is_branch(dpcd))
1002 return 0;
1003
1004 if (dpcd[DP_DPCD_REV] < 0x11) {
1005 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1006 case DP_DWN_STRM_PORT_TYPE_TMDS:
1007 return 165000;
1008 default:
1009 return 0;
1010 }
1011 }
1012
1013 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1014 case DP_DS_PORT_TYPE_DP_DUALMODE:
1015 if (is_edid_digital_input_dp(edid))
1016 return 0;
1017 /*
1018 * It's left up to the driver to check the
1019 * DP dual mode adapter's max TMDS clock.
1020 *
1021 * Unfortunately it looks like branch devices
1022 * may not fordward that the DP dual mode i2c
1023 * access so we just usually get i2c nak :(
1024 */
1025 fallthrough;
1026 case DP_DS_PORT_TYPE_HDMI:
1027 /*
1028 * We should perhaps assume 165 MHz when detailed cap
1029 * info is not available. But looks like many typical
1030 * branch devices fall into that category and so we'd
1031 * probably end up with users complaining that they can't
1032 * get high resolution modes with their favorite dongle.
1033 *
1034 * So let's limit to 300 MHz instead since DPCD 1.4
1035 * HDMI 2.0 DFPs are required to have the detailed cap
1036 * info. So it's more likely we're dealing with a HDMI 1.4
1037 * compatible* device here.
1038 */
1039 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1040 return 300000;
1041 return port_cap[1] * 2500;
1042 case DP_DS_PORT_TYPE_DVI:
1043 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1044 return 165000;
1045 /* FIXME what to do about DVI dual link? */
1046 return port_cap[1] * 2500;
1047 default:
1048 return 0;
1049 }
1050 }
1051 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1052
1053 /**
1054 * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1055 * @dpcd: DisplayPort configuration data
1056 * @port_cap: port capabilities
1057 * @edid: EDID
1058 *
1059 * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1060 * or 0 if max TMDS clock not defined
1061 */
drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)1062 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1063 const u8 port_cap[4],
1064 const struct edid *edid)
1065 {
1066 if (!drm_dp_is_branch(dpcd))
1067 return 0;
1068
1069 if (dpcd[DP_DPCD_REV] < 0x11) {
1070 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1071 case DP_DWN_STRM_PORT_TYPE_TMDS:
1072 return 25000;
1073 default:
1074 return 0;
1075 }
1076 }
1077
1078 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1079 case DP_DS_PORT_TYPE_DP_DUALMODE:
1080 if (is_edid_digital_input_dp(edid))
1081 return 0;
1082 fallthrough;
1083 case DP_DS_PORT_TYPE_DVI:
1084 case DP_DS_PORT_TYPE_HDMI:
1085 /*
1086 * Unclear whether the protocol converter could
1087 * utilize pixel replication. Assume it won't.
1088 */
1089 return 25000;
1090 default:
1091 return 0;
1092 }
1093 }
1094 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1095
1096 /**
1097 * drm_dp_downstream_max_bpc() - extract downstream facing port max
1098 * bits per component
1099 * @dpcd: DisplayPort configuration data
1100 * @port_cap: downstream facing port capabilities
1101 * @edid: EDID
1102 *
1103 * Returns: Max bpc on success or 0 if max bpc not defined
1104 */
drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)1105 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1106 const u8 port_cap[4],
1107 const struct edid *edid)
1108 {
1109 if (!drm_dp_is_branch(dpcd))
1110 return 0;
1111
1112 if (dpcd[DP_DPCD_REV] < 0x11) {
1113 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1114 case DP_DWN_STRM_PORT_TYPE_DP:
1115 return 0;
1116 default:
1117 return 8;
1118 }
1119 }
1120
1121 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1122 case DP_DS_PORT_TYPE_DP:
1123 return 0;
1124 case DP_DS_PORT_TYPE_DP_DUALMODE:
1125 if (is_edid_digital_input_dp(edid))
1126 return 0;
1127 fallthrough;
1128 case DP_DS_PORT_TYPE_HDMI:
1129 case DP_DS_PORT_TYPE_DVI:
1130 case DP_DS_PORT_TYPE_VGA:
1131 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1132 return 8;
1133
1134 switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1135 case DP_DS_8BPC:
1136 return 8;
1137 case DP_DS_10BPC:
1138 return 10;
1139 case DP_DS_12BPC:
1140 return 12;
1141 case DP_DS_16BPC:
1142 return 16;
1143 default:
1144 return 8;
1145 }
1146 break;
1147 default:
1148 return 8;
1149 }
1150 }
1151 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1152
1153 /**
1154 * drm_dp_downstream_420_passthrough() - determine downstream facing port
1155 * YCbCr 4:2:0 pass-through capability
1156 * @dpcd: DisplayPort configuration data
1157 * @port_cap: downstream facing port capabilities
1158 *
1159 * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1160 */
drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1161 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1162 const u8 port_cap[4])
1163 {
1164 if (!drm_dp_is_branch(dpcd))
1165 return false;
1166
1167 if (dpcd[DP_DPCD_REV] < 0x13)
1168 return false;
1169
1170 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1171 case DP_DS_PORT_TYPE_DP:
1172 return true;
1173 case DP_DS_PORT_TYPE_HDMI:
1174 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1175 return false;
1176
1177 return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1178 default:
1179 return false;
1180 }
1181 }
1182 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1183
1184 /**
1185 * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1186 * YCbCr 4:4:4->4:2:0 conversion capability
1187 * @dpcd: DisplayPort configuration data
1188 * @port_cap: downstream facing port capabilities
1189 *
1190 * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1191 */
drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1192 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1193 const u8 port_cap[4])
1194 {
1195 if (!drm_dp_is_branch(dpcd))
1196 return false;
1197
1198 if (dpcd[DP_DPCD_REV] < 0x13)
1199 return false;
1200
1201 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1202 case DP_DS_PORT_TYPE_HDMI:
1203 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1204 return false;
1205
1206 return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1207 default:
1208 return false;
1209 }
1210 }
1211 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1212
1213 /**
1214 * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1215 * RGB->YCbCr conversion capability
1216 * @dpcd: DisplayPort configuration data
1217 * @port_cap: downstream facing port capabilities
1218 * @color_spc: Colorspace for which conversion cap is sought
1219 *
1220 * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1221 * colorspace.
1222 */
drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],u8 color_spc)1223 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1224 const u8 port_cap[4],
1225 u8 color_spc)
1226 {
1227 if (!drm_dp_is_branch(dpcd))
1228 return false;
1229
1230 if (dpcd[DP_DPCD_REV] < 0x13)
1231 return false;
1232
1233 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1234 case DP_DS_PORT_TYPE_HDMI:
1235 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1236 return false;
1237
1238 return port_cap[3] & color_spc;
1239 default:
1240 return false;
1241 }
1242 }
1243 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1244
1245 /**
1246 * drm_dp_downstream_mode() - return a mode for downstream facing port
1247 * @dev: DRM device
1248 * @dpcd: DisplayPort configuration data
1249 * @port_cap: port capabilities
1250 *
1251 * Provides a suitable mode for downstream facing ports without EDID.
1252 *
1253 * Returns: A new drm_display_mode on success or NULL on failure
1254 */
1255 struct drm_display_mode *
drm_dp_downstream_mode(struct drm_device * dev,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1256 drm_dp_downstream_mode(struct drm_device *dev,
1257 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1258 const u8 port_cap[4])
1259
1260 {
1261 u8 vic;
1262
1263 if (!drm_dp_is_branch(dpcd))
1264 return NULL;
1265
1266 if (dpcd[DP_DPCD_REV] < 0x11)
1267 return NULL;
1268
1269 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1270 case DP_DS_PORT_TYPE_NON_EDID:
1271 switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1272 case DP_DS_NON_EDID_720x480i_60:
1273 vic = 6;
1274 break;
1275 case DP_DS_NON_EDID_720x480i_50:
1276 vic = 21;
1277 break;
1278 case DP_DS_NON_EDID_1920x1080i_60:
1279 vic = 5;
1280 break;
1281 case DP_DS_NON_EDID_1920x1080i_50:
1282 vic = 20;
1283 break;
1284 case DP_DS_NON_EDID_1280x720_60:
1285 vic = 4;
1286 break;
1287 case DP_DS_NON_EDID_1280x720_50:
1288 vic = 19;
1289 break;
1290 default:
1291 return NULL;
1292 }
1293 return drm_display_mode_from_cea_vic(dev, vic);
1294 default:
1295 return NULL;
1296 }
1297 }
1298 EXPORT_SYMBOL(drm_dp_downstream_mode);
1299
1300 /**
1301 * drm_dp_downstream_id() - identify branch device
1302 * @aux: DisplayPort AUX channel
1303 * @id: DisplayPort branch device id
1304 *
1305 * Returns branch device id on success or NULL on failure
1306 */
drm_dp_downstream_id(struct drm_dp_aux * aux,char id[6])1307 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1308 {
1309 return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1310 }
1311 EXPORT_SYMBOL(drm_dp_downstream_id);
1312
1313 /**
1314 * drm_dp_downstream_debug() - debug DP branch devices
1315 * @m: pointer for debugfs file
1316 * @dpcd: DisplayPort configuration data
1317 * @port_cap: port capabilities
1318 * @edid: EDID
1319 * @aux: DisplayPort AUX channel
1320 *
1321 */
drm_dp_downstream_debug(struct seq_file * m,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid,struct drm_dp_aux * aux)1322 void drm_dp_downstream_debug(struct seq_file *m,
1323 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1324 const u8 port_cap[4],
1325 const struct edid *edid,
1326 struct drm_dp_aux *aux)
1327 {
1328 bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1329 DP_DETAILED_CAP_INFO_AVAILABLE;
1330 int clk;
1331 int bpc;
1332 char id[7];
1333 int len;
1334 uint8_t rev[2];
1335 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1336 bool branch_device = drm_dp_is_branch(dpcd);
1337
1338 seq_printf(m, "\tDP branch device present: %s\n",
1339 str_yes_no(branch_device));
1340
1341 if (!branch_device)
1342 return;
1343
1344 switch (type) {
1345 case DP_DS_PORT_TYPE_DP:
1346 seq_puts(m, "\t\tType: DisplayPort\n");
1347 break;
1348 case DP_DS_PORT_TYPE_VGA:
1349 seq_puts(m, "\t\tType: VGA\n");
1350 break;
1351 case DP_DS_PORT_TYPE_DVI:
1352 seq_puts(m, "\t\tType: DVI\n");
1353 break;
1354 case DP_DS_PORT_TYPE_HDMI:
1355 seq_puts(m, "\t\tType: HDMI\n");
1356 break;
1357 case DP_DS_PORT_TYPE_NON_EDID:
1358 seq_puts(m, "\t\tType: others without EDID support\n");
1359 break;
1360 case DP_DS_PORT_TYPE_DP_DUALMODE:
1361 seq_puts(m, "\t\tType: DP++\n");
1362 break;
1363 case DP_DS_PORT_TYPE_WIRELESS:
1364 seq_puts(m, "\t\tType: Wireless\n");
1365 break;
1366 default:
1367 seq_puts(m, "\t\tType: N/A\n");
1368 }
1369
1370 memset(id, 0, sizeof(id));
1371 drm_dp_downstream_id(aux, id);
1372 seq_printf(m, "\t\tID: %s\n", id);
1373
1374 len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1375 if (len > 0)
1376 seq_printf(m, "\t\tHW: %d.%d\n",
1377 (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1378
1379 len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1380 if (len > 0)
1381 seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1382
1383 if (detailed_cap_info) {
1384 clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1385 if (clk > 0)
1386 seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1387
1388 clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, edid);
1389 if (clk > 0)
1390 seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1391
1392 clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, edid);
1393 if (clk > 0)
1394 seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1395
1396 bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, edid);
1397
1398 if (bpc > 0)
1399 seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1400 }
1401 }
1402 EXPORT_SYMBOL(drm_dp_downstream_debug);
1403
1404 /**
1405 * drm_dp_subconnector_type() - get DP branch device type
1406 * @dpcd: DisplayPort configuration data
1407 * @port_cap: port capabilities
1408 */
1409 enum drm_mode_subconnector
drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1410 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1411 const u8 port_cap[4])
1412 {
1413 int type;
1414 if (!drm_dp_is_branch(dpcd))
1415 return DRM_MODE_SUBCONNECTOR_Native;
1416 /* DP 1.0 approach */
1417 if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1418 type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1419 DP_DWN_STRM_PORT_TYPE_MASK;
1420
1421 switch (type) {
1422 case DP_DWN_STRM_PORT_TYPE_TMDS:
1423 /* Can be HDMI or DVI-D, DVI-D is a safer option */
1424 return DRM_MODE_SUBCONNECTOR_DVID;
1425 case DP_DWN_STRM_PORT_TYPE_ANALOG:
1426 /* Can be VGA or DVI-A, VGA is more popular */
1427 return DRM_MODE_SUBCONNECTOR_VGA;
1428 case DP_DWN_STRM_PORT_TYPE_DP:
1429 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1430 case DP_DWN_STRM_PORT_TYPE_OTHER:
1431 default:
1432 return DRM_MODE_SUBCONNECTOR_Unknown;
1433 }
1434 }
1435 type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1436
1437 switch (type) {
1438 case DP_DS_PORT_TYPE_DP:
1439 case DP_DS_PORT_TYPE_DP_DUALMODE:
1440 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1441 case DP_DS_PORT_TYPE_VGA:
1442 return DRM_MODE_SUBCONNECTOR_VGA;
1443 case DP_DS_PORT_TYPE_DVI:
1444 return DRM_MODE_SUBCONNECTOR_DVID;
1445 case DP_DS_PORT_TYPE_HDMI:
1446 return DRM_MODE_SUBCONNECTOR_HDMIA;
1447 case DP_DS_PORT_TYPE_WIRELESS:
1448 return DRM_MODE_SUBCONNECTOR_Wireless;
1449 case DP_DS_PORT_TYPE_NON_EDID:
1450 default:
1451 return DRM_MODE_SUBCONNECTOR_Unknown;
1452 }
1453 }
1454 EXPORT_SYMBOL(drm_dp_subconnector_type);
1455
1456 /**
1457 * drm_dp_set_subconnector_property - set subconnector for DP connector
1458 * @connector: connector to set property on
1459 * @status: connector status
1460 * @dpcd: DisplayPort configuration data
1461 * @port_cap: port capabilities
1462 *
1463 * Called by a driver on every detect event.
1464 */
drm_dp_set_subconnector_property(struct drm_connector * connector,enum drm_connector_status status,const u8 * dpcd,const u8 port_cap[4])1465 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1466 enum drm_connector_status status,
1467 const u8 *dpcd,
1468 const u8 port_cap[4])
1469 {
1470 enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1471
1472 if (status == connector_status_connected)
1473 subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1474 drm_object_property_set_value(&connector->base,
1475 connector->dev->mode_config.dp_subconnector_property,
1476 subconnector);
1477 }
1478 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1479
1480 /**
1481 * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1482 * count
1483 * @connector: The DRM connector to check
1484 * @dpcd: A cached copy of the connector's DPCD RX capabilities
1485 * @desc: A cached copy of the connector's DP descriptor
1486 *
1487 * See also: drm_dp_read_sink_count()
1488 *
1489 * Returns: %True if the (e)DP connector has a valid sink count that should
1490 * be probed, %false otherwise.
1491 */
drm_dp_read_sink_count_cap(struct drm_connector * connector,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const struct drm_dp_desc * desc)1492 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1493 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1494 const struct drm_dp_desc *desc)
1495 {
1496 /* Some eDP panels don't set a valid value for the sink count */
1497 return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1498 dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1499 dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1500 !drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1501 }
1502 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1503
1504 /**
1505 * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1506 * @aux: The DP AUX channel to use
1507 *
1508 * See also: drm_dp_read_sink_count_cap()
1509 *
1510 * Returns: The current sink count reported by @aux, or a negative error code
1511 * otherwise.
1512 */
drm_dp_read_sink_count(struct drm_dp_aux * aux)1513 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1514 {
1515 u8 count;
1516 int ret;
1517
1518 ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1519 if (ret < 0)
1520 return ret;
1521 if (ret != 1)
1522 return -EIO;
1523
1524 return DP_GET_SINK_COUNT(count);
1525 }
1526 EXPORT_SYMBOL(drm_dp_read_sink_count);
1527
1528 /*
1529 * I2C-over-AUX implementation
1530 */
1531
drm_dp_i2c_functionality(struct i2c_adapter * adapter)1532 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1533 {
1534 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1535 I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1536 I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1537 I2C_FUNC_10BIT_ADDR;
1538 }
1539
drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg * msg)1540 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1541 {
1542 /*
1543 * In case of i2c defer or short i2c ack reply to a write,
1544 * we need to switch to WRITE_STATUS_UPDATE to drain the
1545 * rest of the message
1546 */
1547 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1548 msg->request &= DP_AUX_I2C_MOT;
1549 msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1550 }
1551 }
1552
1553 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1554 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1555 #define AUX_STOP_LEN 4
1556 #define AUX_CMD_LEN 4
1557 #define AUX_ADDRESS_LEN 20
1558 #define AUX_REPLY_PAD_LEN 4
1559 #define AUX_LENGTH_LEN 8
1560
1561 /*
1562 * Calculate the duration of the AUX request/reply in usec. Gives the
1563 * "best" case estimate, ie. successful while as short as possible.
1564 */
drm_dp_aux_req_duration(const struct drm_dp_aux_msg * msg)1565 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1566 {
1567 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1568 AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1569
1570 if ((msg->request & DP_AUX_I2C_READ) == 0)
1571 len += msg->size * 8;
1572
1573 return len;
1574 }
1575
drm_dp_aux_reply_duration(const struct drm_dp_aux_msg * msg)1576 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1577 {
1578 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1579 AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1580
1581 /*
1582 * For read we expect what was asked. For writes there will
1583 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1584 */
1585 if (msg->request & DP_AUX_I2C_READ)
1586 len += msg->size * 8;
1587
1588 return len;
1589 }
1590
1591 #define I2C_START_LEN 1
1592 #define I2C_STOP_LEN 1
1593 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1594 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1595
1596 /*
1597 * Calculate the length of the i2c transfer in usec, assuming
1598 * the i2c bus speed is as specified. Gives the the "worst"
1599 * case estimate, ie. successful while as long as possible.
1600 * Doesn't account the the "MOT" bit, and instead assumes each
1601 * message includes a START, ADDRESS and STOP. Neither does it
1602 * account for additional random variables such as clock stretching.
1603 */
drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)1604 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1605 int i2c_speed_khz)
1606 {
1607 /* AUX bitrate is 1MHz, i2c bitrate as specified */
1608 return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1609 msg->size * I2C_DATA_LEN +
1610 I2C_STOP_LEN) * 1000, i2c_speed_khz);
1611 }
1612
1613 /*
1614 * Determine how many retries should be attempted to successfully transfer
1615 * the specified message, based on the estimated durations of the
1616 * i2c and AUX transfers.
1617 */
drm_dp_i2c_retry_count(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)1618 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1619 int i2c_speed_khz)
1620 {
1621 int aux_time_us = drm_dp_aux_req_duration(msg) +
1622 drm_dp_aux_reply_duration(msg);
1623 int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1624
1625 return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1626 }
1627
1628 /*
1629 * FIXME currently assumes 10 kHz as some real world devices seem
1630 * to require it. We should query/set the speed via DPCD if supported.
1631 */
1632 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1633 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1634 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1635 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1636
1637 /*
1638 * Transfer a single I2C-over-AUX message and handle various error conditions,
1639 * retrying the transaction as appropriate. It is assumed that the
1640 * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1641 * reply field.
1642 *
1643 * Returns bytes transferred on success, or a negative error code on failure.
1644 */
drm_dp_i2c_do_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)1645 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1646 {
1647 unsigned int retry, defer_i2c;
1648 int ret;
1649 /*
1650 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1651 * is required to retry at least seven times upon receiving AUX_DEFER
1652 * before giving up the AUX transaction.
1653 *
1654 * We also try to account for the i2c bus speed.
1655 */
1656 int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1657
1658 for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1659 ret = aux->transfer(aux, msg);
1660 if (ret < 0) {
1661 if (ret == -EBUSY)
1662 continue;
1663
1664 /*
1665 * While timeouts can be errors, they're usually normal
1666 * behavior (for instance, when a driver tries to
1667 * communicate with a non-existent DisplayPort device).
1668 * Avoid spamming the kernel log with timeout errors.
1669 */
1670 if (ret == -ETIMEDOUT)
1671 drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1672 aux->name);
1673 else
1674 drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1675 aux->name, ret);
1676 return ret;
1677 }
1678
1679
1680 switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1681 case DP_AUX_NATIVE_REPLY_ACK:
1682 /*
1683 * For I2C-over-AUX transactions this isn't enough, we
1684 * need to check for the I2C ACK reply.
1685 */
1686 break;
1687
1688 case DP_AUX_NATIVE_REPLY_NACK:
1689 drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1690 aux->name, ret, msg->size);
1691 return -EREMOTEIO;
1692
1693 case DP_AUX_NATIVE_REPLY_DEFER:
1694 drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1695 /*
1696 * We could check for I2C bit rate capabilities and if
1697 * available adjust this interval. We could also be
1698 * more careful with DP-to-legacy adapters where a
1699 * long legacy cable may force very low I2C bit rates.
1700 *
1701 * For now just defer for long enough to hopefully be
1702 * safe for all use-cases.
1703 */
1704 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1705 continue;
1706
1707 default:
1708 drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1709 aux->name, msg->reply);
1710 return -EREMOTEIO;
1711 }
1712
1713 switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1714 case DP_AUX_I2C_REPLY_ACK:
1715 /*
1716 * Both native ACK and I2C ACK replies received. We
1717 * can assume the transfer was successful.
1718 */
1719 if (ret != msg->size)
1720 drm_dp_i2c_msg_write_status_update(msg);
1721 return ret;
1722
1723 case DP_AUX_I2C_REPLY_NACK:
1724 drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1725 aux->name, ret, msg->size);
1726 aux->i2c_nack_count++;
1727 return -EREMOTEIO;
1728
1729 case DP_AUX_I2C_REPLY_DEFER:
1730 drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1731 /* DP Compliance Test 4.2.2.5 Requirement:
1732 * Must have at least 7 retries for I2C defers on the
1733 * transaction to pass this test
1734 */
1735 aux->i2c_defer_count++;
1736 if (defer_i2c < 7)
1737 defer_i2c++;
1738 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1739 drm_dp_i2c_msg_write_status_update(msg);
1740
1741 continue;
1742
1743 default:
1744 drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
1745 aux->name, msg->reply);
1746 return -EREMOTEIO;
1747 }
1748 }
1749
1750 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
1751 return -EREMOTEIO;
1752 }
1753
drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg * msg,const struct i2c_msg * i2c_msg)1754 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1755 const struct i2c_msg *i2c_msg)
1756 {
1757 msg->request = (i2c_msg->flags & I2C_M_RD) ?
1758 DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1759 if (!(i2c_msg->flags & I2C_M_STOP))
1760 msg->request |= DP_AUX_I2C_MOT;
1761 }
1762
1763 /*
1764 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1765 *
1766 * Returns an error code on failure, or a recommended transfer size on success.
1767 */
drm_dp_i2c_drain_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * orig_msg)1768 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1769 {
1770 int err, ret = orig_msg->size;
1771 struct drm_dp_aux_msg msg = *orig_msg;
1772
1773 while (msg.size > 0) {
1774 err = drm_dp_i2c_do_msg(aux, &msg);
1775 if (err <= 0)
1776 return err == 0 ? -EPROTO : err;
1777
1778 if (err < msg.size && err < ret) {
1779 drm_dbg_kms(aux->drm_dev,
1780 "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1781 aux->name, msg.size, err);
1782 ret = err;
1783 }
1784
1785 msg.size -= err;
1786 msg.buffer += err;
1787 }
1788
1789 return ret;
1790 }
1791
1792 /*
1793 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1794 * packets to be as large as possible. If not, the I2C transactions never
1795 * succeed. Hence the default is maximum.
1796 */
1797 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1798 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1799 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1800 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1801
drm_dp_i2c_xfer(struct i2c_adapter * adapter,struct i2c_msg * msgs,int num)1802 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1803 int num)
1804 {
1805 struct drm_dp_aux *aux = adapter->algo_data;
1806 unsigned int i, j;
1807 unsigned transfer_size;
1808 struct drm_dp_aux_msg msg;
1809 int err = 0;
1810
1811 dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1812
1813 memset(&msg, 0, sizeof(msg));
1814
1815 for (i = 0; i < num; i++) {
1816 msg.address = msgs[i].addr;
1817 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1818 /* Send a bare address packet to start the transaction.
1819 * Zero sized messages specify an address only (bare
1820 * address) transaction.
1821 */
1822 msg.buffer = NULL;
1823 msg.size = 0;
1824 err = drm_dp_i2c_do_msg(aux, &msg);
1825
1826 /*
1827 * Reset msg.request in case in case it got
1828 * changed into a WRITE_STATUS_UPDATE.
1829 */
1830 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1831
1832 if (err < 0)
1833 break;
1834 /* We want each transaction to be as large as possible, but
1835 * we'll go to smaller sizes if the hardware gives us a
1836 * short reply.
1837 */
1838 transfer_size = dp_aux_i2c_transfer_size;
1839 for (j = 0; j < msgs[i].len; j += msg.size) {
1840 msg.buffer = msgs[i].buf + j;
1841 msg.size = min(transfer_size, msgs[i].len - j);
1842
1843 err = drm_dp_i2c_drain_msg(aux, &msg);
1844
1845 /*
1846 * Reset msg.request in case in case it got
1847 * changed into a WRITE_STATUS_UPDATE.
1848 */
1849 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1850
1851 if (err < 0)
1852 break;
1853 transfer_size = err;
1854 }
1855 if (err < 0)
1856 break;
1857 }
1858 if (err >= 0)
1859 err = num;
1860 /* Send a bare address packet to close out the transaction.
1861 * Zero sized messages specify an address only (bare
1862 * address) transaction.
1863 */
1864 msg.request &= ~DP_AUX_I2C_MOT;
1865 msg.buffer = NULL;
1866 msg.size = 0;
1867 (void)drm_dp_i2c_do_msg(aux, &msg);
1868
1869 return err;
1870 }
1871
1872 static const struct i2c_algorithm drm_dp_i2c_algo = {
1873 .functionality = drm_dp_i2c_functionality,
1874 .master_xfer = drm_dp_i2c_xfer,
1875 };
1876
i2c_to_aux(struct i2c_adapter * i2c)1877 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1878 {
1879 return container_of(i2c, struct drm_dp_aux, ddc);
1880 }
1881
lock_bus(struct i2c_adapter * i2c,unsigned int flags)1882 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1883 {
1884 mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1885 }
1886
trylock_bus(struct i2c_adapter * i2c,unsigned int flags)1887 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1888 {
1889 return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1890 }
1891
unlock_bus(struct i2c_adapter * i2c,unsigned int flags)1892 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1893 {
1894 mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1895 }
1896
1897 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1898 .lock_bus = lock_bus,
1899 .trylock_bus = trylock_bus,
1900 .unlock_bus = unlock_bus,
1901 };
1902
drm_dp_aux_get_crc(struct drm_dp_aux * aux,u8 * crc)1903 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1904 {
1905 u8 buf, count;
1906 int ret;
1907
1908 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1909 if (ret < 0)
1910 return ret;
1911
1912 WARN_ON(!(buf & DP_TEST_SINK_START));
1913
1914 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
1915 if (ret < 0)
1916 return ret;
1917
1918 count = buf & DP_TEST_COUNT_MASK;
1919 if (count == aux->crc_count)
1920 return -EAGAIN; /* No CRC yet */
1921
1922 aux->crc_count = count;
1923
1924 /*
1925 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
1926 * per component (RGB or CrYCb).
1927 */
1928 ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
1929 if (ret < 0)
1930 return ret;
1931
1932 return 0;
1933 }
1934
drm_dp_aux_crc_work(struct work_struct * work)1935 static void drm_dp_aux_crc_work(struct work_struct *work)
1936 {
1937 struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
1938 crc_work);
1939 struct drm_crtc *crtc;
1940 u8 crc_bytes[6];
1941 uint32_t crcs[3];
1942 int ret;
1943
1944 if (WARN_ON(!aux->crtc))
1945 return;
1946
1947 crtc = aux->crtc;
1948 while (crtc->crc.opened) {
1949 drm_crtc_wait_one_vblank(crtc);
1950 if (!crtc->crc.opened)
1951 break;
1952
1953 ret = drm_dp_aux_get_crc(aux, crc_bytes);
1954 if (ret == -EAGAIN) {
1955 usleep_range(1000, 2000);
1956 ret = drm_dp_aux_get_crc(aux, crc_bytes);
1957 }
1958
1959 if (ret == -EAGAIN) {
1960 drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
1961 aux->name, ret);
1962 continue;
1963 } else if (ret) {
1964 drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
1965 continue;
1966 }
1967
1968 crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
1969 crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
1970 crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
1971 drm_crtc_add_crc_entry(crtc, false, 0, crcs);
1972 }
1973 }
1974
1975 /**
1976 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
1977 * @aux: DisplayPort AUX channel
1978 *
1979 * Used for remote aux channel in general. Merely initialize the crc work
1980 * struct.
1981 */
drm_dp_remote_aux_init(struct drm_dp_aux * aux)1982 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
1983 {
1984 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
1985 }
1986 EXPORT_SYMBOL(drm_dp_remote_aux_init);
1987
1988 /**
1989 * drm_dp_aux_init() - minimally initialise an aux channel
1990 * @aux: DisplayPort AUX channel
1991 *
1992 * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
1993 * the outside world, call drm_dp_aux_init() first. For drivers which are
1994 * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
1995 * &drm_connector), you must still call drm_dp_aux_register() once the connector
1996 * has been registered to allow userspace access to the auxiliary DP channel.
1997 * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
1998 * early as possible so that the &drm_device that corresponds to the AUX adapter
1999 * may be mentioned in debugging output from the DRM DP helpers.
2000 *
2001 * For devices which use a separate platform device for their AUX adapters, this
2002 * may be called as early as required by the driver.
2003 *
2004 */
drm_dp_aux_init(struct drm_dp_aux * aux)2005 void drm_dp_aux_init(struct drm_dp_aux *aux)
2006 {
2007 mutex_init(&aux->hw_mutex);
2008 mutex_init(&aux->cec.lock);
2009 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2010
2011 aux->ddc.algo = &drm_dp_i2c_algo;
2012 aux->ddc.algo_data = aux;
2013 aux->ddc.retries = 3;
2014
2015 aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2016 }
2017 EXPORT_SYMBOL(drm_dp_aux_init);
2018
2019 /**
2020 * drm_dp_aux_register() - initialise and register aux channel
2021 * @aux: DisplayPort AUX channel
2022 *
2023 * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2024 * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2025 * initialized. For devices which are grandparents of their AUX channels,
2026 * &drm_dp_aux.dev will typically be the &drm_connector &device which
2027 * corresponds to @aux. For these devices, it's advised to call
2028 * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2029 * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2030 * Functions which don't follow this will likely Oops when
2031 * %CONFIG_DRM_DP_AUX_CHARDEV is enabled.
2032 *
2033 * For devices where the AUX channel is a device that exists independently of
2034 * the &drm_device that uses it, such as SoCs and bridge devices, it is
2035 * recommended to call drm_dp_aux_register() after a &drm_device has been
2036 * assigned to &drm_dp_aux.drm_dev, and likewise to call
2037 * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2038 * with the AUX channel (e.g. on bridge detach).
2039 *
2040 * Drivers which need to use the aux channel before either of the two points
2041 * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2042 * channel before registration.
2043 *
2044 * Returns 0 on success or a negative error code on failure.
2045 */
drm_dp_aux_register(struct drm_dp_aux * aux)2046 int drm_dp_aux_register(struct drm_dp_aux *aux)
2047 {
2048 int ret;
2049
2050 WARN_ON_ONCE(!aux->drm_dev);
2051
2052 if (!aux->ddc.algo)
2053 drm_dp_aux_init(aux);
2054
2055 aux->ddc.class = I2C_CLASS_DDC;
2056 aux->ddc.owner = THIS_MODULE;
2057 aux->ddc.dev.parent = aux->dev;
2058
2059 strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2060 sizeof(aux->ddc.name));
2061
2062 ret = drm_dp_aux_register_devnode(aux);
2063 if (ret)
2064 return ret;
2065
2066 ret = i2c_add_adapter(&aux->ddc);
2067 if (ret) {
2068 drm_dp_aux_unregister_devnode(aux);
2069 return ret;
2070 }
2071
2072 return 0;
2073 }
2074 EXPORT_SYMBOL(drm_dp_aux_register);
2075
2076 /**
2077 * drm_dp_aux_unregister() - unregister an AUX adapter
2078 * @aux: DisplayPort AUX channel
2079 */
drm_dp_aux_unregister(struct drm_dp_aux * aux)2080 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2081 {
2082 drm_dp_aux_unregister_devnode(aux);
2083 i2c_del_adapter(&aux->ddc);
2084 }
2085 EXPORT_SYMBOL(drm_dp_aux_unregister);
2086
2087 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2088
2089 /**
2090 * drm_dp_psr_setup_time() - PSR setup in time usec
2091 * @psr_cap: PSR capabilities from DPCD
2092 *
2093 * Returns:
2094 * PSR setup time for the panel in microseconds, negative
2095 * error code on failure.
2096 */
drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])2097 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2098 {
2099 static const u16 psr_setup_time_us[] = {
2100 PSR_SETUP_TIME(330),
2101 PSR_SETUP_TIME(275),
2102 PSR_SETUP_TIME(220),
2103 PSR_SETUP_TIME(165),
2104 PSR_SETUP_TIME(110),
2105 PSR_SETUP_TIME(55),
2106 PSR_SETUP_TIME(0),
2107 };
2108 int i;
2109
2110 i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2111 if (i >= ARRAY_SIZE(psr_setup_time_us))
2112 return -EINVAL;
2113
2114 return psr_setup_time_us[i];
2115 }
2116 EXPORT_SYMBOL(drm_dp_psr_setup_time);
2117
2118 #undef PSR_SETUP_TIME
2119
2120 /**
2121 * drm_dp_start_crc() - start capture of frame CRCs
2122 * @aux: DisplayPort AUX channel
2123 * @crtc: CRTC displaying the frames whose CRCs are to be captured
2124 *
2125 * Returns 0 on success or a negative error code on failure.
2126 */
drm_dp_start_crc(struct drm_dp_aux * aux,struct drm_crtc * crtc)2127 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2128 {
2129 u8 buf;
2130 int ret;
2131
2132 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2133 if (ret < 0)
2134 return ret;
2135
2136 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2137 if (ret < 0)
2138 return ret;
2139
2140 aux->crc_count = 0;
2141 aux->crtc = crtc;
2142 schedule_work(&aux->crc_work);
2143
2144 return 0;
2145 }
2146 EXPORT_SYMBOL(drm_dp_start_crc);
2147
2148 /**
2149 * drm_dp_stop_crc() - stop capture of frame CRCs
2150 * @aux: DisplayPort AUX channel
2151 *
2152 * Returns 0 on success or a negative error code on failure.
2153 */
drm_dp_stop_crc(struct drm_dp_aux * aux)2154 int drm_dp_stop_crc(struct drm_dp_aux *aux)
2155 {
2156 u8 buf;
2157 int ret;
2158
2159 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2160 if (ret < 0)
2161 return ret;
2162
2163 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2164 if (ret < 0)
2165 return ret;
2166
2167 flush_work(&aux->crc_work);
2168 aux->crtc = NULL;
2169
2170 return 0;
2171 }
2172 EXPORT_SYMBOL(drm_dp_stop_crc);
2173
2174 struct dpcd_quirk {
2175 u8 oui[3];
2176 u8 device_id[6];
2177 bool is_branch;
2178 u32 quirks;
2179 };
2180
2181 #define OUI(first, second, third) { (first), (second), (third) }
2182 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2183 { (first), (second), (third), (fourth), (fifth), (sixth) }
2184
2185 #define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0)
2186
2187 static const struct dpcd_quirk dpcd_quirk_list[] = {
2188 /* Analogix 7737 needs reduced M and N at HBR2 link rates */
2189 { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2190 /* LG LP140WF6-SPM1 eDP panel */
2191 { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2192 /* Apple panels need some additional handling to support PSR */
2193 { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2194 /* CH7511 seems to leave SINK_COUNT zeroed */
2195 { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2196 /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2197 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2198 /* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2199 { OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2200 };
2201
2202 #undef OUI
2203
2204 /*
2205 * Get a bit mask of DPCD quirks for the sink/branch device identified by
2206 * ident. The quirk data is shared but it's up to the drivers to act on the
2207 * data.
2208 *
2209 * For now, only the OUI (first three bytes) is used, but this may be extended
2210 * to device identification string and hardware/firmware revisions later.
2211 */
2212 static u32
drm_dp_get_quirks(const struct drm_dp_dpcd_ident * ident,bool is_branch)2213 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2214 {
2215 const struct dpcd_quirk *quirk;
2216 u32 quirks = 0;
2217 int i;
2218 u8 any_device[] = DEVICE_ID_ANY;
2219
2220 for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2221 quirk = &dpcd_quirk_list[i];
2222
2223 if (quirk->is_branch != is_branch)
2224 continue;
2225
2226 if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2227 continue;
2228
2229 if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2230 memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2231 continue;
2232
2233 quirks |= quirk->quirks;
2234 }
2235
2236 return quirks;
2237 }
2238
2239 #undef DEVICE_ID_ANY
2240 #undef DEVICE_ID
2241
2242 /**
2243 * drm_dp_read_desc - read sink/branch descriptor from DPCD
2244 * @aux: DisplayPort AUX channel
2245 * @desc: Device descriptor to fill from DPCD
2246 * @is_branch: true for branch devices, false for sink devices
2247 *
2248 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2249 * identification.
2250 *
2251 * Returns 0 on success or a negative error code on failure.
2252 */
drm_dp_read_desc(struct drm_dp_aux * aux,struct drm_dp_desc * desc,bool is_branch)2253 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2254 bool is_branch)
2255 {
2256 struct drm_dp_dpcd_ident *ident = &desc->ident;
2257 unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2258 int ret, dev_id_len;
2259
2260 ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2261 if (ret < 0)
2262 return ret;
2263
2264 desc->quirks = drm_dp_get_quirks(ident, is_branch);
2265
2266 dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
2267
2268 drm_dbg_kms(aux->drm_dev,
2269 "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2270 aux->name, is_branch ? "branch" : "sink",
2271 (int)sizeof(ident->oui), ident->oui, dev_id_len,
2272 ident->device_id, ident->hw_rev >> 4, ident->hw_rev & 0xf,
2273 ident->sw_major_rev, ident->sw_minor_rev, desc->quirks);
2274
2275 return 0;
2276 }
2277 EXPORT_SYMBOL(drm_dp_read_desc);
2278
2279 /**
2280 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2281 * supported by the DSC sink.
2282 * @dsc_dpcd: DSC capabilities from DPCD
2283 * @is_edp: true if its eDP, false for DP
2284 *
2285 * Read the slice capabilities DPCD register from DSC sink to get
2286 * the maximum slice count supported. This is used to populate
2287 * the DSC parameters in the &struct drm_dsc_config by the driver.
2288 * Driver creates an infoframe using these parameters to populate
2289 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2290 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2291 *
2292 * Returns:
2293 * Maximum slice count supported by DSC sink or 0 its invalid
2294 */
drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],bool is_edp)2295 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2296 bool is_edp)
2297 {
2298 u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2299
2300 if (is_edp) {
2301 /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2302 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2303 return 4;
2304 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2305 return 2;
2306 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2307 return 1;
2308 } else {
2309 /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2310 u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2311
2312 if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2313 return 24;
2314 if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2315 return 20;
2316 if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2317 return 16;
2318 if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2319 return 12;
2320 if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2321 return 10;
2322 if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2323 return 8;
2324 if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2325 return 6;
2326 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2327 return 4;
2328 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2329 return 2;
2330 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2331 return 1;
2332 }
2333
2334 return 0;
2335 }
2336 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2337
2338 /**
2339 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2340 * @dsc_dpcd: DSC capabilities from DPCD
2341 *
2342 * Read the DSC DPCD register to parse the line buffer depth in bits which is
2343 * number of bits of precision within the decoder line buffer supported by
2344 * the DSC sink. This is used to populate the DSC parameters in the
2345 * &struct drm_dsc_config by the driver.
2346 * Driver creates an infoframe using these parameters to populate
2347 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2348 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2349 *
2350 * Returns:
2351 * Line buffer depth supported by DSC panel or 0 its invalid
2352 */
drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])2353 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2354 {
2355 u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2356
2357 switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2358 case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2359 return 9;
2360 case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2361 return 10;
2362 case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2363 return 11;
2364 case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2365 return 12;
2366 case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2367 return 13;
2368 case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2369 return 14;
2370 case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2371 return 15;
2372 case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2373 return 16;
2374 case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2375 return 8;
2376 }
2377
2378 return 0;
2379 }
2380 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2381
2382 /**
2383 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2384 * values supported by the DSC sink.
2385 * @dsc_dpcd: DSC capabilities from DPCD
2386 * @dsc_bpc: An array to be filled by this helper with supported
2387 * input bpcs.
2388 *
2389 * Read the DSC DPCD from the sink device to parse the supported bits per
2390 * component values. This is used to populate the DSC parameters
2391 * in the &struct drm_dsc_config by the driver.
2392 * Driver creates an infoframe using these parameters to populate
2393 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2394 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2395 *
2396 * Returns:
2397 * Number of input BPC values parsed from the DPCD
2398 */
drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],u8 dsc_bpc[3])2399 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2400 u8 dsc_bpc[3])
2401 {
2402 int num_bpc = 0;
2403 u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2404
2405 if (color_depth & DP_DSC_12_BPC)
2406 dsc_bpc[num_bpc++] = 12;
2407 if (color_depth & DP_DSC_10_BPC)
2408 dsc_bpc[num_bpc++] = 10;
2409 if (color_depth & DP_DSC_8_BPC)
2410 dsc_bpc[num_bpc++] = 8;
2411
2412 return num_bpc;
2413 }
2414 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2415
drm_dp_read_lttpr_regs(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],int address,u8 * buf,int buf_size)2416 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2417 const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2418 u8 *buf, int buf_size)
2419 {
2420 /*
2421 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2422 * corrupted values when reading from the 0xF0000- range with a block
2423 * size bigger than 1.
2424 */
2425 int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2426 int offset;
2427 int ret;
2428
2429 for (offset = 0; offset < buf_size; offset += block_size) {
2430 ret = drm_dp_dpcd_read(aux,
2431 address + offset,
2432 &buf[offset], block_size);
2433 if (ret < 0)
2434 return ret;
2435
2436 WARN_ON(ret != block_size);
2437 }
2438
2439 return 0;
2440 }
2441
2442 /**
2443 * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2444 * @aux: DisplayPort AUX channel
2445 * @dpcd: DisplayPort configuration data
2446 * @caps: buffer to return the capability info in
2447 *
2448 * Read capabilities common to all LTTPRs.
2449 *
2450 * Returns 0 on success or a negative error code on failure.
2451 */
drm_dp_read_lttpr_common_caps(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2452 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2453 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2454 u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2455 {
2456 return drm_dp_read_lttpr_regs(aux, dpcd,
2457 DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2458 caps, DP_LTTPR_COMMON_CAP_SIZE);
2459 }
2460 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2461
2462 /**
2463 * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2464 * @aux: DisplayPort AUX channel
2465 * @dpcd: DisplayPort configuration data
2466 * @dp_phy: LTTPR PHY to read the capabilities for
2467 * @caps: buffer to return the capability info in
2468 *
2469 * Read the capabilities for the given LTTPR PHY.
2470 *
2471 * Returns 0 on success or a negative error code on failure.
2472 */
drm_dp_read_lttpr_phy_caps(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,u8 caps[DP_LTTPR_PHY_CAP_SIZE])2473 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2474 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2475 enum drm_dp_phy dp_phy,
2476 u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2477 {
2478 return drm_dp_read_lttpr_regs(aux, dpcd,
2479 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2480 caps, DP_LTTPR_PHY_CAP_SIZE);
2481 }
2482 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2483
dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE],int r)2484 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2485 {
2486 return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2487 }
2488
2489 /**
2490 * drm_dp_lttpr_count - get the number of detected LTTPRs
2491 * @caps: LTTPR common capabilities
2492 *
2493 * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2494 *
2495 * Returns:
2496 * -ERANGE if more than supported number (8) of LTTPRs are detected
2497 * -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2498 * otherwise the number of detected LTTPRs
2499 */
drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2500 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2501 {
2502 u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2503
2504 switch (hweight8(count)) {
2505 case 0:
2506 return 0;
2507 case 1:
2508 return 8 - ilog2(count);
2509 case 8:
2510 return -ERANGE;
2511 default:
2512 return -EINVAL;
2513 }
2514 }
2515 EXPORT_SYMBOL(drm_dp_lttpr_count);
2516
2517 /**
2518 * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2519 * @caps: LTTPR common capabilities
2520 *
2521 * Returns the maximum link rate supported by all detected LTTPRs.
2522 */
drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2523 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2524 {
2525 u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2526
2527 return drm_dp_bw_code_to_link_rate(rate);
2528 }
2529 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2530
2531 /**
2532 * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2533 * @caps: LTTPR common capabilities
2534 *
2535 * Returns the maximum lane count supported by all detected LTTPRs.
2536 */
drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2537 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2538 {
2539 u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2540
2541 return max_lanes & DP_MAX_LANE_COUNT_MASK;
2542 }
2543 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2544
2545 /**
2546 * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2547 * @caps: LTTPR PHY capabilities
2548 *
2549 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2550 * voltage swing level 3.
2551 */
2552 bool
drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])2553 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2554 {
2555 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2556
2557 return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2558 }
2559 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2560
2561 /**
2562 * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2563 * @caps: LTTPR PHY capabilities
2564 *
2565 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2566 * pre-emphasis level 3.
2567 */
2568 bool
drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])2569 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2570 {
2571 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2572
2573 return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2574 }
2575 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2576
2577 /**
2578 * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2579 * @aux: DisplayPort AUX channel
2580 * @data: DP phy compliance test parameters.
2581 *
2582 * Returns 0 on success or a negative error code on failure.
2583 */
drm_dp_get_phy_test_pattern(struct drm_dp_aux * aux,struct drm_dp_phy_test_params * data)2584 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2585 struct drm_dp_phy_test_params *data)
2586 {
2587 int err;
2588 u8 rate, lanes;
2589
2590 err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2591 if (err < 0)
2592 return err;
2593 data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2594
2595 err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2596 if (err < 0)
2597 return err;
2598 data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2599
2600 if (lanes & DP_ENHANCED_FRAME_CAP)
2601 data->enhanced_frame_cap = true;
2602
2603 err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2604 if (err < 0)
2605 return err;
2606
2607 switch (data->phy_pattern) {
2608 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2609 err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2610 &data->custom80, sizeof(data->custom80));
2611 if (err < 0)
2612 return err;
2613
2614 break;
2615 case DP_PHY_TEST_PATTERN_CP2520:
2616 err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2617 &data->hbr2_reset,
2618 sizeof(data->hbr2_reset));
2619 if (err < 0)
2620 return err;
2621 }
2622
2623 return 0;
2624 }
2625 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2626
2627 /**
2628 * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2629 * @aux: DisplayPort AUX channel
2630 * @data: DP phy compliance test parameters.
2631 * @dp_rev: DP revision to use for compliance testing
2632 *
2633 * Returns 0 on success or a negative error code on failure.
2634 */
drm_dp_set_phy_test_pattern(struct drm_dp_aux * aux,struct drm_dp_phy_test_params * data,u8 dp_rev)2635 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2636 struct drm_dp_phy_test_params *data, u8 dp_rev)
2637 {
2638 int err, i;
2639 u8 link_config[2];
2640 u8 test_pattern;
2641
2642 link_config[0] = drm_dp_link_rate_to_bw_code(data->link_rate);
2643 link_config[1] = data->num_lanes;
2644 if (data->enhanced_frame_cap)
2645 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2646 err = drm_dp_dpcd_write(aux, DP_LINK_BW_SET, link_config, 2);
2647 if (err < 0)
2648 return err;
2649
2650 test_pattern = data->phy_pattern;
2651 if (dp_rev < 0x12) {
2652 test_pattern = (test_pattern << 2) &
2653 DP_LINK_QUAL_PATTERN_11_MASK;
2654 err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2655 test_pattern);
2656 if (err < 0)
2657 return err;
2658 } else {
2659 for (i = 0; i < data->num_lanes; i++) {
2660 err = drm_dp_dpcd_writeb(aux,
2661 DP_LINK_QUAL_LANE0_SET + i,
2662 test_pattern);
2663 if (err < 0)
2664 return err;
2665 }
2666 }
2667
2668 return 0;
2669 }
2670 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2671
dp_pixelformat_get_name(enum dp_pixelformat pixelformat)2672 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2673 {
2674 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2675 return "Invalid";
2676
2677 switch (pixelformat) {
2678 case DP_PIXELFORMAT_RGB:
2679 return "RGB";
2680 case DP_PIXELFORMAT_YUV444:
2681 return "YUV444";
2682 case DP_PIXELFORMAT_YUV422:
2683 return "YUV422";
2684 case DP_PIXELFORMAT_YUV420:
2685 return "YUV420";
2686 case DP_PIXELFORMAT_Y_ONLY:
2687 return "Y_ONLY";
2688 case DP_PIXELFORMAT_RAW:
2689 return "RAW";
2690 default:
2691 return "Reserved";
2692 }
2693 }
2694
dp_colorimetry_get_name(enum dp_pixelformat pixelformat,enum dp_colorimetry colorimetry)2695 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2696 enum dp_colorimetry colorimetry)
2697 {
2698 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2699 return "Invalid";
2700
2701 switch (colorimetry) {
2702 case DP_COLORIMETRY_DEFAULT:
2703 switch (pixelformat) {
2704 case DP_PIXELFORMAT_RGB:
2705 return "sRGB";
2706 case DP_PIXELFORMAT_YUV444:
2707 case DP_PIXELFORMAT_YUV422:
2708 case DP_PIXELFORMAT_YUV420:
2709 return "BT.601";
2710 case DP_PIXELFORMAT_Y_ONLY:
2711 return "DICOM PS3.14";
2712 case DP_PIXELFORMAT_RAW:
2713 return "Custom Color Profile";
2714 default:
2715 return "Reserved";
2716 }
2717 case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2718 switch (pixelformat) {
2719 case DP_PIXELFORMAT_RGB:
2720 return "Wide Fixed";
2721 case DP_PIXELFORMAT_YUV444:
2722 case DP_PIXELFORMAT_YUV422:
2723 case DP_PIXELFORMAT_YUV420:
2724 return "BT.709";
2725 default:
2726 return "Reserved";
2727 }
2728 case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2729 switch (pixelformat) {
2730 case DP_PIXELFORMAT_RGB:
2731 return "Wide Float";
2732 case DP_PIXELFORMAT_YUV444:
2733 case DP_PIXELFORMAT_YUV422:
2734 case DP_PIXELFORMAT_YUV420:
2735 return "xvYCC 601";
2736 default:
2737 return "Reserved";
2738 }
2739 case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2740 switch (pixelformat) {
2741 case DP_PIXELFORMAT_RGB:
2742 return "OpRGB";
2743 case DP_PIXELFORMAT_YUV444:
2744 case DP_PIXELFORMAT_YUV422:
2745 case DP_PIXELFORMAT_YUV420:
2746 return "xvYCC 709";
2747 default:
2748 return "Reserved";
2749 }
2750 case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2751 switch (pixelformat) {
2752 case DP_PIXELFORMAT_RGB:
2753 return "DCI-P3";
2754 case DP_PIXELFORMAT_YUV444:
2755 case DP_PIXELFORMAT_YUV422:
2756 case DP_PIXELFORMAT_YUV420:
2757 return "sYCC 601";
2758 default:
2759 return "Reserved";
2760 }
2761 case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2762 switch (pixelformat) {
2763 case DP_PIXELFORMAT_RGB:
2764 return "Custom Profile";
2765 case DP_PIXELFORMAT_YUV444:
2766 case DP_PIXELFORMAT_YUV422:
2767 case DP_PIXELFORMAT_YUV420:
2768 return "OpYCC 601";
2769 default:
2770 return "Reserved";
2771 }
2772 case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2773 switch (pixelformat) {
2774 case DP_PIXELFORMAT_RGB:
2775 return "BT.2020 RGB";
2776 case DP_PIXELFORMAT_YUV444:
2777 case DP_PIXELFORMAT_YUV422:
2778 case DP_PIXELFORMAT_YUV420:
2779 return "BT.2020 CYCC";
2780 default:
2781 return "Reserved";
2782 }
2783 case DP_COLORIMETRY_BT2020_YCC:
2784 switch (pixelformat) {
2785 case DP_PIXELFORMAT_YUV444:
2786 case DP_PIXELFORMAT_YUV422:
2787 case DP_PIXELFORMAT_YUV420:
2788 return "BT.2020 YCC";
2789 default:
2790 return "Reserved";
2791 }
2792 default:
2793 return "Invalid";
2794 }
2795 }
2796
dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)2797 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2798 {
2799 switch (dynamic_range) {
2800 case DP_DYNAMIC_RANGE_VESA:
2801 return "VESA range";
2802 case DP_DYNAMIC_RANGE_CTA:
2803 return "CTA range";
2804 default:
2805 return "Invalid";
2806 }
2807 }
2808
dp_content_type_get_name(enum dp_content_type content_type)2809 static const char *dp_content_type_get_name(enum dp_content_type content_type)
2810 {
2811 switch (content_type) {
2812 case DP_CONTENT_TYPE_NOT_DEFINED:
2813 return "Not defined";
2814 case DP_CONTENT_TYPE_GRAPHICS:
2815 return "Graphics";
2816 case DP_CONTENT_TYPE_PHOTO:
2817 return "Photo";
2818 case DP_CONTENT_TYPE_VIDEO:
2819 return "Video";
2820 case DP_CONTENT_TYPE_GAME:
2821 return "Game";
2822 default:
2823 return "Reserved";
2824 }
2825 }
2826
drm_dp_vsc_sdp_log(const char * level,struct device * dev,const struct drm_dp_vsc_sdp * vsc)2827 void drm_dp_vsc_sdp_log(const char *level, struct device *dev,
2828 const struct drm_dp_vsc_sdp *vsc)
2829 {
2830 #define DP_SDP_LOG(fmt, ...) dev_printk(level, dev, fmt, ##__VA_ARGS__)
2831 DP_SDP_LOG("DP SDP: %s, revision %u, length %u\n", "VSC",
2832 vsc->revision, vsc->length);
2833 DP_SDP_LOG(" pixelformat: %s\n",
2834 dp_pixelformat_get_name(vsc->pixelformat));
2835 DP_SDP_LOG(" colorimetry: %s\n",
2836 dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2837 DP_SDP_LOG(" bpc: %u\n", vsc->bpc);
2838 DP_SDP_LOG(" dynamic range: %s\n",
2839 dp_dynamic_range_get_name(vsc->dynamic_range));
2840 DP_SDP_LOG(" content type: %s\n",
2841 dp_content_type_get_name(vsc->content_type));
2842 #undef DP_SDP_LOG
2843 }
2844 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2845
2846 /**
2847 * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
2848 * @dpcd: DisplayPort configuration data
2849 * @port_cap: port capabilities
2850 *
2851 * Returns maximum frl bandwidth supported by PCON in GBPS,
2852 * returns 0 if not supported.
2853 */
drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])2854 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2855 const u8 port_cap[4])
2856 {
2857 int bw;
2858 u8 buf;
2859
2860 buf = port_cap[2];
2861 bw = buf & DP_PCON_MAX_FRL_BW;
2862
2863 switch (bw) {
2864 case DP_PCON_MAX_9GBPS:
2865 return 9;
2866 case DP_PCON_MAX_18GBPS:
2867 return 18;
2868 case DP_PCON_MAX_24GBPS:
2869 return 24;
2870 case DP_PCON_MAX_32GBPS:
2871 return 32;
2872 case DP_PCON_MAX_40GBPS:
2873 return 40;
2874 case DP_PCON_MAX_48GBPS:
2875 return 48;
2876 case DP_PCON_MAX_0GBPS:
2877 default:
2878 return 0;
2879 }
2880
2881 return 0;
2882 }
2883 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
2884
2885 /**
2886 * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
2887 * @aux: DisplayPort AUX channel
2888 * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
2889 *
2890 * Returns 0 if success, else returns negative error code.
2891 */
drm_dp_pcon_frl_prepare(struct drm_dp_aux * aux,bool enable_frl_ready_hpd)2892 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
2893 {
2894 int ret;
2895 u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
2896 DP_PCON_ENABLE_LINK_FRL_MODE;
2897
2898 if (enable_frl_ready_hpd)
2899 buf |= DP_PCON_ENABLE_HPD_READY;
2900
2901 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
2902
2903 return ret;
2904 }
2905 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
2906
2907 /**
2908 * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
2909 * @aux: DisplayPort AUX channel
2910 *
2911 * Returns true if success, else returns false.
2912 */
drm_dp_pcon_is_frl_ready(struct drm_dp_aux * aux)2913 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
2914 {
2915 int ret;
2916 u8 buf;
2917
2918 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
2919 if (ret < 0)
2920 return false;
2921
2922 if (buf & DP_PCON_FRL_READY)
2923 return true;
2924
2925 return false;
2926 }
2927 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
2928
2929 /**
2930 * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
2931 * @aux: DisplayPort AUX channel
2932 * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
2933 * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
2934 * In Concurrent Mode, the FRL link bring up can be done along with
2935 * DP Link training. In Sequential mode, the FRL link bring up is done prior to
2936 * the DP Link training.
2937 *
2938 * Returns 0 if success, else returns negative error code.
2939 */
2940
drm_dp_pcon_frl_configure_1(struct drm_dp_aux * aux,int max_frl_gbps,u8 frl_mode)2941 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
2942 u8 frl_mode)
2943 {
2944 int ret;
2945 u8 buf;
2946
2947 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
2948 if (ret < 0)
2949 return ret;
2950
2951 if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
2952 buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
2953 else
2954 buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
2955
2956 switch (max_frl_gbps) {
2957 case 9:
2958 buf |= DP_PCON_ENABLE_MAX_BW_9GBPS;
2959 break;
2960 case 18:
2961 buf |= DP_PCON_ENABLE_MAX_BW_18GBPS;
2962 break;
2963 case 24:
2964 buf |= DP_PCON_ENABLE_MAX_BW_24GBPS;
2965 break;
2966 case 32:
2967 buf |= DP_PCON_ENABLE_MAX_BW_32GBPS;
2968 break;
2969 case 40:
2970 buf |= DP_PCON_ENABLE_MAX_BW_40GBPS;
2971 break;
2972 case 48:
2973 buf |= DP_PCON_ENABLE_MAX_BW_48GBPS;
2974 break;
2975 case 0:
2976 buf |= DP_PCON_ENABLE_MAX_BW_0GBPS;
2977 break;
2978 default:
2979 return -EINVAL;
2980 }
2981
2982 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
2983 if (ret < 0)
2984 return ret;
2985
2986 return 0;
2987 }
2988 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
2989
2990 /**
2991 * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
2992 * @aux: DisplayPort AUX channel
2993 * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
2994 * @frl_type : FRL training type, can be Extended, or Normal.
2995 * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
2996 * starting from min, and stops when link training is successful. In Extended
2997 * FRL training, all frl bw selected in the mask are trained by the PCON.
2998 *
2999 * Returns 0 if success, else returns negative error code.
3000 */
drm_dp_pcon_frl_configure_2(struct drm_dp_aux * aux,int max_frl_mask,u8 frl_type)3001 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3002 u8 frl_type)
3003 {
3004 int ret;
3005 u8 buf = max_frl_mask;
3006
3007 if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3008 buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3009 else
3010 buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3011
3012 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3013 if (ret < 0)
3014 return ret;
3015
3016 return 0;
3017 }
3018 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3019
3020 /**
3021 * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3022 * @aux: DisplayPort AUX channel
3023 *
3024 * Returns 0 if success, else returns negative error code.
3025 */
drm_dp_pcon_reset_frl_config(struct drm_dp_aux * aux)3026 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3027 {
3028 int ret;
3029
3030 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3031 if (ret < 0)
3032 return ret;
3033
3034 return 0;
3035 }
3036 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3037
3038 /**
3039 * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3040 * @aux: DisplayPort AUX channel
3041 *
3042 * Returns 0 if success, else returns negative error code.
3043 */
drm_dp_pcon_frl_enable(struct drm_dp_aux * aux)3044 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3045 {
3046 int ret;
3047 u8 buf = 0;
3048
3049 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3050 if (ret < 0)
3051 return ret;
3052 if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3053 drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3054 aux->name);
3055 return -EINVAL;
3056 }
3057 buf |= DP_PCON_ENABLE_HDMI_LINK;
3058 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3059 if (ret < 0)
3060 return ret;
3061
3062 return 0;
3063 }
3064 EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3065
3066 /**
3067 * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3068 * @aux: DisplayPort AUX channel
3069 *
3070 * Returns true if link is active else returns false.
3071 */
drm_dp_pcon_hdmi_link_active(struct drm_dp_aux * aux)3072 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3073 {
3074 u8 buf;
3075 int ret;
3076
3077 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3078 if (ret < 0)
3079 return false;
3080
3081 return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3082 }
3083 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3084
3085 /**
3086 * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3087 * @aux: DisplayPort AUX channel
3088 * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3089 * Valid only if the MODE returned is FRL. For Normal Link training mode
3090 * only 1 of the bits will be set, but in case of Extended mode, more than
3091 * one bits can be set.
3092 *
3093 * Returns the link mode : TMDS or FRL on success, else returns negative error
3094 * code.
3095 */
drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux * aux,u8 * frl_trained_mask)3096 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3097 {
3098 u8 buf;
3099 int mode;
3100 int ret;
3101
3102 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3103 if (ret < 0)
3104 return ret;
3105
3106 mode = buf & DP_PCON_HDMI_LINK_MODE;
3107
3108 if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3109 *frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3110
3111 return mode;
3112 }
3113 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3114
3115 /**
3116 * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3117 * during link failure between PCON and HDMI sink
3118 * @aux: DisplayPort AUX channel
3119 * @connector: DRM connector
3120 * code.
3121 **/
3122
drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux * aux,struct drm_connector * connector)3123 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3124 struct drm_connector *connector)
3125 {
3126 u8 buf, error_count;
3127 int i, num_error;
3128 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3129
3130 for (i = 0; i < hdmi->max_lanes; i++) {
3131 if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3132 return;
3133
3134 error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3135 switch (error_count) {
3136 case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3137 num_error = 100;
3138 break;
3139 case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3140 num_error = 10;
3141 break;
3142 case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3143 num_error = 3;
3144 break;
3145 default:
3146 num_error = 0;
3147 }
3148
3149 drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3150 aux->name, num_error, i);
3151 }
3152 }
3153 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3154
3155 /*
3156 * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3157 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3158 *
3159 * Returns true is PCON encoder is DSC 1.2 else returns false.
3160 */
drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3161 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3162 {
3163 u8 buf;
3164 u8 major_v, minor_v;
3165
3166 buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3167 major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3168 minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3169
3170 if (major_v == 1 && minor_v == 2)
3171 return true;
3172
3173 return false;
3174 }
3175 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3176
3177 /*
3178 * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3179 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3180 *
3181 * Returns maximum no. of slices supported by the PCON DSC Encoder.
3182 */
drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3183 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3184 {
3185 u8 slice_cap1, slice_cap2;
3186
3187 slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3188 slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3189
3190 if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3191 return 24;
3192 if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3193 return 20;
3194 if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3195 return 16;
3196 if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3197 return 12;
3198 if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3199 return 10;
3200 if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3201 return 8;
3202 if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3203 return 6;
3204 if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3205 return 4;
3206 if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3207 return 2;
3208 if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3209 return 1;
3210
3211 return 0;
3212 }
3213 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3214
3215 /*
3216 * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3217 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3218 *
3219 * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3220 */
drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3221 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3222 {
3223 u8 buf;
3224
3225 buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3226
3227 return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3228 }
3229 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3230
3231 /*
3232 * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3233 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3234 *
3235 * Returns the bpp precision supported by the PCON encoder.
3236 */
drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3237 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3238 {
3239 u8 buf;
3240
3241 buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3242
3243 switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3244 case DP_PCON_DSC_ONE_16TH_BPP:
3245 return 16;
3246 case DP_PCON_DSC_ONE_8TH_BPP:
3247 return 8;
3248 case DP_PCON_DSC_ONE_4TH_BPP:
3249 return 4;
3250 case DP_PCON_DSC_ONE_HALF_BPP:
3251 return 2;
3252 case DP_PCON_DSC_ONE_BPP:
3253 return 1;
3254 }
3255
3256 return 0;
3257 }
3258 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3259
3260 static
drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux * aux,u8 pps_buf_config)3261 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3262 {
3263 u8 buf;
3264 int ret;
3265
3266 ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3267 if (ret < 0)
3268 return ret;
3269
3270 buf |= DP_PCON_ENABLE_DSC_ENCODER;
3271
3272 if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3273 buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3274 buf |= pps_buf_config << 2;
3275 }
3276
3277 ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3278 if (ret < 0)
3279 return ret;
3280
3281 return 0;
3282 }
3283
3284 /**
3285 * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3286 * for DSC1.2 between PCON & HDMI2.1 sink
3287 * @aux: DisplayPort AUX channel
3288 *
3289 * Returns 0 on success, else returns negative error code.
3290 */
drm_dp_pcon_pps_default(struct drm_dp_aux * aux)3291 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3292 {
3293 int ret;
3294
3295 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3296 if (ret < 0)
3297 return ret;
3298
3299 return 0;
3300 }
3301 EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3302
3303 /**
3304 * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3305 * HDMI sink
3306 * @aux: DisplayPort AUX channel
3307 * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3308 *
3309 * Returns 0 on success, else returns negative error code.
3310 */
drm_dp_pcon_pps_override_buf(struct drm_dp_aux * aux,u8 pps_buf[128])3311 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3312 {
3313 int ret;
3314
3315 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3316 if (ret < 0)
3317 return ret;
3318
3319 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3320 if (ret < 0)
3321 return ret;
3322
3323 return 0;
3324 }
3325 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3326
3327 /*
3328 * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3329 * override registers
3330 * @aux: DisplayPort AUX channel
3331 * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3332 * bits_per_pixel.
3333 *
3334 * Returns 0 on success, else returns negative error code.
3335 */
drm_dp_pcon_pps_override_param(struct drm_dp_aux * aux,u8 pps_param[6])3336 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3337 {
3338 int ret;
3339
3340 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3341 if (ret < 0)
3342 return ret;
3343 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3344 if (ret < 0)
3345 return ret;
3346 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3347 if (ret < 0)
3348 return ret;
3349
3350 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3351 if (ret < 0)
3352 return ret;
3353
3354 return 0;
3355 }
3356 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3357
3358 /*
3359 * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3360 * @aux: displayPort AUX channel
3361 * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3362 *
3363 * Returns 0 on success, else returns negative error code.
3364 */
drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux * aux,u8 color_spc)3365 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3366 {
3367 int ret;
3368 u8 buf;
3369
3370 ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3371 if (ret < 0)
3372 return ret;
3373
3374 if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3375 buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3376 else
3377 buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3378
3379 ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3380 if (ret < 0)
3381 return ret;
3382
3383 return 0;
3384 }
3385 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3386
3387 /**
3388 * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3389 * @aux: The DP AUX channel to use
3390 * @bl: Backlight capability info from drm_edp_backlight_init()
3391 * @level: The brightness level to set
3392 *
3393 * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3394 * already have been enabled by the driver by calling drm_edp_backlight_enable().
3395 *
3396 * Returns: %0 on success, negative error code on failure
3397 */
drm_edp_backlight_set_level(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,u16 level)3398 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3399 u16 level)
3400 {
3401 int ret;
3402 u8 buf[2] = { 0 };
3403
3404 /* The panel uses the PWM for controlling brightness levels */
3405 if (!bl->aux_set)
3406 return 0;
3407
3408 if (bl->lsb_reg_used) {
3409 buf[0] = (level & 0xff00) >> 8;
3410 buf[1] = (level & 0x00ff);
3411 } else {
3412 buf[0] = level;
3413 }
3414
3415 ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3416 if (ret != sizeof(buf)) {
3417 drm_err(aux->drm_dev,
3418 "%s: Failed to write aux backlight level: %d\n",
3419 aux->name, ret);
3420 return ret < 0 ? ret : -EIO;
3421 }
3422
3423 return 0;
3424 }
3425 EXPORT_SYMBOL(drm_edp_backlight_set_level);
3426
3427 static int
drm_edp_backlight_set_enable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,bool enable)3428 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3429 bool enable)
3430 {
3431 int ret;
3432 u8 buf;
3433
3434 /* This panel uses the EDP_BL_PWR GPIO for enablement */
3435 if (!bl->aux_enable)
3436 return 0;
3437
3438 ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3439 if (ret != 1) {
3440 drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3441 aux->name, ret);
3442 return ret < 0 ? ret : -EIO;
3443 }
3444 if (enable)
3445 buf |= DP_EDP_BACKLIGHT_ENABLE;
3446 else
3447 buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3448
3449 ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3450 if (ret != 1) {
3451 drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3452 aux->name, ret);
3453 return ret < 0 ? ret : -EIO;
3454 }
3455
3456 return 0;
3457 }
3458
3459 /**
3460 * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3461 * @aux: The DP AUX channel to use
3462 * @bl: Backlight capability info from drm_edp_backlight_init()
3463 * @level: The initial backlight level to set via AUX, if there is one
3464 *
3465 * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3466 * restoring any important backlight state such as the given backlight level, the brightness byte
3467 * count, backlight frequency, etc.
3468 *
3469 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3470 * that the driver handle enabling/disabling the panel through implementation-specific means using
3471 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3472 * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3473 * the EDP_BL_PWR GPIO.
3474 *
3475 * Returns: %0 on success, negative error code on failure.
3476 */
drm_edp_backlight_enable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,const u16 level)3477 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3478 const u16 level)
3479 {
3480 int ret;
3481 u8 dpcd_buf;
3482
3483 if (bl->aux_set)
3484 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
3485 else
3486 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
3487
3488 if (bl->pwmgen_bit_count) {
3489 ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
3490 if (ret != 1)
3491 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3492 aux->name, ret);
3493 }
3494
3495 if (bl->pwm_freq_pre_divider) {
3496 ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
3497 if (ret != 1)
3498 drm_dbg_kms(aux->drm_dev,
3499 "%s: Failed to write aux backlight frequency: %d\n",
3500 aux->name, ret);
3501 else
3502 dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
3503 }
3504
3505 ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
3506 if (ret != 1) {
3507 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
3508 aux->name, ret);
3509 return ret < 0 ? ret : -EIO;
3510 }
3511
3512 ret = drm_edp_backlight_set_level(aux, bl, level);
3513 if (ret < 0)
3514 return ret;
3515 ret = drm_edp_backlight_set_enable(aux, bl, true);
3516 if (ret < 0)
3517 return ret;
3518
3519 return 0;
3520 }
3521 EXPORT_SYMBOL(drm_edp_backlight_enable);
3522
3523 /**
3524 * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3525 * @aux: The DP AUX channel to use
3526 * @bl: Backlight capability info from drm_edp_backlight_init()
3527 *
3528 * This function handles disabling DPCD backlight controls on a panel over AUX.
3529 *
3530 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3531 * that the driver handle enabling/disabling the panel through implementation-specific means using
3532 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3533 * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3534 * the EDP_BL_PWR GPIO.
3535 *
3536 * Returns: %0 on success or no-op, negative error code on failure.
3537 */
drm_edp_backlight_disable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl)3538 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3539 {
3540 int ret;
3541
3542 ret = drm_edp_backlight_set_enable(aux, bl, false);
3543 if (ret < 0)
3544 return ret;
3545
3546 return 0;
3547 }
3548 EXPORT_SYMBOL(drm_edp_backlight_disable);
3549
3550 static inline int
drm_edp_backlight_probe_max(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u16 driver_pwm_freq_hz,const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])3551 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3552 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
3553 {
3554 int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3555 int ret;
3556 u8 pn, pn_min, pn_max;
3557
3558 if (!bl->aux_set)
3559 return 0;
3560
3561 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
3562 if (ret != 1) {
3563 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
3564 aux->name, ret);
3565 return -ENODEV;
3566 }
3567
3568 pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3569 bl->max = (1 << pn) - 1;
3570 if (!driver_pwm_freq_hz)
3571 return 0;
3572
3573 /*
3574 * Set PWM Frequency divider to match desired frequency provided by the driver.
3575 * The PWM Frequency is calculated as 27Mhz / (F x P).
3576 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3577 * EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3578 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3579 * EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3580 */
3581
3582 /* Find desired value of (F x P)
3583 * Note that, if F x P is out of supported range, the maximum value or minimum value will
3584 * applied automatically. So no need to check that.
3585 */
3586 fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
3587
3588 /* Use highest possible value of Pn for more granularity of brightness adjustment while
3589 * satisfying the conditions below.
3590 * - Pn is in the range of Pn_min and Pn_max
3591 * - F is in the range of 1 and 255
3592 * - FxP is within 25% of desired value.
3593 * Note: 25% is arbitrary value and may need some tweak.
3594 */
3595 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
3596 if (ret != 1) {
3597 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
3598 aux->name, ret);
3599 return 0;
3600 }
3601 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
3602 if (ret != 1) {
3603 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
3604 aux->name, ret);
3605 return 0;
3606 }
3607 pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3608 pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3609
3610 /* Ensure frequency is within 25% of desired value */
3611 fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
3612 fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
3613 if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
3614 drm_dbg_kms(aux->drm_dev,
3615 "%s: Driver defined backlight frequency (%d) out of range\n",
3616 aux->name, driver_pwm_freq_hz);
3617 return 0;
3618 }
3619
3620 for (pn = pn_max; pn >= pn_min; pn--) {
3621 f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
3622 fxp_actual = f << pn;
3623 if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
3624 break;
3625 }
3626
3627 ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
3628 if (ret != 1) {
3629 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3630 aux->name, ret);
3631 return 0;
3632 }
3633 bl->pwmgen_bit_count = pn;
3634 bl->max = (1 << pn) - 1;
3635
3636 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
3637 bl->pwm_freq_pre_divider = f;
3638 drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
3639 aux->name, driver_pwm_freq_hz);
3640 }
3641
3642 return 0;
3643 }
3644
3645 static inline int
drm_edp_backlight_probe_state(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u8 * current_mode)3646 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3647 u8 *current_mode)
3648 {
3649 int ret;
3650 u8 buf[2];
3651 u8 mode_reg;
3652
3653 ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
3654 if (ret != 1) {
3655 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
3656 aux->name, ret);
3657 return ret < 0 ? ret : -EIO;
3658 }
3659
3660 *current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
3661 if (!bl->aux_set)
3662 return 0;
3663
3664 if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
3665 int size = 1 + bl->lsb_reg_used;
3666
3667 ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
3668 if (ret != size) {
3669 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
3670 aux->name, ret);
3671 return ret < 0 ? ret : -EIO;
3672 }
3673
3674 if (bl->lsb_reg_used)
3675 return (buf[0] << 8) | buf[1];
3676 else
3677 return buf[0];
3678 }
3679
3680 /*
3681 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
3682 * the driver should assume max brightness
3683 */
3684 return bl->max;
3685 }
3686
3687 /**
3688 * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
3689 * interface.
3690 * @aux: The DP aux device to use for probing
3691 * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
3692 * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
3693 * @edp_dpcd: A cached copy of the eDP DPCD
3694 * @current_level: Where to store the probed brightness level, if any
3695 * @current_mode: Where to store the currently set backlight control mode
3696 *
3697 * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
3698 * along with also probing the current and maximum supported brightness levels.
3699 *
3700 * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
3701 * default frequency from the panel is used.
3702 *
3703 * Returns: %0 on success, negative error code on failure.
3704 */
3705 int
drm_edp_backlight_init(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u16 driver_pwm_freq_hz,const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],u16 * current_level,u8 * current_mode)3706 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3707 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
3708 u16 *current_level, u8 *current_mode)
3709 {
3710 int ret;
3711
3712 if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
3713 bl->aux_enable = true;
3714 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
3715 bl->aux_set = true;
3716 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
3717 bl->lsb_reg_used = true;
3718
3719 /* Sanity check caps */
3720 if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
3721 drm_dbg_kms(aux->drm_dev,
3722 "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
3723 aux->name);
3724 return -EINVAL;
3725 }
3726
3727 ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
3728 if (ret < 0)
3729 return ret;
3730
3731 ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
3732 if (ret < 0)
3733 return ret;
3734 *current_level = ret;
3735
3736 drm_dbg_kms(aux->drm_dev,
3737 "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
3738 aux->name, bl->aux_set, bl->aux_enable, *current_mode);
3739 if (bl->aux_set) {
3740 drm_dbg_kms(aux->drm_dev,
3741 "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
3742 aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
3743 bl->lsb_reg_used);
3744 }
3745
3746 return 0;
3747 }
3748 EXPORT_SYMBOL(drm_edp_backlight_init);
3749
3750 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
3751 (IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
3752
dp_aux_backlight_update_status(struct backlight_device * bd)3753 static int dp_aux_backlight_update_status(struct backlight_device *bd)
3754 {
3755 struct dp_aux_backlight *bl = bl_get_data(bd);
3756 u16 brightness = backlight_get_brightness(bd);
3757 int ret = 0;
3758
3759 if (!backlight_is_blank(bd)) {
3760 if (!bl->enabled) {
3761 drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
3762 bl->enabled = true;
3763 return 0;
3764 }
3765 ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
3766 } else {
3767 if (bl->enabled) {
3768 drm_edp_backlight_disable(bl->aux, &bl->info);
3769 bl->enabled = false;
3770 }
3771 }
3772
3773 return ret;
3774 }
3775
3776 static const struct backlight_ops dp_aux_bl_ops = {
3777 .update_status = dp_aux_backlight_update_status,
3778 };
3779
3780 /**
3781 * drm_panel_dp_aux_backlight - create and use DP AUX backlight
3782 * @panel: DRM panel
3783 * @aux: The DP AUX channel to use
3784 *
3785 * Use this function to create and handle backlight if your panel
3786 * supports backlight control over DP AUX channel using DPCD
3787 * registers as per VESA's standard backlight control interface.
3788 *
3789 * When the panel is enabled backlight will be enabled after a
3790 * successful call to &drm_panel_funcs.enable()
3791 *
3792 * When the panel is disabled backlight will be disabled before the
3793 * call to &drm_panel_funcs.disable().
3794 *
3795 * A typical implementation for a panel driver supporting backlight
3796 * control over DP AUX will call this function at probe time.
3797 * Backlight will then be handled transparently without requiring
3798 * any intervention from the driver.
3799 *
3800 * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
3801 *
3802 * Return: 0 on success or a negative error code on failure.
3803 */
drm_panel_dp_aux_backlight(struct drm_panel * panel,struct drm_dp_aux * aux)3804 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
3805 {
3806 struct dp_aux_backlight *bl;
3807 struct backlight_properties props = { 0 };
3808 u16 current_level;
3809 u8 current_mode;
3810 u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
3811 int ret;
3812
3813 if (!panel || !panel->dev || !aux)
3814 return -EINVAL;
3815
3816 ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
3817 EDP_DISPLAY_CTL_CAP_SIZE);
3818 if (ret < 0)
3819 return ret;
3820
3821 if (!drm_edp_backlight_supported(edp_dpcd)) {
3822 DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
3823 return 0;
3824 }
3825
3826 bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
3827 if (!bl)
3828 return -ENOMEM;
3829
3830 bl->aux = aux;
3831
3832 ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
3833 ¤t_level, ¤t_mode);
3834 if (ret < 0)
3835 return ret;
3836
3837 props.type = BACKLIGHT_RAW;
3838 props.brightness = current_level;
3839 props.max_brightness = bl->info.max;
3840
3841 bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
3842 panel->dev, bl,
3843 &dp_aux_bl_ops, &props);
3844 if (IS_ERR(bl->base))
3845 return PTR_ERR(bl->base);
3846
3847 backlight_disable(bl->base);
3848
3849 panel->backlight = bl->base;
3850
3851 return 0;
3852 }
3853 EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
3854
3855 #endif
3856