1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013 Red Hat
4 * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5 * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
6 *
7 * Author: Rob Clark <robdclark@gmail.com>
8 */
9
10 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14
15 #include <drm/drm_crtc.h>
16 #include <drm/drm_file.h>
17 #include <drm/drm_probe_helper.h>
18
19 #include "msm_drv.h"
20 #include "dpu_kms.h"
21 #include "dpu_hwio.h"
22 #include "dpu_hw_catalog.h"
23 #include "dpu_hw_intf.h"
24 #include "dpu_hw_ctl.h"
25 #include "dpu_hw_dspp.h"
26 #include "dpu_hw_dsc.h"
27 #include "dpu_hw_merge3d.h"
28 #include "dpu_formats.h"
29 #include "dpu_encoder_phys.h"
30 #include "dpu_crtc.h"
31 #include "dpu_trace.h"
32 #include "dpu_core_irq.h"
33 #include "disp/msm_disp_snapshot.h"
34
35 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
36 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
37
38 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
39 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
40
41 /*
42 * Two to anticipate panels that can do cmd/vid dynamic switching
43 * plan is to create all possible physical encoder types, and switch between
44 * them at runtime
45 */
46 #define NUM_PHYS_ENCODER_TYPES 2
47
48 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
49 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
50
51 #define MAX_CHANNELS_PER_ENC 2
52
53 #define IDLE_SHORT_TIMEOUT 1
54
55 #define MAX_HDISPLAY_SPLIT 1080
56
57 /* timeout in frames waiting for frame done */
58 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
59
60 /**
61 * enum dpu_enc_rc_events - events for resource control state machine
62 * @DPU_ENC_RC_EVENT_KICKOFF:
63 * This event happens at NORMAL priority.
64 * Event that signals the start of the transfer. When this event is
65 * received, enable MDP/DSI core clocks. Regardless of the previous
66 * state, the resource should be in ON state at the end of this event.
67 * @DPU_ENC_RC_EVENT_FRAME_DONE:
68 * This event happens at INTERRUPT level.
69 * Event signals the end of the data transfer after the PP FRAME_DONE
70 * event. At the end of this event, a delayed work is scheduled to go to
71 * IDLE_PC state after IDLE_TIMEOUT time.
72 * @DPU_ENC_RC_EVENT_PRE_STOP:
73 * This event happens at NORMAL priority.
74 * This event, when received during the ON state, leave the RC STATE
75 * in the PRE_OFF state. It should be followed by the STOP event as
76 * part of encoder disable.
77 * If received during IDLE or OFF states, it will do nothing.
78 * @DPU_ENC_RC_EVENT_STOP:
79 * This event happens at NORMAL priority.
80 * When this event is received, disable all the MDP/DSI core clocks, and
81 * disable IRQs. It should be called from the PRE_OFF or IDLE states.
82 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
83 * PRE_OFF is expected when PRE_STOP was executed during the ON state.
84 * Resource state should be in OFF at the end of the event.
85 * @DPU_ENC_RC_EVENT_ENTER_IDLE:
86 * This event happens at NORMAL priority from a work item.
87 * Event signals that there were no frame updates for IDLE_TIMEOUT time.
88 * This would disable MDP/DSI core clocks and change the resource state
89 * to IDLE.
90 */
91 enum dpu_enc_rc_events {
92 DPU_ENC_RC_EVENT_KICKOFF = 1,
93 DPU_ENC_RC_EVENT_FRAME_DONE,
94 DPU_ENC_RC_EVENT_PRE_STOP,
95 DPU_ENC_RC_EVENT_STOP,
96 DPU_ENC_RC_EVENT_ENTER_IDLE
97 };
98
99 /*
100 * enum dpu_enc_rc_states - states that the resource control maintains
101 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
102 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
103 * @DPU_ENC_RC_STATE_ON: Resource is in ON state
104 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
105 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
106 */
107 enum dpu_enc_rc_states {
108 DPU_ENC_RC_STATE_OFF,
109 DPU_ENC_RC_STATE_PRE_OFF,
110 DPU_ENC_RC_STATE_ON,
111 DPU_ENC_RC_STATE_IDLE
112 };
113
114 /**
115 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
116 * encoders. Virtual encoder manages one "logical" display. Physical
117 * encoders manage one intf block, tied to a specific panel/sub-panel.
118 * Virtual encoder defers as much as possible to the physical encoders.
119 * Virtual encoder registers itself with the DRM Framework as the encoder.
120 * @base: drm_encoder base class for registration with DRM
121 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes
122 * @enabled: True if the encoder is active, protected by enc_lock
123 * @num_phys_encs: Actual number of physical encoders contained.
124 * @phys_encs: Container of physical encoders managed.
125 * @cur_master: Pointer to the current master in this mode. Optimization
126 * Only valid after enable. Cleared as disable.
127 * @cur_slave: As above but for the slave encoder.
128 * @hw_pp: Handle to the pingpong blocks used for the display. No.
129 * pingpong blocks can be different than num_phys_encs.
130 * @hw_dsc: Handle to the DSC blocks used for the display.
131 * @dsc_mask: Bitmask of used DSC blocks.
132 * @intfs_swapped: Whether or not the phys_enc interfaces have been swapped
133 * for partial update right-only cases, such as pingpong
134 * split where virtual pingpong does not generate IRQs
135 * @crtc: Pointer to the currently assigned crtc. Normally you
136 * would use crtc->state->encoder_mask to determine the
137 * link between encoder/crtc. However in this case we need
138 * to track crtc in the disable() hook which is called
139 * _after_ encoder_mask is cleared.
140 * @connector: If a mode is set, cached pointer to the active connector
141 * @crtc_kickoff_cb: Callback into CRTC that will flush & start
142 * all CTL paths
143 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb
144 * @debugfs_root: Debug file system root file node
145 * @enc_lock: Lock around physical encoder
146 * create/destroy/enable/disable
147 * @frame_busy_mask: Bitmask tracking which phys_enc we are still
148 * busy processing current command.
149 * Bit0 = phys_encs[0] etc.
150 * @crtc_frame_event_cb: callback handler for frame event
151 * @crtc_frame_event_cb_data: callback handler private data
152 * @frame_done_timeout_ms: frame done timeout in ms
153 * @frame_done_timer: watchdog timer for frame done event
154 * @vsync_event_timer: vsync timer
155 * @disp_info: local copy of msm_display_info struct
156 * @idle_pc_supported: indicate if idle power collaps is supported
157 * @rc_lock: resource control mutex lock to protect
158 * virt encoder over various state changes
159 * @rc_state: resource controller state
160 * @delayed_off_work: delayed worker to schedule disabling of
161 * clks and resources after IDLE_TIMEOUT time.
162 * @vsync_event_work: worker to handle vsync event for autorefresh
163 * @topology: topology of the display
164 * @idle_timeout: idle timeout duration in milliseconds
165 * @dsc: drm_dsc_config pointer, for DSC-enabled encoders
166 */
167 struct dpu_encoder_virt {
168 struct drm_encoder base;
169 spinlock_t enc_spinlock;
170
171 bool enabled;
172
173 unsigned int num_phys_encs;
174 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
175 struct dpu_encoder_phys *cur_master;
176 struct dpu_encoder_phys *cur_slave;
177 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
178 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
179
180 unsigned int dsc_mask;
181
182 bool intfs_swapped;
183
184 struct drm_crtc *crtc;
185 struct drm_connector *connector;
186
187 struct dentry *debugfs_root;
188 struct mutex enc_lock;
189 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
190 void (*crtc_frame_event_cb)(void *, u32 event);
191 void *crtc_frame_event_cb_data;
192
193 atomic_t frame_done_timeout_ms;
194 struct timer_list frame_done_timer;
195 struct timer_list vsync_event_timer;
196
197 struct msm_display_info disp_info;
198
199 bool idle_pc_supported;
200 struct mutex rc_lock;
201 enum dpu_enc_rc_states rc_state;
202 struct delayed_work delayed_off_work;
203 struct kthread_work vsync_event_work;
204 struct msm_display_topology topology;
205
206 u32 idle_timeout;
207
208 bool wide_bus_en;
209
210 /* DSC configuration */
211 struct drm_dsc_config *dsc;
212 };
213
214 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
215
216 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
217 15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
218 };
219
220
dpu_encoder_is_widebus_enabled(const struct drm_encoder * drm_enc)221 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
222 {
223 const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
224
225 return dpu_enc->wide_bus_en;
226 }
227
dpu_encoder_get_crc_values_cnt(const struct drm_encoder * drm_enc)228 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
229 {
230 struct dpu_encoder_virt *dpu_enc;
231 int i, num_intf = 0;
232
233 dpu_enc = to_dpu_encoder_virt(drm_enc);
234
235 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
236 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
237
238 if (phys->hw_intf && phys->hw_intf->ops.setup_misr
239 && phys->hw_intf->ops.collect_misr)
240 num_intf++;
241 }
242
243 return num_intf;
244 }
245
dpu_encoder_setup_misr(const struct drm_encoder * drm_enc)246 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
247 {
248 struct dpu_encoder_virt *dpu_enc;
249
250 int i;
251
252 dpu_enc = to_dpu_encoder_virt(drm_enc);
253
254 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
255 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
256
257 if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
258 continue;
259
260 phys->hw_intf->ops.setup_misr(phys->hw_intf, true, 1);
261 }
262 }
263
dpu_encoder_get_crc(const struct drm_encoder * drm_enc,u32 * crcs,int pos)264 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
265 {
266 struct dpu_encoder_virt *dpu_enc;
267
268 int i, rc = 0, entries_added = 0;
269
270 if (!drm_enc->crtc) {
271 DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
272 return -EINVAL;
273 }
274
275 dpu_enc = to_dpu_encoder_virt(drm_enc);
276
277 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
278 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
279
280 if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
281 continue;
282
283 rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
284 if (rc)
285 return rc;
286 entries_added++;
287 }
288
289 return entries_added;
290 }
291
_dpu_encoder_setup_dither(struct dpu_hw_pingpong * hw_pp,unsigned bpc)292 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
293 {
294 struct dpu_hw_dither_cfg dither_cfg = { 0 };
295
296 if (!hw_pp->ops.setup_dither)
297 return;
298
299 switch (bpc) {
300 case 6:
301 dither_cfg.c0_bitdepth = 6;
302 dither_cfg.c1_bitdepth = 6;
303 dither_cfg.c2_bitdepth = 6;
304 dither_cfg.c3_bitdepth = 6;
305 dither_cfg.temporal_en = 0;
306 break;
307 default:
308 hw_pp->ops.setup_dither(hw_pp, NULL);
309 return;
310 }
311
312 memcpy(&dither_cfg.matrix, dither_matrix,
313 sizeof(u32) * DITHER_MATRIX_SZ);
314
315 hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
316 }
317
dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)318 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
319 {
320 switch (intf_mode) {
321 case INTF_MODE_VIDEO:
322 return "INTF_MODE_VIDEO";
323 case INTF_MODE_CMD:
324 return "INTF_MODE_CMD";
325 case INTF_MODE_WB_BLOCK:
326 return "INTF_MODE_WB_BLOCK";
327 case INTF_MODE_WB_LINE:
328 return "INTF_MODE_WB_LINE";
329 default:
330 return "INTF_MODE_UNKNOWN";
331 }
332 }
333
dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)334 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
335 enum dpu_intr_idx intr_idx)
336 {
337 DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
338 DRMID(phys_enc->parent),
339 dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
340 phys_enc->intf_idx - INTF_0, phys_enc->wb_idx - WB_0,
341 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
342
343 if (phys_enc->parent_ops->handle_frame_done)
344 phys_enc->parent_ops->handle_frame_done(
345 phys_enc->parent, phys_enc,
346 DPU_ENCODER_FRAME_EVENT_ERROR);
347 }
348
349 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
350 u32 irq_idx, struct dpu_encoder_wait_info *info);
351
dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys * phys_enc,int irq,void (* func)(void * arg,int irq_idx),struct dpu_encoder_wait_info * wait_info)352 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
353 int irq,
354 void (*func)(void *arg, int irq_idx),
355 struct dpu_encoder_wait_info *wait_info)
356 {
357 u32 irq_status;
358 int ret;
359
360 if (!wait_info) {
361 DPU_ERROR("invalid params\n");
362 return -EINVAL;
363 }
364 /* note: do master / slave checking outside */
365
366 /* return EWOULDBLOCK since we know the wait isn't necessary */
367 if (phys_enc->enable_state == DPU_ENC_DISABLED) {
368 DRM_ERROR("encoder is disabled id=%u, callback=%ps, irq=%d\n",
369 DRMID(phys_enc->parent), func,
370 irq);
371 return -EWOULDBLOCK;
372 }
373
374 if (irq < 0) {
375 DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
376 DRMID(phys_enc->parent), func);
377 return 0;
378 }
379
380 DRM_DEBUG_KMS("id=%u, callback=%ps, irq=%d, pp=%d, pending_cnt=%d\n",
381 DRMID(phys_enc->parent), func,
382 irq, phys_enc->hw_pp->idx - PINGPONG_0,
383 atomic_read(wait_info->atomic_cnt));
384
385 ret = dpu_encoder_helper_wait_event_timeout(
386 DRMID(phys_enc->parent),
387 irq,
388 wait_info);
389
390 if (ret <= 0) {
391 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq);
392 if (irq_status) {
393 unsigned long flags;
394
395 DRM_DEBUG_KMS("irq not triggered id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
396 DRMID(phys_enc->parent), func,
397 irq,
398 phys_enc->hw_pp->idx - PINGPONG_0,
399 atomic_read(wait_info->atomic_cnt));
400 local_irq_save(flags);
401 func(phys_enc, irq);
402 local_irq_restore(flags);
403 ret = 0;
404 } else {
405 ret = -ETIMEDOUT;
406 DRM_DEBUG_KMS("irq timeout id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
407 DRMID(phys_enc->parent), func,
408 irq,
409 phys_enc->hw_pp->idx - PINGPONG_0,
410 atomic_read(wait_info->atomic_cnt));
411 }
412 } else {
413 ret = 0;
414 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
415 func, irq,
416 phys_enc->hw_pp->idx - PINGPONG_0,
417 atomic_read(wait_info->atomic_cnt));
418 }
419
420 return ret;
421 }
422
dpu_encoder_get_vsync_count(struct drm_encoder * drm_enc)423 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
424 {
425 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
426 struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
427 return phys ? atomic_read(&phys->vsync_cnt) : 0;
428 }
429
dpu_encoder_get_linecount(struct drm_encoder * drm_enc)430 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
431 {
432 struct dpu_encoder_virt *dpu_enc;
433 struct dpu_encoder_phys *phys;
434 int linecount = 0;
435
436 dpu_enc = to_dpu_encoder_virt(drm_enc);
437 phys = dpu_enc ? dpu_enc->cur_master : NULL;
438
439 if (phys && phys->ops.get_line_count)
440 linecount = phys->ops.get_line_count(phys);
441
442 return linecount;
443 }
444
dpu_encoder_destroy(struct drm_encoder * drm_enc)445 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
446 {
447 struct dpu_encoder_virt *dpu_enc = NULL;
448 int i = 0;
449
450 if (!drm_enc) {
451 DPU_ERROR("invalid encoder\n");
452 return;
453 }
454
455 dpu_enc = to_dpu_encoder_virt(drm_enc);
456 DPU_DEBUG_ENC(dpu_enc, "\n");
457
458 mutex_lock(&dpu_enc->enc_lock);
459
460 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
461 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
462
463 if (phys->ops.destroy) {
464 phys->ops.destroy(phys);
465 --dpu_enc->num_phys_encs;
466 dpu_enc->phys_encs[i] = NULL;
467 }
468 }
469
470 if (dpu_enc->num_phys_encs)
471 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
472 dpu_enc->num_phys_encs);
473 dpu_enc->num_phys_encs = 0;
474 mutex_unlock(&dpu_enc->enc_lock);
475
476 drm_encoder_cleanup(drm_enc);
477 mutex_destroy(&dpu_enc->enc_lock);
478 }
479
dpu_encoder_helper_split_config(struct dpu_encoder_phys * phys_enc,enum dpu_intf interface)480 void dpu_encoder_helper_split_config(
481 struct dpu_encoder_phys *phys_enc,
482 enum dpu_intf interface)
483 {
484 struct dpu_encoder_virt *dpu_enc;
485 struct split_pipe_cfg cfg = { 0 };
486 struct dpu_hw_mdp *hw_mdptop;
487 struct msm_display_info *disp_info;
488
489 if (!phys_enc->hw_mdptop || !phys_enc->parent) {
490 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
491 return;
492 }
493
494 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
495 hw_mdptop = phys_enc->hw_mdptop;
496 disp_info = &dpu_enc->disp_info;
497
498 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
499 return;
500
501 /**
502 * disable split modes since encoder will be operating in as the only
503 * encoder, either for the entire use case in the case of, for example,
504 * single DSI, or for this frame in the case of left/right only partial
505 * update.
506 */
507 if (phys_enc->split_role == ENC_ROLE_SOLO) {
508 if (hw_mdptop->ops.setup_split_pipe)
509 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
510 return;
511 }
512
513 cfg.en = true;
514 cfg.mode = phys_enc->intf_mode;
515 cfg.intf = interface;
516
517 if (cfg.en && phys_enc->ops.needs_single_flush &&
518 phys_enc->ops.needs_single_flush(phys_enc))
519 cfg.split_flush_en = true;
520
521 if (phys_enc->split_role == ENC_ROLE_MASTER) {
522 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
523
524 if (hw_mdptop->ops.setup_split_pipe)
525 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
526 }
527 }
528
dpu_encoder_use_dsc_merge(struct drm_encoder * drm_enc)529 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
530 {
531 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
532 int i, intf_count = 0, num_dsc = 0;
533
534 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
535 if (dpu_enc->phys_encs[i])
536 intf_count++;
537
538 /* See dpu_encoder_get_topology, we only support 2:2:1 topology */
539 if (dpu_enc->dsc)
540 num_dsc = 2;
541
542 return (num_dsc > 0) && (num_dsc > intf_count);
543 }
544
dpu_encoder_get_topology(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct drm_display_mode * mode)545 static struct msm_display_topology dpu_encoder_get_topology(
546 struct dpu_encoder_virt *dpu_enc,
547 struct dpu_kms *dpu_kms,
548 struct drm_display_mode *mode)
549 {
550 struct msm_display_topology topology = {0};
551 int i, intf_count = 0;
552
553 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
554 if (dpu_enc->phys_encs[i])
555 intf_count++;
556
557 /* Datapath topology selection
558 *
559 * Dual display
560 * 2 LM, 2 INTF ( Split display using 2 interfaces)
561 *
562 * Single display
563 * 1 LM, 1 INTF
564 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
565 *
566 * Adding color blocks only to primary interface if available in
567 * sufficient number
568 */
569 if (intf_count == 2)
570 topology.num_lm = 2;
571 else if (!dpu_kms->catalog->caps->has_3d_merge)
572 topology.num_lm = 1;
573 else
574 topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
575
576 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) {
577 if (dpu_kms->catalog->dspp &&
578 (dpu_kms->catalog->dspp_count >= topology.num_lm))
579 topology.num_dspp = topology.num_lm;
580 }
581
582 topology.num_enc = 0;
583 topology.num_intf = intf_count;
584
585 if (dpu_enc->dsc) {
586 /* In case of Display Stream Compression (DSC), we would use
587 * 2 encoders, 2 layer mixers and 1 interface
588 * this is power optimal and can drive up to (including) 4k
589 * screens
590 */
591 topology.num_enc = 2;
592 topology.num_dsc = 2;
593 topology.num_intf = 1;
594 topology.num_lm = 2;
595 }
596
597 return topology;
598 }
599
dpu_encoder_virt_atomic_check(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)600 static int dpu_encoder_virt_atomic_check(
601 struct drm_encoder *drm_enc,
602 struct drm_crtc_state *crtc_state,
603 struct drm_connector_state *conn_state)
604 {
605 struct dpu_encoder_virt *dpu_enc;
606 struct msm_drm_private *priv;
607 struct dpu_kms *dpu_kms;
608 struct drm_display_mode *adj_mode;
609 struct msm_display_topology topology;
610 struct dpu_global_state *global_state;
611 int i = 0;
612 int ret = 0;
613
614 if (!drm_enc || !crtc_state || !conn_state) {
615 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
616 drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
617 return -EINVAL;
618 }
619
620 dpu_enc = to_dpu_encoder_virt(drm_enc);
621 DPU_DEBUG_ENC(dpu_enc, "\n");
622
623 priv = drm_enc->dev->dev_private;
624 dpu_kms = to_dpu_kms(priv->kms);
625 adj_mode = &crtc_state->adjusted_mode;
626 global_state = dpu_kms_get_global_state(crtc_state->state);
627 if (IS_ERR(global_state))
628 return PTR_ERR(global_state);
629
630 trace_dpu_enc_atomic_check(DRMID(drm_enc));
631
632 /* perform atomic check on the first physical encoder (master) */
633 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
634 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
635
636 if (phys->ops.atomic_check)
637 ret = phys->ops.atomic_check(phys, crtc_state,
638 conn_state);
639 if (ret) {
640 DPU_ERROR_ENC(dpu_enc,
641 "mode unsupported, phys idx %d\n", i);
642 break;
643 }
644 }
645
646 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
647
648 /* Reserve dynamic resources now. */
649 if (!ret) {
650 /*
651 * Release and Allocate resources on every modeset
652 * Dont allocate when active is false.
653 */
654 if (drm_atomic_crtc_needs_modeset(crtc_state)) {
655 dpu_rm_release(global_state, drm_enc);
656
657 if (!crtc_state->active_changed || crtc_state->active)
658 ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
659 drm_enc, crtc_state, topology);
660 }
661 }
662
663 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
664
665 return ret;
666 }
667
_dpu_encoder_update_vsync_source(struct dpu_encoder_virt * dpu_enc,struct msm_display_info * disp_info)668 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
669 struct msm_display_info *disp_info)
670 {
671 struct dpu_vsync_source_cfg vsync_cfg = { 0 };
672 struct msm_drm_private *priv;
673 struct dpu_kms *dpu_kms;
674 struct dpu_hw_mdp *hw_mdptop;
675 struct drm_encoder *drm_enc;
676 int i;
677
678 if (!dpu_enc || !disp_info) {
679 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
680 dpu_enc != NULL, disp_info != NULL);
681 return;
682 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
683 DPU_ERROR("invalid num phys enc %d/%d\n",
684 dpu_enc->num_phys_encs,
685 (int) ARRAY_SIZE(dpu_enc->hw_pp));
686 return;
687 }
688
689 drm_enc = &dpu_enc->base;
690 /* this pointers are checked in virt_enable_helper */
691 priv = drm_enc->dev->dev_private;
692
693 dpu_kms = to_dpu_kms(priv->kms);
694 hw_mdptop = dpu_kms->hw_mdp;
695 if (!hw_mdptop) {
696 DPU_ERROR("invalid mdptop\n");
697 return;
698 }
699
700 if (hw_mdptop->ops.setup_vsync_source &&
701 disp_info->is_cmd_mode) {
702 for (i = 0; i < dpu_enc->num_phys_encs; i++)
703 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
704
705 vsync_cfg.pp_count = dpu_enc->num_phys_encs;
706 if (disp_info->is_te_using_watchdog_timer)
707 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
708 else
709 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
710
711 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
712 }
713 }
714
_dpu_encoder_irq_control(struct drm_encoder * drm_enc,bool enable)715 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
716 {
717 struct dpu_encoder_virt *dpu_enc;
718 int i;
719
720 if (!drm_enc) {
721 DPU_ERROR("invalid encoder\n");
722 return;
723 }
724
725 dpu_enc = to_dpu_encoder_virt(drm_enc);
726
727 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
728 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
729 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
730
731 if (phys->ops.irq_control)
732 phys->ops.irq_control(phys, enable);
733 }
734
735 }
736
_dpu_encoder_resource_control_helper(struct drm_encoder * drm_enc,bool enable)737 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
738 bool enable)
739 {
740 struct msm_drm_private *priv;
741 struct dpu_kms *dpu_kms;
742 struct dpu_encoder_virt *dpu_enc;
743
744 dpu_enc = to_dpu_encoder_virt(drm_enc);
745 priv = drm_enc->dev->dev_private;
746 dpu_kms = to_dpu_kms(priv->kms);
747
748 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
749
750 if (!dpu_enc->cur_master) {
751 DPU_ERROR("encoder master not set\n");
752 return;
753 }
754
755 if (enable) {
756 /* enable DPU core clks */
757 pm_runtime_get_sync(&dpu_kms->pdev->dev);
758
759 /* enable all the irq */
760 _dpu_encoder_irq_control(drm_enc, true);
761
762 } else {
763 /* disable all the irq */
764 _dpu_encoder_irq_control(drm_enc, false);
765
766 /* disable DPU core clks */
767 pm_runtime_put_sync(&dpu_kms->pdev->dev);
768 }
769
770 }
771
dpu_encoder_resource_control(struct drm_encoder * drm_enc,u32 sw_event)772 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
773 u32 sw_event)
774 {
775 struct dpu_encoder_virt *dpu_enc;
776 struct msm_drm_private *priv;
777 bool is_vid_mode = false;
778
779 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
780 DPU_ERROR("invalid parameters\n");
781 return -EINVAL;
782 }
783 dpu_enc = to_dpu_encoder_virt(drm_enc);
784 priv = drm_enc->dev->dev_private;
785 is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
786
787 /*
788 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
789 * events and return early for other events (ie wb display).
790 */
791 if (!dpu_enc->idle_pc_supported &&
792 (sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
793 sw_event != DPU_ENC_RC_EVENT_STOP &&
794 sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
795 return 0;
796
797 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
798 dpu_enc->rc_state, "begin");
799
800 switch (sw_event) {
801 case DPU_ENC_RC_EVENT_KICKOFF:
802 /* cancel delayed off work, if any */
803 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
804 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
805 sw_event);
806
807 mutex_lock(&dpu_enc->rc_lock);
808
809 /* return if the resource control is already in ON state */
810 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
811 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
812 DRMID(drm_enc), sw_event);
813 mutex_unlock(&dpu_enc->rc_lock);
814 return 0;
815 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
816 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
817 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
818 DRMID(drm_enc), sw_event,
819 dpu_enc->rc_state);
820 mutex_unlock(&dpu_enc->rc_lock);
821 return -EINVAL;
822 }
823
824 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
825 _dpu_encoder_irq_control(drm_enc, true);
826 else
827 _dpu_encoder_resource_control_helper(drm_enc, true);
828
829 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
830
831 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
832 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
833 "kickoff");
834
835 mutex_unlock(&dpu_enc->rc_lock);
836 break;
837
838 case DPU_ENC_RC_EVENT_FRAME_DONE:
839 /*
840 * mutex lock is not used as this event happens at interrupt
841 * context. And locking is not required as, the other events
842 * like KICKOFF and STOP does a wait-for-idle before executing
843 * the resource_control
844 */
845 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
846 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
847 DRMID(drm_enc), sw_event,
848 dpu_enc->rc_state);
849 return -EINVAL;
850 }
851
852 /*
853 * schedule off work item only when there are no
854 * frames pending
855 */
856 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
857 DRM_DEBUG_KMS("id:%d skip schedule work\n",
858 DRMID(drm_enc));
859 return 0;
860 }
861
862 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
863 msecs_to_jiffies(dpu_enc->idle_timeout));
864
865 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
866 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
867 "frame done");
868 break;
869
870 case DPU_ENC_RC_EVENT_PRE_STOP:
871 /* cancel delayed off work, if any */
872 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
873 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
874 sw_event);
875
876 mutex_lock(&dpu_enc->rc_lock);
877
878 if (is_vid_mode &&
879 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
880 _dpu_encoder_irq_control(drm_enc, true);
881 }
882 /* skip if is already OFF or IDLE, resources are off already */
883 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
884 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
885 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
886 DRMID(drm_enc), sw_event,
887 dpu_enc->rc_state);
888 mutex_unlock(&dpu_enc->rc_lock);
889 return 0;
890 }
891
892 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
893
894 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
895 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
896 "pre stop");
897
898 mutex_unlock(&dpu_enc->rc_lock);
899 break;
900
901 case DPU_ENC_RC_EVENT_STOP:
902 mutex_lock(&dpu_enc->rc_lock);
903
904 /* return if the resource control is already in OFF state */
905 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
906 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
907 DRMID(drm_enc), sw_event);
908 mutex_unlock(&dpu_enc->rc_lock);
909 return 0;
910 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
911 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
912 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
913 mutex_unlock(&dpu_enc->rc_lock);
914 return -EINVAL;
915 }
916
917 /**
918 * expect to arrive here only if in either idle state or pre-off
919 * and in IDLE state the resources are already disabled
920 */
921 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
922 _dpu_encoder_resource_control_helper(drm_enc, false);
923
924 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
925
926 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
927 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
928 "stop");
929
930 mutex_unlock(&dpu_enc->rc_lock);
931 break;
932
933 case DPU_ENC_RC_EVENT_ENTER_IDLE:
934 mutex_lock(&dpu_enc->rc_lock);
935
936 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
937 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
938 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
939 mutex_unlock(&dpu_enc->rc_lock);
940 return 0;
941 }
942
943 /*
944 * if we are in ON but a frame was just kicked off,
945 * ignore the IDLE event, it's probably a stale timer event
946 */
947 if (dpu_enc->frame_busy_mask[0]) {
948 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
949 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
950 mutex_unlock(&dpu_enc->rc_lock);
951 return 0;
952 }
953
954 if (is_vid_mode)
955 _dpu_encoder_irq_control(drm_enc, false);
956 else
957 _dpu_encoder_resource_control_helper(drm_enc, false);
958
959 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
960
961 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
962 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
963 "idle");
964
965 mutex_unlock(&dpu_enc->rc_lock);
966 break;
967
968 default:
969 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
970 sw_event);
971 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
972 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
973 "error");
974 break;
975 }
976
977 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
978 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
979 "end");
980 return 0;
981 }
982
dpu_encoder_prepare_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)983 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
984 struct drm_writeback_job *job)
985 {
986 struct dpu_encoder_virt *dpu_enc;
987 int i;
988
989 dpu_enc = to_dpu_encoder_virt(drm_enc);
990
991 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
992 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
993
994 if (phys->ops.prepare_wb_job)
995 phys->ops.prepare_wb_job(phys, job);
996
997 }
998 }
999
dpu_encoder_cleanup_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1000 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1001 struct drm_writeback_job *job)
1002 {
1003 struct dpu_encoder_virt *dpu_enc;
1004 int i;
1005
1006 dpu_enc = to_dpu_encoder_virt(drm_enc);
1007
1008 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1009 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1010
1011 if (phys->ops.cleanup_wb_job)
1012 phys->ops.cleanup_wb_job(phys, job);
1013
1014 }
1015 }
1016
dpu_encoder_virt_atomic_mode_set(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1017 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1018 struct drm_crtc_state *crtc_state,
1019 struct drm_connector_state *conn_state)
1020 {
1021 struct dpu_encoder_virt *dpu_enc;
1022 struct msm_drm_private *priv;
1023 struct dpu_kms *dpu_kms;
1024 struct dpu_crtc_state *cstate;
1025 struct dpu_global_state *global_state;
1026 struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1027 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1028 struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
1029 struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
1030 struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1031 int num_lm, num_ctl, num_pp, num_dsc;
1032 unsigned int dsc_mask = 0;
1033 int i;
1034
1035 if (!drm_enc) {
1036 DPU_ERROR("invalid encoder\n");
1037 return;
1038 }
1039
1040 dpu_enc = to_dpu_encoder_virt(drm_enc);
1041 DPU_DEBUG_ENC(dpu_enc, "\n");
1042
1043 priv = drm_enc->dev->dev_private;
1044 dpu_kms = to_dpu_kms(priv->kms);
1045
1046 global_state = dpu_kms_get_existing_global_state(dpu_kms);
1047 if (IS_ERR_OR_NULL(global_state)) {
1048 DPU_ERROR("Failed to get global state");
1049 return;
1050 }
1051
1052 trace_dpu_enc_mode_set(DRMID(drm_enc));
1053
1054 /* Query resource that have been reserved in atomic check step. */
1055 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1056 drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1057 ARRAY_SIZE(hw_pp));
1058 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1059 drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1060 num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1061 drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1062 dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1063 drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1064 ARRAY_SIZE(hw_dspp));
1065
1066 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1067 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1068 : NULL;
1069
1070 if (dpu_enc->dsc) {
1071 num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1072 drm_enc->base.id, DPU_HW_BLK_DSC,
1073 hw_dsc, ARRAY_SIZE(hw_dsc));
1074 for (i = 0; i < num_dsc; i++) {
1075 dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1076 dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1077 }
1078 }
1079
1080 dpu_enc->dsc_mask = dsc_mask;
1081
1082 cstate = to_dpu_crtc_state(crtc_state);
1083
1084 for (i = 0; i < num_lm; i++) {
1085 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1086
1087 cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1088 cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1089 cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1090 }
1091
1092 cstate->num_mixers = num_lm;
1093
1094 dpu_enc->connector = conn_state->connector;
1095
1096 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1097 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1098
1099 if (!dpu_enc->hw_pp[i]) {
1100 DPU_ERROR_ENC(dpu_enc,
1101 "no pp block assigned at idx: %d\n", i);
1102 return;
1103 }
1104
1105 if (!hw_ctl[i]) {
1106 DPU_ERROR_ENC(dpu_enc,
1107 "no ctl block assigned at idx: %d\n", i);
1108 return;
1109 }
1110
1111 phys->hw_pp = dpu_enc->hw_pp[i];
1112 phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1113
1114 phys->cached_mode = crtc_state->adjusted_mode;
1115 if (phys->ops.atomic_mode_set)
1116 phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1117 }
1118 }
1119
_dpu_encoder_virt_enable_helper(struct drm_encoder * drm_enc)1120 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1121 {
1122 struct dpu_encoder_virt *dpu_enc = NULL;
1123 int i;
1124
1125 if (!drm_enc || !drm_enc->dev) {
1126 DPU_ERROR("invalid parameters\n");
1127 return;
1128 }
1129
1130 dpu_enc = to_dpu_encoder_virt(drm_enc);
1131 if (!dpu_enc || !dpu_enc->cur_master) {
1132 DPU_ERROR("invalid dpu encoder/master\n");
1133 return;
1134 }
1135
1136
1137 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_TMDS &&
1138 dpu_enc->cur_master->hw_mdptop &&
1139 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1140 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1141 dpu_enc->cur_master->hw_mdptop);
1142
1143 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1144
1145 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1146 !WARN_ON(dpu_enc->num_phys_encs == 0)) {
1147 unsigned bpc = dpu_enc->connector->display_info.bpc;
1148 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1149 if (!dpu_enc->hw_pp[i])
1150 continue;
1151 _dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1152 }
1153 }
1154 }
1155
dpu_encoder_virt_runtime_resume(struct drm_encoder * drm_enc)1156 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1157 {
1158 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1159
1160 mutex_lock(&dpu_enc->enc_lock);
1161
1162 if (!dpu_enc->enabled)
1163 goto out;
1164
1165 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1166 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1167 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1168 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1169
1170 _dpu_encoder_virt_enable_helper(drm_enc);
1171
1172 out:
1173 mutex_unlock(&dpu_enc->enc_lock);
1174 }
1175
dpu_encoder_virt_enable(struct drm_encoder * drm_enc)1176 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1177 {
1178 struct dpu_encoder_virt *dpu_enc = NULL;
1179 int ret = 0;
1180 struct drm_display_mode *cur_mode = NULL;
1181
1182 dpu_enc = to_dpu_encoder_virt(drm_enc);
1183
1184 mutex_lock(&dpu_enc->enc_lock);
1185 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1186
1187 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1188 cur_mode->vdisplay);
1189
1190 /* always enable slave encoder before master */
1191 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1192 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1193
1194 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1195 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1196
1197 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1198 if (ret) {
1199 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1200 ret);
1201 goto out;
1202 }
1203
1204 _dpu_encoder_virt_enable_helper(drm_enc);
1205
1206 dpu_enc->enabled = true;
1207
1208 out:
1209 mutex_unlock(&dpu_enc->enc_lock);
1210 }
1211
dpu_encoder_virt_disable(struct drm_encoder * drm_enc)1212 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1213 {
1214 struct dpu_encoder_virt *dpu_enc = NULL;
1215 int i = 0;
1216
1217 dpu_enc = to_dpu_encoder_virt(drm_enc);
1218 DPU_DEBUG_ENC(dpu_enc, "\n");
1219
1220 mutex_lock(&dpu_enc->enc_lock);
1221 dpu_enc->enabled = false;
1222
1223 trace_dpu_enc_disable(DRMID(drm_enc));
1224
1225 /* wait for idle */
1226 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1227
1228 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1229
1230 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1231 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1232
1233 if (phys->ops.disable)
1234 phys->ops.disable(phys);
1235 }
1236
1237
1238 /* after phys waits for frame-done, should be no more frames pending */
1239 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1240 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1241 del_timer_sync(&dpu_enc->frame_done_timer);
1242 }
1243
1244 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1245
1246 dpu_enc->connector = NULL;
1247
1248 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1249
1250 mutex_unlock(&dpu_enc->enc_lock);
1251 }
1252
dpu_encoder_get_intf(const struct dpu_mdss_cfg * catalog,enum dpu_intf_type type,u32 controller_id)1253 static enum dpu_intf dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1254 enum dpu_intf_type type, u32 controller_id)
1255 {
1256 int i = 0;
1257
1258 if (type == INTF_WB)
1259 return INTF_MAX;
1260
1261 for (i = 0; i < catalog->intf_count; i++) {
1262 if (catalog->intf[i].type == type
1263 && catalog->intf[i].controller_id == controller_id) {
1264 return catalog->intf[i].id;
1265 }
1266 }
1267
1268 return INTF_MAX;
1269 }
1270
dpu_encoder_get_wb(const struct dpu_mdss_cfg * catalog,enum dpu_intf_type type,u32 controller_id)1271 static enum dpu_wb dpu_encoder_get_wb(const struct dpu_mdss_cfg *catalog,
1272 enum dpu_intf_type type, u32 controller_id)
1273 {
1274 int i = 0;
1275
1276 if (type != INTF_WB)
1277 return WB_MAX;
1278
1279 for (i = 0; i < catalog->wb_count; i++) {
1280 if (catalog->wb[i].id == controller_id)
1281 return catalog->wb[i].id;
1282 }
1283
1284 return WB_MAX;
1285 }
1286
dpu_encoder_vblank_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1287 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1288 struct dpu_encoder_phys *phy_enc)
1289 {
1290 struct dpu_encoder_virt *dpu_enc = NULL;
1291 unsigned long lock_flags;
1292
1293 if (!drm_enc || !phy_enc)
1294 return;
1295
1296 DPU_ATRACE_BEGIN("encoder_vblank_callback");
1297 dpu_enc = to_dpu_encoder_virt(drm_enc);
1298
1299 atomic_inc(&phy_enc->vsync_cnt);
1300
1301 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1302 if (dpu_enc->crtc)
1303 dpu_crtc_vblank_callback(dpu_enc->crtc);
1304 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1305
1306 DPU_ATRACE_END("encoder_vblank_callback");
1307 }
1308
dpu_encoder_underrun_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1309 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1310 struct dpu_encoder_phys *phy_enc)
1311 {
1312 if (!phy_enc)
1313 return;
1314
1315 DPU_ATRACE_BEGIN("encoder_underrun_callback");
1316 atomic_inc(&phy_enc->underrun_cnt);
1317
1318 /* trigger dump only on the first underrun */
1319 if (atomic_read(&phy_enc->underrun_cnt) == 1)
1320 msm_disp_snapshot_state(drm_enc->dev);
1321
1322 trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1323 atomic_read(&phy_enc->underrun_cnt));
1324 DPU_ATRACE_END("encoder_underrun_callback");
1325 }
1326
dpu_encoder_assign_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc)1327 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1328 {
1329 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1330 unsigned long lock_flags;
1331
1332 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1333 /* crtc should always be cleared before re-assigning */
1334 WARN_ON(crtc && dpu_enc->crtc);
1335 dpu_enc->crtc = crtc;
1336 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1337 }
1338
dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc,bool enable)1339 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1340 struct drm_crtc *crtc, bool enable)
1341 {
1342 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1343 unsigned long lock_flags;
1344 int i;
1345
1346 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1347
1348 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1349 if (dpu_enc->crtc != crtc) {
1350 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1351 return;
1352 }
1353 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1354
1355 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1356 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1357
1358 if (phys->ops.control_vblank_irq)
1359 phys->ops.control_vblank_irq(phys, enable);
1360 }
1361 }
1362
dpu_encoder_register_frame_event_callback(struct drm_encoder * drm_enc,void (* frame_event_cb)(void *,u32 event),void * frame_event_cb_data)1363 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1364 void (*frame_event_cb)(void *, u32 event),
1365 void *frame_event_cb_data)
1366 {
1367 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1368 unsigned long lock_flags;
1369 bool enable;
1370
1371 enable = frame_event_cb ? true : false;
1372
1373 if (!drm_enc) {
1374 DPU_ERROR("invalid encoder\n");
1375 return;
1376 }
1377 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1378
1379 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1380 dpu_enc->crtc_frame_event_cb = frame_event_cb;
1381 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1382 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1383 }
1384
dpu_encoder_frame_done_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * ready_phys,u32 event)1385 static void dpu_encoder_frame_done_callback(
1386 struct drm_encoder *drm_enc,
1387 struct dpu_encoder_phys *ready_phys, u32 event)
1388 {
1389 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1390 unsigned int i;
1391
1392 if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1393 | DPU_ENCODER_FRAME_EVENT_ERROR
1394 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1395
1396 if (!dpu_enc->frame_busy_mask[0]) {
1397 /**
1398 * suppress frame_done without waiter,
1399 * likely autorefresh
1400 */
1401 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1402 dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1403 ready_phys->intf_idx, ready_phys->wb_idx);
1404 return;
1405 }
1406
1407 /* One of the physical encoders has become idle */
1408 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1409 if (dpu_enc->phys_encs[i] == ready_phys) {
1410 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1411 dpu_enc->frame_busy_mask[0]);
1412 clear_bit(i, dpu_enc->frame_busy_mask);
1413 }
1414 }
1415
1416 if (!dpu_enc->frame_busy_mask[0]) {
1417 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1418 del_timer(&dpu_enc->frame_done_timer);
1419
1420 dpu_encoder_resource_control(drm_enc,
1421 DPU_ENC_RC_EVENT_FRAME_DONE);
1422
1423 if (dpu_enc->crtc_frame_event_cb)
1424 dpu_enc->crtc_frame_event_cb(
1425 dpu_enc->crtc_frame_event_cb_data,
1426 event);
1427 }
1428 } else {
1429 if (dpu_enc->crtc_frame_event_cb)
1430 dpu_enc->crtc_frame_event_cb(
1431 dpu_enc->crtc_frame_event_cb_data, event);
1432 }
1433 }
1434
dpu_encoder_off_work(struct work_struct * work)1435 static void dpu_encoder_off_work(struct work_struct *work)
1436 {
1437 struct dpu_encoder_virt *dpu_enc = container_of(work,
1438 struct dpu_encoder_virt, delayed_off_work.work);
1439
1440 dpu_encoder_resource_control(&dpu_enc->base,
1441 DPU_ENC_RC_EVENT_ENTER_IDLE);
1442
1443 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1444 DPU_ENCODER_FRAME_EVENT_IDLE);
1445 }
1446
1447 /**
1448 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1449 * @drm_enc: Pointer to drm encoder structure
1450 * @phys: Pointer to physical encoder structure
1451 * @extra_flush_bits: Additional bit mask to include in flush trigger
1452 */
_dpu_encoder_trigger_flush(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phys,uint32_t extra_flush_bits)1453 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1454 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1455 {
1456 struct dpu_hw_ctl *ctl;
1457 int pending_kickoff_cnt;
1458 u32 ret = UINT_MAX;
1459
1460 if (!phys->hw_pp) {
1461 DPU_ERROR("invalid pingpong hw\n");
1462 return;
1463 }
1464
1465 ctl = phys->hw_ctl;
1466 if (!ctl->ops.trigger_flush) {
1467 DPU_ERROR("missing trigger cb\n");
1468 return;
1469 }
1470
1471 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1472
1473 if (extra_flush_bits && ctl->ops.update_pending_flush)
1474 ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1475
1476 ctl->ops.trigger_flush(ctl);
1477
1478 if (ctl->ops.get_pending_flush)
1479 ret = ctl->ops.get_pending_flush(ctl);
1480
1481 trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1482 dpu_encoder_helper_get_intf_type(phys->intf_mode),
1483 phys->intf_idx, phys->wb_idx,
1484 pending_kickoff_cnt, ctl->idx,
1485 extra_flush_bits, ret);
1486 }
1487
1488 /**
1489 * _dpu_encoder_trigger_start - trigger start for a physical encoder
1490 * @phys: Pointer to physical encoder structure
1491 */
_dpu_encoder_trigger_start(struct dpu_encoder_phys * phys)1492 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1493 {
1494 if (!phys) {
1495 DPU_ERROR("invalid argument(s)\n");
1496 return;
1497 }
1498
1499 if (!phys->hw_pp) {
1500 DPU_ERROR("invalid pingpong hw\n");
1501 return;
1502 }
1503
1504 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1505 phys->ops.trigger_start(phys);
1506 }
1507
dpu_encoder_helper_trigger_start(struct dpu_encoder_phys * phys_enc)1508 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1509 {
1510 struct dpu_hw_ctl *ctl;
1511
1512 ctl = phys_enc->hw_ctl;
1513 if (ctl->ops.trigger_start) {
1514 ctl->ops.trigger_start(ctl);
1515 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1516 }
1517 }
1518
dpu_encoder_helper_wait_event_timeout(int32_t drm_id,u32 irq_idx,struct dpu_encoder_wait_info * info)1519 static int dpu_encoder_helper_wait_event_timeout(
1520 int32_t drm_id,
1521 u32 irq_idx,
1522 struct dpu_encoder_wait_info *info)
1523 {
1524 int rc = 0;
1525 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1526 s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1527 s64 time;
1528
1529 do {
1530 rc = wait_event_timeout(*(info->wq),
1531 atomic_read(info->atomic_cnt) == 0, jiffies);
1532 time = ktime_to_ms(ktime_get());
1533
1534 trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time,
1535 expected_time,
1536 atomic_read(info->atomic_cnt));
1537 /* If we timed out, counter is valid and time is less, wait again */
1538 } while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1539 (time < expected_time));
1540
1541 return rc;
1542 }
1543
dpu_encoder_helper_hw_reset(struct dpu_encoder_phys * phys_enc)1544 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1545 {
1546 struct dpu_encoder_virt *dpu_enc;
1547 struct dpu_hw_ctl *ctl;
1548 int rc;
1549 struct drm_encoder *drm_enc;
1550
1551 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1552 ctl = phys_enc->hw_ctl;
1553 drm_enc = phys_enc->parent;
1554
1555 if (!ctl->ops.reset)
1556 return;
1557
1558 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1559 ctl->idx);
1560
1561 rc = ctl->ops.reset(ctl);
1562 if (rc) {
1563 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx);
1564 msm_disp_snapshot_state(drm_enc->dev);
1565 }
1566
1567 phys_enc->enable_state = DPU_ENC_ENABLED;
1568 }
1569
1570 /**
1571 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1572 * Iterate through the physical encoders and perform consolidated flush
1573 * and/or control start triggering as needed. This is done in the virtual
1574 * encoder rather than the individual physical ones in order to handle
1575 * use cases that require visibility into multiple physical encoders at
1576 * a time.
1577 * @dpu_enc: Pointer to virtual encoder structure
1578 */
_dpu_encoder_kickoff_phys(struct dpu_encoder_virt * dpu_enc)1579 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1580 {
1581 struct dpu_hw_ctl *ctl;
1582 uint32_t i, pending_flush;
1583 unsigned long lock_flags;
1584
1585 pending_flush = 0x0;
1586
1587 /* update pending counts and trigger kickoff ctl flush atomically */
1588 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1589
1590 /* don't perform flush/start operations for slave encoders */
1591 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1592 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1593
1594 if (phys->enable_state == DPU_ENC_DISABLED)
1595 continue;
1596
1597 ctl = phys->hw_ctl;
1598
1599 /*
1600 * This is cleared in frame_done worker, which isn't invoked
1601 * for async commits. So don't set this for async, since it'll
1602 * roll over to the next commit.
1603 */
1604 if (phys->split_role != ENC_ROLE_SLAVE)
1605 set_bit(i, dpu_enc->frame_busy_mask);
1606
1607 if (!phys->ops.needs_single_flush ||
1608 !phys->ops.needs_single_flush(phys))
1609 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1610 else if (ctl->ops.get_pending_flush)
1611 pending_flush |= ctl->ops.get_pending_flush(ctl);
1612 }
1613
1614 /* for split flush, combine pending flush masks and send to master */
1615 if (pending_flush && dpu_enc->cur_master) {
1616 _dpu_encoder_trigger_flush(
1617 &dpu_enc->base,
1618 dpu_enc->cur_master,
1619 pending_flush);
1620 }
1621
1622 _dpu_encoder_trigger_start(dpu_enc->cur_master);
1623
1624 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1625 }
1626
dpu_encoder_trigger_kickoff_pending(struct drm_encoder * drm_enc)1627 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1628 {
1629 struct dpu_encoder_virt *dpu_enc;
1630 struct dpu_encoder_phys *phys;
1631 unsigned int i;
1632 struct dpu_hw_ctl *ctl;
1633 struct msm_display_info *disp_info;
1634
1635 if (!drm_enc) {
1636 DPU_ERROR("invalid encoder\n");
1637 return;
1638 }
1639 dpu_enc = to_dpu_encoder_virt(drm_enc);
1640 disp_info = &dpu_enc->disp_info;
1641
1642 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1643 phys = dpu_enc->phys_encs[i];
1644
1645 ctl = phys->hw_ctl;
1646 if (ctl->ops.clear_pending_flush)
1647 ctl->ops.clear_pending_flush(ctl);
1648
1649 /* update only for command mode primary ctl */
1650 if ((phys == dpu_enc->cur_master) &&
1651 disp_info->is_cmd_mode
1652 && ctl->ops.trigger_pending)
1653 ctl->ops.trigger_pending(ctl);
1654 }
1655 }
1656
_dpu_encoder_calculate_linetime(struct dpu_encoder_virt * dpu_enc,struct drm_display_mode * mode)1657 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1658 struct drm_display_mode *mode)
1659 {
1660 u64 pclk_rate;
1661 u32 pclk_period;
1662 u32 line_time;
1663
1664 /*
1665 * For linetime calculation, only operate on master encoder.
1666 */
1667 if (!dpu_enc->cur_master)
1668 return 0;
1669
1670 if (!dpu_enc->cur_master->ops.get_line_count) {
1671 DPU_ERROR("get_line_count function not defined\n");
1672 return 0;
1673 }
1674
1675 pclk_rate = mode->clock; /* pixel clock in kHz */
1676 if (pclk_rate == 0) {
1677 DPU_ERROR("pclk is 0, cannot calculate line time\n");
1678 return 0;
1679 }
1680
1681 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1682 if (pclk_period == 0) {
1683 DPU_ERROR("pclk period is 0\n");
1684 return 0;
1685 }
1686
1687 /*
1688 * Line time calculation based on Pixel clock and HTOTAL.
1689 * Final unit is in ns.
1690 */
1691 line_time = (pclk_period * mode->htotal) / 1000;
1692 if (line_time == 0) {
1693 DPU_ERROR("line time calculation is 0\n");
1694 return 0;
1695 }
1696
1697 DPU_DEBUG_ENC(dpu_enc,
1698 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1699 pclk_rate, pclk_period, line_time);
1700
1701 return line_time;
1702 }
1703
dpu_encoder_vsync_time(struct drm_encoder * drm_enc,ktime_t * wakeup_time)1704 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1705 {
1706 struct drm_display_mode *mode;
1707 struct dpu_encoder_virt *dpu_enc;
1708 u32 cur_line;
1709 u32 line_time;
1710 u32 vtotal, time_to_vsync;
1711 ktime_t cur_time;
1712
1713 dpu_enc = to_dpu_encoder_virt(drm_enc);
1714
1715 if (!drm_enc->crtc || !drm_enc->crtc->state) {
1716 DPU_ERROR("crtc/crtc state object is NULL\n");
1717 return -EINVAL;
1718 }
1719 mode = &drm_enc->crtc->state->adjusted_mode;
1720
1721 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1722 if (!line_time)
1723 return -EINVAL;
1724
1725 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1726
1727 vtotal = mode->vtotal;
1728 if (cur_line >= vtotal)
1729 time_to_vsync = line_time * vtotal;
1730 else
1731 time_to_vsync = line_time * (vtotal - cur_line);
1732
1733 if (time_to_vsync == 0) {
1734 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1735 vtotal);
1736 return -EINVAL;
1737 }
1738
1739 cur_time = ktime_get();
1740 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1741
1742 DPU_DEBUG_ENC(dpu_enc,
1743 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1744 cur_line, vtotal, time_to_vsync,
1745 ktime_to_ms(cur_time),
1746 ktime_to_ms(*wakeup_time));
1747 return 0;
1748 }
1749
dpu_encoder_vsync_event_handler(struct timer_list * t)1750 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1751 {
1752 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1753 vsync_event_timer);
1754 struct drm_encoder *drm_enc = &dpu_enc->base;
1755 struct msm_drm_private *priv;
1756 struct msm_drm_thread *event_thread;
1757
1758 if (!drm_enc->dev || !drm_enc->crtc) {
1759 DPU_ERROR("invalid parameters\n");
1760 return;
1761 }
1762
1763 priv = drm_enc->dev->dev_private;
1764
1765 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1766 DPU_ERROR("invalid crtc index\n");
1767 return;
1768 }
1769 event_thread = &priv->event_thread[drm_enc->crtc->index];
1770 if (!event_thread) {
1771 DPU_ERROR("event_thread not found for crtc:%d\n",
1772 drm_enc->crtc->index);
1773 return;
1774 }
1775
1776 del_timer(&dpu_enc->vsync_event_timer);
1777 }
1778
dpu_encoder_vsync_event_work_handler(struct kthread_work * work)1779 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1780 {
1781 struct dpu_encoder_virt *dpu_enc = container_of(work,
1782 struct dpu_encoder_virt, vsync_event_work);
1783 ktime_t wakeup_time;
1784
1785 if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1786 return;
1787
1788 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1789 mod_timer(&dpu_enc->vsync_event_timer,
1790 nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1791 }
1792
1793 static u32
dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config * dsc,u32 enc_ip_width)1794 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1795 u32 enc_ip_width)
1796 {
1797 int ssm_delay, total_pixels, soft_slice_per_enc;
1798
1799 soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1800
1801 /*
1802 * minimum number of initial line pixels is a sum of:
1803 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1804 * 91 for 10 bpc) * 3
1805 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1806 * 3. the initial xmit delay
1807 * 4. total pipeline delay through the "lock step" of encoder (47)
1808 * 5. 6 additional pixels as the output of the rate buffer is
1809 * 48 bits wide
1810 */
1811 ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1812 total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1813 if (soft_slice_per_enc > 1)
1814 total_pixels += (ssm_delay * 3);
1815 return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1816 }
1817
dpu_encoder_dsc_pipe_cfg(struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp,struct drm_dsc_config * dsc,u32 common_mode,u32 initial_lines)1818 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_dsc *hw_dsc,
1819 struct dpu_hw_pingpong *hw_pp,
1820 struct drm_dsc_config *dsc,
1821 u32 common_mode,
1822 u32 initial_lines)
1823 {
1824 if (hw_dsc->ops.dsc_config)
1825 hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1826
1827 if (hw_dsc->ops.dsc_config_thresh)
1828 hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1829
1830 if (hw_pp->ops.setup_dsc)
1831 hw_pp->ops.setup_dsc(hw_pp);
1832
1833 if (hw_pp->ops.enable_dsc)
1834 hw_pp->ops.enable_dsc(hw_pp);
1835 }
1836
dpu_encoder_prep_dsc(struct dpu_encoder_virt * dpu_enc,struct drm_dsc_config * dsc)1837 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
1838 struct drm_dsc_config *dsc)
1839 {
1840 /* coding only for 2LM, 2enc, 1 dsc config */
1841 struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
1842 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
1843 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
1844 int this_frame_slices;
1845 int intf_ip_w, enc_ip_w;
1846 int dsc_common_mode;
1847 int pic_width;
1848 u32 initial_lines;
1849 int i;
1850
1851 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1852 hw_pp[i] = dpu_enc->hw_pp[i];
1853 hw_dsc[i] = dpu_enc->hw_dsc[i];
1854
1855 if (!hw_pp[i] || !hw_dsc[i]) {
1856 DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
1857 return;
1858 }
1859 }
1860
1861 dsc_common_mode = 0;
1862 pic_width = dsc->pic_width;
1863
1864 dsc_common_mode = DSC_MODE_MULTIPLEX | DSC_MODE_SPLIT_PANEL;
1865 if (enc_master->intf_mode == INTF_MODE_VIDEO)
1866 dsc_common_mode |= DSC_MODE_VIDEO;
1867
1868 this_frame_slices = pic_width / dsc->slice_width;
1869 intf_ip_w = this_frame_slices * dsc->slice_width;
1870
1871 /*
1872 * dsc merge case: when using 2 encoders for the same stream,
1873 * no. of slices need to be same on both the encoders.
1874 */
1875 enc_ip_w = intf_ip_w / 2;
1876 initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
1877
1878 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1879 dpu_encoder_dsc_pipe_cfg(hw_dsc[i], hw_pp[i], dsc, dsc_common_mode, initial_lines);
1880 }
1881
dpu_encoder_prepare_for_kickoff(struct drm_encoder * drm_enc)1882 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1883 {
1884 struct dpu_encoder_virt *dpu_enc;
1885 struct dpu_encoder_phys *phys;
1886 bool needs_hw_reset = false;
1887 unsigned int i;
1888
1889 dpu_enc = to_dpu_encoder_virt(drm_enc);
1890
1891 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1892
1893 /* prepare for next kickoff, may include waiting on previous kickoff */
1894 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1895 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1896 phys = dpu_enc->phys_encs[i];
1897 if (phys->ops.prepare_for_kickoff)
1898 phys->ops.prepare_for_kickoff(phys);
1899 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1900 needs_hw_reset = true;
1901 }
1902 DPU_ATRACE_END("enc_prepare_for_kickoff");
1903
1904 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1905
1906 /* if any phys needs reset, reset all phys, in-order */
1907 if (needs_hw_reset) {
1908 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1909 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1910 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1911 }
1912 }
1913
1914 if (dpu_enc->dsc)
1915 dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
1916 }
1917
dpu_encoder_is_valid_for_commit(struct drm_encoder * drm_enc)1918 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
1919 {
1920 struct dpu_encoder_virt *dpu_enc;
1921 unsigned int i;
1922 struct dpu_encoder_phys *phys;
1923
1924 dpu_enc = to_dpu_encoder_virt(drm_enc);
1925
1926 if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1927 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1928 phys = dpu_enc->phys_encs[i];
1929 if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
1930 DPU_DEBUG("invalid FB not kicking off\n");
1931 return false;
1932 }
1933 }
1934 }
1935
1936 return true;
1937 }
1938
dpu_encoder_kickoff(struct drm_encoder * drm_enc)1939 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1940 {
1941 struct dpu_encoder_virt *dpu_enc;
1942 struct dpu_encoder_phys *phys;
1943 ktime_t wakeup_time;
1944 unsigned long timeout_ms;
1945 unsigned int i;
1946
1947 DPU_ATRACE_BEGIN("encoder_kickoff");
1948 dpu_enc = to_dpu_encoder_virt(drm_enc);
1949
1950 trace_dpu_enc_kickoff(DRMID(drm_enc));
1951
1952 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1953 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1954
1955 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1956 mod_timer(&dpu_enc->frame_done_timer,
1957 jiffies + msecs_to_jiffies(timeout_ms));
1958
1959 /* All phys encs are ready to go, trigger the kickoff */
1960 _dpu_encoder_kickoff_phys(dpu_enc);
1961
1962 /* allow phys encs to handle any post-kickoff business */
1963 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1964 phys = dpu_enc->phys_encs[i];
1965 if (phys->ops.handle_post_kickoff)
1966 phys->ops.handle_post_kickoff(phys);
1967 }
1968
1969 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1970 !dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1971 trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1972 ktime_to_ms(wakeup_time));
1973 mod_timer(&dpu_enc->vsync_event_timer,
1974 nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1975 }
1976
1977 DPU_ATRACE_END("encoder_kickoff");
1978 }
1979
dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys * phys_enc)1980 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
1981 {
1982 struct dpu_hw_mixer_cfg mixer;
1983 int i, num_lm;
1984 struct dpu_global_state *global_state;
1985 struct dpu_hw_blk *hw_lm[2];
1986 struct dpu_hw_mixer *hw_mixer[2];
1987 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
1988
1989 memset(&mixer, 0, sizeof(mixer));
1990
1991 /* reset all mixers for this encoder */
1992 if (phys_enc->hw_ctl->ops.clear_all_blendstages)
1993 phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
1994
1995 global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
1996
1997 num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
1998 phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1999
2000 for (i = 0; i < num_lm; i++) {
2001 hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
2002 if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
2003 phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
2004
2005 /* clear all blendstages */
2006 if (phys_enc->hw_ctl->ops.setup_blendstage)
2007 phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2008 }
2009 }
2010
dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys * phys_enc)2011 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2012 {
2013 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2014 struct dpu_hw_intf_cfg intf_cfg = { 0 };
2015 int i;
2016 struct dpu_encoder_virt *dpu_enc;
2017
2018 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2019
2020 phys_enc->hw_ctl->ops.reset(ctl);
2021
2022 dpu_encoder_helper_reset_mixers(phys_enc);
2023
2024 /*
2025 * TODO: move the once-only operation like CTL flush/trigger
2026 * into dpu_encoder_virt_disable() and all operations which need
2027 * to be done per phys encoder into the phys_disable() op.
2028 */
2029 if (phys_enc->hw_wb) {
2030 /* disable the PP block */
2031 if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2032 phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, false,
2033 phys_enc->hw_pp->idx);
2034
2035 /* mark WB flush as pending */
2036 if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
2037 phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2038 } else {
2039 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2040 if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2041 phys_enc->hw_intf->ops.bind_pingpong_blk(
2042 dpu_enc->phys_encs[i]->hw_intf, false,
2043 dpu_enc->phys_encs[i]->hw_pp->idx);
2044
2045 /* mark INTF flush as pending */
2046 if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2047 phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2048 dpu_enc->phys_encs[i]->hw_intf->idx);
2049 }
2050 }
2051
2052 /* reset the merge 3D HW block */
2053 if (phys_enc->hw_pp->merge_3d) {
2054 phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2055 BLEND_3D_NONE);
2056 if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2057 phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2058 phys_enc->hw_pp->merge_3d->idx);
2059 }
2060
2061 intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2062 intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2063
2064 if (phys_enc->hw_intf)
2065 intf_cfg.intf = phys_enc->hw_intf->idx;
2066 if (phys_enc->hw_wb)
2067 intf_cfg.wb = phys_enc->hw_wb->idx;
2068
2069 if (phys_enc->hw_pp->merge_3d)
2070 intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2071
2072 if (ctl->ops.reset_intf_cfg)
2073 ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2074
2075 ctl->ops.trigger_flush(ctl);
2076 ctl->ops.trigger_start(ctl);
2077 ctl->ops.clear_pending_flush(ctl);
2078 }
2079
dpu_encoder_prepare_commit(struct drm_encoder * drm_enc)2080 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
2081 {
2082 struct dpu_encoder_virt *dpu_enc;
2083 struct dpu_encoder_phys *phys;
2084 int i;
2085
2086 if (!drm_enc) {
2087 DPU_ERROR("invalid encoder\n");
2088 return;
2089 }
2090 dpu_enc = to_dpu_encoder_virt(drm_enc);
2091
2092 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2093 phys = dpu_enc->phys_encs[i];
2094 if (phys->ops.prepare_commit)
2095 phys->ops.prepare_commit(phys);
2096 }
2097 }
2098
2099 #ifdef CONFIG_DEBUG_FS
_dpu_encoder_status_show(struct seq_file * s,void * data)2100 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2101 {
2102 struct dpu_encoder_virt *dpu_enc = s->private;
2103 int i;
2104
2105 mutex_lock(&dpu_enc->enc_lock);
2106 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2107 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2108
2109 seq_printf(s, "intf:%d wb:%d vsync:%8d underrun:%8d ",
2110 phys->intf_idx - INTF_0, phys->wb_idx - WB_0,
2111 atomic_read(&phys->vsync_cnt),
2112 atomic_read(&phys->underrun_cnt));
2113
2114 seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2115 }
2116 mutex_unlock(&dpu_enc->enc_lock);
2117
2118 return 0;
2119 }
2120
2121 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2122
_dpu_encoder_init_debugfs(struct drm_encoder * drm_enc)2123 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2124 {
2125 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2126 int i;
2127
2128 char name[DPU_NAME_SIZE];
2129
2130 if (!drm_enc->dev) {
2131 DPU_ERROR("invalid encoder or kms\n");
2132 return -EINVAL;
2133 }
2134
2135 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
2136
2137 /* create overall sub-directory for the encoder */
2138 dpu_enc->debugfs_root = debugfs_create_dir(name,
2139 drm_enc->dev->primary->debugfs_root);
2140
2141 /* don't error check these */
2142 debugfs_create_file("status", 0600,
2143 dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
2144
2145 for (i = 0; i < dpu_enc->num_phys_encs; i++)
2146 if (dpu_enc->phys_encs[i]->ops.late_register)
2147 dpu_enc->phys_encs[i]->ops.late_register(
2148 dpu_enc->phys_encs[i],
2149 dpu_enc->debugfs_root);
2150
2151 return 0;
2152 }
2153 #else
_dpu_encoder_init_debugfs(struct drm_encoder * drm_enc)2154 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2155 {
2156 return 0;
2157 }
2158 #endif
2159
dpu_encoder_late_register(struct drm_encoder * encoder)2160 static int dpu_encoder_late_register(struct drm_encoder *encoder)
2161 {
2162 return _dpu_encoder_init_debugfs(encoder);
2163 }
2164
dpu_encoder_early_unregister(struct drm_encoder * encoder)2165 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
2166 {
2167 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2168
2169 debugfs_remove_recursive(dpu_enc->debugfs_root);
2170 }
2171
dpu_encoder_virt_add_phys_encs(struct msm_display_info * disp_info,struct dpu_encoder_virt * dpu_enc,struct dpu_enc_phys_init_params * params)2172 static int dpu_encoder_virt_add_phys_encs(
2173 struct msm_display_info *disp_info,
2174 struct dpu_encoder_virt *dpu_enc,
2175 struct dpu_enc_phys_init_params *params)
2176 {
2177 struct dpu_encoder_phys *enc = NULL;
2178
2179 DPU_DEBUG_ENC(dpu_enc, "\n");
2180
2181 /*
2182 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2183 * in this function, check up-front.
2184 */
2185 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2186 ARRAY_SIZE(dpu_enc->phys_encs)) {
2187 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2188 dpu_enc->num_phys_encs);
2189 return -EINVAL;
2190 }
2191
2192
2193 if (disp_info->intf_type == DRM_MODE_ENCODER_VIRTUAL) {
2194 enc = dpu_encoder_phys_wb_init(params);
2195
2196 if (IS_ERR(enc)) {
2197 DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2198 PTR_ERR(enc));
2199 return PTR_ERR(enc);
2200 }
2201
2202 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2203 ++dpu_enc->num_phys_encs;
2204 } else if (disp_info->is_cmd_mode) {
2205 enc = dpu_encoder_phys_cmd_init(params);
2206
2207 if (IS_ERR(enc)) {
2208 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2209 PTR_ERR(enc));
2210 return PTR_ERR(enc);
2211 }
2212
2213 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2214 ++dpu_enc->num_phys_encs;
2215 } else {
2216 enc = dpu_encoder_phys_vid_init(params);
2217
2218 if (IS_ERR(enc)) {
2219 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2220 PTR_ERR(enc));
2221 return PTR_ERR(enc);
2222 }
2223
2224 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2225 ++dpu_enc->num_phys_encs;
2226 }
2227
2228 if (params->split_role == ENC_ROLE_SLAVE)
2229 dpu_enc->cur_slave = enc;
2230 else
2231 dpu_enc->cur_master = enc;
2232
2233 return 0;
2234 }
2235
2236 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2237 .handle_vblank_virt = dpu_encoder_vblank_callback,
2238 .handle_underrun_virt = dpu_encoder_underrun_callback,
2239 .handle_frame_done = dpu_encoder_frame_done_callback,
2240 };
2241
dpu_encoder_setup_display(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct msm_display_info * disp_info)2242 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2243 struct dpu_kms *dpu_kms,
2244 struct msm_display_info *disp_info)
2245 {
2246 int ret = 0;
2247 int i = 0;
2248 enum dpu_intf_type intf_type = INTF_NONE;
2249 struct dpu_enc_phys_init_params phys_params;
2250
2251 if (!dpu_enc) {
2252 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2253 return -EINVAL;
2254 }
2255
2256 dpu_enc->cur_master = NULL;
2257
2258 memset(&phys_params, 0, sizeof(phys_params));
2259 phys_params.dpu_kms = dpu_kms;
2260 phys_params.parent = &dpu_enc->base;
2261 phys_params.parent_ops = &dpu_encoder_parent_ops;
2262 phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2263
2264 switch (disp_info->intf_type) {
2265 case DRM_MODE_ENCODER_DSI:
2266 intf_type = INTF_DSI;
2267 break;
2268 case DRM_MODE_ENCODER_TMDS:
2269 intf_type = INTF_DP;
2270 break;
2271 case DRM_MODE_ENCODER_VIRTUAL:
2272 intf_type = INTF_WB;
2273 break;
2274 }
2275
2276 WARN_ON(disp_info->num_of_h_tiles < 1);
2277
2278 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2279
2280 if (disp_info->intf_type != DRM_MODE_ENCODER_VIRTUAL)
2281 dpu_enc->idle_pc_supported =
2282 dpu_kms->catalog->caps->has_idle_pc;
2283
2284 dpu_enc->dsc = disp_info->dsc;
2285
2286 mutex_lock(&dpu_enc->enc_lock);
2287 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2288 /*
2289 * Left-most tile is at index 0, content is controller id
2290 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2291 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2292 */
2293 u32 controller_id = disp_info->h_tile_instance[i];
2294
2295 if (disp_info->num_of_h_tiles > 1) {
2296 if (i == 0)
2297 phys_params.split_role = ENC_ROLE_MASTER;
2298 else
2299 phys_params.split_role = ENC_ROLE_SLAVE;
2300 } else {
2301 phys_params.split_role = ENC_ROLE_SOLO;
2302 }
2303
2304 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2305 i, controller_id, phys_params.split_role);
2306
2307 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2308 intf_type,
2309 controller_id);
2310
2311 phys_params.wb_idx = dpu_encoder_get_wb(dpu_kms->catalog,
2312 intf_type, controller_id);
2313 /*
2314 * The phys_params might represent either an INTF or a WB unit, but not
2315 * both of them at the same time.
2316 */
2317 if ((phys_params.intf_idx == INTF_MAX) &&
2318 (phys_params.wb_idx == WB_MAX)) {
2319 DPU_ERROR_ENC(dpu_enc, "could not get intf or wb: type %d, id %d\n",
2320 intf_type, controller_id);
2321 ret = -EINVAL;
2322 }
2323
2324 if ((phys_params.intf_idx != INTF_MAX) &&
2325 (phys_params.wb_idx != WB_MAX)) {
2326 DPU_ERROR_ENC(dpu_enc, "both intf and wb present: type %d, id %d\n",
2327 intf_type, controller_id);
2328 ret = -EINVAL;
2329 }
2330
2331 if (!ret) {
2332 ret = dpu_encoder_virt_add_phys_encs(disp_info,
2333 dpu_enc, &phys_params);
2334 if (ret)
2335 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2336 }
2337 }
2338
2339 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2340 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2341 atomic_set(&phys->vsync_cnt, 0);
2342 atomic_set(&phys->underrun_cnt, 0);
2343
2344 if (phys->intf_idx >= INTF_0 && phys->intf_idx < INTF_MAX)
2345 phys->hw_intf = dpu_rm_get_intf(&dpu_kms->rm, phys->intf_idx);
2346
2347 if (phys->wb_idx >= WB_0 && phys->wb_idx < WB_MAX)
2348 phys->hw_wb = dpu_rm_get_wb(&dpu_kms->rm, phys->wb_idx);
2349
2350 if (!phys->hw_intf && !phys->hw_wb) {
2351 DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2352 ret = -EINVAL;
2353 }
2354
2355 if (phys->hw_intf && phys->hw_wb) {
2356 DPU_ERROR_ENC(dpu_enc,
2357 "invalid phys both intf and wb block at idx: %d\n", i);
2358 ret = -EINVAL;
2359 }
2360 }
2361
2362 mutex_unlock(&dpu_enc->enc_lock);
2363
2364 return ret;
2365 }
2366
dpu_encoder_frame_done_timeout(struct timer_list * t)2367 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2368 {
2369 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2370 frame_done_timer);
2371 struct drm_encoder *drm_enc = &dpu_enc->base;
2372 u32 event;
2373
2374 if (!drm_enc->dev) {
2375 DPU_ERROR("invalid parameters\n");
2376 return;
2377 }
2378
2379 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2380 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2381 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2382 return;
2383 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2384 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2385 return;
2386 }
2387
2388 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2389
2390 event = DPU_ENCODER_FRAME_EVENT_ERROR;
2391 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2392 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2393 }
2394
2395 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2396 .atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2397 .disable = dpu_encoder_virt_disable,
2398 .enable = dpu_encoder_virt_enable,
2399 .atomic_check = dpu_encoder_virt_atomic_check,
2400 };
2401
2402 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2403 .destroy = dpu_encoder_destroy,
2404 .late_register = dpu_encoder_late_register,
2405 .early_unregister = dpu_encoder_early_unregister,
2406 };
2407
dpu_encoder_setup(struct drm_device * dev,struct drm_encoder * enc,struct msm_display_info * disp_info)2408 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2409 struct msm_display_info *disp_info)
2410 {
2411 struct msm_drm_private *priv = dev->dev_private;
2412 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2413 struct drm_encoder *drm_enc = NULL;
2414 struct dpu_encoder_virt *dpu_enc = NULL;
2415 int ret = 0;
2416
2417 dpu_enc = to_dpu_encoder_virt(enc);
2418
2419 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2420 if (ret)
2421 goto fail;
2422
2423 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2424 timer_setup(&dpu_enc->frame_done_timer,
2425 dpu_encoder_frame_done_timeout, 0);
2426
2427 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2428 timer_setup(&dpu_enc->vsync_event_timer,
2429 dpu_encoder_vsync_event_handler,
2430 0);
2431 else if (disp_info->intf_type == DRM_MODE_ENCODER_TMDS)
2432 dpu_enc->wide_bus_en = msm_dp_wide_bus_available(
2433 priv->dp[disp_info->h_tile_instance[0]]);
2434
2435 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2436 dpu_encoder_off_work);
2437 dpu_enc->idle_timeout = IDLE_TIMEOUT;
2438
2439 kthread_init_work(&dpu_enc->vsync_event_work,
2440 dpu_encoder_vsync_event_work_handler);
2441
2442 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2443
2444 DPU_DEBUG_ENC(dpu_enc, "created\n");
2445
2446 return ret;
2447
2448 fail:
2449 DPU_ERROR("failed to create encoder\n");
2450 if (drm_enc)
2451 dpu_encoder_destroy(drm_enc);
2452
2453 return ret;
2454
2455
2456 }
2457
dpu_encoder_init(struct drm_device * dev,int drm_enc_mode)2458 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2459 int drm_enc_mode)
2460 {
2461 struct dpu_encoder_virt *dpu_enc = NULL;
2462 int rc = 0;
2463
2464 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2465 if (!dpu_enc)
2466 return ERR_PTR(-ENOMEM);
2467
2468
2469 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2470 drm_enc_mode, NULL);
2471 if (rc) {
2472 devm_kfree(dev->dev, dpu_enc);
2473 return ERR_PTR(rc);
2474 }
2475
2476 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2477
2478 spin_lock_init(&dpu_enc->enc_spinlock);
2479 dpu_enc->enabled = false;
2480 mutex_init(&dpu_enc->enc_lock);
2481 mutex_init(&dpu_enc->rc_lock);
2482
2483 return &dpu_enc->base;
2484 }
2485
dpu_encoder_wait_for_event(struct drm_encoder * drm_enc,enum msm_event_wait event)2486 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2487 enum msm_event_wait event)
2488 {
2489 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2490 struct dpu_encoder_virt *dpu_enc = NULL;
2491 int i, ret = 0;
2492
2493 if (!drm_enc) {
2494 DPU_ERROR("invalid encoder\n");
2495 return -EINVAL;
2496 }
2497 dpu_enc = to_dpu_encoder_virt(drm_enc);
2498 DPU_DEBUG_ENC(dpu_enc, "\n");
2499
2500 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2501 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2502
2503 switch (event) {
2504 case MSM_ENC_COMMIT_DONE:
2505 fn_wait = phys->ops.wait_for_commit_done;
2506 break;
2507 case MSM_ENC_TX_COMPLETE:
2508 fn_wait = phys->ops.wait_for_tx_complete;
2509 break;
2510 case MSM_ENC_VBLANK:
2511 fn_wait = phys->ops.wait_for_vblank;
2512 break;
2513 default:
2514 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2515 event);
2516 return -EINVAL;
2517 }
2518
2519 if (fn_wait) {
2520 DPU_ATRACE_BEGIN("wait_for_completion_event");
2521 ret = fn_wait(phys);
2522 DPU_ATRACE_END("wait_for_completion_event");
2523 if (ret)
2524 return ret;
2525 }
2526 }
2527
2528 return ret;
2529 }
2530
dpu_encoder_get_intf_mode(struct drm_encoder * encoder)2531 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2532 {
2533 struct dpu_encoder_virt *dpu_enc = NULL;
2534
2535 if (!encoder) {
2536 DPU_ERROR("invalid encoder\n");
2537 return INTF_MODE_NONE;
2538 }
2539 dpu_enc = to_dpu_encoder_virt(encoder);
2540
2541 if (dpu_enc->cur_master)
2542 return dpu_enc->cur_master->intf_mode;
2543
2544 if (dpu_enc->num_phys_encs)
2545 return dpu_enc->phys_encs[0]->intf_mode;
2546
2547 return INTF_MODE_NONE;
2548 }
2549
dpu_encoder_helper_get_dsc(struct dpu_encoder_phys * phys_enc)2550 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2551 {
2552 struct drm_encoder *encoder = phys_enc->parent;
2553 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2554
2555 return dpu_enc->dsc_mask;
2556 }
2557