1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
4 * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
5 * Copyright (C) 2013 Red Hat
6 * Author: Rob Clark <robdclark@gmail.com>
7 */
8
9 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
10 #include <linux/sort.h>
11 #include <linux/debugfs.h>
12 #include <linux/ktime.h>
13 #include <linux/bits.h>
14
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_blend.h>
17 #include <drm/drm_crtc.h>
18 #include <drm/drm_flip_work.h>
19 #include <drm/drm_framebuffer.h>
20 #include <drm/drm_mode.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_rect.h>
23 #include <drm/drm_vblank.h>
24
25 #include "dpu_kms.h"
26 #include "dpu_hw_lm.h"
27 #include "dpu_hw_ctl.h"
28 #include "dpu_hw_dspp.h"
29 #include "dpu_crtc.h"
30 #include "dpu_plane.h"
31 #include "dpu_encoder.h"
32 #include "dpu_vbif.h"
33 #include "dpu_core_perf.h"
34 #include "dpu_trace.h"
35
36 /* layer mixer index on dpu_crtc */
37 #define LEFT_MIXER 0
38 #define RIGHT_MIXER 1
39
40 /* timeout in ms waiting for frame done */
41 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60
42
43 #define CONVERT_S3_15(val) \
44 (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0))
45
_dpu_crtc_get_kms(struct drm_crtc * crtc)46 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
47 {
48 struct msm_drm_private *priv = crtc->dev->dev_private;
49
50 return to_dpu_kms(priv->kms);
51 }
52
dpu_crtc_destroy(struct drm_crtc * crtc)53 static void dpu_crtc_destroy(struct drm_crtc *crtc)
54 {
55 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
56
57 if (!crtc)
58 return;
59
60 drm_crtc_cleanup(crtc);
61 kfree(dpu_crtc);
62 }
63
get_encoder_from_crtc(struct drm_crtc * crtc)64 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc)
65 {
66 struct drm_device *dev = crtc->dev;
67 struct drm_encoder *encoder;
68
69 drm_for_each_encoder(encoder, dev)
70 if (encoder->crtc == crtc)
71 return encoder;
72
73 return NULL;
74 }
75
dpu_crtc_parse_crc_source(const char * src_name)76 static enum dpu_crtc_crc_source dpu_crtc_parse_crc_source(const char *src_name)
77 {
78 if (!src_name ||
79 !strcmp(src_name, "none"))
80 return DPU_CRTC_CRC_SOURCE_NONE;
81 if (!strcmp(src_name, "auto") ||
82 !strcmp(src_name, "lm"))
83 return DPU_CRTC_CRC_SOURCE_LAYER_MIXER;
84 if (!strcmp(src_name, "encoder"))
85 return DPU_CRTC_CRC_SOURCE_ENCODER;
86
87 return DPU_CRTC_CRC_SOURCE_INVALID;
88 }
89
dpu_crtc_verify_crc_source(struct drm_crtc * crtc,const char * src_name,size_t * values_cnt)90 static int dpu_crtc_verify_crc_source(struct drm_crtc *crtc,
91 const char *src_name, size_t *values_cnt)
92 {
93 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
94 struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
95
96 if (source < 0) {
97 DRM_DEBUG_DRIVER("Invalid source %s for CRTC%d\n", src_name, crtc->index);
98 return -EINVAL;
99 }
100
101 if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) {
102 *values_cnt = crtc_state->num_mixers;
103 } else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) {
104 struct drm_encoder *drm_enc;
105
106 *values_cnt = 0;
107
108 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
109 *values_cnt += dpu_encoder_get_crc_values_cnt(drm_enc);
110 }
111
112 return 0;
113 }
114
dpu_crtc_setup_lm_misr(struct dpu_crtc_state * crtc_state)115 static void dpu_crtc_setup_lm_misr(struct dpu_crtc_state *crtc_state)
116 {
117 struct dpu_crtc_mixer *m;
118 int i;
119
120 for (i = 0; i < crtc_state->num_mixers; ++i) {
121 m = &crtc_state->mixers[i];
122
123 if (!m->hw_lm || !m->hw_lm->ops.setup_misr)
124 continue;
125
126 /* Calculate MISR over 1 frame */
127 m->hw_lm->ops.setup_misr(m->hw_lm, true, 1);
128 }
129 }
130
dpu_crtc_setup_encoder_misr(struct drm_crtc * crtc)131 static void dpu_crtc_setup_encoder_misr(struct drm_crtc *crtc)
132 {
133 struct drm_encoder *drm_enc;
134
135 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
136 dpu_encoder_setup_misr(drm_enc);
137 }
138
dpu_crtc_set_crc_source(struct drm_crtc * crtc,const char * src_name)139 static int dpu_crtc_set_crc_source(struct drm_crtc *crtc, const char *src_name)
140 {
141 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
142 enum dpu_crtc_crc_source current_source;
143 struct dpu_crtc_state *crtc_state;
144 struct drm_device *drm_dev = crtc->dev;
145
146 bool was_enabled;
147 bool enable = false;
148 int ret = 0;
149
150 if (source < 0) {
151 DRM_DEBUG_DRIVER("Invalid CRC source %s for CRTC%d\n", src_name, crtc->index);
152 return -EINVAL;
153 }
154
155 ret = drm_modeset_lock(&crtc->mutex, NULL);
156
157 if (ret)
158 return ret;
159
160 enable = (source != DPU_CRTC_CRC_SOURCE_NONE);
161 crtc_state = to_dpu_crtc_state(crtc->state);
162
163 spin_lock_irq(&drm_dev->event_lock);
164 current_source = crtc_state->crc_source;
165 spin_unlock_irq(&drm_dev->event_lock);
166
167 was_enabled = (current_source != DPU_CRTC_CRC_SOURCE_NONE);
168
169 if (!was_enabled && enable) {
170 ret = drm_crtc_vblank_get(crtc);
171
172 if (ret)
173 goto cleanup;
174
175 } else if (was_enabled && !enable) {
176 drm_crtc_vblank_put(crtc);
177 }
178
179 spin_lock_irq(&drm_dev->event_lock);
180 crtc_state->crc_source = source;
181 spin_unlock_irq(&drm_dev->event_lock);
182
183 crtc_state->crc_frame_skip_count = 0;
184
185 if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
186 dpu_crtc_setup_lm_misr(crtc_state);
187 else if (source == DPU_CRTC_CRC_SOURCE_ENCODER)
188 dpu_crtc_setup_encoder_misr(crtc);
189 else
190 ret = -EINVAL;
191
192 cleanup:
193 drm_modeset_unlock(&crtc->mutex);
194
195 return ret;
196 }
197
dpu_crtc_get_vblank_counter(struct drm_crtc * crtc)198 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc)
199 {
200 struct drm_encoder *encoder = get_encoder_from_crtc(crtc);
201 if (!encoder) {
202 DRM_ERROR("no encoder found for crtc %d\n", crtc->index);
203 return 0;
204 }
205
206 return dpu_encoder_get_vsync_count(encoder);
207 }
208
dpu_crtc_get_lm_crc(struct drm_crtc * crtc,struct dpu_crtc_state * crtc_state)209 static int dpu_crtc_get_lm_crc(struct drm_crtc *crtc,
210 struct dpu_crtc_state *crtc_state)
211 {
212 struct dpu_crtc_mixer *m;
213 u32 crcs[CRTC_DUAL_MIXERS];
214
215 int rc = 0;
216 int i;
217
218 BUILD_BUG_ON(ARRAY_SIZE(crcs) != ARRAY_SIZE(crtc_state->mixers));
219
220 for (i = 0; i < crtc_state->num_mixers; ++i) {
221
222 m = &crtc_state->mixers[i];
223
224 if (!m->hw_lm || !m->hw_lm->ops.collect_misr)
225 continue;
226
227 rc = m->hw_lm->ops.collect_misr(m->hw_lm, &crcs[i]);
228
229 if (rc) {
230 if (rc != -ENODATA)
231 DRM_DEBUG_DRIVER("MISR read failed\n");
232 return rc;
233 }
234 }
235
236 return drm_crtc_add_crc_entry(crtc, true,
237 drm_crtc_accurate_vblank_count(crtc), crcs);
238 }
239
dpu_crtc_get_encoder_crc(struct drm_crtc * crtc)240 static int dpu_crtc_get_encoder_crc(struct drm_crtc *crtc)
241 {
242 struct drm_encoder *drm_enc;
243 int rc, pos = 0;
244 u32 crcs[INTF_MAX];
245
246 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) {
247 rc = dpu_encoder_get_crc(drm_enc, crcs, pos);
248 if (rc < 0) {
249 if (rc != -ENODATA)
250 DRM_DEBUG_DRIVER("MISR read failed\n");
251
252 return rc;
253 }
254
255 pos += rc;
256 }
257
258 return drm_crtc_add_crc_entry(crtc, true,
259 drm_crtc_accurate_vblank_count(crtc), crcs);
260 }
261
dpu_crtc_get_crc(struct drm_crtc * crtc)262 static int dpu_crtc_get_crc(struct drm_crtc *crtc)
263 {
264 struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
265
266 /* Skip first 2 frames in case of "uncooked" CRCs */
267 if (crtc_state->crc_frame_skip_count < 2) {
268 crtc_state->crc_frame_skip_count++;
269 return 0;
270 }
271
272 if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
273 return dpu_crtc_get_lm_crc(crtc, crtc_state);
274 else if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_ENCODER)
275 return dpu_crtc_get_encoder_crc(crtc);
276
277 return -EINVAL;
278 }
279
dpu_crtc_get_scanout_position(struct drm_crtc * crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)280 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc,
281 bool in_vblank_irq,
282 int *vpos, int *hpos,
283 ktime_t *stime, ktime_t *etime,
284 const struct drm_display_mode *mode)
285 {
286 unsigned int pipe = crtc->index;
287 struct drm_encoder *encoder;
288 int line, vsw, vbp, vactive_start, vactive_end, vfp_end;
289
290 encoder = get_encoder_from_crtc(crtc);
291 if (!encoder) {
292 DRM_ERROR("no encoder found for crtc %d\n", pipe);
293 return false;
294 }
295
296 vsw = mode->crtc_vsync_end - mode->crtc_vsync_start;
297 vbp = mode->crtc_vtotal - mode->crtc_vsync_end;
298
299 /*
300 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at
301 * the end of VFP. Translate the porch values relative to the line
302 * counter positions.
303 */
304
305 vactive_start = vsw + vbp + 1;
306 vactive_end = vactive_start + mode->crtc_vdisplay;
307
308 /* last scan line before VSYNC */
309 vfp_end = mode->crtc_vtotal;
310
311 if (stime)
312 *stime = ktime_get();
313
314 line = dpu_encoder_get_linecount(encoder);
315
316 if (line < vactive_start)
317 line -= vactive_start;
318 else if (line > vactive_end)
319 line = line - vfp_end - vactive_start;
320 else
321 line -= vactive_start;
322
323 *vpos = line;
324 *hpos = 0;
325
326 if (etime)
327 *etime = ktime_get();
328
329 return true;
330 }
331
_dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer * mixer,struct dpu_plane_state * pstate,struct dpu_format * format)332 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
333 struct dpu_plane_state *pstate, struct dpu_format *format)
334 {
335 struct dpu_hw_mixer *lm = mixer->hw_lm;
336 uint32_t blend_op;
337 uint32_t fg_alpha, bg_alpha;
338
339 fg_alpha = pstate->base.alpha >> 8;
340 bg_alpha = 0xff - fg_alpha;
341
342 /* default to opaque blending */
343 if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE ||
344 !format->alpha_enable) {
345 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
346 DPU_BLEND_BG_ALPHA_BG_CONST;
347 } else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) {
348 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
349 DPU_BLEND_BG_ALPHA_FG_PIXEL;
350 if (fg_alpha != 0xff) {
351 bg_alpha = fg_alpha;
352 blend_op |= DPU_BLEND_BG_MOD_ALPHA |
353 DPU_BLEND_BG_INV_MOD_ALPHA;
354 } else {
355 blend_op |= DPU_BLEND_BG_INV_ALPHA;
356 }
357 } else {
358 /* coverage blending */
359 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
360 DPU_BLEND_BG_ALPHA_FG_PIXEL;
361 if (fg_alpha != 0xff) {
362 bg_alpha = fg_alpha;
363 blend_op |= DPU_BLEND_FG_MOD_ALPHA |
364 DPU_BLEND_FG_INV_MOD_ALPHA |
365 DPU_BLEND_BG_MOD_ALPHA |
366 DPU_BLEND_BG_INV_MOD_ALPHA;
367 } else {
368 blend_op |= DPU_BLEND_BG_INV_ALPHA;
369 }
370 }
371
372 lm->ops.setup_blend_config(lm, pstate->stage,
373 fg_alpha, bg_alpha, blend_op);
374
375 DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n",
376 &format->base.pixel_format, format->alpha_enable, blend_op);
377 }
378
_dpu_crtc_program_lm_output_roi(struct drm_crtc * crtc)379 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
380 {
381 struct dpu_crtc_state *crtc_state;
382 int lm_idx, lm_horiz_position;
383
384 crtc_state = to_dpu_crtc_state(crtc->state);
385
386 lm_horiz_position = 0;
387 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
388 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
389 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
390 struct dpu_hw_mixer_cfg cfg;
391
392 if (!lm_roi || !drm_rect_visible(lm_roi))
393 continue;
394
395 cfg.out_width = drm_rect_width(lm_roi);
396 cfg.out_height = drm_rect_height(lm_roi);
397 cfg.right_mixer = lm_horiz_position++;
398 cfg.flags = 0;
399 hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
400 }
401 }
402
_dpu_crtc_blend_setup_mixer(struct drm_crtc * crtc,struct dpu_crtc * dpu_crtc,struct dpu_crtc_mixer * mixer,struct dpu_hw_stage_cfg * stage_cfg)403 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
404 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer,
405 struct dpu_hw_stage_cfg *stage_cfg)
406 {
407 struct drm_plane *plane;
408 struct drm_framebuffer *fb;
409 struct drm_plane_state *state;
410 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
411 struct dpu_plane_state *pstate = NULL;
412 struct dpu_format *format;
413 struct dpu_hw_ctl *ctl = mixer->lm_ctl;
414
415 uint32_t stage_idx, lm_idx;
416 int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 };
417 bool bg_alpha_enable = false;
418 DECLARE_BITMAP(fetch_active, SSPP_MAX);
419
420 memset(fetch_active, 0, sizeof(fetch_active));
421 drm_atomic_crtc_for_each_plane(plane, crtc) {
422 enum dpu_sspp sspp_idx;
423
424 state = plane->state;
425 if (!state)
426 continue;
427
428 if (!state->visible)
429 continue;
430
431 pstate = to_dpu_plane_state(state);
432 fb = state->fb;
433
434 sspp_idx = dpu_plane_pipe(plane);
435 set_bit(sspp_idx, fetch_active);
436
437 DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d\n",
438 crtc->base.id,
439 pstate->stage,
440 plane->base.id,
441 sspp_idx - SSPP_VIG0,
442 state->fb ? state->fb->base.id : -1);
443
444 format = to_dpu_format(msm_framebuffer_format(pstate->base.fb));
445
446 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
447 bg_alpha_enable = true;
448
449 stage_idx = zpos_cnt[pstate->stage]++;
450 stage_cfg->stage[pstate->stage][stage_idx] =
451 sspp_idx;
452 stage_cfg->multirect_index[pstate->stage][stage_idx] =
453 pstate->multirect_index;
454
455 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
456 state, pstate, stage_idx,
457 sspp_idx - SSPP_VIG0,
458 format->base.pixel_format,
459 fb ? fb->modifier : 0);
460
461 /* blend config update */
462 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
463 _dpu_crtc_setup_blend_cfg(mixer + lm_idx,
464 pstate, format);
465
466 mixer[lm_idx].lm_ctl->ops.update_pending_flush_sspp(mixer[lm_idx].lm_ctl,
467 sspp_idx);
468
469 if (bg_alpha_enable && !format->alpha_enable)
470 mixer[lm_idx].mixer_op_mode = 0;
471 else
472 mixer[lm_idx].mixer_op_mode |=
473 1 << pstate->stage;
474 }
475 }
476
477 if (ctl->ops.set_active_pipes)
478 ctl->ops.set_active_pipes(ctl, fetch_active);
479
480 _dpu_crtc_program_lm_output_roi(crtc);
481 }
482
483 /**
484 * _dpu_crtc_blend_setup - configure crtc mixers
485 * @crtc: Pointer to drm crtc structure
486 */
_dpu_crtc_blend_setup(struct drm_crtc * crtc)487 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
488 {
489 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
490 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
491 struct dpu_crtc_mixer *mixer = cstate->mixers;
492 struct dpu_hw_ctl *ctl;
493 struct dpu_hw_mixer *lm;
494 struct dpu_hw_stage_cfg stage_cfg;
495 int i;
496
497 DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name);
498
499 for (i = 0; i < cstate->num_mixers; i++) {
500 mixer[i].mixer_op_mode = 0;
501 if (mixer[i].lm_ctl->ops.clear_all_blendstages)
502 mixer[i].lm_ctl->ops.clear_all_blendstages(
503 mixer[i].lm_ctl);
504 }
505
506 /* initialize stage cfg */
507 memset(&stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg));
508
509 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer, &stage_cfg);
510
511 for (i = 0; i < cstate->num_mixers; i++) {
512 ctl = mixer[i].lm_ctl;
513 lm = mixer[i].hw_lm;
514
515 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
516
517 /* stage config flush mask */
518 ctl->ops.update_pending_flush_mixer(ctl,
519 mixer[i].hw_lm->idx);
520
521 DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d\n",
522 mixer[i].hw_lm->idx - LM_0,
523 mixer[i].mixer_op_mode,
524 ctl->idx - CTL_0);
525
526 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
527 &stage_cfg);
528 }
529 }
530
531 /**
532 * _dpu_crtc_complete_flip - signal pending page_flip events
533 * Any pending vblank events are added to the vblank_event_list
534 * so that the next vblank interrupt shall signal them.
535 * However PAGE_FLIP events are not handled through the vblank_event_list.
536 * This API signals any pending PAGE_FLIP events requested through
537 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
538 * @crtc: Pointer to drm crtc structure
539 */
_dpu_crtc_complete_flip(struct drm_crtc * crtc)540 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
541 {
542 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
543 struct drm_device *dev = crtc->dev;
544 unsigned long flags;
545
546 spin_lock_irqsave(&dev->event_lock, flags);
547 if (dpu_crtc->event) {
548 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name,
549 dpu_crtc->event);
550 trace_dpu_crtc_complete_flip(DRMID(crtc));
551 drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
552 dpu_crtc->event = NULL;
553 }
554 spin_unlock_irqrestore(&dev->event_lock, flags);
555 }
556
dpu_crtc_get_intf_mode(struct drm_crtc * crtc)557 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
558 {
559 struct drm_encoder *encoder;
560
561 /*
562 * TODO: This function is called from dpu debugfs and as part of atomic
563 * check. When called from debugfs, the crtc->mutex must be held to
564 * read crtc->state. However reading crtc->state from atomic check isn't
565 * allowed (unless you have a good reason, a big comment, and a deep
566 * understanding of how the atomic/modeset locks work (<- and this is
567 * probably not possible)). So we'll keep the WARN_ON here for now, but
568 * really we need to figure out a better way to track our operating mode
569 */
570 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
571
572 /* TODO: Returns the first INTF_MODE, could there be multiple values? */
573 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
574 return dpu_encoder_get_intf_mode(encoder);
575
576 return INTF_MODE_NONE;
577 }
578
dpu_crtc_vblank_callback(struct drm_crtc * crtc)579 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
580 {
581 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
582
583 /* keep statistics on vblank callback - with auto reset via debugfs */
584 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
585 dpu_crtc->vblank_cb_time = ktime_get();
586 else
587 dpu_crtc->vblank_cb_count++;
588
589 dpu_crtc_get_crc(crtc);
590
591 drm_crtc_handle_vblank(crtc);
592 trace_dpu_crtc_vblank_cb(DRMID(crtc));
593 }
594
dpu_crtc_frame_event_work(struct kthread_work * work)595 static void dpu_crtc_frame_event_work(struct kthread_work *work)
596 {
597 struct dpu_crtc_frame_event *fevent = container_of(work,
598 struct dpu_crtc_frame_event, work);
599 struct drm_crtc *crtc = fevent->crtc;
600 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
601 unsigned long flags;
602 bool frame_done = false;
603
604 DPU_ATRACE_BEGIN("crtc_frame_event");
605
606 DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
607 ktime_to_ns(fevent->ts));
608
609 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
610 | DPU_ENCODER_FRAME_EVENT_ERROR
611 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
612
613 if (atomic_read(&dpu_crtc->frame_pending) < 1) {
614 /* ignore vblank when not pending */
615 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
616 /* release bandwidth and other resources */
617 trace_dpu_crtc_frame_event_done(DRMID(crtc),
618 fevent->event);
619 dpu_core_perf_crtc_release_bw(crtc);
620 } else {
621 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
622 fevent->event);
623 }
624
625 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
626 | DPU_ENCODER_FRAME_EVENT_ERROR))
627 frame_done = true;
628 }
629
630 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
631 DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
632 crtc->base.id, ktime_to_ns(fevent->ts));
633
634 if (frame_done)
635 complete_all(&dpu_crtc->frame_done_comp);
636
637 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
638 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
639 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
640 DPU_ATRACE_END("crtc_frame_event");
641 }
642
643 /*
644 * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module
645 * registers this API to encoder for all frame event callbacks like
646 * frame_error, frame_done, idle_timeout, etc. Encoder may call different events
647 * from different context - IRQ, user thread, commit_thread, etc. Each event
648 * should be carefully reviewed and should be processed in proper task context
649 * to avoid schedulin delay or properly manage the irq context's bottom half
650 * processing.
651 */
dpu_crtc_frame_event_cb(void * data,u32 event)652 static void dpu_crtc_frame_event_cb(void *data, u32 event)
653 {
654 struct drm_crtc *crtc = (struct drm_crtc *)data;
655 struct dpu_crtc *dpu_crtc;
656 struct msm_drm_private *priv;
657 struct dpu_crtc_frame_event *fevent;
658 unsigned long flags;
659 u32 crtc_id;
660
661 /* Nothing to do on idle event */
662 if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
663 return;
664
665 dpu_crtc = to_dpu_crtc(crtc);
666 priv = crtc->dev->dev_private;
667 crtc_id = drm_crtc_index(crtc);
668
669 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
670
671 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
672 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
673 struct dpu_crtc_frame_event, list);
674 if (fevent)
675 list_del_init(&fevent->list);
676 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
677
678 if (!fevent) {
679 DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event);
680 return;
681 }
682
683 fevent->event = event;
684 fevent->crtc = crtc;
685 fevent->ts = ktime_get();
686 kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work);
687 }
688
dpu_crtc_complete_commit(struct drm_crtc * crtc)689 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
690 {
691 trace_dpu_crtc_complete_commit(DRMID(crtc));
692 dpu_core_perf_crtc_update(crtc, 0, false);
693 _dpu_crtc_complete_flip(crtc);
694 }
695
_dpu_crtc_setup_lm_bounds(struct drm_crtc * crtc,struct drm_crtc_state * state)696 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc,
697 struct drm_crtc_state *state)
698 {
699 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
700 struct drm_display_mode *adj_mode = &state->adjusted_mode;
701 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
702 int i;
703
704 for (i = 0; i < cstate->num_mixers; i++) {
705 struct drm_rect *r = &cstate->lm_bounds[i];
706 r->x1 = crtc_split_width * i;
707 r->y1 = 0;
708 r->x2 = r->x1 + crtc_split_width;
709 r->y2 = adj_mode->vdisplay;
710
711 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
712 }
713 }
714
_dpu_crtc_get_pcc_coeff(struct drm_crtc_state * state,struct dpu_hw_pcc_cfg * cfg)715 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state,
716 struct dpu_hw_pcc_cfg *cfg)
717 {
718 struct drm_color_ctm *ctm;
719
720 memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg));
721
722 ctm = (struct drm_color_ctm *)state->ctm->data;
723
724 if (!ctm)
725 return;
726
727 cfg->r.r = CONVERT_S3_15(ctm->matrix[0]);
728 cfg->g.r = CONVERT_S3_15(ctm->matrix[1]);
729 cfg->b.r = CONVERT_S3_15(ctm->matrix[2]);
730
731 cfg->r.g = CONVERT_S3_15(ctm->matrix[3]);
732 cfg->g.g = CONVERT_S3_15(ctm->matrix[4]);
733 cfg->b.g = CONVERT_S3_15(ctm->matrix[5]);
734
735 cfg->r.b = CONVERT_S3_15(ctm->matrix[6]);
736 cfg->g.b = CONVERT_S3_15(ctm->matrix[7]);
737 cfg->b.b = CONVERT_S3_15(ctm->matrix[8]);
738 }
739
_dpu_crtc_setup_cp_blocks(struct drm_crtc * crtc)740 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc)
741 {
742 struct drm_crtc_state *state = crtc->state;
743 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
744 struct dpu_crtc_mixer *mixer = cstate->mixers;
745 struct dpu_hw_pcc_cfg cfg;
746 struct dpu_hw_ctl *ctl;
747 struct dpu_hw_dspp *dspp;
748 int i;
749
750
751 if (!state->color_mgmt_changed)
752 return;
753
754 for (i = 0; i < cstate->num_mixers; i++) {
755 ctl = mixer[i].lm_ctl;
756 dspp = mixer[i].hw_dspp;
757
758 if (!dspp || !dspp->ops.setup_pcc)
759 continue;
760
761 if (!state->ctm) {
762 dspp->ops.setup_pcc(dspp, NULL);
763 } else {
764 _dpu_crtc_get_pcc_coeff(state, &cfg);
765 dspp->ops.setup_pcc(dspp, &cfg);
766 }
767
768 /* stage config flush mask */
769 ctl->ops.update_pending_flush_dspp(ctl,
770 mixer[i].hw_dspp->idx);
771 }
772 }
773
dpu_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)774 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
775 struct drm_atomic_state *state)
776 {
777 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
778 struct drm_encoder *encoder;
779
780 if (!crtc->state->enable) {
781 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n",
782 crtc->base.id, crtc->state->enable);
783 return;
784 }
785
786 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
787
788 _dpu_crtc_setup_lm_bounds(crtc, crtc->state);
789
790 /* encoder will trigger pending mask now */
791 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
792 dpu_encoder_trigger_kickoff_pending(encoder);
793
794 /*
795 * If no mixers have been allocated in dpu_crtc_atomic_check(),
796 * it means we are trying to flush a CRTC whose state is disabled:
797 * nothing else needs to be done.
798 */
799 if (unlikely(!cstate->num_mixers))
800 return;
801
802 _dpu_crtc_blend_setup(crtc);
803
804 _dpu_crtc_setup_cp_blocks(crtc);
805
806 /*
807 * PP_DONE irq is only used by command mode for now.
808 * It is better to request pending before FLUSH and START trigger
809 * to make sure no pp_done irq missed.
810 * This is safe because no pp_done will happen before SW trigger
811 * in command mode.
812 */
813 }
814
dpu_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)815 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
816 struct drm_atomic_state *state)
817 {
818 struct dpu_crtc *dpu_crtc;
819 struct drm_device *dev;
820 struct drm_plane *plane;
821 struct msm_drm_private *priv;
822 unsigned long flags;
823 struct dpu_crtc_state *cstate;
824
825 if (!crtc->state->enable) {
826 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n",
827 crtc->base.id, crtc->state->enable);
828 return;
829 }
830
831 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
832
833 dpu_crtc = to_dpu_crtc(crtc);
834 cstate = to_dpu_crtc_state(crtc->state);
835 dev = crtc->dev;
836 priv = dev->dev_private;
837
838 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) {
839 DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
840 return;
841 }
842
843 WARN_ON(dpu_crtc->event);
844 spin_lock_irqsave(&dev->event_lock, flags);
845 dpu_crtc->event = crtc->state->event;
846 crtc->state->event = NULL;
847 spin_unlock_irqrestore(&dev->event_lock, flags);
848
849 /*
850 * If no mixers has been allocated in dpu_crtc_atomic_check(),
851 * it means we are trying to flush a CRTC whose state is disabled:
852 * nothing else needs to be done.
853 */
854 if (unlikely(!cstate->num_mixers))
855 return;
856
857 /* update performance setting before crtc kickoff */
858 dpu_core_perf_crtc_update(crtc, 1, false);
859
860 /*
861 * Final plane updates: Give each plane a chance to complete all
862 * required writes/flushing before crtc's "flush
863 * everything" call below.
864 */
865 drm_atomic_crtc_for_each_plane(plane, crtc) {
866 if (dpu_crtc->smmu_state.transition_error)
867 dpu_plane_set_error(plane, true);
868 dpu_plane_flush(plane);
869 }
870
871 /* Kickoff will be scheduled by outer layer */
872 }
873
874 /**
875 * dpu_crtc_destroy_state - state destroy hook
876 * @crtc: drm CRTC
877 * @state: CRTC state object to release
878 */
dpu_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)879 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
880 struct drm_crtc_state *state)
881 {
882 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
883
884 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
885
886 __drm_atomic_helper_crtc_destroy_state(state);
887
888 kfree(cstate);
889 }
890
_dpu_crtc_wait_for_frame_done(struct drm_crtc * crtc)891 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
892 {
893 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
894 int ret, rc = 0;
895
896 if (!atomic_read(&dpu_crtc->frame_pending)) {
897 DRM_DEBUG_ATOMIC("no frames pending\n");
898 return 0;
899 }
900
901 DPU_ATRACE_BEGIN("frame done completion wait");
902 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
903 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
904 if (!ret) {
905 DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
906 rc = -ETIMEDOUT;
907 }
908 DPU_ATRACE_END("frame done completion wait");
909
910 return rc;
911 }
912
dpu_crtc_commit_kickoff(struct drm_crtc * crtc)913 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
914 {
915 struct drm_encoder *encoder;
916 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
917 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
918 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
919
920 /*
921 * If no mixers has been allocated in dpu_crtc_atomic_check(),
922 * it means we are trying to start a CRTC whose state is disabled:
923 * nothing else needs to be done.
924 */
925 if (unlikely(!cstate->num_mixers))
926 return;
927
928 DPU_ATRACE_BEGIN("crtc_commit");
929
930 drm_for_each_encoder_mask(encoder, crtc->dev,
931 crtc->state->encoder_mask) {
932 if (!dpu_encoder_is_valid_for_commit(encoder)) {
933 DRM_DEBUG_ATOMIC("invalid FB not kicking off crtc\n");
934 goto end;
935 }
936 }
937 /*
938 * Encoder will flush/start now, unless it has a tx pending. If so, it
939 * may delay and flush at an irq event (e.g. ppdone)
940 */
941 drm_for_each_encoder_mask(encoder, crtc->dev,
942 crtc->state->encoder_mask)
943 dpu_encoder_prepare_for_kickoff(encoder);
944
945 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
946 /* acquire bandwidth and other resources */
947 DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id);
948 } else
949 DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id);
950
951 dpu_crtc->play_count++;
952
953 dpu_vbif_clear_errors(dpu_kms);
954
955 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
956 dpu_encoder_kickoff(encoder);
957
958 reinit_completion(&dpu_crtc->frame_done_comp);
959
960 end:
961 DPU_ATRACE_END("crtc_commit");
962 }
963
dpu_crtc_reset(struct drm_crtc * crtc)964 static void dpu_crtc_reset(struct drm_crtc *crtc)
965 {
966 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
967
968 if (crtc->state)
969 dpu_crtc_destroy_state(crtc, crtc->state);
970
971 __drm_atomic_helper_crtc_reset(crtc, &cstate->base);
972 }
973
974 /**
975 * dpu_crtc_duplicate_state - state duplicate hook
976 * @crtc: Pointer to drm crtc structure
977 */
dpu_crtc_duplicate_state(struct drm_crtc * crtc)978 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
979 {
980 struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state);
981
982 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
983 if (!cstate) {
984 DPU_ERROR("failed to allocate state\n");
985 return NULL;
986 }
987
988 /* duplicate base helper */
989 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
990
991 return &cstate->base;
992 }
993
dpu_crtc_atomic_print_state(struct drm_printer * p,const struct drm_crtc_state * state)994 static void dpu_crtc_atomic_print_state(struct drm_printer *p,
995 const struct drm_crtc_state *state)
996 {
997 const struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
998 int i;
999
1000 for (i = 0; i < cstate->num_mixers; i++) {
1001 drm_printf(p, "\tlm[%d]=%d\n", i, cstate->mixers[i].hw_lm->idx - LM_0);
1002 drm_printf(p, "\tctl[%d]=%d\n", i, cstate->mixers[i].lm_ctl->idx - CTL_0);
1003 if (cstate->mixers[i].hw_dspp)
1004 drm_printf(p, "\tdspp[%d]=%d\n", i, cstate->mixers[i].hw_dspp->idx - DSPP_0);
1005 }
1006 }
1007
dpu_crtc_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)1008 static void dpu_crtc_disable(struct drm_crtc *crtc,
1009 struct drm_atomic_state *state)
1010 {
1011 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1012 crtc);
1013 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1014 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
1015 struct drm_encoder *encoder;
1016 unsigned long flags;
1017 bool release_bandwidth = false;
1018
1019 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1020
1021 /* Disable/save vblank irq handling */
1022 drm_crtc_vblank_off(crtc);
1023
1024 drm_for_each_encoder_mask(encoder, crtc->dev,
1025 old_crtc_state->encoder_mask) {
1026 /* in video mode, we hold an extra bandwidth reference
1027 * as we cannot drop bandwidth at frame-done if any
1028 * crtc is being used in video mode.
1029 */
1030 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1031 release_bandwidth = true;
1032 dpu_encoder_assign_crtc(encoder, NULL);
1033 }
1034
1035 /* wait for frame_event_done completion */
1036 if (_dpu_crtc_wait_for_frame_done(crtc))
1037 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
1038 crtc->base.id,
1039 atomic_read(&dpu_crtc->frame_pending));
1040
1041 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
1042 dpu_crtc->enabled = false;
1043
1044 if (atomic_read(&dpu_crtc->frame_pending)) {
1045 trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
1046 atomic_read(&dpu_crtc->frame_pending));
1047 if (release_bandwidth)
1048 dpu_core_perf_crtc_release_bw(crtc);
1049 atomic_set(&dpu_crtc->frame_pending, 0);
1050 }
1051
1052 dpu_core_perf_crtc_update(crtc, 0, true);
1053
1054 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1055 dpu_encoder_register_frame_event_callback(encoder, NULL, NULL);
1056
1057 memset(cstate->mixers, 0, sizeof(cstate->mixers));
1058 cstate->num_mixers = 0;
1059
1060 /* disable clk & bw control until clk & bw properties are set */
1061 cstate->bw_control = false;
1062 cstate->bw_split_vote = false;
1063
1064 if (crtc->state->event && !crtc->state->active) {
1065 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1066 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1067 crtc->state->event = NULL;
1068 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1069 }
1070
1071 pm_runtime_put_sync(crtc->dev->dev);
1072 }
1073
dpu_crtc_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)1074 static void dpu_crtc_enable(struct drm_crtc *crtc,
1075 struct drm_atomic_state *state)
1076 {
1077 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1078 struct drm_encoder *encoder;
1079 bool request_bandwidth = false;
1080
1081 pm_runtime_get_sync(crtc->dev->dev);
1082
1083 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1084
1085 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
1086 /* in video mode, we hold an extra bandwidth reference
1087 * as we cannot drop bandwidth at frame-done if any
1088 * crtc is being used in video mode.
1089 */
1090 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1091 request_bandwidth = true;
1092 dpu_encoder_register_frame_event_callback(encoder,
1093 dpu_crtc_frame_event_cb, (void *)crtc);
1094 }
1095
1096 if (request_bandwidth)
1097 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1098
1099 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
1100 dpu_crtc->enabled = true;
1101
1102 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1103 dpu_encoder_assign_crtc(encoder, crtc);
1104
1105 /* Enable/restore vblank irq handling */
1106 drm_crtc_vblank_on(crtc);
1107 }
1108
1109 struct plane_state {
1110 struct dpu_plane_state *dpu_pstate;
1111 const struct drm_plane_state *drm_pstate;
1112 int stage;
1113 u32 pipe_id;
1114 };
1115
dpu_crtc_needs_dirtyfb(struct drm_crtc_state * cstate)1116 static bool dpu_crtc_needs_dirtyfb(struct drm_crtc_state *cstate)
1117 {
1118 struct drm_crtc *crtc = cstate->crtc;
1119 struct drm_encoder *encoder;
1120
1121 drm_for_each_encoder_mask (encoder, crtc->dev, cstate->encoder_mask) {
1122 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_CMD) {
1123 return true;
1124 }
1125 }
1126
1127 return false;
1128 }
1129
dpu_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)1130 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
1131 struct drm_atomic_state *state)
1132 {
1133 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1134 crtc);
1135 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1136 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state);
1137 struct plane_state *pstates;
1138
1139 const struct drm_plane_state *pstate;
1140 struct drm_plane *plane;
1141 struct drm_display_mode *mode;
1142
1143 int cnt = 0, rc = 0, mixer_width = 0, i, z_pos;
1144
1145 struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2];
1146 int multirect_count = 0;
1147 const struct drm_plane_state *pipe_staged[SSPP_MAX];
1148 int left_zpos_cnt = 0, right_zpos_cnt = 0;
1149 struct drm_rect crtc_rect = { 0 };
1150 bool needs_dirtyfb = dpu_crtc_needs_dirtyfb(crtc_state);
1151
1152 pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL);
1153
1154 if (!crtc_state->enable || !crtc_state->active) {
1155 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n",
1156 crtc->base.id, crtc_state->enable,
1157 crtc_state->active);
1158 memset(&cstate->new_perf, 0, sizeof(cstate->new_perf));
1159 goto end;
1160 }
1161
1162 mode = &crtc_state->adjusted_mode;
1163 DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name);
1164
1165 /* force a full mode set if active state changed */
1166 if (crtc_state->active_changed)
1167 crtc_state->mode_changed = true;
1168
1169 memset(pipe_staged, 0, sizeof(pipe_staged));
1170
1171 if (cstate->num_mixers) {
1172 mixer_width = mode->hdisplay / cstate->num_mixers;
1173
1174 _dpu_crtc_setup_lm_bounds(crtc, crtc_state);
1175 }
1176
1177 crtc_rect.x2 = mode->hdisplay;
1178 crtc_rect.y2 = mode->vdisplay;
1179
1180 /* get plane state for all drm planes associated with crtc state */
1181 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
1182 struct dpu_plane_state *dpu_pstate = to_dpu_plane_state(pstate);
1183 struct drm_rect dst, clip = crtc_rect;
1184
1185 if (IS_ERR_OR_NULL(pstate)) {
1186 rc = PTR_ERR(pstate);
1187 DPU_ERROR("%s: failed to get plane%d state, %d\n",
1188 dpu_crtc->name, plane->base.id, rc);
1189 goto end;
1190 }
1191 if (cnt >= DPU_STAGE_MAX * 4)
1192 continue;
1193
1194 if (!pstate->visible)
1195 continue;
1196
1197 pstates[cnt].dpu_pstate = dpu_pstate;
1198 pstates[cnt].drm_pstate = pstate;
1199 pstates[cnt].stage = pstate->normalized_zpos;
1200 pstates[cnt].pipe_id = dpu_plane_pipe(plane);
1201
1202 dpu_pstate->needs_dirtyfb = needs_dirtyfb;
1203
1204 if (pipe_staged[pstates[cnt].pipe_id]) {
1205 multirect_plane[multirect_count].r0 =
1206 pipe_staged[pstates[cnt].pipe_id];
1207 multirect_plane[multirect_count].r1 = pstate;
1208 multirect_count++;
1209
1210 pipe_staged[pstates[cnt].pipe_id] = NULL;
1211 } else {
1212 pipe_staged[pstates[cnt].pipe_id] = pstate;
1213 }
1214
1215 cnt++;
1216
1217 dst = drm_plane_state_dest(pstate);
1218 if (!drm_rect_intersect(&clip, &dst)) {
1219 DPU_ERROR("invalid vertical/horizontal destination\n");
1220 DPU_ERROR("display: " DRM_RECT_FMT " plane: "
1221 DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect),
1222 DRM_RECT_ARG(&dst));
1223 rc = -E2BIG;
1224 goto end;
1225 }
1226 }
1227
1228 for (i = 1; i < SSPP_MAX; i++) {
1229 if (pipe_staged[i])
1230 dpu_plane_clear_multirect(pipe_staged[i]);
1231 }
1232
1233 z_pos = -1;
1234 for (i = 0; i < cnt; i++) {
1235 /* reset counts at every new blend stage */
1236 if (pstates[i].stage != z_pos) {
1237 left_zpos_cnt = 0;
1238 right_zpos_cnt = 0;
1239 z_pos = pstates[i].stage;
1240 }
1241
1242 /* verify z_pos setting before using it */
1243 if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) {
1244 DPU_ERROR("> %d plane stages assigned\n",
1245 DPU_STAGE_MAX - DPU_STAGE_0);
1246 rc = -EINVAL;
1247 goto end;
1248 } else if (pstates[i].drm_pstate->crtc_x < mixer_width) {
1249 if (left_zpos_cnt == 2) {
1250 DPU_ERROR("> 2 planes @ stage %d on left\n",
1251 z_pos);
1252 rc = -EINVAL;
1253 goto end;
1254 }
1255 left_zpos_cnt++;
1256
1257 } else {
1258 if (right_zpos_cnt == 2) {
1259 DPU_ERROR("> 2 planes @ stage %d on right\n",
1260 z_pos);
1261 rc = -EINVAL;
1262 goto end;
1263 }
1264 right_zpos_cnt++;
1265 }
1266
1267 pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0;
1268 DRM_DEBUG_ATOMIC("%s: zpos %d\n", dpu_crtc->name, z_pos);
1269 }
1270
1271 for (i = 0; i < multirect_count; i++) {
1272 if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) {
1273 DPU_ERROR(
1274 "multirect validation failed for planes (%d - %d)\n",
1275 multirect_plane[i].r0->plane->base.id,
1276 multirect_plane[i].r1->plane->base.id);
1277 rc = -EINVAL;
1278 goto end;
1279 }
1280 }
1281
1282 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1283
1284 rc = dpu_core_perf_crtc_check(crtc, crtc_state);
1285 if (rc) {
1286 DPU_ERROR("crtc%d failed performance check %d\n",
1287 crtc->base.id, rc);
1288 goto end;
1289 }
1290
1291 /* validate source split:
1292 * use pstates sorted by stage to check planes on same stage
1293 * we assume that all pipes are in source split so its valid to compare
1294 * without taking into account left/right mixer placement
1295 */
1296 for (i = 1; i < cnt; i++) {
1297 struct plane_state *prv_pstate, *cur_pstate;
1298 struct drm_rect left_rect, right_rect;
1299 int32_t left_pid, right_pid;
1300 int32_t stage;
1301
1302 prv_pstate = &pstates[i - 1];
1303 cur_pstate = &pstates[i];
1304 if (prv_pstate->stage != cur_pstate->stage)
1305 continue;
1306
1307 stage = cur_pstate->stage;
1308
1309 left_pid = prv_pstate->dpu_pstate->base.plane->base.id;
1310 left_rect = drm_plane_state_dest(prv_pstate->drm_pstate);
1311
1312 right_pid = cur_pstate->dpu_pstate->base.plane->base.id;
1313 right_rect = drm_plane_state_dest(cur_pstate->drm_pstate);
1314
1315 if (right_rect.x1 < left_rect.x1) {
1316 swap(left_pid, right_pid);
1317 swap(left_rect, right_rect);
1318 }
1319
1320 /**
1321 * - planes are enumerated in pipe-priority order such that
1322 * planes with lower drm_id must be left-most in a shared
1323 * blend-stage when using source split.
1324 * - planes in source split must be contiguous in width
1325 * - planes in source split must have same dest yoff and height
1326 */
1327 if (right_pid < left_pid) {
1328 DPU_ERROR(
1329 "invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n",
1330 stage, left_pid, right_pid);
1331 rc = -EINVAL;
1332 goto end;
1333 } else if (right_rect.x1 != drm_rect_width(&left_rect)) {
1334 DPU_ERROR("non-contiguous coordinates for src split. "
1335 "stage: %d left: " DRM_RECT_FMT " right: "
1336 DRM_RECT_FMT "\n", stage,
1337 DRM_RECT_ARG(&left_rect),
1338 DRM_RECT_ARG(&right_rect));
1339 rc = -EINVAL;
1340 goto end;
1341 } else if (left_rect.y1 != right_rect.y1 ||
1342 drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) {
1343 DPU_ERROR("source split at stage: %d. invalid "
1344 "yoff/height: left: " DRM_RECT_FMT " right: "
1345 DRM_RECT_FMT "\n", stage,
1346 DRM_RECT_ARG(&left_rect),
1347 DRM_RECT_ARG(&right_rect));
1348 rc = -EINVAL;
1349 goto end;
1350 }
1351 }
1352
1353 end:
1354 kfree(pstates);
1355 return rc;
1356 }
1357
dpu_crtc_vblank(struct drm_crtc * crtc,bool en)1358 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1359 {
1360 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1361 struct drm_encoder *enc;
1362
1363 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1364
1365 /*
1366 * Normally we would iterate through encoder_mask in crtc state to find
1367 * attached encoders. In this case, we might be disabling vblank _after_
1368 * encoder_mask has been cleared.
1369 *
1370 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1371 * disable (which is also after encoder_mask is cleared). So instead of
1372 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1373 * currently assigned to our crtc.
1374 *
1375 * Note also that this function cannot be called while crtc is disabled
1376 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1377 * about the assigned crtcs being inconsistent with the current state
1378 * (which means no need to worry about modeset locks).
1379 */
1380 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1381 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1382 dpu_crtc);
1383
1384 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1385 }
1386
1387 return 0;
1388 }
1389
1390 #ifdef CONFIG_DEBUG_FS
_dpu_debugfs_status_show(struct seq_file * s,void * data)1391 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1392 {
1393 struct dpu_crtc *dpu_crtc;
1394 struct dpu_plane_state *pstate = NULL;
1395 struct dpu_crtc_mixer *m;
1396
1397 struct drm_crtc *crtc;
1398 struct drm_plane *plane;
1399 struct drm_display_mode *mode;
1400 struct drm_framebuffer *fb;
1401 struct drm_plane_state *state;
1402 struct dpu_crtc_state *cstate;
1403
1404 int i, out_width;
1405
1406 dpu_crtc = s->private;
1407 crtc = &dpu_crtc->base;
1408
1409 drm_modeset_lock_all(crtc->dev);
1410 cstate = to_dpu_crtc_state(crtc->state);
1411
1412 mode = &crtc->state->adjusted_mode;
1413 out_width = mode->hdisplay / cstate->num_mixers;
1414
1415 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1416 mode->hdisplay, mode->vdisplay);
1417
1418 seq_puts(s, "\n");
1419
1420 for (i = 0; i < cstate->num_mixers; ++i) {
1421 m = &cstate->mixers[i];
1422 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1423 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1424 out_width, mode->vdisplay);
1425 }
1426
1427 seq_puts(s, "\n");
1428
1429 drm_atomic_crtc_for_each_plane(plane, crtc) {
1430 pstate = to_dpu_plane_state(plane->state);
1431 state = plane->state;
1432
1433 if (!pstate || !state)
1434 continue;
1435
1436 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1437 pstate->stage);
1438
1439 if (plane->state->fb) {
1440 fb = plane->state->fb;
1441
1442 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1443 fb->base.id, (char *) &fb->format->format,
1444 fb->width, fb->height);
1445 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1446 seq_printf(s, "cpp[%d]:%u ",
1447 i, fb->format->cpp[i]);
1448 seq_puts(s, "\n\t");
1449
1450 seq_printf(s, "modifier:%8llu ", fb->modifier);
1451 seq_puts(s, "\n");
1452
1453 seq_puts(s, "\t");
1454 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1455 seq_printf(s, "pitches[%d]:%8u ", i,
1456 fb->pitches[i]);
1457 seq_puts(s, "\n");
1458
1459 seq_puts(s, "\t");
1460 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1461 seq_printf(s, "offsets[%d]:%8u ", i,
1462 fb->offsets[i]);
1463 seq_puts(s, "\n");
1464 }
1465
1466 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1467 state->src_x, state->src_y, state->src_w, state->src_h);
1468
1469 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1470 state->crtc_x, state->crtc_y, state->crtc_w,
1471 state->crtc_h);
1472 seq_printf(s, "\tmultirect: mode: %d index: %d\n",
1473 pstate->multirect_mode, pstate->multirect_index);
1474
1475 seq_puts(s, "\n");
1476 }
1477 if (dpu_crtc->vblank_cb_count) {
1478 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1479 s64 diff_ms = ktime_to_ms(diff);
1480 s64 fps = diff_ms ? div_s64(
1481 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1482
1483 seq_printf(s,
1484 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1485 fps, dpu_crtc->vblank_cb_count,
1486 ktime_to_ms(diff), dpu_crtc->play_count);
1487
1488 /* reset time & count for next measurement */
1489 dpu_crtc->vblank_cb_count = 0;
1490 dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1491 }
1492
1493 drm_modeset_unlock_all(crtc->dev);
1494
1495 return 0;
1496 }
1497
1498 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status);
1499
dpu_crtc_debugfs_state_show(struct seq_file * s,void * v)1500 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1501 {
1502 struct drm_crtc *crtc = (struct drm_crtc *) s->private;
1503 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1504
1505 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1506 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1507 seq_printf(s, "core_clk_rate: %llu\n",
1508 dpu_crtc->cur_perf.core_clk_rate);
1509 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl);
1510 seq_printf(s, "max_per_pipe_ib: %llu\n",
1511 dpu_crtc->cur_perf.max_per_pipe_ib);
1512
1513 return 0;
1514 }
1515 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state);
1516
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1517 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1518 {
1519 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1520 struct dentry *debugfs_root;
1521
1522 debugfs_root = debugfs_create_dir(dpu_crtc->name,
1523 crtc->dev->primary->debugfs_root);
1524
1525 debugfs_create_file("status", 0400,
1526 debugfs_root,
1527 dpu_crtc, &_dpu_debugfs_status_fops);
1528 debugfs_create_file("state", 0600,
1529 debugfs_root,
1530 &dpu_crtc->base,
1531 &dpu_crtc_debugfs_state_fops);
1532
1533 return 0;
1534 }
1535 #else
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1536 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1537 {
1538 return 0;
1539 }
1540 #endif /* CONFIG_DEBUG_FS */
1541
dpu_crtc_late_register(struct drm_crtc * crtc)1542 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1543 {
1544 return _dpu_crtc_init_debugfs(crtc);
1545 }
1546
1547 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1548 .set_config = drm_atomic_helper_set_config,
1549 .destroy = dpu_crtc_destroy,
1550 .page_flip = drm_atomic_helper_page_flip,
1551 .reset = dpu_crtc_reset,
1552 .atomic_duplicate_state = dpu_crtc_duplicate_state,
1553 .atomic_destroy_state = dpu_crtc_destroy_state,
1554 .atomic_print_state = dpu_crtc_atomic_print_state,
1555 .late_register = dpu_crtc_late_register,
1556 .verify_crc_source = dpu_crtc_verify_crc_source,
1557 .set_crc_source = dpu_crtc_set_crc_source,
1558 .enable_vblank = msm_crtc_enable_vblank,
1559 .disable_vblank = msm_crtc_disable_vblank,
1560 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1561 .get_vblank_counter = dpu_crtc_get_vblank_counter,
1562 };
1563
1564 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1565 .atomic_disable = dpu_crtc_disable,
1566 .atomic_enable = dpu_crtc_enable,
1567 .atomic_check = dpu_crtc_atomic_check,
1568 .atomic_begin = dpu_crtc_atomic_begin,
1569 .atomic_flush = dpu_crtc_atomic_flush,
1570 .get_scanout_position = dpu_crtc_get_scanout_position,
1571 };
1572
1573 /* initialize crtc */
dpu_crtc_init(struct drm_device * dev,struct drm_plane * plane,struct drm_plane * cursor)1574 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1575 struct drm_plane *cursor)
1576 {
1577 struct drm_crtc *crtc = NULL;
1578 struct dpu_crtc *dpu_crtc = NULL;
1579 int i;
1580
1581 dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL);
1582 if (!dpu_crtc)
1583 return ERR_PTR(-ENOMEM);
1584
1585 crtc = &dpu_crtc->base;
1586 crtc->dev = dev;
1587
1588 spin_lock_init(&dpu_crtc->spin_lock);
1589 atomic_set(&dpu_crtc->frame_pending, 0);
1590
1591 init_completion(&dpu_crtc->frame_done_comp);
1592
1593 INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1594
1595 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1596 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1597 list_add(&dpu_crtc->frame_events[i].list,
1598 &dpu_crtc->frame_event_list);
1599 kthread_init_work(&dpu_crtc->frame_events[i].work,
1600 dpu_crtc_frame_event_work);
1601 }
1602
1603 drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs,
1604 NULL);
1605
1606 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1607
1608 drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
1609
1610 /* save user friendly CRTC name for later */
1611 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1612
1613 /* initialize event handling */
1614 spin_lock_init(&dpu_crtc->event_lock);
1615
1616 DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name);
1617 return crtc;
1618 }
1619