1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include "internal.h"
35 
36 
37 LIST_HEAD(super_blocks);
38 DEFINE_SPINLOCK(sb_lock);
39 
40 /**
41  *	alloc_super	-	create new superblock
42  *	@type:	filesystem type superblock should belong to
43  *
44  *	Allocates and initializes a new &struct super_block.  alloc_super()
45  *	returns a pointer new superblock or %NULL if allocation had failed.
46  */
alloc_super(struct file_system_type * type)47 static struct super_block *alloc_super(struct file_system_type *type)
48 {
49 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
50 	static const struct super_operations default_op;
51 
52 	if (s) {
53 		if (security_sb_alloc(s)) {
54 			kfree(s);
55 			s = NULL;
56 			goto out;
57 		}
58 #ifdef CONFIG_SMP
59 		s->s_files = alloc_percpu(struct list_head);
60 		if (!s->s_files) {
61 			security_sb_free(s);
62 			kfree(s);
63 			s = NULL;
64 			goto out;
65 		} else {
66 			int i;
67 
68 			for_each_possible_cpu(i)
69 				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
70 		}
71 #else
72 		INIT_LIST_HEAD(&s->s_files);
73 #endif
74 		s->s_bdi = &default_backing_dev_info;
75 		INIT_LIST_HEAD(&s->s_instances);
76 		INIT_HLIST_BL_HEAD(&s->s_anon);
77 		INIT_LIST_HEAD(&s->s_inodes);
78 		INIT_LIST_HEAD(&s->s_dentry_lru);
79 		init_rwsem(&s->s_umount);
80 		mutex_init(&s->s_lock);
81 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
82 		/*
83 		 * The locking rules for s_lock are up to the
84 		 * filesystem. For example ext3fs has different
85 		 * lock ordering than usbfs:
86 		 */
87 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
88 		/*
89 		 * sget() can have s_umount recursion.
90 		 *
91 		 * When it cannot find a suitable sb, it allocates a new
92 		 * one (this one), and tries again to find a suitable old
93 		 * one.
94 		 *
95 		 * In case that succeeds, it will acquire the s_umount
96 		 * lock of the old one. Since these are clearly distrinct
97 		 * locks, and this object isn't exposed yet, there's no
98 		 * risk of deadlocks.
99 		 *
100 		 * Annotate this by putting this lock in a different
101 		 * subclass.
102 		 */
103 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
104 		s->s_count = 1;
105 		atomic_set(&s->s_active, 1);
106 		mutex_init(&s->s_vfs_rename_mutex);
107 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
108 		mutex_init(&s->s_dquot.dqio_mutex);
109 		mutex_init(&s->s_dquot.dqonoff_mutex);
110 		init_rwsem(&s->s_dquot.dqptr_sem);
111 		init_waitqueue_head(&s->s_wait_unfrozen);
112 		s->s_maxbytes = MAX_NON_LFS;
113 		s->s_op = &default_op;
114 		s->s_time_gran = 1000000000;
115 	}
116 out:
117 	return s;
118 }
119 
120 /**
121  *	destroy_super	-	frees a superblock
122  *	@s: superblock to free
123  *
124  *	Frees a superblock.
125  */
destroy_super(struct super_block * s)126 static inline void destroy_super(struct super_block *s)
127 {
128 #ifdef CONFIG_SMP
129 	free_percpu(s->s_files);
130 #endif
131 	security_sb_free(s);
132 	kfree(s->s_subtype);
133 	kfree(s->s_options);
134 	kfree(s);
135 }
136 
137 /* Superblock refcounting  */
138 
139 /*
140  * Drop a superblock's refcount.  The caller must hold sb_lock.
141  */
__put_super(struct super_block * sb)142 void __put_super(struct super_block *sb)
143 {
144 	if (!--sb->s_count) {
145 		list_del_init(&sb->s_list);
146 		destroy_super(sb);
147 	}
148 }
149 
150 /**
151  *	put_super	-	drop a temporary reference to superblock
152  *	@sb: superblock in question
153  *
154  *	Drops a temporary reference, frees superblock if there's no
155  *	references left.
156  */
put_super(struct super_block * sb)157 void put_super(struct super_block *sb)
158 {
159 	spin_lock(&sb_lock);
160 	__put_super(sb);
161 	spin_unlock(&sb_lock);
162 }
163 
164 
165 /**
166  *	deactivate_locked_super	-	drop an active reference to superblock
167  *	@s: superblock to deactivate
168  *
169  *	Drops an active reference to superblock, converting it into a temprory
170  *	one if there is no other active references left.  In that case we
171  *	tell fs driver to shut it down and drop the temporary reference we
172  *	had just acquired.
173  *
174  *	Caller holds exclusive lock on superblock; that lock is released.
175  */
deactivate_locked_super(struct super_block * s)176 void deactivate_locked_super(struct super_block *s)
177 {
178 	struct file_system_type *fs = s->s_type;
179 	if (atomic_dec_and_test(&s->s_active)) {
180 		fs->kill_sb(s);
181 		/*
182 		 * We need to call rcu_barrier so all the delayed rcu free
183 		 * inodes are flushed before we release the fs module.
184 		 */
185 		rcu_barrier();
186 		put_filesystem(fs);
187 		put_super(s);
188 	} else {
189 		up_write(&s->s_umount);
190 	}
191 }
192 
193 EXPORT_SYMBOL(deactivate_locked_super);
194 
195 /**
196  *	deactivate_super	-	drop an active reference to superblock
197  *	@s: superblock to deactivate
198  *
199  *	Variant of deactivate_locked_super(), except that superblock is *not*
200  *	locked by caller.  If we are going to drop the final active reference,
201  *	lock will be acquired prior to that.
202  */
deactivate_super(struct super_block * s)203 void deactivate_super(struct super_block *s)
204 {
205         if (!atomic_add_unless(&s->s_active, -1, 1)) {
206 		down_write(&s->s_umount);
207 		deactivate_locked_super(s);
208 	}
209 }
210 
211 EXPORT_SYMBOL(deactivate_super);
212 
213 /**
214  *	grab_super - acquire an active reference
215  *	@s: reference we are trying to make active
216  *
217  *	Tries to acquire an active reference.  grab_super() is used when we
218  * 	had just found a superblock in super_blocks or fs_type->fs_supers
219  *	and want to turn it into a full-blown active reference.  grab_super()
220  *	is called with sb_lock held and drops it.  Returns 1 in case of
221  *	success, 0 if we had failed (superblock contents was already dead or
222  *	dying when grab_super() had been called).
223  */
grab_super(struct super_block * s)224 static int grab_super(struct super_block *s) __releases(sb_lock)
225 {
226 	if (atomic_inc_not_zero(&s->s_active)) {
227 		spin_unlock(&sb_lock);
228 		return 1;
229 	}
230 	/* it's going away */
231 	s->s_count++;
232 	spin_unlock(&sb_lock);
233 	/* wait for it to die */
234 	down_write(&s->s_umount);
235 	up_write(&s->s_umount);
236 	put_super(s);
237 	return 0;
238 }
239 
240 /*
241  * Superblock locking.  We really ought to get rid of these two.
242  */
lock_super(struct super_block * sb)243 void lock_super(struct super_block * sb)
244 {
245 	get_fs_excl();
246 	mutex_lock(&sb->s_lock);
247 }
248 
unlock_super(struct super_block * sb)249 void unlock_super(struct super_block * sb)
250 {
251 	put_fs_excl();
252 	mutex_unlock(&sb->s_lock);
253 }
254 
255 EXPORT_SYMBOL(lock_super);
256 EXPORT_SYMBOL(unlock_super);
257 
258 /**
259  *	generic_shutdown_super	-	common helper for ->kill_sb()
260  *	@sb: superblock to kill
261  *
262  *	generic_shutdown_super() does all fs-independent work on superblock
263  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
264  *	that need destruction out of superblock, call generic_shutdown_super()
265  *	and release aforementioned objects.  Note: dentries and inodes _are_
266  *	taken care of and do not need specific handling.
267  *
268  *	Upon calling this function, the filesystem may no longer alter or
269  *	rearrange the set of dentries belonging to this super_block, nor may it
270  *	change the attachments of dentries to inodes.
271  */
generic_shutdown_super(struct super_block * sb)272 void generic_shutdown_super(struct super_block *sb)
273 {
274 	const struct super_operations *sop = sb->s_op;
275 
276 
277 	if (sb->s_root) {
278 		shrink_dcache_for_umount(sb);
279 		sync_filesystem(sb);
280 		get_fs_excl();
281 		sb->s_flags &= ~MS_ACTIVE;
282 
283 		fsnotify_unmount_inodes(&sb->s_inodes);
284 
285 		evict_inodes(sb);
286 
287 		if (sop->put_super)
288 			sop->put_super(sb);
289 
290 		if (!list_empty(&sb->s_inodes)) {
291 			printk("VFS: Busy inodes after unmount of %s. "
292 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
293 			   sb->s_id);
294 		}
295 		put_fs_excl();
296 	}
297 	spin_lock(&sb_lock);
298 	/* should be initialized for __put_super_and_need_restart() */
299 	list_del_init(&sb->s_instances);
300 	spin_unlock(&sb_lock);
301 	up_write(&sb->s_umount);
302 }
303 
304 EXPORT_SYMBOL(generic_shutdown_super);
305 
306 /**
307  *	sget	-	find or create a superblock
308  *	@type:	filesystem type superblock should belong to
309  *	@test:	comparison callback
310  *	@set:	setup callback
311  *	@data:	argument to each of them
312  */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),void * data)313 struct super_block *sget(struct file_system_type *type,
314 			int (*test)(struct super_block *,void *),
315 			int (*set)(struct super_block *,void *),
316 			void *data)
317 {
318 	struct super_block *s = NULL;
319 	struct super_block *old;
320 	int err;
321 
322 retry:
323 	spin_lock(&sb_lock);
324 	if (test) {
325 		list_for_each_entry(old, &type->fs_supers, s_instances) {
326 			if (!test(old, data))
327 				continue;
328 			if (!grab_super(old))
329 				goto retry;
330 			if (s) {
331 				up_write(&s->s_umount);
332 				destroy_super(s);
333 				s = NULL;
334 			}
335 			down_write(&old->s_umount);
336 			if (unlikely(!(old->s_flags & MS_BORN))) {
337 				deactivate_locked_super(old);
338 				goto retry;
339 			}
340 			return old;
341 		}
342 	}
343 	if (!s) {
344 		spin_unlock(&sb_lock);
345 		s = alloc_super(type);
346 		if (!s)
347 			return ERR_PTR(-ENOMEM);
348 		goto retry;
349 	}
350 
351 	err = set(s, data);
352 	if (err) {
353 		spin_unlock(&sb_lock);
354 		up_write(&s->s_umount);
355 		destroy_super(s);
356 		return ERR_PTR(err);
357 	}
358 	s->s_type = type;
359 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
360 	list_add_tail(&s->s_list, &super_blocks);
361 	list_add(&s->s_instances, &type->fs_supers);
362 	spin_unlock(&sb_lock);
363 	get_filesystem(type);
364 	return s;
365 }
366 
367 EXPORT_SYMBOL(sget);
368 
drop_super(struct super_block * sb)369 void drop_super(struct super_block *sb)
370 {
371 	up_read(&sb->s_umount);
372 	put_super(sb);
373 }
374 
375 EXPORT_SYMBOL(drop_super);
376 
377 /**
378  * sync_supers - helper for periodic superblock writeback
379  *
380  * Call the write_super method if present on all dirty superblocks in
381  * the system.  This is for the periodic writeback used by most older
382  * filesystems.  For data integrity superblock writeback use
383  * sync_filesystems() instead.
384  *
385  * Note: check the dirty flag before waiting, so we don't
386  * hold up the sync while mounting a device. (The newly
387  * mounted device won't need syncing.)
388  */
sync_supers(void)389 void sync_supers(void)
390 {
391 	struct super_block *sb, *p = NULL;
392 
393 	spin_lock(&sb_lock);
394 	list_for_each_entry(sb, &super_blocks, s_list) {
395 		if (list_empty(&sb->s_instances))
396 			continue;
397 		if (sb->s_op->write_super && sb->s_dirt) {
398 			sb->s_count++;
399 			spin_unlock(&sb_lock);
400 
401 			down_read(&sb->s_umount);
402 			if (sb->s_root && sb->s_dirt)
403 				sb->s_op->write_super(sb);
404 			up_read(&sb->s_umount);
405 
406 			spin_lock(&sb_lock);
407 			if (p)
408 				__put_super(p);
409 			p = sb;
410 		}
411 	}
412 	if (p)
413 		__put_super(p);
414 	spin_unlock(&sb_lock);
415 }
416 
417 /**
418  *	iterate_supers - call function for all active superblocks
419  *	@f: function to call
420  *	@arg: argument to pass to it
421  *
422  *	Scans the superblock list and calls given function, passing it
423  *	locked superblock and given argument.
424  */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)425 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
426 {
427 	struct super_block *sb, *p = NULL;
428 
429 	spin_lock(&sb_lock);
430 	list_for_each_entry(sb, &super_blocks, s_list) {
431 		if (list_empty(&sb->s_instances))
432 			continue;
433 		sb->s_count++;
434 		spin_unlock(&sb_lock);
435 
436 		down_read(&sb->s_umount);
437 		if (sb->s_root)
438 			f(sb, arg);
439 		up_read(&sb->s_umount);
440 
441 		spin_lock(&sb_lock);
442 		if (p)
443 			__put_super(p);
444 		p = sb;
445 	}
446 	if (p)
447 		__put_super(p);
448 	spin_unlock(&sb_lock);
449 }
450 
451 /**
452  *	get_super - get the superblock of a device
453  *	@bdev: device to get the superblock for
454  *
455  *	Scans the superblock list and finds the superblock of the file system
456  *	mounted on the device given. %NULL is returned if no match is found.
457  */
458 
get_super(struct block_device * bdev)459 struct super_block *get_super(struct block_device *bdev)
460 {
461 	struct super_block *sb;
462 
463 	if (!bdev)
464 		return NULL;
465 
466 	spin_lock(&sb_lock);
467 rescan:
468 	list_for_each_entry(sb, &super_blocks, s_list) {
469 		if (list_empty(&sb->s_instances))
470 			continue;
471 		if (sb->s_bdev == bdev) {
472 			sb->s_count++;
473 			spin_unlock(&sb_lock);
474 			down_read(&sb->s_umount);
475 			/* still alive? */
476 			if (sb->s_root)
477 				return sb;
478 			up_read(&sb->s_umount);
479 			/* nope, got unmounted */
480 			spin_lock(&sb_lock);
481 			__put_super(sb);
482 			goto rescan;
483 		}
484 	}
485 	spin_unlock(&sb_lock);
486 	return NULL;
487 }
488 
489 EXPORT_SYMBOL(get_super);
490 
491 /**
492  * get_active_super - get an active reference to the superblock of a device
493  * @bdev: device to get the superblock for
494  *
495  * Scans the superblock list and finds the superblock of the file system
496  * mounted on the device given.  Returns the superblock with an active
497  * reference or %NULL if none was found.
498  */
get_active_super(struct block_device * bdev)499 struct super_block *get_active_super(struct block_device *bdev)
500 {
501 	struct super_block *sb;
502 
503 	if (!bdev)
504 		return NULL;
505 
506 restart:
507 	spin_lock(&sb_lock);
508 	list_for_each_entry(sb, &super_blocks, s_list) {
509 		if (list_empty(&sb->s_instances))
510 			continue;
511 		if (sb->s_bdev == bdev) {
512 			if (grab_super(sb)) /* drops sb_lock */
513 				return sb;
514 			else
515 				goto restart;
516 		}
517 	}
518 	spin_unlock(&sb_lock);
519 	return NULL;
520 }
521 
user_get_super(dev_t dev)522 struct super_block *user_get_super(dev_t dev)
523 {
524 	struct super_block *sb;
525 
526 	spin_lock(&sb_lock);
527 rescan:
528 	list_for_each_entry(sb, &super_blocks, s_list) {
529 		if (list_empty(&sb->s_instances))
530 			continue;
531 		if (sb->s_dev ==  dev) {
532 			sb->s_count++;
533 			spin_unlock(&sb_lock);
534 			down_read(&sb->s_umount);
535 			/* still alive? */
536 			if (sb->s_root)
537 				return sb;
538 			up_read(&sb->s_umount);
539 			/* nope, got unmounted */
540 			spin_lock(&sb_lock);
541 			__put_super(sb);
542 			goto rescan;
543 		}
544 	}
545 	spin_unlock(&sb_lock);
546 	return NULL;
547 }
548 
549 /**
550  *	do_remount_sb - asks filesystem to change mount options.
551  *	@sb:	superblock in question
552  *	@flags:	numeric part of options
553  *	@data:	the rest of options
554  *      @force: whether or not to force the change
555  *
556  *	Alters the mount options of a mounted file system.
557  */
do_remount_sb(struct super_block * sb,int flags,void * data,int force)558 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
559 {
560 	int retval;
561 	int remount_ro;
562 
563 	if (sb->s_frozen != SB_UNFROZEN)
564 		return -EBUSY;
565 
566 #ifdef CONFIG_BLOCK
567 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
568 		return -EACCES;
569 #endif
570 
571 	if (flags & MS_RDONLY)
572 		acct_auto_close(sb);
573 	shrink_dcache_sb(sb);
574 	sync_filesystem(sb);
575 
576 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
577 
578 	/* If we are remounting RDONLY and current sb is read/write,
579 	   make sure there are no rw files opened */
580 	if (remount_ro) {
581 		if (force)
582 			mark_files_ro(sb);
583 		else if (!fs_may_remount_ro(sb))
584 			return -EBUSY;
585 	}
586 
587 	if (sb->s_op->remount_fs) {
588 		retval = sb->s_op->remount_fs(sb, &flags, data);
589 		if (retval)
590 			return retval;
591 	}
592 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
593 
594 	/*
595 	 * Some filesystems modify their metadata via some other path than the
596 	 * bdev buffer cache (eg. use a private mapping, or directories in
597 	 * pagecache, etc). Also file data modifications go via their own
598 	 * mappings. So If we try to mount readonly then copy the filesystem
599 	 * from bdev, we could get stale data, so invalidate it to give a best
600 	 * effort at coherency.
601 	 */
602 	if (remount_ro && sb->s_bdev)
603 		invalidate_bdev(sb->s_bdev);
604 	return 0;
605 }
606 
do_emergency_remount(struct work_struct * work)607 static void do_emergency_remount(struct work_struct *work)
608 {
609 	struct super_block *sb, *p = NULL;
610 
611 	spin_lock(&sb_lock);
612 	list_for_each_entry(sb, &super_blocks, s_list) {
613 		if (list_empty(&sb->s_instances))
614 			continue;
615 		sb->s_count++;
616 		spin_unlock(&sb_lock);
617 		down_write(&sb->s_umount);
618 		if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
619 			/*
620 			 * What lock protects sb->s_flags??
621 			 */
622 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
623 		}
624 		up_write(&sb->s_umount);
625 		spin_lock(&sb_lock);
626 		if (p)
627 			__put_super(p);
628 		p = sb;
629 	}
630 	if (p)
631 		__put_super(p);
632 	spin_unlock(&sb_lock);
633 	kfree(work);
634 	printk("Emergency Remount complete\n");
635 }
636 
emergency_remount(void)637 void emergency_remount(void)
638 {
639 	struct work_struct *work;
640 
641 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
642 	if (work) {
643 		INIT_WORK(work, do_emergency_remount);
644 		schedule_work(work);
645 	}
646 }
647 
648 /*
649  * Unnamed block devices are dummy devices used by virtual
650  * filesystems which don't use real block-devices.  -- jrs
651  */
652 
653 static DEFINE_IDA(unnamed_dev_ida);
654 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
655 static int unnamed_dev_start = 0; /* don't bother trying below it */
656 
set_anon_super(struct super_block * s,void * data)657 int set_anon_super(struct super_block *s, void *data)
658 {
659 	int dev;
660 	int error;
661 
662  retry:
663 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
664 		return -ENOMEM;
665 	spin_lock(&unnamed_dev_lock);
666 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
667 	if (!error)
668 		unnamed_dev_start = dev + 1;
669 	spin_unlock(&unnamed_dev_lock);
670 	if (error == -EAGAIN)
671 		/* We raced and lost with another CPU. */
672 		goto retry;
673 	else if (error)
674 		return -EAGAIN;
675 
676 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
677 		spin_lock(&unnamed_dev_lock);
678 		ida_remove(&unnamed_dev_ida, dev);
679 		if (unnamed_dev_start > dev)
680 			unnamed_dev_start = dev;
681 		spin_unlock(&unnamed_dev_lock);
682 		return -EMFILE;
683 	}
684 	s->s_dev = MKDEV(0, dev & MINORMASK);
685 	s->s_bdi = &noop_backing_dev_info;
686 	return 0;
687 }
688 
689 EXPORT_SYMBOL(set_anon_super);
690 
kill_anon_super(struct super_block * sb)691 void kill_anon_super(struct super_block *sb)
692 {
693 	int slot = MINOR(sb->s_dev);
694 
695 	generic_shutdown_super(sb);
696 	spin_lock(&unnamed_dev_lock);
697 	ida_remove(&unnamed_dev_ida, slot);
698 	if (slot < unnamed_dev_start)
699 		unnamed_dev_start = slot;
700 	spin_unlock(&unnamed_dev_lock);
701 }
702 
703 EXPORT_SYMBOL(kill_anon_super);
704 
kill_litter_super(struct super_block * sb)705 void kill_litter_super(struct super_block *sb)
706 {
707 	if (sb->s_root)
708 		d_genocide(sb->s_root);
709 	kill_anon_super(sb);
710 }
711 
712 EXPORT_SYMBOL(kill_litter_super);
713 
ns_test_super(struct super_block * sb,void * data)714 static int ns_test_super(struct super_block *sb, void *data)
715 {
716 	return sb->s_fs_info == data;
717 }
718 
ns_set_super(struct super_block * sb,void * data)719 static int ns_set_super(struct super_block *sb, void *data)
720 {
721 	sb->s_fs_info = data;
722 	return set_anon_super(sb, NULL);
723 }
724 
mount_ns(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))725 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
726 	void *data, int (*fill_super)(struct super_block *, void *, int))
727 {
728 	struct super_block *sb;
729 
730 	sb = sget(fs_type, ns_test_super, ns_set_super, data);
731 	if (IS_ERR(sb))
732 		return ERR_CAST(sb);
733 
734 	if (!sb->s_root) {
735 		int err;
736 		sb->s_flags = flags;
737 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
738 		if (err) {
739 			deactivate_locked_super(sb);
740 			return ERR_PTR(err);
741 		}
742 
743 		sb->s_flags |= MS_ACTIVE;
744 	}
745 
746 	return dget(sb->s_root);
747 }
748 
749 EXPORT_SYMBOL(mount_ns);
750 
751 #ifdef CONFIG_BLOCK
set_bdev_super(struct super_block * s,void * data)752 static int set_bdev_super(struct super_block *s, void *data)
753 {
754 	s->s_bdev = data;
755 	s->s_dev = s->s_bdev->bd_dev;
756 
757 	/*
758 	 * We set the bdi here to the queue backing, file systems can
759 	 * overwrite this in ->fill_super()
760 	 */
761 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
762 	return 0;
763 }
764 
test_bdev_super(struct super_block * s,void * data)765 static int test_bdev_super(struct super_block *s, void *data)
766 {
767 	return (void *)s->s_bdev == data;
768 }
769 
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))770 struct dentry *mount_bdev(struct file_system_type *fs_type,
771 	int flags, const char *dev_name, void *data,
772 	int (*fill_super)(struct super_block *, void *, int))
773 {
774 	struct block_device *bdev;
775 	struct super_block *s;
776 	fmode_t mode = FMODE_READ | FMODE_EXCL;
777 	int error = 0;
778 
779 	if (!(flags & MS_RDONLY))
780 		mode |= FMODE_WRITE;
781 
782 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
783 	if (IS_ERR(bdev))
784 		return ERR_CAST(bdev);
785 
786 	/*
787 	 * once the super is inserted into the list by sget, s_umount
788 	 * will protect the lockfs code from trying to start a snapshot
789 	 * while we are mounting
790 	 */
791 	mutex_lock(&bdev->bd_fsfreeze_mutex);
792 	if (bdev->bd_fsfreeze_count > 0) {
793 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
794 		error = -EBUSY;
795 		goto error_bdev;
796 	}
797 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
798 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
799 	if (IS_ERR(s))
800 		goto error_s;
801 
802 	if (s->s_root) {
803 		if ((flags ^ s->s_flags) & MS_RDONLY) {
804 			deactivate_locked_super(s);
805 			error = -EBUSY;
806 			goto error_bdev;
807 		}
808 
809 		/*
810 		 * s_umount nests inside bd_mutex during
811 		 * __invalidate_device().  blkdev_put() acquires
812 		 * bd_mutex and can't be called under s_umount.  Drop
813 		 * s_umount temporarily.  This is safe as we're
814 		 * holding an active reference.
815 		 */
816 		up_write(&s->s_umount);
817 		blkdev_put(bdev, mode);
818 		down_write(&s->s_umount);
819 	} else {
820 		char b[BDEVNAME_SIZE];
821 
822 		s->s_flags = flags;
823 		s->s_mode = mode;
824 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
825 		sb_set_blocksize(s, block_size(bdev));
826 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
827 		if (error) {
828 			deactivate_locked_super(s);
829 			goto error;
830 		}
831 
832 		s->s_flags |= MS_ACTIVE;
833 		bdev->bd_super = s;
834 	}
835 
836 	return dget(s->s_root);
837 
838 error_s:
839 	error = PTR_ERR(s);
840 error_bdev:
841 	blkdev_put(bdev, mode);
842 error:
843 	return ERR_PTR(error);
844 }
845 EXPORT_SYMBOL(mount_bdev);
846 
kill_block_super(struct super_block * sb)847 void kill_block_super(struct super_block *sb)
848 {
849 	struct block_device *bdev = sb->s_bdev;
850 	fmode_t mode = sb->s_mode;
851 
852 	bdev->bd_super = NULL;
853 	generic_shutdown_super(sb);
854 	sync_blockdev(bdev);
855 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
856 	blkdev_put(bdev, mode | FMODE_EXCL);
857 }
858 
859 EXPORT_SYMBOL(kill_block_super);
860 #endif
861 
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))862 struct dentry *mount_nodev(struct file_system_type *fs_type,
863 	int flags, void *data,
864 	int (*fill_super)(struct super_block *, void *, int))
865 {
866 	int error;
867 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
868 
869 	if (IS_ERR(s))
870 		return ERR_CAST(s);
871 
872 	s->s_flags = flags;
873 
874 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
875 	if (error) {
876 		deactivate_locked_super(s);
877 		return ERR_PTR(error);
878 	}
879 	s->s_flags |= MS_ACTIVE;
880 	return dget(s->s_root);
881 }
882 EXPORT_SYMBOL(mount_nodev);
883 
compare_single(struct super_block * s,void * p)884 static int compare_single(struct super_block *s, void *p)
885 {
886 	return 1;
887 }
888 
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))889 struct dentry *mount_single(struct file_system_type *fs_type,
890 	int flags, void *data,
891 	int (*fill_super)(struct super_block *, void *, int))
892 {
893 	struct super_block *s;
894 	int error;
895 
896 	s = sget(fs_type, compare_single, set_anon_super, NULL);
897 	if (IS_ERR(s))
898 		return ERR_CAST(s);
899 	if (!s->s_root) {
900 		s->s_flags = flags;
901 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
902 		if (error) {
903 			deactivate_locked_super(s);
904 			return ERR_PTR(error);
905 		}
906 		s->s_flags |= MS_ACTIVE;
907 	} else {
908 		do_remount_sb(s, flags, data, 0);
909 	}
910 	return dget(s->s_root);
911 }
912 EXPORT_SYMBOL(mount_single);
913 
914 struct dentry *
mount_fs(struct file_system_type * type,int flags,const char * name,void * data)915 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
916 {
917 	struct dentry *root;
918 	struct super_block *sb;
919 	char *secdata = NULL;
920 	int error = -ENOMEM;
921 
922 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
923 		secdata = alloc_secdata();
924 		if (!secdata)
925 			goto out;
926 
927 		error = security_sb_copy_data(data, secdata);
928 		if (error)
929 			goto out_free_secdata;
930 	}
931 
932 	root = type->mount(type, flags, name, data);
933 	if (IS_ERR(root)) {
934 		error = PTR_ERR(root);
935 		goto out_free_secdata;
936 	}
937 	sb = root->d_sb;
938 	BUG_ON(!sb);
939 	WARN_ON(!sb->s_bdi);
940 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
941 	sb->s_flags |= MS_BORN;
942 
943 	error = security_sb_kern_mount(sb, flags, secdata);
944 	if (error)
945 		goto out_sb;
946 
947 	/*
948 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
949 	 * but s_maxbytes was an unsigned long long for many releases. Throw
950 	 * this warning for a little while to try and catch filesystems that
951 	 * violate this rule. This warning should be either removed or
952 	 * converted to a BUG() in 2.6.34.
953 	 */
954 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
955 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
956 
957 	up_write(&sb->s_umount);
958 	free_secdata(secdata);
959 	return root;
960 out_sb:
961 	dput(root);
962 	deactivate_locked_super(sb);
963 out_free_secdata:
964 	free_secdata(secdata);
965 out:
966 	return ERR_PTR(error);
967 }
968 
969 /**
970  * freeze_super - lock the filesystem and force it into a consistent state
971  * @sb: the super to lock
972  *
973  * Syncs the super to make sure the filesystem is consistent and calls the fs's
974  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
975  * -EBUSY.
976  */
freeze_super(struct super_block * sb)977 int freeze_super(struct super_block *sb)
978 {
979 	int ret;
980 
981 	atomic_inc(&sb->s_active);
982 	down_write(&sb->s_umount);
983 	if (sb->s_frozen) {
984 		deactivate_locked_super(sb);
985 		return -EBUSY;
986 	}
987 
988 	if (sb->s_flags & MS_RDONLY) {
989 		sb->s_frozen = SB_FREEZE_TRANS;
990 		smp_wmb();
991 		up_write(&sb->s_umount);
992 		return 0;
993 	}
994 
995 	sb->s_frozen = SB_FREEZE_WRITE;
996 	smp_wmb();
997 
998 	sync_filesystem(sb);
999 
1000 	sb->s_frozen = SB_FREEZE_TRANS;
1001 	smp_wmb();
1002 
1003 	sync_blockdev(sb->s_bdev);
1004 	if (sb->s_op->freeze_fs) {
1005 		ret = sb->s_op->freeze_fs(sb);
1006 		if (ret) {
1007 			printk(KERN_ERR
1008 				"VFS:Filesystem freeze failed\n");
1009 			sb->s_frozen = SB_UNFROZEN;
1010 			deactivate_locked_super(sb);
1011 			return ret;
1012 		}
1013 	}
1014 	up_write(&sb->s_umount);
1015 	return 0;
1016 }
1017 EXPORT_SYMBOL(freeze_super);
1018 
1019 /**
1020  * thaw_super -- unlock filesystem
1021  * @sb: the super to thaw
1022  *
1023  * Unlocks the filesystem and marks it writeable again after freeze_super().
1024  */
thaw_super(struct super_block * sb)1025 int thaw_super(struct super_block *sb)
1026 {
1027 	int error;
1028 
1029 	down_write(&sb->s_umount);
1030 	if (sb->s_frozen == SB_UNFROZEN) {
1031 		up_write(&sb->s_umount);
1032 		return -EINVAL;
1033 	}
1034 
1035 	if (sb->s_flags & MS_RDONLY)
1036 		goto out;
1037 
1038 	if (sb->s_op->unfreeze_fs) {
1039 		error = sb->s_op->unfreeze_fs(sb);
1040 		if (error) {
1041 			printk(KERN_ERR
1042 				"VFS:Filesystem thaw failed\n");
1043 			sb->s_frozen = SB_FREEZE_TRANS;
1044 			up_write(&sb->s_umount);
1045 			return error;
1046 		}
1047 	}
1048 
1049 out:
1050 	sb->s_frozen = SB_UNFROZEN;
1051 	smp_wmb();
1052 	wake_up(&sb->s_wait_unfrozen);
1053 	deactivate_locked_super(sb);
1054 
1055 	return 0;
1056 }
1057 EXPORT_SYMBOL(thaw_super);
1058