1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
41 
42 #include <linux/compat.h>
43 #include <linux/syscalls.h>
44 #include <linux/kprobes.h>
45 #include <linux/user_namespace.h>
46 
47 #include <linux/kmsg_dump.h>
48 
49 #include <asm/uaccess.h>
50 #include <asm/io.h>
51 #include <asm/unistd.h>
52 
53 #ifndef SET_UNALIGN_CTL
54 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
55 #endif
56 #ifndef GET_UNALIGN_CTL
57 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
58 #endif
59 #ifndef SET_FPEMU_CTL
60 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
61 #endif
62 #ifndef GET_FPEMU_CTL
63 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
64 #endif
65 #ifndef SET_FPEXC_CTL
66 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
67 #endif
68 #ifndef GET_FPEXC_CTL
69 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
70 #endif
71 #ifndef GET_ENDIAN
72 # define GET_ENDIAN(a,b)	(-EINVAL)
73 #endif
74 #ifndef SET_ENDIAN
75 # define SET_ENDIAN(a,b)	(-EINVAL)
76 #endif
77 #ifndef GET_TSC_CTL
78 # define GET_TSC_CTL(a)		(-EINVAL)
79 #endif
80 #ifndef SET_TSC_CTL
81 # define SET_TSC_CTL(a)		(-EINVAL)
82 #endif
83 
84 /*
85  * this is where the system-wide overflow UID and GID are defined, for
86  * architectures that now have 32-bit UID/GID but didn't in the past
87  */
88 
89 int overflowuid = DEFAULT_OVERFLOWUID;
90 int overflowgid = DEFAULT_OVERFLOWGID;
91 
92 #ifdef CONFIG_UID16
93 EXPORT_SYMBOL(overflowuid);
94 EXPORT_SYMBOL(overflowgid);
95 #endif
96 
97 /*
98  * the same as above, but for filesystems which can only store a 16-bit
99  * UID and GID. as such, this is needed on all architectures
100  */
101 
102 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
103 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
104 
105 EXPORT_SYMBOL(fs_overflowuid);
106 EXPORT_SYMBOL(fs_overflowgid);
107 
108 /*
109  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
110  */
111 
112 int C_A_D = 1;
113 struct pid *cad_pid;
114 EXPORT_SYMBOL(cad_pid);
115 
116 /*
117  * If set, this is used for preparing the system to power off.
118  */
119 
120 void (*pm_power_off_prepare)(void);
121 
122 /*
123  * Returns true if current's euid is same as p's uid or euid,
124  * or has CAP_SYS_NICE to p's user_ns.
125  *
126  * Called with rcu_read_lock, creds are safe
127  */
set_one_prio_perm(struct task_struct * p)128 static bool set_one_prio_perm(struct task_struct *p)
129 {
130 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
131 
132 	if (pcred->user->user_ns == cred->user->user_ns &&
133 	    (pcred->uid  == cred->euid ||
134 	     pcred->euid == cred->euid))
135 		return true;
136 	if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE))
137 		return true;
138 	return false;
139 }
140 
141 /*
142  * set the priority of a task
143  * - the caller must hold the RCU read lock
144  */
set_one_prio(struct task_struct * p,int niceval,int error)145 static int set_one_prio(struct task_struct *p, int niceval, int error)
146 {
147 	int no_nice;
148 
149 	if (!set_one_prio_perm(p)) {
150 		error = -EPERM;
151 		goto out;
152 	}
153 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
154 		error = -EACCES;
155 		goto out;
156 	}
157 	no_nice = security_task_setnice(p, niceval);
158 	if (no_nice) {
159 		error = no_nice;
160 		goto out;
161 	}
162 	if (error == -ESRCH)
163 		error = 0;
164 	set_user_nice(p, niceval);
165 out:
166 	return error;
167 }
168 
SYSCALL_DEFINE3(setpriority,int,which,int,who,int,niceval)169 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
170 {
171 	struct task_struct *g, *p;
172 	struct user_struct *user;
173 	const struct cred *cred = current_cred();
174 	int error = -EINVAL;
175 	struct pid *pgrp;
176 
177 	if (which > PRIO_USER || which < PRIO_PROCESS)
178 		goto out;
179 
180 	/* normalize: avoid signed division (rounding problems) */
181 	error = -ESRCH;
182 	if (niceval < -20)
183 		niceval = -20;
184 	if (niceval > 19)
185 		niceval = 19;
186 
187 	rcu_read_lock();
188 	read_lock(&tasklist_lock);
189 	switch (which) {
190 		case PRIO_PROCESS:
191 			if (who)
192 				p = find_task_by_vpid(who);
193 			else
194 				p = current;
195 			if (p)
196 				error = set_one_prio(p, niceval, error);
197 			break;
198 		case PRIO_PGRP:
199 			if (who)
200 				pgrp = find_vpid(who);
201 			else
202 				pgrp = task_pgrp(current);
203 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
204 				error = set_one_prio(p, niceval, error);
205 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
206 			break;
207 		case PRIO_USER:
208 			user = (struct user_struct *) cred->user;
209 			if (!who)
210 				who = cred->uid;
211 			else if ((who != cred->uid) &&
212 				 !(user = find_user(who)))
213 				goto out_unlock;	/* No processes for this user */
214 
215 			do_each_thread(g, p) {
216 				if (__task_cred(p)->uid == who)
217 					error = set_one_prio(p, niceval, error);
218 			} while_each_thread(g, p);
219 			if (who != cred->uid)
220 				free_uid(user);		/* For find_user() */
221 			break;
222 	}
223 out_unlock:
224 	read_unlock(&tasklist_lock);
225 	rcu_read_unlock();
226 out:
227 	return error;
228 }
229 
230 /*
231  * Ugh. To avoid negative return values, "getpriority()" will
232  * not return the normal nice-value, but a negated value that
233  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
234  * to stay compatible.
235  */
SYSCALL_DEFINE2(getpriority,int,which,int,who)236 SYSCALL_DEFINE2(getpriority, int, which, int, who)
237 {
238 	struct task_struct *g, *p;
239 	struct user_struct *user;
240 	const struct cred *cred = current_cred();
241 	long niceval, retval = -ESRCH;
242 	struct pid *pgrp;
243 
244 	if (which > PRIO_USER || which < PRIO_PROCESS)
245 		return -EINVAL;
246 
247 	rcu_read_lock();
248 	read_lock(&tasklist_lock);
249 	switch (which) {
250 		case PRIO_PROCESS:
251 			if (who)
252 				p = find_task_by_vpid(who);
253 			else
254 				p = current;
255 			if (p) {
256 				niceval = 20 - task_nice(p);
257 				if (niceval > retval)
258 					retval = niceval;
259 			}
260 			break;
261 		case PRIO_PGRP:
262 			if (who)
263 				pgrp = find_vpid(who);
264 			else
265 				pgrp = task_pgrp(current);
266 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
267 				niceval = 20 - task_nice(p);
268 				if (niceval > retval)
269 					retval = niceval;
270 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
271 			break;
272 		case PRIO_USER:
273 			user = (struct user_struct *) cred->user;
274 			if (!who)
275 				who = cred->uid;
276 			else if ((who != cred->uid) &&
277 				 !(user = find_user(who)))
278 				goto out_unlock;	/* No processes for this user */
279 
280 			do_each_thread(g, p) {
281 				if (__task_cred(p)->uid == who) {
282 					niceval = 20 - task_nice(p);
283 					if (niceval > retval)
284 						retval = niceval;
285 				}
286 			} while_each_thread(g, p);
287 			if (who != cred->uid)
288 				free_uid(user);		/* for find_user() */
289 			break;
290 	}
291 out_unlock:
292 	read_unlock(&tasklist_lock);
293 	rcu_read_unlock();
294 
295 	return retval;
296 }
297 
298 /**
299  *	emergency_restart - reboot the system
300  *
301  *	Without shutting down any hardware or taking any locks
302  *	reboot the system.  This is called when we know we are in
303  *	trouble so this is our best effort to reboot.  This is
304  *	safe to call in interrupt context.
305  */
emergency_restart(void)306 void emergency_restart(void)
307 {
308 	kmsg_dump(KMSG_DUMP_EMERG);
309 	machine_emergency_restart();
310 }
311 EXPORT_SYMBOL_GPL(emergency_restart);
312 
kernel_restart_prepare(char * cmd)313 void kernel_restart_prepare(char *cmd)
314 {
315 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
316 	system_state = SYSTEM_RESTART;
317 	device_shutdown();
318 	sysdev_shutdown();
319 	syscore_shutdown();
320 }
321 
322 /**
323  *	kernel_restart - reboot the system
324  *	@cmd: pointer to buffer containing command to execute for restart
325  *		or %NULL
326  *
327  *	Shutdown everything and perform a clean reboot.
328  *	This is not safe to call in interrupt context.
329  */
kernel_restart(char * cmd)330 void kernel_restart(char *cmd)
331 {
332 	kernel_restart_prepare(cmd);
333 	if (!cmd)
334 		printk(KERN_EMERG "Restarting system.\n");
335 	else
336 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
337 	kmsg_dump(KMSG_DUMP_RESTART);
338 	machine_restart(cmd);
339 }
340 EXPORT_SYMBOL_GPL(kernel_restart);
341 
kernel_shutdown_prepare(enum system_states state)342 static void kernel_shutdown_prepare(enum system_states state)
343 {
344 	blocking_notifier_call_chain(&reboot_notifier_list,
345 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
346 	system_state = state;
347 	device_shutdown();
348 }
349 /**
350  *	kernel_halt - halt the system
351  *
352  *	Shutdown everything and perform a clean system halt.
353  */
kernel_halt(void)354 void kernel_halt(void)
355 {
356 	kernel_shutdown_prepare(SYSTEM_HALT);
357 	sysdev_shutdown();
358 	syscore_shutdown();
359 	printk(KERN_EMERG "System halted.\n");
360 	kmsg_dump(KMSG_DUMP_HALT);
361 	machine_halt();
362 }
363 
364 EXPORT_SYMBOL_GPL(kernel_halt);
365 
366 /**
367  *	kernel_power_off - power_off the system
368  *
369  *	Shutdown everything and perform a clean system power_off.
370  */
kernel_power_off(void)371 void kernel_power_off(void)
372 {
373 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
374 	if (pm_power_off_prepare)
375 		pm_power_off_prepare();
376 	disable_nonboot_cpus();
377 	sysdev_shutdown();
378 	syscore_shutdown();
379 	printk(KERN_EMERG "Power down.\n");
380 	kmsg_dump(KMSG_DUMP_POWEROFF);
381 	machine_power_off();
382 }
383 EXPORT_SYMBOL_GPL(kernel_power_off);
384 
385 static DEFINE_MUTEX(reboot_mutex);
386 
387 /*
388  * Reboot system call: for obvious reasons only root may call it,
389  * and even root needs to set up some magic numbers in the registers
390  * so that some mistake won't make this reboot the whole machine.
391  * You can also set the meaning of the ctrl-alt-del-key here.
392  *
393  * reboot doesn't sync: do that yourself before calling this.
394  */
SYSCALL_DEFINE4(reboot,int,magic1,int,magic2,unsigned int,cmd,void __user *,arg)395 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
396 		void __user *, arg)
397 {
398 	char buffer[256];
399 	int ret = 0;
400 
401 	/* We only trust the superuser with rebooting the system. */
402 	if (!capable(CAP_SYS_BOOT))
403 		return -EPERM;
404 
405 	/* For safety, we require "magic" arguments. */
406 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
407 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
408 	                magic2 != LINUX_REBOOT_MAGIC2A &&
409 			magic2 != LINUX_REBOOT_MAGIC2B &&
410 	                magic2 != LINUX_REBOOT_MAGIC2C))
411 		return -EINVAL;
412 
413 	/* Instead of trying to make the power_off code look like
414 	 * halt when pm_power_off is not set do it the easy way.
415 	 */
416 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
417 		cmd = LINUX_REBOOT_CMD_HALT;
418 
419 	mutex_lock(&reboot_mutex);
420 	switch (cmd) {
421 	case LINUX_REBOOT_CMD_RESTART:
422 		kernel_restart(NULL);
423 		break;
424 
425 	case LINUX_REBOOT_CMD_CAD_ON:
426 		C_A_D = 1;
427 		break;
428 
429 	case LINUX_REBOOT_CMD_CAD_OFF:
430 		C_A_D = 0;
431 		break;
432 
433 	case LINUX_REBOOT_CMD_HALT:
434 		kernel_halt();
435 		do_exit(0);
436 		panic("cannot halt");
437 
438 	case LINUX_REBOOT_CMD_POWER_OFF:
439 		kernel_power_off();
440 		do_exit(0);
441 		break;
442 
443 	case LINUX_REBOOT_CMD_RESTART2:
444 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
445 			ret = -EFAULT;
446 			break;
447 		}
448 		buffer[sizeof(buffer) - 1] = '\0';
449 
450 		kernel_restart(buffer);
451 		break;
452 
453 #ifdef CONFIG_KEXEC
454 	case LINUX_REBOOT_CMD_KEXEC:
455 		ret = kernel_kexec();
456 		break;
457 #endif
458 
459 #ifdef CONFIG_HIBERNATION
460 	case LINUX_REBOOT_CMD_SW_SUSPEND:
461 		ret = hibernate();
462 		break;
463 #endif
464 
465 	default:
466 		ret = -EINVAL;
467 		break;
468 	}
469 	mutex_unlock(&reboot_mutex);
470 	return ret;
471 }
472 
deferred_cad(struct work_struct * dummy)473 static void deferred_cad(struct work_struct *dummy)
474 {
475 	kernel_restart(NULL);
476 }
477 
478 /*
479  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
480  * As it's called within an interrupt, it may NOT sync: the only choice
481  * is whether to reboot at once, or just ignore the ctrl-alt-del.
482  */
ctrl_alt_del(void)483 void ctrl_alt_del(void)
484 {
485 	static DECLARE_WORK(cad_work, deferred_cad);
486 
487 	if (C_A_D)
488 		schedule_work(&cad_work);
489 	else
490 		kill_cad_pid(SIGINT, 1);
491 }
492 
493 /*
494  * Unprivileged users may change the real gid to the effective gid
495  * or vice versa.  (BSD-style)
496  *
497  * If you set the real gid at all, or set the effective gid to a value not
498  * equal to the real gid, then the saved gid is set to the new effective gid.
499  *
500  * This makes it possible for a setgid program to completely drop its
501  * privileges, which is often a useful assertion to make when you are doing
502  * a security audit over a program.
503  *
504  * The general idea is that a program which uses just setregid() will be
505  * 100% compatible with BSD.  A program which uses just setgid() will be
506  * 100% compatible with POSIX with saved IDs.
507  *
508  * SMP: There are not races, the GIDs are checked only by filesystem
509  *      operations (as far as semantic preservation is concerned).
510  */
SYSCALL_DEFINE2(setregid,gid_t,rgid,gid_t,egid)511 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
512 {
513 	const struct cred *old;
514 	struct cred *new;
515 	int retval;
516 
517 	new = prepare_creds();
518 	if (!new)
519 		return -ENOMEM;
520 	old = current_cred();
521 
522 	retval = -EPERM;
523 	if (rgid != (gid_t) -1) {
524 		if (old->gid == rgid ||
525 		    old->egid == rgid ||
526 		    nsown_capable(CAP_SETGID))
527 			new->gid = rgid;
528 		else
529 			goto error;
530 	}
531 	if (egid != (gid_t) -1) {
532 		if (old->gid == egid ||
533 		    old->egid == egid ||
534 		    old->sgid == egid ||
535 		    nsown_capable(CAP_SETGID))
536 			new->egid = egid;
537 		else
538 			goto error;
539 	}
540 
541 	if (rgid != (gid_t) -1 ||
542 	    (egid != (gid_t) -1 && egid != old->gid))
543 		new->sgid = new->egid;
544 	new->fsgid = new->egid;
545 
546 	return commit_creds(new);
547 
548 error:
549 	abort_creds(new);
550 	return retval;
551 }
552 
553 /*
554  * setgid() is implemented like SysV w/ SAVED_IDS
555  *
556  * SMP: Same implicit races as above.
557  */
SYSCALL_DEFINE1(setgid,gid_t,gid)558 SYSCALL_DEFINE1(setgid, gid_t, gid)
559 {
560 	const struct cred *old;
561 	struct cred *new;
562 	int retval;
563 
564 	new = prepare_creds();
565 	if (!new)
566 		return -ENOMEM;
567 	old = current_cred();
568 
569 	retval = -EPERM;
570 	if (nsown_capable(CAP_SETGID))
571 		new->gid = new->egid = new->sgid = new->fsgid = gid;
572 	else if (gid == old->gid || gid == old->sgid)
573 		new->egid = new->fsgid = gid;
574 	else
575 		goto error;
576 
577 	return commit_creds(new);
578 
579 error:
580 	abort_creds(new);
581 	return retval;
582 }
583 
584 /*
585  * change the user struct in a credentials set to match the new UID
586  */
set_user(struct cred * new)587 static int set_user(struct cred *new)
588 {
589 	struct user_struct *new_user;
590 
591 	new_user = alloc_uid(current_user_ns(), new->uid);
592 	if (!new_user)
593 		return -EAGAIN;
594 
595 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
596 			new_user != INIT_USER) {
597 		free_uid(new_user);
598 		return -EAGAIN;
599 	}
600 
601 	free_uid(new->user);
602 	new->user = new_user;
603 	return 0;
604 }
605 
606 /*
607  * Unprivileged users may change the real uid to the effective uid
608  * or vice versa.  (BSD-style)
609  *
610  * If you set the real uid at all, or set the effective uid to a value not
611  * equal to the real uid, then the saved uid is set to the new effective uid.
612  *
613  * This makes it possible for a setuid program to completely drop its
614  * privileges, which is often a useful assertion to make when you are doing
615  * a security audit over a program.
616  *
617  * The general idea is that a program which uses just setreuid() will be
618  * 100% compatible with BSD.  A program which uses just setuid() will be
619  * 100% compatible with POSIX with saved IDs.
620  */
SYSCALL_DEFINE2(setreuid,uid_t,ruid,uid_t,euid)621 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
622 {
623 	const struct cred *old;
624 	struct cred *new;
625 	int retval;
626 
627 	new = prepare_creds();
628 	if (!new)
629 		return -ENOMEM;
630 	old = current_cred();
631 
632 	retval = -EPERM;
633 	if (ruid != (uid_t) -1) {
634 		new->uid = ruid;
635 		if (old->uid != ruid &&
636 		    old->euid != ruid &&
637 		    !nsown_capable(CAP_SETUID))
638 			goto error;
639 	}
640 
641 	if (euid != (uid_t) -1) {
642 		new->euid = euid;
643 		if (old->uid != euid &&
644 		    old->euid != euid &&
645 		    old->suid != euid &&
646 		    !nsown_capable(CAP_SETUID))
647 			goto error;
648 	}
649 
650 	if (new->uid != old->uid) {
651 		retval = set_user(new);
652 		if (retval < 0)
653 			goto error;
654 	}
655 	if (ruid != (uid_t) -1 ||
656 	    (euid != (uid_t) -1 && euid != old->uid))
657 		new->suid = new->euid;
658 	new->fsuid = new->euid;
659 
660 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
661 	if (retval < 0)
662 		goto error;
663 
664 	return commit_creds(new);
665 
666 error:
667 	abort_creds(new);
668 	return retval;
669 }
670 
671 /*
672  * setuid() is implemented like SysV with SAVED_IDS
673  *
674  * Note that SAVED_ID's is deficient in that a setuid root program
675  * like sendmail, for example, cannot set its uid to be a normal
676  * user and then switch back, because if you're root, setuid() sets
677  * the saved uid too.  If you don't like this, blame the bright people
678  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
679  * will allow a root program to temporarily drop privileges and be able to
680  * regain them by swapping the real and effective uid.
681  */
SYSCALL_DEFINE1(setuid,uid_t,uid)682 SYSCALL_DEFINE1(setuid, uid_t, uid)
683 {
684 	const struct cred *old;
685 	struct cred *new;
686 	int retval;
687 
688 	new = prepare_creds();
689 	if (!new)
690 		return -ENOMEM;
691 	old = current_cred();
692 
693 	retval = -EPERM;
694 	if (nsown_capable(CAP_SETUID)) {
695 		new->suid = new->uid = uid;
696 		if (uid != old->uid) {
697 			retval = set_user(new);
698 			if (retval < 0)
699 				goto error;
700 		}
701 	} else if (uid != old->uid && uid != new->suid) {
702 		goto error;
703 	}
704 
705 	new->fsuid = new->euid = uid;
706 
707 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
708 	if (retval < 0)
709 		goto error;
710 
711 	return commit_creds(new);
712 
713 error:
714 	abort_creds(new);
715 	return retval;
716 }
717 
718 
719 /*
720  * This function implements a generic ability to update ruid, euid,
721  * and suid.  This allows you to implement the 4.4 compatible seteuid().
722  */
SYSCALL_DEFINE3(setresuid,uid_t,ruid,uid_t,euid,uid_t,suid)723 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
724 {
725 	const struct cred *old;
726 	struct cred *new;
727 	int retval;
728 
729 	new = prepare_creds();
730 	if (!new)
731 		return -ENOMEM;
732 
733 	old = current_cred();
734 
735 	retval = -EPERM;
736 	if (!nsown_capable(CAP_SETUID)) {
737 		if (ruid != (uid_t) -1 && ruid != old->uid &&
738 		    ruid != old->euid  && ruid != old->suid)
739 			goto error;
740 		if (euid != (uid_t) -1 && euid != old->uid &&
741 		    euid != old->euid  && euid != old->suid)
742 			goto error;
743 		if (suid != (uid_t) -1 && suid != old->uid &&
744 		    suid != old->euid  && suid != old->suid)
745 			goto error;
746 	}
747 
748 	if (ruid != (uid_t) -1) {
749 		new->uid = ruid;
750 		if (ruid != old->uid) {
751 			retval = set_user(new);
752 			if (retval < 0)
753 				goto error;
754 		}
755 	}
756 	if (euid != (uid_t) -1)
757 		new->euid = euid;
758 	if (suid != (uid_t) -1)
759 		new->suid = suid;
760 	new->fsuid = new->euid;
761 
762 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
763 	if (retval < 0)
764 		goto error;
765 
766 	return commit_creds(new);
767 
768 error:
769 	abort_creds(new);
770 	return retval;
771 }
772 
SYSCALL_DEFINE3(getresuid,uid_t __user *,ruid,uid_t __user *,euid,uid_t __user *,suid)773 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
774 {
775 	const struct cred *cred = current_cred();
776 	int retval;
777 
778 	if (!(retval   = put_user(cred->uid,  ruid)) &&
779 	    !(retval   = put_user(cred->euid, euid)))
780 		retval = put_user(cred->suid, suid);
781 
782 	return retval;
783 }
784 
785 /*
786  * Same as above, but for rgid, egid, sgid.
787  */
SYSCALL_DEFINE3(setresgid,gid_t,rgid,gid_t,egid,gid_t,sgid)788 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
789 {
790 	const struct cred *old;
791 	struct cred *new;
792 	int retval;
793 
794 	new = prepare_creds();
795 	if (!new)
796 		return -ENOMEM;
797 	old = current_cred();
798 
799 	retval = -EPERM;
800 	if (!nsown_capable(CAP_SETGID)) {
801 		if (rgid != (gid_t) -1 && rgid != old->gid &&
802 		    rgid != old->egid  && rgid != old->sgid)
803 			goto error;
804 		if (egid != (gid_t) -1 && egid != old->gid &&
805 		    egid != old->egid  && egid != old->sgid)
806 			goto error;
807 		if (sgid != (gid_t) -1 && sgid != old->gid &&
808 		    sgid != old->egid  && sgid != old->sgid)
809 			goto error;
810 	}
811 
812 	if (rgid != (gid_t) -1)
813 		new->gid = rgid;
814 	if (egid != (gid_t) -1)
815 		new->egid = egid;
816 	if (sgid != (gid_t) -1)
817 		new->sgid = sgid;
818 	new->fsgid = new->egid;
819 
820 	return commit_creds(new);
821 
822 error:
823 	abort_creds(new);
824 	return retval;
825 }
826 
SYSCALL_DEFINE3(getresgid,gid_t __user *,rgid,gid_t __user *,egid,gid_t __user *,sgid)827 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
828 {
829 	const struct cred *cred = current_cred();
830 	int retval;
831 
832 	if (!(retval   = put_user(cred->gid,  rgid)) &&
833 	    !(retval   = put_user(cred->egid, egid)))
834 		retval = put_user(cred->sgid, sgid);
835 
836 	return retval;
837 }
838 
839 
840 /*
841  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
842  * is used for "access()" and for the NFS daemon (letting nfsd stay at
843  * whatever uid it wants to). It normally shadows "euid", except when
844  * explicitly set by setfsuid() or for access..
845  */
SYSCALL_DEFINE1(setfsuid,uid_t,uid)846 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
847 {
848 	const struct cred *old;
849 	struct cred *new;
850 	uid_t old_fsuid;
851 
852 	new = prepare_creds();
853 	if (!new)
854 		return current_fsuid();
855 	old = current_cred();
856 	old_fsuid = old->fsuid;
857 
858 	if (uid == old->uid  || uid == old->euid  ||
859 	    uid == old->suid || uid == old->fsuid ||
860 	    nsown_capable(CAP_SETUID)) {
861 		if (uid != old_fsuid) {
862 			new->fsuid = uid;
863 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
864 				goto change_okay;
865 		}
866 	}
867 
868 	abort_creds(new);
869 	return old_fsuid;
870 
871 change_okay:
872 	commit_creds(new);
873 	return old_fsuid;
874 }
875 
876 /*
877  * Samma på svenska..
878  */
SYSCALL_DEFINE1(setfsgid,gid_t,gid)879 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
880 {
881 	const struct cred *old;
882 	struct cred *new;
883 	gid_t old_fsgid;
884 
885 	new = prepare_creds();
886 	if (!new)
887 		return current_fsgid();
888 	old = current_cred();
889 	old_fsgid = old->fsgid;
890 
891 	if (gid == old->gid  || gid == old->egid  ||
892 	    gid == old->sgid || gid == old->fsgid ||
893 	    nsown_capable(CAP_SETGID)) {
894 		if (gid != old_fsgid) {
895 			new->fsgid = gid;
896 			goto change_okay;
897 		}
898 	}
899 
900 	abort_creds(new);
901 	return old_fsgid;
902 
903 change_okay:
904 	commit_creds(new);
905 	return old_fsgid;
906 }
907 
do_sys_times(struct tms * tms)908 void do_sys_times(struct tms *tms)
909 {
910 	cputime_t tgutime, tgstime, cutime, cstime;
911 
912 	spin_lock_irq(&current->sighand->siglock);
913 	thread_group_times(current, &tgutime, &tgstime);
914 	cutime = current->signal->cutime;
915 	cstime = current->signal->cstime;
916 	spin_unlock_irq(&current->sighand->siglock);
917 	tms->tms_utime = cputime_to_clock_t(tgutime);
918 	tms->tms_stime = cputime_to_clock_t(tgstime);
919 	tms->tms_cutime = cputime_to_clock_t(cutime);
920 	tms->tms_cstime = cputime_to_clock_t(cstime);
921 }
922 
SYSCALL_DEFINE1(times,struct tms __user *,tbuf)923 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
924 {
925 	if (tbuf) {
926 		struct tms tmp;
927 
928 		do_sys_times(&tmp);
929 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
930 			return -EFAULT;
931 	}
932 	force_successful_syscall_return();
933 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
934 }
935 
936 /*
937  * This needs some heavy checking ...
938  * I just haven't the stomach for it. I also don't fully
939  * understand sessions/pgrp etc. Let somebody who does explain it.
940  *
941  * OK, I think I have the protection semantics right.... this is really
942  * only important on a multi-user system anyway, to make sure one user
943  * can't send a signal to a process owned by another.  -TYT, 12/12/91
944  *
945  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
946  * LBT 04.03.94
947  */
SYSCALL_DEFINE2(setpgid,pid_t,pid,pid_t,pgid)948 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
949 {
950 	struct task_struct *p;
951 	struct task_struct *group_leader = current->group_leader;
952 	struct pid *pgrp;
953 	int err;
954 
955 	if (!pid)
956 		pid = task_pid_vnr(group_leader);
957 	if (!pgid)
958 		pgid = pid;
959 	if (pgid < 0)
960 		return -EINVAL;
961 	rcu_read_lock();
962 
963 	/* From this point forward we keep holding onto the tasklist lock
964 	 * so that our parent does not change from under us. -DaveM
965 	 */
966 	write_lock_irq(&tasklist_lock);
967 
968 	err = -ESRCH;
969 	p = find_task_by_vpid(pid);
970 	if (!p)
971 		goto out;
972 
973 	err = -EINVAL;
974 	if (!thread_group_leader(p))
975 		goto out;
976 
977 	if (same_thread_group(p->real_parent, group_leader)) {
978 		err = -EPERM;
979 		if (task_session(p) != task_session(group_leader))
980 			goto out;
981 		err = -EACCES;
982 		if (p->did_exec)
983 			goto out;
984 	} else {
985 		err = -ESRCH;
986 		if (p != group_leader)
987 			goto out;
988 	}
989 
990 	err = -EPERM;
991 	if (p->signal->leader)
992 		goto out;
993 
994 	pgrp = task_pid(p);
995 	if (pgid != pid) {
996 		struct task_struct *g;
997 
998 		pgrp = find_vpid(pgid);
999 		g = pid_task(pgrp, PIDTYPE_PGID);
1000 		if (!g || task_session(g) != task_session(group_leader))
1001 			goto out;
1002 	}
1003 
1004 	err = security_task_setpgid(p, pgid);
1005 	if (err)
1006 		goto out;
1007 
1008 	if (task_pgrp(p) != pgrp)
1009 		change_pid(p, PIDTYPE_PGID, pgrp);
1010 
1011 	err = 0;
1012 out:
1013 	/* All paths lead to here, thus we are safe. -DaveM */
1014 	write_unlock_irq(&tasklist_lock);
1015 	rcu_read_unlock();
1016 	return err;
1017 }
1018 
SYSCALL_DEFINE1(getpgid,pid_t,pid)1019 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1020 {
1021 	struct task_struct *p;
1022 	struct pid *grp;
1023 	int retval;
1024 
1025 	rcu_read_lock();
1026 	if (!pid)
1027 		grp = task_pgrp(current);
1028 	else {
1029 		retval = -ESRCH;
1030 		p = find_task_by_vpid(pid);
1031 		if (!p)
1032 			goto out;
1033 		grp = task_pgrp(p);
1034 		if (!grp)
1035 			goto out;
1036 
1037 		retval = security_task_getpgid(p);
1038 		if (retval)
1039 			goto out;
1040 	}
1041 	retval = pid_vnr(grp);
1042 out:
1043 	rcu_read_unlock();
1044 	return retval;
1045 }
1046 
1047 #ifdef __ARCH_WANT_SYS_GETPGRP
1048 
SYSCALL_DEFINE0(getpgrp)1049 SYSCALL_DEFINE0(getpgrp)
1050 {
1051 	return sys_getpgid(0);
1052 }
1053 
1054 #endif
1055 
SYSCALL_DEFINE1(getsid,pid_t,pid)1056 SYSCALL_DEFINE1(getsid, pid_t, pid)
1057 {
1058 	struct task_struct *p;
1059 	struct pid *sid;
1060 	int retval;
1061 
1062 	rcu_read_lock();
1063 	if (!pid)
1064 		sid = task_session(current);
1065 	else {
1066 		retval = -ESRCH;
1067 		p = find_task_by_vpid(pid);
1068 		if (!p)
1069 			goto out;
1070 		sid = task_session(p);
1071 		if (!sid)
1072 			goto out;
1073 
1074 		retval = security_task_getsid(p);
1075 		if (retval)
1076 			goto out;
1077 	}
1078 	retval = pid_vnr(sid);
1079 out:
1080 	rcu_read_unlock();
1081 	return retval;
1082 }
1083 
SYSCALL_DEFINE0(setsid)1084 SYSCALL_DEFINE0(setsid)
1085 {
1086 	struct task_struct *group_leader = current->group_leader;
1087 	struct pid *sid = task_pid(group_leader);
1088 	pid_t session = pid_vnr(sid);
1089 	int err = -EPERM;
1090 
1091 	write_lock_irq(&tasklist_lock);
1092 	/* Fail if I am already a session leader */
1093 	if (group_leader->signal->leader)
1094 		goto out;
1095 
1096 	/* Fail if a process group id already exists that equals the
1097 	 * proposed session id.
1098 	 */
1099 	if (pid_task(sid, PIDTYPE_PGID))
1100 		goto out;
1101 
1102 	group_leader->signal->leader = 1;
1103 	__set_special_pids(sid);
1104 
1105 	proc_clear_tty(group_leader);
1106 
1107 	err = session;
1108 out:
1109 	write_unlock_irq(&tasklist_lock);
1110 	if (err > 0) {
1111 		proc_sid_connector(group_leader);
1112 		sched_autogroup_create_attach(group_leader);
1113 	}
1114 	return err;
1115 }
1116 
1117 DECLARE_RWSEM(uts_sem);
1118 
1119 #ifdef COMPAT_UTS_MACHINE
1120 #define override_architecture(name) \
1121 	(personality(current->personality) == PER_LINUX32 && \
1122 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1123 		      sizeof(COMPAT_UTS_MACHINE)))
1124 #else
1125 #define override_architecture(name)	0
1126 #endif
1127 
SYSCALL_DEFINE1(newuname,struct new_utsname __user *,name)1128 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1129 {
1130 	int errno = 0;
1131 
1132 	down_read(&uts_sem);
1133 	if (copy_to_user(name, utsname(), sizeof *name))
1134 		errno = -EFAULT;
1135 	up_read(&uts_sem);
1136 
1137 	if (!errno && override_architecture(name))
1138 		errno = -EFAULT;
1139 	return errno;
1140 }
1141 
1142 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1143 /*
1144  * Old cruft
1145  */
SYSCALL_DEFINE1(uname,struct old_utsname __user *,name)1146 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1147 {
1148 	int error = 0;
1149 
1150 	if (!name)
1151 		return -EFAULT;
1152 
1153 	down_read(&uts_sem);
1154 	if (copy_to_user(name, utsname(), sizeof(*name)))
1155 		error = -EFAULT;
1156 	up_read(&uts_sem);
1157 
1158 	if (!error && override_architecture(name))
1159 		error = -EFAULT;
1160 	return error;
1161 }
1162 
SYSCALL_DEFINE1(olduname,struct oldold_utsname __user *,name)1163 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1164 {
1165 	int error;
1166 
1167 	if (!name)
1168 		return -EFAULT;
1169 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1170 		return -EFAULT;
1171 
1172 	down_read(&uts_sem);
1173 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1174 			       __OLD_UTS_LEN);
1175 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1176 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1177 				__OLD_UTS_LEN);
1178 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1179 	error |= __copy_to_user(&name->release, &utsname()->release,
1180 				__OLD_UTS_LEN);
1181 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1182 	error |= __copy_to_user(&name->version, &utsname()->version,
1183 				__OLD_UTS_LEN);
1184 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1185 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1186 				__OLD_UTS_LEN);
1187 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1188 	up_read(&uts_sem);
1189 
1190 	if (!error && override_architecture(name))
1191 		error = -EFAULT;
1192 	return error ? -EFAULT : 0;
1193 }
1194 #endif
1195 
SYSCALL_DEFINE2(sethostname,char __user *,name,int,len)1196 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1197 {
1198 	int errno;
1199 	char tmp[__NEW_UTS_LEN];
1200 
1201 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1202 		return -EPERM;
1203 
1204 	if (len < 0 || len > __NEW_UTS_LEN)
1205 		return -EINVAL;
1206 	down_write(&uts_sem);
1207 	errno = -EFAULT;
1208 	if (!copy_from_user(tmp, name, len)) {
1209 		struct new_utsname *u = utsname();
1210 
1211 		memcpy(u->nodename, tmp, len);
1212 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1213 		errno = 0;
1214 	}
1215 	up_write(&uts_sem);
1216 	return errno;
1217 }
1218 
1219 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1220 
SYSCALL_DEFINE2(gethostname,char __user *,name,int,len)1221 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1222 {
1223 	int i, errno;
1224 	struct new_utsname *u;
1225 
1226 	if (len < 0)
1227 		return -EINVAL;
1228 	down_read(&uts_sem);
1229 	u = utsname();
1230 	i = 1 + strlen(u->nodename);
1231 	if (i > len)
1232 		i = len;
1233 	errno = 0;
1234 	if (copy_to_user(name, u->nodename, i))
1235 		errno = -EFAULT;
1236 	up_read(&uts_sem);
1237 	return errno;
1238 }
1239 
1240 #endif
1241 
1242 /*
1243  * Only setdomainname; getdomainname can be implemented by calling
1244  * uname()
1245  */
SYSCALL_DEFINE2(setdomainname,char __user *,name,int,len)1246 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1247 {
1248 	int errno;
1249 	char tmp[__NEW_UTS_LEN];
1250 
1251 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1252 		return -EPERM;
1253 	if (len < 0 || len > __NEW_UTS_LEN)
1254 		return -EINVAL;
1255 
1256 	down_write(&uts_sem);
1257 	errno = -EFAULT;
1258 	if (!copy_from_user(tmp, name, len)) {
1259 		struct new_utsname *u = utsname();
1260 
1261 		memcpy(u->domainname, tmp, len);
1262 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1263 		errno = 0;
1264 	}
1265 	up_write(&uts_sem);
1266 	return errno;
1267 }
1268 
SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1269 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1270 {
1271 	struct rlimit value;
1272 	int ret;
1273 
1274 	ret = do_prlimit(current, resource, NULL, &value);
1275 	if (!ret)
1276 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1277 
1278 	return ret;
1279 }
1280 
1281 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1282 
1283 /*
1284  *	Back compatibility for getrlimit. Needed for some apps.
1285  */
1286 
SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1287 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1288 		struct rlimit __user *, rlim)
1289 {
1290 	struct rlimit x;
1291 	if (resource >= RLIM_NLIMITS)
1292 		return -EINVAL;
1293 
1294 	task_lock(current->group_leader);
1295 	x = current->signal->rlim[resource];
1296 	task_unlock(current->group_leader);
1297 	if (x.rlim_cur > 0x7FFFFFFF)
1298 		x.rlim_cur = 0x7FFFFFFF;
1299 	if (x.rlim_max > 0x7FFFFFFF)
1300 		x.rlim_max = 0x7FFFFFFF;
1301 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1302 }
1303 
1304 #endif
1305 
rlim64_is_infinity(__u64 rlim64)1306 static inline bool rlim64_is_infinity(__u64 rlim64)
1307 {
1308 #if BITS_PER_LONG < 64
1309 	return rlim64 >= ULONG_MAX;
1310 #else
1311 	return rlim64 == RLIM64_INFINITY;
1312 #endif
1313 }
1314 
rlim_to_rlim64(const struct rlimit * rlim,struct rlimit64 * rlim64)1315 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1316 {
1317 	if (rlim->rlim_cur == RLIM_INFINITY)
1318 		rlim64->rlim_cur = RLIM64_INFINITY;
1319 	else
1320 		rlim64->rlim_cur = rlim->rlim_cur;
1321 	if (rlim->rlim_max == RLIM_INFINITY)
1322 		rlim64->rlim_max = RLIM64_INFINITY;
1323 	else
1324 		rlim64->rlim_max = rlim->rlim_max;
1325 }
1326 
rlim64_to_rlim(const struct rlimit64 * rlim64,struct rlimit * rlim)1327 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1328 {
1329 	if (rlim64_is_infinity(rlim64->rlim_cur))
1330 		rlim->rlim_cur = RLIM_INFINITY;
1331 	else
1332 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1333 	if (rlim64_is_infinity(rlim64->rlim_max))
1334 		rlim->rlim_max = RLIM_INFINITY;
1335 	else
1336 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1337 }
1338 
1339 /* make sure you are allowed to change @tsk limits before calling this */
do_prlimit(struct task_struct * tsk,unsigned int resource,struct rlimit * new_rlim,struct rlimit * old_rlim)1340 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1341 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1342 {
1343 	struct rlimit *rlim;
1344 	int retval = 0;
1345 
1346 	if (resource >= RLIM_NLIMITS)
1347 		return -EINVAL;
1348 	if (new_rlim) {
1349 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1350 			return -EINVAL;
1351 		if (resource == RLIMIT_NOFILE &&
1352 				new_rlim->rlim_max > sysctl_nr_open)
1353 			return -EPERM;
1354 	}
1355 
1356 	/* protect tsk->signal and tsk->sighand from disappearing */
1357 	read_lock(&tasklist_lock);
1358 	if (!tsk->sighand) {
1359 		retval = -ESRCH;
1360 		goto out;
1361 	}
1362 
1363 	rlim = tsk->signal->rlim + resource;
1364 	task_lock(tsk->group_leader);
1365 	if (new_rlim) {
1366 		/* Keep the capable check against init_user_ns until
1367 		   cgroups can contain all limits */
1368 		if (new_rlim->rlim_max > rlim->rlim_max &&
1369 				!capable(CAP_SYS_RESOURCE))
1370 			retval = -EPERM;
1371 		if (!retval)
1372 			retval = security_task_setrlimit(tsk->group_leader,
1373 					resource, new_rlim);
1374 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1375 			/*
1376 			 * The caller is asking for an immediate RLIMIT_CPU
1377 			 * expiry.  But we use the zero value to mean "it was
1378 			 * never set".  So let's cheat and make it one second
1379 			 * instead
1380 			 */
1381 			new_rlim->rlim_cur = 1;
1382 		}
1383 	}
1384 	if (!retval) {
1385 		if (old_rlim)
1386 			*old_rlim = *rlim;
1387 		if (new_rlim)
1388 			*rlim = *new_rlim;
1389 	}
1390 	task_unlock(tsk->group_leader);
1391 
1392 	/*
1393 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1394 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1395 	 * very long-standing error, and fixing it now risks breakage of
1396 	 * applications, so we live with it
1397 	 */
1398 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1399 			 new_rlim->rlim_cur != RLIM_INFINITY)
1400 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1401 out:
1402 	read_unlock(&tasklist_lock);
1403 	return retval;
1404 }
1405 
1406 /* rcu lock must be held */
check_prlimit_permission(struct task_struct * task)1407 static int check_prlimit_permission(struct task_struct *task)
1408 {
1409 	const struct cred *cred = current_cred(), *tcred;
1410 
1411 	if (current == task)
1412 		return 0;
1413 
1414 	tcred = __task_cred(task);
1415 	if (cred->user->user_ns == tcred->user->user_ns &&
1416 	    (cred->uid == tcred->euid &&
1417 	     cred->uid == tcred->suid &&
1418 	     cred->uid == tcred->uid  &&
1419 	     cred->gid == tcred->egid &&
1420 	     cred->gid == tcred->sgid &&
1421 	     cred->gid == tcred->gid))
1422 		return 0;
1423 	if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE))
1424 		return 0;
1425 
1426 	return -EPERM;
1427 }
1428 
SYSCALL_DEFINE4(prlimit64,pid_t,pid,unsigned int,resource,const struct rlimit64 __user *,new_rlim,struct rlimit64 __user *,old_rlim)1429 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1430 		const struct rlimit64 __user *, new_rlim,
1431 		struct rlimit64 __user *, old_rlim)
1432 {
1433 	struct rlimit64 old64, new64;
1434 	struct rlimit old, new;
1435 	struct task_struct *tsk;
1436 	int ret;
1437 
1438 	if (new_rlim) {
1439 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1440 			return -EFAULT;
1441 		rlim64_to_rlim(&new64, &new);
1442 	}
1443 
1444 	rcu_read_lock();
1445 	tsk = pid ? find_task_by_vpid(pid) : current;
1446 	if (!tsk) {
1447 		rcu_read_unlock();
1448 		return -ESRCH;
1449 	}
1450 	ret = check_prlimit_permission(tsk);
1451 	if (ret) {
1452 		rcu_read_unlock();
1453 		return ret;
1454 	}
1455 	get_task_struct(tsk);
1456 	rcu_read_unlock();
1457 
1458 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1459 			old_rlim ? &old : NULL);
1460 
1461 	if (!ret && old_rlim) {
1462 		rlim_to_rlim64(&old, &old64);
1463 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1464 			ret = -EFAULT;
1465 	}
1466 
1467 	put_task_struct(tsk);
1468 	return ret;
1469 }
1470 
SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct rlimit __user *,rlim)1471 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1472 {
1473 	struct rlimit new_rlim;
1474 
1475 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1476 		return -EFAULT;
1477 	return do_prlimit(current, resource, &new_rlim, NULL);
1478 }
1479 
1480 /*
1481  * It would make sense to put struct rusage in the task_struct,
1482  * except that would make the task_struct be *really big*.  After
1483  * task_struct gets moved into malloc'ed memory, it would
1484  * make sense to do this.  It will make moving the rest of the information
1485  * a lot simpler!  (Which we're not doing right now because we're not
1486  * measuring them yet).
1487  *
1488  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1489  * races with threads incrementing their own counters.  But since word
1490  * reads are atomic, we either get new values or old values and we don't
1491  * care which for the sums.  We always take the siglock to protect reading
1492  * the c* fields from p->signal from races with exit.c updating those
1493  * fields when reaping, so a sample either gets all the additions of a
1494  * given child after it's reaped, or none so this sample is before reaping.
1495  *
1496  * Locking:
1497  * We need to take the siglock for CHILDEREN, SELF and BOTH
1498  * for  the cases current multithreaded, non-current single threaded
1499  * non-current multithreaded.  Thread traversal is now safe with
1500  * the siglock held.
1501  * Strictly speaking, we donot need to take the siglock if we are current and
1502  * single threaded,  as no one else can take our signal_struct away, no one
1503  * else can  reap the  children to update signal->c* counters, and no one else
1504  * can race with the signal-> fields. If we do not take any lock, the
1505  * signal-> fields could be read out of order while another thread was just
1506  * exiting. So we should  place a read memory barrier when we avoid the lock.
1507  * On the writer side,  write memory barrier is implied in  __exit_signal
1508  * as __exit_signal releases  the siglock spinlock after updating the signal->
1509  * fields. But we don't do this yet to keep things simple.
1510  *
1511  */
1512 
accumulate_thread_rusage(struct task_struct * t,struct rusage * r)1513 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1514 {
1515 	r->ru_nvcsw += t->nvcsw;
1516 	r->ru_nivcsw += t->nivcsw;
1517 	r->ru_minflt += t->min_flt;
1518 	r->ru_majflt += t->maj_flt;
1519 	r->ru_inblock += task_io_get_inblock(t);
1520 	r->ru_oublock += task_io_get_oublock(t);
1521 }
1522 
k_getrusage(struct task_struct * p,int who,struct rusage * r)1523 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1524 {
1525 	struct task_struct *t;
1526 	unsigned long flags;
1527 	cputime_t tgutime, tgstime, utime, stime;
1528 	unsigned long maxrss = 0;
1529 
1530 	memset((char *) r, 0, sizeof *r);
1531 	utime = stime = cputime_zero;
1532 
1533 	if (who == RUSAGE_THREAD) {
1534 		task_times(current, &utime, &stime);
1535 		accumulate_thread_rusage(p, r);
1536 		maxrss = p->signal->maxrss;
1537 		goto out;
1538 	}
1539 
1540 	if (!lock_task_sighand(p, &flags))
1541 		return;
1542 
1543 	switch (who) {
1544 		case RUSAGE_BOTH:
1545 		case RUSAGE_CHILDREN:
1546 			utime = p->signal->cutime;
1547 			stime = p->signal->cstime;
1548 			r->ru_nvcsw = p->signal->cnvcsw;
1549 			r->ru_nivcsw = p->signal->cnivcsw;
1550 			r->ru_minflt = p->signal->cmin_flt;
1551 			r->ru_majflt = p->signal->cmaj_flt;
1552 			r->ru_inblock = p->signal->cinblock;
1553 			r->ru_oublock = p->signal->coublock;
1554 			maxrss = p->signal->cmaxrss;
1555 
1556 			if (who == RUSAGE_CHILDREN)
1557 				break;
1558 
1559 		case RUSAGE_SELF:
1560 			thread_group_times(p, &tgutime, &tgstime);
1561 			utime = cputime_add(utime, tgutime);
1562 			stime = cputime_add(stime, tgstime);
1563 			r->ru_nvcsw += p->signal->nvcsw;
1564 			r->ru_nivcsw += p->signal->nivcsw;
1565 			r->ru_minflt += p->signal->min_flt;
1566 			r->ru_majflt += p->signal->maj_flt;
1567 			r->ru_inblock += p->signal->inblock;
1568 			r->ru_oublock += p->signal->oublock;
1569 			if (maxrss < p->signal->maxrss)
1570 				maxrss = p->signal->maxrss;
1571 			t = p;
1572 			do {
1573 				accumulate_thread_rusage(t, r);
1574 				t = next_thread(t);
1575 			} while (t != p);
1576 			break;
1577 
1578 		default:
1579 			BUG();
1580 	}
1581 	unlock_task_sighand(p, &flags);
1582 
1583 out:
1584 	cputime_to_timeval(utime, &r->ru_utime);
1585 	cputime_to_timeval(stime, &r->ru_stime);
1586 
1587 	if (who != RUSAGE_CHILDREN) {
1588 		struct mm_struct *mm = get_task_mm(p);
1589 		if (mm) {
1590 			setmax_mm_hiwater_rss(&maxrss, mm);
1591 			mmput(mm);
1592 		}
1593 	}
1594 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1595 }
1596 
getrusage(struct task_struct * p,int who,struct rusage __user * ru)1597 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1598 {
1599 	struct rusage r;
1600 	k_getrusage(p, who, &r);
1601 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1602 }
1603 
SYSCALL_DEFINE2(getrusage,int,who,struct rusage __user *,ru)1604 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1605 {
1606 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1607 	    who != RUSAGE_THREAD)
1608 		return -EINVAL;
1609 	return getrusage(current, who, ru);
1610 }
1611 
SYSCALL_DEFINE1(umask,int,mask)1612 SYSCALL_DEFINE1(umask, int, mask)
1613 {
1614 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1615 	return mask;
1616 }
1617 
SYSCALL_DEFINE5(prctl,int,option,unsigned long,arg2,unsigned long,arg3,unsigned long,arg4,unsigned long,arg5)1618 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1619 		unsigned long, arg4, unsigned long, arg5)
1620 {
1621 	struct task_struct *me = current;
1622 	unsigned char comm[sizeof(me->comm)];
1623 	long error;
1624 
1625 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1626 	if (error != -ENOSYS)
1627 		return error;
1628 
1629 	error = 0;
1630 	switch (option) {
1631 		case PR_SET_PDEATHSIG:
1632 			if (!valid_signal(arg2)) {
1633 				error = -EINVAL;
1634 				break;
1635 			}
1636 			me->pdeath_signal = arg2;
1637 			error = 0;
1638 			break;
1639 		case PR_GET_PDEATHSIG:
1640 			error = put_user(me->pdeath_signal, (int __user *)arg2);
1641 			break;
1642 		case PR_GET_DUMPABLE:
1643 			error = get_dumpable(me->mm);
1644 			break;
1645 		case PR_SET_DUMPABLE:
1646 			if (arg2 < 0 || arg2 > 1) {
1647 				error = -EINVAL;
1648 				break;
1649 			}
1650 			set_dumpable(me->mm, arg2);
1651 			error = 0;
1652 			break;
1653 
1654 		case PR_SET_UNALIGN:
1655 			error = SET_UNALIGN_CTL(me, arg2);
1656 			break;
1657 		case PR_GET_UNALIGN:
1658 			error = GET_UNALIGN_CTL(me, arg2);
1659 			break;
1660 		case PR_SET_FPEMU:
1661 			error = SET_FPEMU_CTL(me, arg2);
1662 			break;
1663 		case PR_GET_FPEMU:
1664 			error = GET_FPEMU_CTL(me, arg2);
1665 			break;
1666 		case PR_SET_FPEXC:
1667 			error = SET_FPEXC_CTL(me, arg2);
1668 			break;
1669 		case PR_GET_FPEXC:
1670 			error = GET_FPEXC_CTL(me, arg2);
1671 			break;
1672 		case PR_GET_TIMING:
1673 			error = PR_TIMING_STATISTICAL;
1674 			break;
1675 		case PR_SET_TIMING:
1676 			if (arg2 != PR_TIMING_STATISTICAL)
1677 				error = -EINVAL;
1678 			else
1679 				error = 0;
1680 			break;
1681 
1682 		case PR_SET_NAME:
1683 			comm[sizeof(me->comm)-1] = 0;
1684 			if (strncpy_from_user(comm, (char __user *)arg2,
1685 					      sizeof(me->comm) - 1) < 0)
1686 				return -EFAULT;
1687 			set_task_comm(me, comm);
1688 			return 0;
1689 		case PR_GET_NAME:
1690 			get_task_comm(comm, me);
1691 			if (copy_to_user((char __user *)arg2, comm,
1692 					 sizeof(comm)))
1693 				return -EFAULT;
1694 			return 0;
1695 		case PR_GET_ENDIAN:
1696 			error = GET_ENDIAN(me, arg2);
1697 			break;
1698 		case PR_SET_ENDIAN:
1699 			error = SET_ENDIAN(me, arg2);
1700 			break;
1701 
1702 		case PR_GET_SECCOMP:
1703 			error = prctl_get_seccomp();
1704 			break;
1705 		case PR_SET_SECCOMP:
1706 			error = prctl_set_seccomp(arg2);
1707 			break;
1708 		case PR_GET_TSC:
1709 			error = GET_TSC_CTL(arg2);
1710 			break;
1711 		case PR_SET_TSC:
1712 			error = SET_TSC_CTL(arg2);
1713 			break;
1714 		case PR_TASK_PERF_EVENTS_DISABLE:
1715 			error = perf_event_task_disable();
1716 			break;
1717 		case PR_TASK_PERF_EVENTS_ENABLE:
1718 			error = perf_event_task_enable();
1719 			break;
1720 		case PR_GET_TIMERSLACK:
1721 			error = current->timer_slack_ns;
1722 			break;
1723 		case PR_SET_TIMERSLACK:
1724 			if (arg2 <= 0)
1725 				current->timer_slack_ns =
1726 					current->default_timer_slack_ns;
1727 			else
1728 				current->timer_slack_ns = arg2;
1729 			error = 0;
1730 			break;
1731 		case PR_MCE_KILL:
1732 			if (arg4 | arg5)
1733 				return -EINVAL;
1734 			switch (arg2) {
1735 			case PR_MCE_KILL_CLEAR:
1736 				if (arg3 != 0)
1737 					return -EINVAL;
1738 				current->flags &= ~PF_MCE_PROCESS;
1739 				break;
1740 			case PR_MCE_KILL_SET:
1741 				current->flags |= PF_MCE_PROCESS;
1742 				if (arg3 == PR_MCE_KILL_EARLY)
1743 					current->flags |= PF_MCE_EARLY;
1744 				else if (arg3 == PR_MCE_KILL_LATE)
1745 					current->flags &= ~PF_MCE_EARLY;
1746 				else if (arg3 == PR_MCE_KILL_DEFAULT)
1747 					current->flags &=
1748 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
1749 				else
1750 					return -EINVAL;
1751 				break;
1752 			default:
1753 				return -EINVAL;
1754 			}
1755 			error = 0;
1756 			break;
1757 		case PR_MCE_KILL_GET:
1758 			if (arg2 | arg3 | arg4 | arg5)
1759 				return -EINVAL;
1760 			if (current->flags & PF_MCE_PROCESS)
1761 				error = (current->flags & PF_MCE_EARLY) ?
1762 					PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1763 			else
1764 				error = PR_MCE_KILL_DEFAULT;
1765 			break;
1766 		default:
1767 			error = -EINVAL;
1768 			break;
1769 	}
1770 	return error;
1771 }
1772 
SYSCALL_DEFINE3(getcpu,unsigned __user *,cpup,unsigned __user *,nodep,struct getcpu_cache __user *,unused)1773 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1774 		struct getcpu_cache __user *, unused)
1775 {
1776 	int err = 0;
1777 	int cpu = raw_smp_processor_id();
1778 	if (cpup)
1779 		err |= put_user(cpu, cpup);
1780 	if (nodep)
1781 		err |= put_user(cpu_to_node(cpu), nodep);
1782 	return err ? -EFAULT : 0;
1783 }
1784 
1785 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1786 
argv_cleanup(struct subprocess_info * info)1787 static void argv_cleanup(struct subprocess_info *info)
1788 {
1789 	argv_free(info->argv);
1790 }
1791 
1792 /**
1793  * orderly_poweroff - Trigger an orderly system poweroff
1794  * @force: force poweroff if command execution fails
1795  *
1796  * This may be called from any context to trigger a system shutdown.
1797  * If the orderly shutdown fails, it will force an immediate shutdown.
1798  */
orderly_poweroff(bool force)1799 int orderly_poweroff(bool force)
1800 {
1801 	int argc;
1802 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1803 	static char *envp[] = {
1804 		"HOME=/",
1805 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1806 		NULL
1807 	};
1808 	int ret = -ENOMEM;
1809 	struct subprocess_info *info;
1810 
1811 	if (argv == NULL) {
1812 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1813 		       __func__, poweroff_cmd);
1814 		goto out;
1815 	}
1816 
1817 	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1818 	if (info == NULL) {
1819 		argv_free(argv);
1820 		goto out;
1821 	}
1822 
1823 	call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
1824 
1825 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1826 
1827   out:
1828 	if (ret && force) {
1829 		printk(KERN_WARNING "Failed to start orderly shutdown: "
1830 		       "forcing the issue\n");
1831 
1832 		/* I guess this should try to kick off some daemon to
1833 		   sync and poweroff asap.  Or not even bother syncing
1834 		   if we're doing an emergency shutdown? */
1835 		emergency_sync();
1836 		kernel_power_off();
1837 	}
1838 
1839 	return ret;
1840 }
1841 EXPORT_SYMBOL_GPL(orderly_poweroff);
1842