1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2011 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
13 
14 /*
15  * NVRAM support routines
16  */
17 
18 /**
19  * qla2x00_lock_nvram_access() -
20  * @ha: HA context
21  */
22 static void
qla2x00_lock_nvram_access(struct qla_hw_data * ha)23 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
24 {
25 	uint16_t data;
26 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
27 
28 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
29 		data = RD_REG_WORD(&reg->nvram);
30 		while (data & NVR_BUSY) {
31 			udelay(100);
32 			data = RD_REG_WORD(&reg->nvram);
33 		}
34 
35 		/* Lock resource */
36 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
37 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
38 		udelay(5);
39 		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40 		while ((data & BIT_0) == 0) {
41 			/* Lock failed */
42 			udelay(100);
43 			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
44 			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
45 			udelay(5);
46 			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
47 		}
48 	}
49 }
50 
51 /**
52  * qla2x00_unlock_nvram_access() -
53  * @ha: HA context
54  */
55 static void
qla2x00_unlock_nvram_access(struct qla_hw_data * ha)56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
57 {
58 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
59 
60 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
61 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
62 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
63 	}
64 }
65 
66 /**
67  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
68  * @ha: HA context
69  * @data: Serial interface selector
70  */
71 static void
qla2x00_nv_write(struct qla_hw_data * ha,uint16_t data)72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
73 {
74 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
75 
76 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
77 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
78 	NVRAM_DELAY();
79 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
80 	    NVR_WRT_ENABLE);
81 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
82 	NVRAM_DELAY();
83 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
84 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
85 	NVRAM_DELAY();
86 }
87 
88 /**
89  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
90  *	NVRAM.
91  * @ha: HA context
92  * @nv_cmd: NVRAM command
93  *
94  * Bit definitions for NVRAM command:
95  *
96  *	Bit 26     = start bit
97  *	Bit 25, 24 = opcode
98  *	Bit 23-16  = address
99  *	Bit 15-0   = write data
100  *
101  * Returns the word read from nvram @addr.
102  */
103 static uint16_t
qla2x00_nvram_request(struct qla_hw_data * ha,uint32_t nv_cmd)104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
105 {
106 	uint8_t		cnt;
107 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
108 	uint16_t	data = 0;
109 	uint16_t	reg_data;
110 
111 	/* Send command to NVRAM. */
112 	nv_cmd <<= 5;
113 	for (cnt = 0; cnt < 11; cnt++) {
114 		if (nv_cmd & BIT_31)
115 			qla2x00_nv_write(ha, NVR_DATA_OUT);
116 		else
117 			qla2x00_nv_write(ha, 0);
118 		nv_cmd <<= 1;
119 	}
120 
121 	/* Read data from NVRAM. */
122 	for (cnt = 0; cnt < 16; cnt++) {
123 		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
124 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
125 		NVRAM_DELAY();
126 		data <<= 1;
127 		reg_data = RD_REG_WORD(&reg->nvram);
128 		if (reg_data & NVR_DATA_IN)
129 			data |= BIT_0;
130 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
131 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
132 		NVRAM_DELAY();
133 	}
134 
135 	/* Deselect chip. */
136 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
137 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
138 	NVRAM_DELAY();
139 
140 	return data;
141 }
142 
143 
144 /**
145  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146  *	request routine to get the word from NVRAM.
147  * @ha: HA context
148  * @addr: Address in NVRAM to read
149  *
150  * Returns the word read from nvram @addr.
151  */
152 static uint16_t
qla2x00_get_nvram_word(struct qla_hw_data * ha,uint32_t addr)153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
154 {
155 	uint16_t	data;
156 	uint32_t	nv_cmd;
157 
158 	nv_cmd = addr << 16;
159 	nv_cmd |= NV_READ_OP;
160 	data = qla2x00_nvram_request(ha, nv_cmd);
161 
162 	return (data);
163 }
164 
165 /**
166  * qla2x00_nv_deselect() - Deselect NVRAM operations.
167  * @ha: HA context
168  */
169 static void
qla2x00_nv_deselect(struct qla_hw_data * ha)170 qla2x00_nv_deselect(struct qla_hw_data *ha)
171 {
172 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
173 
174 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
175 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
176 	NVRAM_DELAY();
177 }
178 
179 /**
180  * qla2x00_write_nvram_word() - Write NVRAM data.
181  * @ha: HA context
182  * @addr: Address in NVRAM to write
183  * @data: word to program
184  */
185 static void
qla2x00_write_nvram_word(struct qla_hw_data * ha,uint32_t addr,uint16_t data)186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
187 {
188 	int count;
189 	uint16_t word;
190 	uint32_t nv_cmd, wait_cnt;
191 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
193 
194 	qla2x00_nv_write(ha, NVR_DATA_OUT);
195 	qla2x00_nv_write(ha, 0);
196 	qla2x00_nv_write(ha, 0);
197 
198 	for (word = 0; word < 8; word++)
199 		qla2x00_nv_write(ha, NVR_DATA_OUT);
200 
201 	qla2x00_nv_deselect(ha);
202 
203 	/* Write data */
204 	nv_cmd = (addr << 16) | NV_WRITE_OP;
205 	nv_cmd |= data;
206 	nv_cmd <<= 5;
207 	for (count = 0; count < 27; count++) {
208 		if (nv_cmd & BIT_31)
209 			qla2x00_nv_write(ha, NVR_DATA_OUT);
210 		else
211 			qla2x00_nv_write(ha, 0);
212 
213 		nv_cmd <<= 1;
214 	}
215 
216 	qla2x00_nv_deselect(ha);
217 
218 	/* Wait for NVRAM to become ready */
219 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
220 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
221 	wait_cnt = NVR_WAIT_CNT;
222 	do {
223 		if (!--wait_cnt) {
224 			ql_dbg(ql_dbg_user, vha, 0x708d,
225 			    "NVRAM didn't go ready...\n");
226 			break;
227 		}
228 		NVRAM_DELAY();
229 		word = RD_REG_WORD(&reg->nvram);
230 	} while ((word & NVR_DATA_IN) == 0);
231 
232 	qla2x00_nv_deselect(ha);
233 
234 	/* Disable writes */
235 	qla2x00_nv_write(ha, NVR_DATA_OUT);
236 	for (count = 0; count < 10; count++)
237 		qla2x00_nv_write(ha, 0);
238 
239 	qla2x00_nv_deselect(ha);
240 }
241 
242 static int
qla2x00_write_nvram_word_tmo(struct qla_hw_data * ha,uint32_t addr,uint16_t data,uint32_t tmo)243 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
244 	uint16_t data, uint32_t tmo)
245 {
246 	int ret, count;
247 	uint16_t word;
248 	uint32_t nv_cmd;
249 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
250 
251 	ret = QLA_SUCCESS;
252 
253 	qla2x00_nv_write(ha, NVR_DATA_OUT);
254 	qla2x00_nv_write(ha, 0);
255 	qla2x00_nv_write(ha, 0);
256 
257 	for (word = 0; word < 8; word++)
258 		qla2x00_nv_write(ha, NVR_DATA_OUT);
259 
260 	qla2x00_nv_deselect(ha);
261 
262 	/* Write data */
263 	nv_cmd = (addr << 16) | NV_WRITE_OP;
264 	nv_cmd |= data;
265 	nv_cmd <<= 5;
266 	for (count = 0; count < 27; count++) {
267 		if (nv_cmd & BIT_31)
268 			qla2x00_nv_write(ha, NVR_DATA_OUT);
269 		else
270 			qla2x00_nv_write(ha, 0);
271 
272 		nv_cmd <<= 1;
273 	}
274 
275 	qla2x00_nv_deselect(ha);
276 
277 	/* Wait for NVRAM to become ready */
278 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
279 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
280 	do {
281 		NVRAM_DELAY();
282 		word = RD_REG_WORD(&reg->nvram);
283 		if (!--tmo) {
284 			ret = QLA_FUNCTION_FAILED;
285 			break;
286 		}
287 	} while ((word & NVR_DATA_IN) == 0);
288 
289 	qla2x00_nv_deselect(ha);
290 
291 	/* Disable writes */
292 	qla2x00_nv_write(ha, NVR_DATA_OUT);
293 	for (count = 0; count < 10; count++)
294 		qla2x00_nv_write(ha, 0);
295 
296 	qla2x00_nv_deselect(ha);
297 
298 	return ret;
299 }
300 
301 /**
302  * qla2x00_clear_nvram_protection() -
303  * @ha: HA context
304  */
305 static int
qla2x00_clear_nvram_protection(struct qla_hw_data * ha)306 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
307 {
308 	int ret, stat;
309 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310 	uint32_t word, wait_cnt;
311 	uint16_t wprot, wprot_old;
312 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
313 
314 	/* Clear NVRAM write protection. */
315 	ret = QLA_FUNCTION_FAILED;
316 
317 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 	    __constant_cpu_to_le16(0x1234), 100000);
320 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 	if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 		/* Write enable. */
323 		qla2x00_nv_write(ha, NVR_DATA_OUT);
324 		qla2x00_nv_write(ha, 0);
325 		qla2x00_nv_write(ha, 0);
326 		for (word = 0; word < 8; word++)
327 			qla2x00_nv_write(ha, NVR_DATA_OUT);
328 
329 		qla2x00_nv_deselect(ha);
330 
331 		/* Enable protection register. */
332 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 		for (word = 0; word < 8; word++)
336 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337 
338 		qla2x00_nv_deselect(ha);
339 
340 		/* Clear protection register (ffff is cleared). */
341 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 		for (word = 0; word < 8; word++)
345 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346 
347 		qla2x00_nv_deselect(ha);
348 
349 		/* Wait for NVRAM to become ready. */
350 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
352 		wait_cnt = NVR_WAIT_CNT;
353 		do {
354 			if (!--wait_cnt) {
355 				ql_dbg(ql_dbg_user, vha, 0x708e,
356 				    "NVRAM didn't go ready...\n");
357 				break;
358 			}
359 			NVRAM_DELAY();
360 			word = RD_REG_WORD(&reg->nvram);
361 		} while ((word & NVR_DATA_IN) == 0);
362 
363 		if (wait_cnt)
364 			ret = QLA_SUCCESS;
365 	} else
366 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
367 
368 	return ret;
369 }
370 
371 static void
qla2x00_set_nvram_protection(struct qla_hw_data * ha,int stat)372 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
373 {
374 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375 	uint32_t word, wait_cnt;
376 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
377 
378 	if (stat != QLA_SUCCESS)
379 		return;
380 
381 	/* Set NVRAM write protection. */
382 	/* Write enable. */
383 	qla2x00_nv_write(ha, NVR_DATA_OUT);
384 	qla2x00_nv_write(ha, 0);
385 	qla2x00_nv_write(ha, 0);
386 	for (word = 0; word < 8; word++)
387 		qla2x00_nv_write(ha, NVR_DATA_OUT);
388 
389 	qla2x00_nv_deselect(ha);
390 
391 	/* Enable protection register. */
392 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 	for (word = 0; word < 8; word++)
396 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397 
398 	qla2x00_nv_deselect(ha);
399 
400 	/* Enable protection register. */
401 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 	for (word = 0; word < 8; word++)
405 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
406 
407 	qla2x00_nv_deselect(ha);
408 
409 	/* Wait for NVRAM to become ready. */
410 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
412 	wait_cnt = NVR_WAIT_CNT;
413 	do {
414 		if (!--wait_cnt) {
415 			ql_dbg(ql_dbg_user, vha, 0x708f,
416 			    "NVRAM didn't go ready...\n");
417 			break;
418 		}
419 		NVRAM_DELAY();
420 		word = RD_REG_WORD(&reg->nvram);
421 	} while ((word & NVR_DATA_IN) == 0);
422 }
423 
424 
425 /*****************************************************************************/
426 /* Flash Manipulation Routines                                               */
427 /*****************************************************************************/
428 
429 static inline uint32_t
flash_conf_addr(struct qla_hw_data * ha,uint32_t faddr)430 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
431 {
432 	return ha->flash_conf_off | faddr;
433 }
434 
435 static inline uint32_t
flash_data_addr(struct qla_hw_data * ha,uint32_t faddr)436 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
437 {
438 	return ha->flash_data_off | faddr;
439 }
440 
441 static inline uint32_t
nvram_conf_addr(struct qla_hw_data * ha,uint32_t naddr)442 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
443 {
444 	return ha->nvram_conf_off | naddr;
445 }
446 
447 static inline uint32_t
nvram_data_addr(struct qla_hw_data * ha,uint32_t naddr)448 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
449 {
450 	return ha->nvram_data_off | naddr;
451 }
452 
453 static uint32_t
qla24xx_read_flash_dword(struct qla_hw_data * ha,uint32_t addr)454 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
455 {
456 	int rval;
457 	uint32_t cnt, data;
458 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
459 
460 	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
461 	/* Wait for READ cycle to complete. */
462 	rval = QLA_SUCCESS;
463 	for (cnt = 3000;
464 	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
465 	    rval == QLA_SUCCESS; cnt--) {
466 		if (cnt)
467 			udelay(10);
468 		else
469 			rval = QLA_FUNCTION_TIMEOUT;
470 		cond_resched();
471 	}
472 
473 	/* TODO: What happens if we time out? */
474 	data = 0xDEADDEAD;
475 	if (rval == QLA_SUCCESS)
476 		data = RD_REG_DWORD(&reg->flash_data);
477 
478 	return data;
479 }
480 
481 uint32_t *
qla24xx_read_flash_data(scsi_qla_host_t * vha,uint32_t * dwptr,uint32_t faddr,uint32_t dwords)482 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
483     uint32_t dwords)
484 {
485 	uint32_t i;
486 	struct qla_hw_data *ha = vha->hw;
487 
488 	/* Dword reads to flash. */
489 	for (i = 0; i < dwords; i++, faddr++)
490 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
491 		    flash_data_addr(ha, faddr)));
492 
493 	return dwptr;
494 }
495 
496 static int
qla24xx_write_flash_dword(struct qla_hw_data * ha,uint32_t addr,uint32_t data)497 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
498 {
499 	int rval;
500 	uint32_t cnt;
501 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
502 
503 	WRT_REG_DWORD(&reg->flash_data, data);
504 	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
505 	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
506 	/* Wait for Write cycle to complete. */
507 	rval = QLA_SUCCESS;
508 	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
509 	    rval == QLA_SUCCESS; cnt--) {
510 		if (cnt)
511 			udelay(10);
512 		else
513 			rval = QLA_FUNCTION_TIMEOUT;
514 		cond_resched();
515 	}
516 	return rval;
517 }
518 
519 static void
qla24xx_get_flash_manufacturer(struct qla_hw_data * ha,uint8_t * man_id,uint8_t * flash_id)520 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521     uint8_t *flash_id)
522 {
523 	uint32_t ids;
524 
525 	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526 	*man_id = LSB(ids);
527 	*flash_id = MSB(ids);
528 
529 	/* Check if man_id and flash_id are valid. */
530 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
531 		/* Read information using 0x9f opcode
532 		 * Device ID, Mfg ID would be read in the format:
533 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
534 		 * Example: ATMEL 0x00 01 45 1F
535 		 * Extract MFG and Dev ID from last two bytes.
536 		 */
537 		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538 		*man_id = LSB(ids);
539 		*flash_id = MSB(ids);
540 	}
541 }
542 
543 static int
qla2xxx_find_flt_start(scsi_qla_host_t * vha,uint32_t * start)544 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
545 {
546 	const char *loc, *locations[] = { "DEF", "PCI" };
547 	uint32_t pcihdr, pcids;
548 	uint32_t *dcode;
549 	uint8_t *buf, *bcode, last_image;
550 	uint16_t cnt, chksum, *wptr;
551 	struct qla_flt_location *fltl;
552 	struct qla_hw_data *ha = vha->hw;
553 	struct req_que *req = ha->req_q_map[0];
554 
555 	/*
556 	 * FLT-location structure resides after the last PCI region.
557 	 */
558 
559 	/* Begin with sane defaults. */
560 	loc = locations[0];
561 	*start = 0;
562 	if (IS_QLA24XX_TYPE(ha))
563 		*start = FA_FLASH_LAYOUT_ADDR_24;
564 	else if (IS_QLA25XX(ha))
565 		*start = FA_FLASH_LAYOUT_ADDR;
566 	else if (IS_QLA81XX(ha))
567 		*start = FA_FLASH_LAYOUT_ADDR_81;
568 	else if (IS_QLA82XX(ha)) {
569 		*start = FA_FLASH_LAYOUT_ADDR_82;
570 		goto end;
571 	} else if (IS_QLA83XX(ha)) {
572 		*start = FA_FLASH_LAYOUT_ADDR_83;
573 		goto end;
574 	}
575 	/* Begin with first PCI expansion ROM header. */
576 	buf = (uint8_t *)req->ring;
577 	dcode = (uint32_t *)req->ring;
578 	pcihdr = 0;
579 	last_image = 1;
580 	do {
581 		/* Verify PCI expansion ROM header. */
582 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
583 		bcode = buf + (pcihdr % 4);
584 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
585 			goto end;
586 
587 		/* Locate PCI data structure. */
588 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
589 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
590 		bcode = buf + (pcihdr % 4);
591 
592 		/* Validate signature of PCI data structure. */
593 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
594 		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
595 			goto end;
596 
597 		last_image = bcode[0x15] & BIT_7;
598 
599 		/* Locate next PCI expansion ROM. */
600 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
601 	} while (!last_image);
602 
603 	/* Now verify FLT-location structure. */
604 	fltl = (struct qla_flt_location *)req->ring;
605 	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
606 	    sizeof(struct qla_flt_location) >> 2);
607 	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
608 	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
609 		goto end;
610 
611 	wptr = (uint16_t *)req->ring;
612 	cnt = sizeof(struct qla_flt_location) >> 1;
613 	for (chksum = 0; cnt; cnt--)
614 		chksum += le16_to_cpu(*wptr++);
615 	if (chksum) {
616 		ql_log(ql_log_fatal, vha, 0x0045,
617 		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
618 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e,
619 		    buf, sizeof(struct qla_flt_location));
620 		return QLA_FUNCTION_FAILED;
621 	}
622 
623 	/* Good data.  Use specified location. */
624 	loc = locations[1];
625 	*start = (le16_to_cpu(fltl->start_hi) << 16 |
626 	    le16_to_cpu(fltl->start_lo)) >> 2;
627 end:
628 	ql_dbg(ql_dbg_init, vha, 0x0046,
629 	    "FLTL[%s] = 0x%x.\n",
630 	    loc, *start);
631 	return QLA_SUCCESS;
632 }
633 
634 static void
qla2xxx_get_flt_info(scsi_qla_host_t * vha,uint32_t flt_addr)635 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
636 {
637 	const char *loc, *locations[] = { "DEF", "FLT" };
638 	const uint32_t def_fw[] =
639 		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
640 	const uint32_t def_boot[] =
641 		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
642 	const uint32_t def_vpd_nvram[] =
643 		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
644 	const uint32_t def_vpd0[] =
645 		{ 0, 0, FA_VPD0_ADDR_81 };
646 	const uint32_t def_vpd1[] =
647 		{ 0, 0, FA_VPD1_ADDR_81 };
648 	const uint32_t def_nvram0[] =
649 		{ 0, 0, FA_NVRAM0_ADDR_81 };
650 	const uint32_t def_nvram1[] =
651 		{ 0, 0, FA_NVRAM1_ADDR_81 };
652 	const uint32_t def_fdt[] =
653 		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
654 			FA_FLASH_DESCR_ADDR_81 };
655 	const uint32_t def_npiv_conf0[] =
656 		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
657 			FA_NPIV_CONF0_ADDR_81 };
658 	const uint32_t def_npiv_conf1[] =
659 		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
660 			FA_NPIV_CONF1_ADDR_81 };
661 	const uint32_t fcp_prio_cfg0[] =
662 		{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
663 			0 };
664 	const uint32_t fcp_prio_cfg1[] =
665 		{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
666 			0 };
667 	uint32_t def;
668 	uint16_t *wptr;
669 	uint16_t cnt, chksum;
670 	uint32_t start;
671 	struct qla_flt_header *flt;
672 	struct qla_flt_region *region;
673 	struct qla_hw_data *ha = vha->hw;
674 	struct req_que *req = ha->req_q_map[0];
675 
676 	def = 0;
677 	if (IS_QLA25XX(ha))
678 		def = 1;
679 	else if (IS_QLA81XX(ha))
680 		def = 2;
681 
682 	/* Assign FCP prio region since older adapters may not have FLT, or
683 	   FCP prio region in it's FLT.
684 	 */
685 	ha->flt_region_fcp_prio = ha->flags.port0 ?
686 	    fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
687 
688 	ha->flt_region_flt = flt_addr;
689 	wptr = (uint16_t *)req->ring;
690 	flt = (struct qla_flt_header *)req->ring;
691 	region = (struct qla_flt_region *)&flt[1];
692 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
693 	    flt_addr << 2, OPTROM_BURST_SIZE);
694 	if (*wptr == __constant_cpu_to_le16(0xffff))
695 		goto no_flash_data;
696 	if (flt->version != __constant_cpu_to_le16(1)) {
697 		ql_log(ql_log_warn, vha, 0x0047,
698 		    "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
699 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
700 		    le16_to_cpu(flt->checksum));
701 		goto no_flash_data;
702 	}
703 
704 	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
705 	for (chksum = 0; cnt; cnt--)
706 		chksum += le16_to_cpu(*wptr++);
707 	if (chksum) {
708 		ql_log(ql_log_fatal, vha, 0x0048,
709 		    "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
710 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
711 		    le16_to_cpu(flt->checksum));
712 		goto no_flash_data;
713 	}
714 
715 	loc = locations[1];
716 	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
717 	for ( ; cnt; cnt--, region++) {
718 		/* Store addresses as DWORD offsets. */
719 		start = le32_to_cpu(region->start) >> 2;
720 		ql_dbg(ql_dbg_init, vha, 0x0049,
721 		    "FLT[%02x]: start=0x%x "
722 		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code),
723 		    start, le32_to_cpu(region->end) >> 2,
724 		    le32_to_cpu(region->size));
725 
726 		switch (le32_to_cpu(region->code) & 0xff) {
727 		case FLT_REG_FCOE_FW:
728 			if (!IS_QLA8031(ha))
729 				break;
730 			ha->flt_region_fw = start;
731 			break;
732 		case FLT_REG_FW:
733 			if (IS_QLA8031(ha))
734 				break;
735 			ha->flt_region_fw = start;
736 			break;
737 		case FLT_REG_BOOT_CODE:
738 			ha->flt_region_boot = start;
739 			break;
740 		case FLT_REG_VPD_0:
741 			if (IS_QLA8031(ha))
742 				break;
743 			ha->flt_region_vpd_nvram = start;
744 			if (IS_QLA82XX(ha))
745 				break;
746 			if (ha->flags.port0)
747 				ha->flt_region_vpd = start;
748 			break;
749 		case FLT_REG_VPD_1:
750 			if (IS_QLA82XX(ha) || IS_QLA8031(ha))
751 				break;
752 			if (!ha->flags.port0)
753 				ha->flt_region_vpd = start;
754 			break;
755 		case FLT_REG_NVRAM_0:
756 			if (IS_QLA8031(ha))
757 				break;
758 			if (ha->flags.port0)
759 				ha->flt_region_nvram = start;
760 			break;
761 		case FLT_REG_NVRAM_1:
762 			if (IS_QLA8031(ha))
763 				break;
764 			if (!ha->flags.port0)
765 				ha->flt_region_nvram = start;
766 			break;
767 		case FLT_REG_FDT:
768 			ha->flt_region_fdt = start;
769 			break;
770 		case FLT_REG_NPIV_CONF_0:
771 			if (ha->flags.port0)
772 				ha->flt_region_npiv_conf = start;
773 			break;
774 		case FLT_REG_NPIV_CONF_1:
775 			if (!ha->flags.port0)
776 				ha->flt_region_npiv_conf = start;
777 			break;
778 		case FLT_REG_GOLD_FW:
779 			ha->flt_region_gold_fw = start;
780 			break;
781 		case FLT_REG_FCP_PRIO_0:
782 			if (ha->flags.port0)
783 				ha->flt_region_fcp_prio = start;
784 			break;
785 		case FLT_REG_FCP_PRIO_1:
786 			if (!ha->flags.port0)
787 				ha->flt_region_fcp_prio = start;
788 			break;
789 		case FLT_REG_BOOT_CODE_82XX:
790 			ha->flt_region_boot = start;
791 			break;
792 		case FLT_REG_FW_82XX:
793 			ha->flt_region_fw = start;
794 			break;
795 		case FLT_REG_GOLD_FW_82XX:
796 			ha->flt_region_gold_fw = start;
797 			break;
798 		case FLT_REG_BOOTLOAD_82XX:
799 			ha->flt_region_bootload = start;
800 			break;
801 		case FLT_REG_VPD_82XX:
802 			ha->flt_region_vpd = start;
803 			break;
804 		case FLT_REG_FCOE_VPD_0:
805 			if (!IS_QLA8031(ha))
806 				break;
807 			ha->flt_region_vpd_nvram = start;
808 			if (ha->flags.port0)
809 				ha->flt_region_vpd = start;
810 			break;
811 		case FLT_REG_FCOE_VPD_1:
812 			if (!IS_QLA8031(ha))
813 				break;
814 			if (!ha->flags.port0)
815 				ha->flt_region_vpd = start;
816 			break;
817 		case FLT_REG_FCOE_NVRAM_0:
818 			if (!IS_QLA8031(ha))
819 				break;
820 			if (ha->flags.port0)
821 				ha->flt_region_nvram = start;
822 			break;
823 		case FLT_REG_FCOE_NVRAM_1:
824 			if (!IS_QLA8031(ha))
825 				break;
826 			if (!ha->flags.port0)
827 				ha->flt_region_nvram = start;
828 			break;
829 		}
830 	}
831 	goto done;
832 
833 no_flash_data:
834 	/* Use hardcoded defaults. */
835 	loc = locations[0];
836 	ha->flt_region_fw = def_fw[def];
837 	ha->flt_region_boot = def_boot[def];
838 	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
839 	ha->flt_region_vpd = ha->flags.port0 ?
840 	    def_vpd0[def] : def_vpd1[def];
841 	ha->flt_region_nvram = ha->flags.port0 ?
842 	    def_nvram0[def] : def_nvram1[def];
843 	ha->flt_region_fdt = def_fdt[def];
844 	ha->flt_region_npiv_conf = ha->flags.port0 ?
845 	    def_npiv_conf0[def] : def_npiv_conf1[def];
846 done:
847 	ql_dbg(ql_dbg_init, vha, 0x004a,
848 	    "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x nvram=0x%x "
849 	    "fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
850 	    loc, ha->flt_region_boot, ha->flt_region_fw,
851 	    ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
852 	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf,
853 	    ha->flt_region_fcp_prio);
854 }
855 
856 static void
qla2xxx_get_fdt_info(scsi_qla_host_t * vha)857 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
858 {
859 #define FLASH_BLK_SIZE_4K	0x1000
860 #define FLASH_BLK_SIZE_32K	0x8000
861 #define FLASH_BLK_SIZE_64K	0x10000
862 	const char *loc, *locations[] = { "MID", "FDT" };
863 	uint16_t cnt, chksum;
864 	uint16_t *wptr;
865 	struct qla_fdt_layout *fdt;
866 	uint8_t	man_id, flash_id;
867 	uint16_t mid = 0, fid = 0;
868 	struct qla_hw_data *ha = vha->hw;
869 	struct req_que *req = ha->req_q_map[0];
870 
871 	wptr = (uint16_t *)req->ring;
872 	fdt = (struct qla_fdt_layout *)req->ring;
873 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
874 	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
875 	if (*wptr == __constant_cpu_to_le16(0xffff))
876 		goto no_flash_data;
877 	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
878 	    fdt->sig[3] != 'D')
879 		goto no_flash_data;
880 
881 	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
882 	    cnt++)
883 		chksum += le16_to_cpu(*wptr++);
884 	if (chksum) {
885 		ql_dbg(ql_dbg_init, vha, 0x004c,
886 		    "Inconsistent FDT detected:"
887 		    " checksum=0x%x id=%c version0x%x.\n", chksum,
888 		    fdt->sig[0], le16_to_cpu(fdt->version));
889 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113,
890 		    (uint8_t *)fdt, sizeof(*fdt));
891 		goto no_flash_data;
892 	}
893 
894 	loc = locations[1];
895 	mid = le16_to_cpu(fdt->man_id);
896 	fid = le16_to_cpu(fdt->id);
897 	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
898 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
899 	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
900 	if (fdt->unprotect_sec_cmd) {
901 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
902 		    fdt->unprotect_sec_cmd);
903 		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
904 		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
905 		    flash_conf_addr(ha, 0x0336);
906 	}
907 	goto done;
908 no_flash_data:
909 	loc = locations[0];
910 	if (IS_QLA82XX(ha)) {
911 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
912 		goto done;
913 	}
914 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
915 	mid = man_id;
916 	fid = flash_id;
917 	ha->fdt_wrt_disable = 0x9c;
918 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
919 	switch (man_id) {
920 	case 0xbf: /* STT flash. */
921 		if (flash_id == 0x8e)
922 			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
923 		else
924 			ha->fdt_block_size = FLASH_BLK_SIZE_32K;
925 
926 		if (flash_id == 0x80)
927 			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
928 		break;
929 	case 0x13: /* ST M25P80. */
930 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
931 		break;
932 	case 0x1f: /* Atmel 26DF081A. */
933 		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
934 		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
935 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
936 		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
937 		break;
938 	default:
939 		/* Default to 64 kb sector size. */
940 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
941 		break;
942 	}
943 done:
944 	ql_dbg(ql_dbg_init, vha, 0x004d,
945 	    "FDT[%s]: (0x%x/0x%x) erase=0x%x "
946 	    "pr=%x wrtd=0x%x blk=0x%x.\n",
947 	    loc, mid, fid,
948 	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
949 	    ha->fdt_wrt_disable, ha->fdt_block_size);
950 
951 }
952 
953 static void
qla2xxx_get_idc_param(scsi_qla_host_t * vha)954 qla2xxx_get_idc_param(scsi_qla_host_t *vha)
955 {
956 #define QLA82XX_IDC_PARAM_ADDR       0x003e885c
957 	uint32_t *wptr;
958 	struct qla_hw_data *ha = vha->hw;
959 	struct req_que *req = ha->req_q_map[0];
960 
961 	if (!IS_QLA82XX(ha))
962 		return;
963 
964 	wptr = (uint32_t *)req->ring;
965 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
966 		QLA82XX_IDC_PARAM_ADDR , 8);
967 
968 	if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
969 		ha->nx_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
970 		ha->nx_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
971 	} else {
972 		ha->nx_dev_init_timeout = le32_to_cpu(*wptr++);
973 		ha->nx_reset_timeout = le32_to_cpu(*wptr);
974 	}
975 	ql_dbg(ql_dbg_init, vha, 0x004e,
976 	    "nx_dev_init_timeout=%d "
977 	    "nx_reset_timeout=%d.\n", ha->nx_dev_init_timeout,
978 	    ha->nx_reset_timeout);
979 	return;
980 }
981 
982 int
qla2xxx_get_flash_info(scsi_qla_host_t * vha)983 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
984 {
985 	int ret;
986 	uint32_t flt_addr;
987 	struct qla_hw_data *ha = vha->hw;
988 
989 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
990 	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
991 		return QLA_SUCCESS;
992 
993 	ret = qla2xxx_find_flt_start(vha, &flt_addr);
994 	if (ret != QLA_SUCCESS)
995 		return ret;
996 
997 	qla2xxx_get_flt_info(vha, flt_addr);
998 	qla2xxx_get_fdt_info(vha);
999 	qla2xxx_get_idc_param(vha);
1000 
1001 	return QLA_SUCCESS;
1002 }
1003 
1004 void
qla2xxx_flash_npiv_conf(scsi_qla_host_t * vha)1005 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
1006 {
1007 #define NPIV_CONFIG_SIZE	(16*1024)
1008 	void *data;
1009 	uint16_t *wptr;
1010 	uint16_t cnt, chksum;
1011 	int i;
1012 	struct qla_npiv_header hdr;
1013 	struct qla_npiv_entry *entry;
1014 	struct qla_hw_data *ha = vha->hw;
1015 
1016 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
1017 	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
1018 		return;
1019 
1020 	if (ha->flags.isp82xx_reset_hdlr_active)
1021 		return;
1022 
1023 	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
1024 	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
1025 	if (hdr.version == __constant_cpu_to_le16(0xffff))
1026 		return;
1027 	if (hdr.version != __constant_cpu_to_le16(1)) {
1028 		ql_dbg(ql_dbg_user, vha, 0x7090,
1029 		    "Unsupported NPIV-Config "
1030 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1031 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1032 		    le16_to_cpu(hdr.checksum));
1033 		return;
1034 	}
1035 
1036 	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
1037 	if (!data) {
1038 		ql_log(ql_log_warn, vha, 0x7091,
1039 		    "Unable to allocate memory for data.\n");
1040 		return;
1041 	}
1042 
1043 	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
1044 	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
1045 
1046 	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
1047 	    sizeof(struct qla_npiv_entry)) >> 1;
1048 	for (wptr = data, chksum = 0; cnt; cnt--)
1049 		chksum += le16_to_cpu(*wptr++);
1050 	if (chksum) {
1051 		ql_dbg(ql_dbg_user, vha, 0x7092,
1052 		    "Inconsistent NPIV-Config "
1053 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1054 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1055 		    le16_to_cpu(hdr.checksum));
1056 		goto done;
1057 	}
1058 
1059 	entry = data + sizeof(struct qla_npiv_header);
1060 	cnt = le16_to_cpu(hdr.entries);
1061 	for (i = 0; cnt; cnt--, entry++, i++) {
1062 		uint16_t flags;
1063 		struct fc_vport_identifiers vid;
1064 		struct fc_vport *vport;
1065 
1066 		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
1067 
1068 		flags = le16_to_cpu(entry->flags);
1069 		if (flags == 0xffff)
1070 			continue;
1071 		if ((flags & BIT_0) == 0)
1072 			continue;
1073 
1074 		memset(&vid, 0, sizeof(vid));
1075 		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
1076 		vid.vport_type = FC_PORTTYPE_NPIV;
1077 		vid.disable = false;
1078 		vid.port_name = wwn_to_u64(entry->port_name);
1079 		vid.node_name = wwn_to_u64(entry->node_name);
1080 
1081 		ql_dbg(ql_dbg_user, vha, 0x7093,
1082 		    "NPIV[%02x]: wwpn=%llx "
1083 		    "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1084 		    (unsigned long long)vid.port_name,
1085 		    (unsigned long long)vid.node_name,
1086 		    le16_to_cpu(entry->vf_id),
1087 		    entry->q_qos, entry->f_qos);
1088 
1089 		if (i < QLA_PRECONFIG_VPORTS) {
1090 			vport = fc_vport_create(vha->host, 0, &vid);
1091 			if (!vport)
1092 				ql_log(ql_log_warn, vha, 0x7094,
1093 				    "NPIV-Config Failed to create vport [%02x]: "
1094 				    "wwpn=%llx wwnn=%llx.\n", cnt,
1095 				    (unsigned long long)vid.port_name,
1096 				    (unsigned long long)vid.node_name);
1097 		}
1098 	}
1099 done:
1100 	kfree(data);
1101 }
1102 
1103 static int
qla24xx_unprotect_flash(scsi_qla_host_t * vha)1104 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1105 {
1106 	struct qla_hw_data *ha = vha->hw;
1107 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1108 
1109 	if (ha->flags.fac_supported)
1110 		return qla81xx_fac_do_write_enable(vha, 1);
1111 
1112 	/* Enable flash write. */
1113 	WRT_REG_DWORD(&reg->ctrl_status,
1114 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1115 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1116 
1117 	if (!ha->fdt_wrt_disable)
1118 		goto done;
1119 
1120 	/* Disable flash write-protection, first clear SR protection bit */
1121 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1122 	/* Then write zero again to clear remaining SR bits.*/
1123 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1124 done:
1125 	return QLA_SUCCESS;
1126 }
1127 
1128 static int
qla24xx_protect_flash(scsi_qla_host_t * vha)1129 qla24xx_protect_flash(scsi_qla_host_t *vha)
1130 {
1131 	uint32_t cnt;
1132 	struct qla_hw_data *ha = vha->hw;
1133 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1134 
1135 	if (ha->flags.fac_supported)
1136 		return qla81xx_fac_do_write_enable(vha, 0);
1137 
1138 	if (!ha->fdt_wrt_disable)
1139 		goto skip_wrt_protect;
1140 
1141 	/* Enable flash write-protection and wait for completion. */
1142 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1143 	    ha->fdt_wrt_disable);
1144 	for (cnt = 300; cnt &&
1145 	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1146 	    cnt--) {
1147 		udelay(10);
1148 	}
1149 
1150 skip_wrt_protect:
1151 	/* Disable flash write. */
1152 	WRT_REG_DWORD(&reg->ctrl_status,
1153 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1154 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1155 
1156 	return QLA_SUCCESS;
1157 }
1158 
1159 static int
qla24xx_erase_sector(scsi_qla_host_t * vha,uint32_t fdata)1160 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1161 {
1162 	struct qla_hw_data *ha = vha->hw;
1163 	uint32_t start, finish;
1164 
1165 	if (ha->flags.fac_supported) {
1166 		start = fdata >> 2;
1167 		finish = start + (ha->fdt_block_size >> 2) - 1;
1168 		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1169 		    start), flash_data_addr(ha, finish));
1170 	}
1171 
1172 	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1173 	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1174 	    ((fdata >> 16) & 0xff));
1175 }
1176 
1177 static int
qla24xx_write_flash_data(scsi_qla_host_t * vha,uint32_t * dwptr,uint32_t faddr,uint32_t dwords)1178 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1179     uint32_t dwords)
1180 {
1181 	int ret;
1182 	uint32_t liter;
1183 	uint32_t sec_mask, rest_addr;
1184 	uint32_t fdata;
1185 	dma_addr_t optrom_dma;
1186 	void *optrom = NULL;
1187 	struct qla_hw_data *ha = vha->hw;
1188 
1189 	/* Prepare burst-capable write on supported ISPs. */
1190 	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha)) &&
1191 	    !(faddr & 0xfff) && dwords > OPTROM_BURST_DWORDS) {
1192 		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1193 		    &optrom_dma, GFP_KERNEL);
1194 		if (!optrom) {
1195 			ql_log(ql_log_warn, vha, 0x7095,
1196 			    "Unable to allocate "
1197 			    "memory for optrom burst write (%x KB).\n",
1198 			    OPTROM_BURST_SIZE / 1024);
1199 		}
1200 	}
1201 
1202 	rest_addr = (ha->fdt_block_size >> 2) - 1;
1203 	sec_mask = ~rest_addr;
1204 
1205 	ret = qla24xx_unprotect_flash(vha);
1206 	if (ret != QLA_SUCCESS) {
1207 		ql_log(ql_log_warn, vha, 0x7096,
1208 		    "Unable to unprotect flash for update.\n");
1209 		goto done;
1210 	}
1211 
1212 	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1213 		fdata = (faddr & sec_mask) << 2;
1214 
1215 		/* Are we at the beginning of a sector? */
1216 		if ((faddr & rest_addr) == 0) {
1217 			/* Do sector unprotect. */
1218 			if (ha->fdt_unprotect_sec_cmd)
1219 				qla24xx_write_flash_dword(ha,
1220 				    ha->fdt_unprotect_sec_cmd,
1221 				    (fdata & 0xff00) | ((fdata << 16) &
1222 				    0xff0000) | ((fdata >> 16) & 0xff));
1223 			ret = qla24xx_erase_sector(vha, fdata);
1224 			if (ret != QLA_SUCCESS) {
1225 				ql_dbg(ql_dbg_user, vha, 0x7007,
1226 				    "Unable to erase erase sector: address=%x.\n",
1227 				    faddr);
1228 				break;
1229 			}
1230 		}
1231 
1232 		/* Go with burst-write. */
1233 		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1234 			/* Copy data to DMA'ble buffer. */
1235 			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1236 
1237 			ret = qla2x00_load_ram(vha, optrom_dma,
1238 			    flash_data_addr(ha, faddr),
1239 			    OPTROM_BURST_DWORDS);
1240 			if (ret != QLA_SUCCESS) {
1241 				ql_log(ql_log_warn, vha, 0x7097,
1242 				    "Unable to burst-write optrom segment "
1243 				    "(%x/%x/%llx).\n", ret,
1244 				    flash_data_addr(ha, faddr),
1245 				    (unsigned long long)optrom_dma);
1246 				ql_log(ql_log_warn, vha, 0x7098,
1247 				    "Reverting to slow-write.\n");
1248 
1249 				dma_free_coherent(&ha->pdev->dev,
1250 				    OPTROM_BURST_SIZE, optrom, optrom_dma);
1251 				optrom = NULL;
1252 			} else {
1253 				liter += OPTROM_BURST_DWORDS - 1;
1254 				faddr += OPTROM_BURST_DWORDS - 1;
1255 				dwptr += OPTROM_BURST_DWORDS - 1;
1256 				continue;
1257 			}
1258 		}
1259 
1260 		ret = qla24xx_write_flash_dword(ha,
1261 		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1262 		if (ret != QLA_SUCCESS) {
1263 			ql_dbg(ql_dbg_user, vha, 0x7006,
1264 			    "Unable to program flash address=%x data=%x.\n",
1265 			    faddr, *dwptr);
1266 			break;
1267 		}
1268 
1269 		/* Do sector protect. */
1270 		if (ha->fdt_unprotect_sec_cmd &&
1271 		    ((faddr & rest_addr) == rest_addr))
1272 			qla24xx_write_flash_dword(ha,
1273 			    ha->fdt_protect_sec_cmd,
1274 			    (fdata & 0xff00) | ((fdata << 16) &
1275 			    0xff0000) | ((fdata >> 16) & 0xff));
1276 	}
1277 
1278 	ret = qla24xx_protect_flash(vha);
1279 	if (ret != QLA_SUCCESS)
1280 		ql_log(ql_log_warn, vha, 0x7099,
1281 		    "Unable to protect flash after update.\n");
1282 done:
1283 	if (optrom)
1284 		dma_free_coherent(&ha->pdev->dev,
1285 		    OPTROM_BURST_SIZE, optrom, optrom_dma);
1286 
1287 	return ret;
1288 }
1289 
1290 uint8_t *
qla2x00_read_nvram_data(scsi_qla_host_t * vha,uint8_t * buf,uint32_t naddr,uint32_t bytes)1291 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1292     uint32_t bytes)
1293 {
1294 	uint32_t i;
1295 	uint16_t *wptr;
1296 	struct qla_hw_data *ha = vha->hw;
1297 
1298 	/* Word reads to NVRAM via registers. */
1299 	wptr = (uint16_t *)buf;
1300 	qla2x00_lock_nvram_access(ha);
1301 	for (i = 0; i < bytes >> 1; i++, naddr++)
1302 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1303 		    naddr));
1304 	qla2x00_unlock_nvram_access(ha);
1305 
1306 	return buf;
1307 }
1308 
1309 uint8_t *
qla24xx_read_nvram_data(scsi_qla_host_t * vha,uint8_t * buf,uint32_t naddr,uint32_t bytes)1310 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1311     uint32_t bytes)
1312 {
1313 	uint32_t i;
1314 	uint32_t *dwptr;
1315 	struct qla_hw_data *ha = vha->hw;
1316 
1317 	if (IS_QLA82XX(ha))
1318 		return  buf;
1319 
1320 	/* Dword reads to flash. */
1321 	dwptr = (uint32_t *)buf;
1322 	for (i = 0; i < bytes >> 2; i++, naddr++)
1323 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1324 		    nvram_data_addr(ha, naddr)));
1325 
1326 	return buf;
1327 }
1328 
1329 int
qla2x00_write_nvram_data(scsi_qla_host_t * vha,uint8_t * buf,uint32_t naddr,uint32_t bytes)1330 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1331     uint32_t bytes)
1332 {
1333 	int ret, stat;
1334 	uint32_t i;
1335 	uint16_t *wptr;
1336 	unsigned long flags;
1337 	struct qla_hw_data *ha = vha->hw;
1338 
1339 	ret = QLA_SUCCESS;
1340 
1341 	spin_lock_irqsave(&ha->hardware_lock, flags);
1342 	qla2x00_lock_nvram_access(ha);
1343 
1344 	/* Disable NVRAM write-protection. */
1345 	stat = qla2x00_clear_nvram_protection(ha);
1346 
1347 	wptr = (uint16_t *)buf;
1348 	for (i = 0; i < bytes >> 1; i++, naddr++) {
1349 		qla2x00_write_nvram_word(ha, naddr,
1350 		    cpu_to_le16(*wptr));
1351 		wptr++;
1352 	}
1353 
1354 	/* Enable NVRAM write-protection. */
1355 	qla2x00_set_nvram_protection(ha, stat);
1356 
1357 	qla2x00_unlock_nvram_access(ha);
1358 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1359 
1360 	return ret;
1361 }
1362 
1363 int
qla24xx_write_nvram_data(scsi_qla_host_t * vha,uint8_t * buf,uint32_t naddr,uint32_t bytes)1364 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1365     uint32_t bytes)
1366 {
1367 	int ret;
1368 	uint32_t i;
1369 	uint32_t *dwptr;
1370 	struct qla_hw_data *ha = vha->hw;
1371 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1372 
1373 	ret = QLA_SUCCESS;
1374 
1375 	if (IS_QLA82XX(ha))
1376 		return ret;
1377 
1378 	/* Enable flash write. */
1379 	WRT_REG_DWORD(&reg->ctrl_status,
1380 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1381 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1382 
1383 	/* Disable NVRAM write-protection. */
1384 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1385 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1386 
1387 	/* Dword writes to flash. */
1388 	dwptr = (uint32_t *)buf;
1389 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1390 		ret = qla24xx_write_flash_dword(ha,
1391 		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1392 		if (ret != QLA_SUCCESS) {
1393 			ql_dbg(ql_dbg_user, vha, 0x709a,
1394 			    "Unable to program nvram address=%x data=%x.\n",
1395 			    naddr, *dwptr);
1396 			break;
1397 		}
1398 	}
1399 
1400 	/* Enable NVRAM write-protection. */
1401 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1402 
1403 	/* Disable flash write. */
1404 	WRT_REG_DWORD(&reg->ctrl_status,
1405 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1406 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1407 
1408 	return ret;
1409 }
1410 
1411 uint8_t *
qla25xx_read_nvram_data(scsi_qla_host_t * vha,uint8_t * buf,uint32_t naddr,uint32_t bytes)1412 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1413     uint32_t bytes)
1414 {
1415 	uint32_t i;
1416 	uint32_t *dwptr;
1417 	struct qla_hw_data *ha = vha->hw;
1418 
1419 	/* Dword reads to flash. */
1420 	dwptr = (uint32_t *)buf;
1421 	for (i = 0; i < bytes >> 2; i++, naddr++)
1422 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1423 		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1424 
1425 	return buf;
1426 }
1427 
1428 int
qla25xx_write_nvram_data(scsi_qla_host_t * vha,uint8_t * buf,uint32_t naddr,uint32_t bytes)1429 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1430     uint32_t bytes)
1431 {
1432 	struct qla_hw_data *ha = vha->hw;
1433 #define RMW_BUFFER_SIZE	(64 * 1024)
1434 	uint8_t *dbuf;
1435 
1436 	dbuf = vmalloc(RMW_BUFFER_SIZE);
1437 	if (!dbuf)
1438 		return QLA_MEMORY_ALLOC_FAILED;
1439 	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1440 	    RMW_BUFFER_SIZE);
1441 	memcpy(dbuf + (naddr << 2), buf, bytes);
1442 	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1443 	    RMW_BUFFER_SIZE);
1444 	vfree(dbuf);
1445 
1446 	return QLA_SUCCESS;
1447 }
1448 
1449 static inline void
qla2x00_flip_colors(struct qla_hw_data * ha,uint16_t * pflags)1450 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1451 {
1452 	if (IS_QLA2322(ha)) {
1453 		/* Flip all colors. */
1454 		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1455 			/* Turn off. */
1456 			ha->beacon_color_state = 0;
1457 			*pflags = GPIO_LED_ALL_OFF;
1458 		} else {
1459 			/* Turn on. */
1460 			ha->beacon_color_state = QLA_LED_ALL_ON;
1461 			*pflags = GPIO_LED_RGA_ON;
1462 		}
1463 	} else {
1464 		/* Flip green led only. */
1465 		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1466 			/* Turn off. */
1467 			ha->beacon_color_state = 0;
1468 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1469 		} else {
1470 			/* Turn on. */
1471 			ha->beacon_color_state = QLA_LED_GRN_ON;
1472 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1473 		}
1474 	}
1475 }
1476 
1477 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1478 
1479 void
qla2x00_beacon_blink(struct scsi_qla_host * vha)1480 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1481 {
1482 	uint16_t gpio_enable;
1483 	uint16_t gpio_data;
1484 	uint16_t led_color = 0;
1485 	unsigned long flags;
1486 	struct qla_hw_data *ha = vha->hw;
1487 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1488 
1489 	if (IS_QLA82XX(ha))
1490 		return;
1491 
1492 	spin_lock_irqsave(&ha->hardware_lock, flags);
1493 
1494 	/* Save the Original GPIOE. */
1495 	if (ha->pio_address) {
1496 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1497 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1498 	} else {
1499 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1500 		gpio_data = RD_REG_WORD(&reg->gpiod);
1501 	}
1502 
1503 	/* Set the modified gpio_enable values */
1504 	gpio_enable |= GPIO_LED_MASK;
1505 
1506 	if (ha->pio_address) {
1507 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1508 	} else {
1509 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1510 		RD_REG_WORD(&reg->gpioe);
1511 	}
1512 
1513 	qla2x00_flip_colors(ha, &led_color);
1514 
1515 	/* Clear out any previously set LED color. */
1516 	gpio_data &= ~GPIO_LED_MASK;
1517 
1518 	/* Set the new input LED color to GPIOD. */
1519 	gpio_data |= led_color;
1520 
1521 	/* Set the modified gpio_data values */
1522 	if (ha->pio_address) {
1523 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1524 	} else {
1525 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1526 		RD_REG_WORD(&reg->gpiod);
1527 	}
1528 
1529 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1530 }
1531 
1532 int
qla2x00_beacon_on(struct scsi_qla_host * vha)1533 qla2x00_beacon_on(struct scsi_qla_host *vha)
1534 {
1535 	uint16_t gpio_enable;
1536 	uint16_t gpio_data;
1537 	unsigned long flags;
1538 	struct qla_hw_data *ha = vha->hw;
1539 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1540 
1541 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1542 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1543 
1544 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1545 		ql_log(ql_log_warn, vha, 0x709b,
1546 		    "Unable to update fw options (beacon on).\n");
1547 		return QLA_FUNCTION_FAILED;
1548 	}
1549 
1550 	/* Turn off LEDs. */
1551 	spin_lock_irqsave(&ha->hardware_lock, flags);
1552 	if (ha->pio_address) {
1553 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1554 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1555 	} else {
1556 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1557 		gpio_data = RD_REG_WORD(&reg->gpiod);
1558 	}
1559 	gpio_enable |= GPIO_LED_MASK;
1560 
1561 	/* Set the modified gpio_enable values. */
1562 	if (ha->pio_address) {
1563 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1564 	} else {
1565 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1566 		RD_REG_WORD(&reg->gpioe);
1567 	}
1568 
1569 	/* Clear out previously set LED colour. */
1570 	gpio_data &= ~GPIO_LED_MASK;
1571 	if (ha->pio_address) {
1572 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1573 	} else {
1574 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1575 		RD_REG_WORD(&reg->gpiod);
1576 	}
1577 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1578 
1579 	/*
1580 	 * Let the per HBA timer kick off the blinking process based on
1581 	 * the following flags. No need to do anything else now.
1582 	 */
1583 	ha->beacon_blink_led = 1;
1584 	ha->beacon_color_state = 0;
1585 
1586 	return QLA_SUCCESS;
1587 }
1588 
1589 int
qla2x00_beacon_off(struct scsi_qla_host * vha)1590 qla2x00_beacon_off(struct scsi_qla_host *vha)
1591 {
1592 	int rval = QLA_SUCCESS;
1593 	struct qla_hw_data *ha = vha->hw;
1594 
1595 	ha->beacon_blink_led = 0;
1596 
1597 	/* Set the on flag so when it gets flipped it will be off. */
1598 	if (IS_QLA2322(ha))
1599 		ha->beacon_color_state = QLA_LED_ALL_ON;
1600 	else
1601 		ha->beacon_color_state = QLA_LED_GRN_ON;
1602 
1603 	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1604 
1605 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1606 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1607 
1608 	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1609 	if (rval != QLA_SUCCESS)
1610 		ql_log(ql_log_warn, vha, 0x709c,
1611 		    "Unable to update fw options (beacon off).\n");
1612 	return rval;
1613 }
1614 
1615 
1616 static inline void
qla24xx_flip_colors(struct qla_hw_data * ha,uint16_t * pflags)1617 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1618 {
1619 	/* Flip all colors. */
1620 	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1621 		/* Turn off. */
1622 		ha->beacon_color_state = 0;
1623 		*pflags = 0;
1624 	} else {
1625 		/* Turn on. */
1626 		ha->beacon_color_state = QLA_LED_ALL_ON;
1627 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1628 	}
1629 }
1630 
1631 void
qla24xx_beacon_blink(struct scsi_qla_host * vha)1632 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1633 {
1634 	uint16_t led_color = 0;
1635 	uint32_t gpio_data;
1636 	unsigned long flags;
1637 	struct qla_hw_data *ha = vha->hw;
1638 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1639 
1640 	/* Save the Original GPIOD. */
1641 	spin_lock_irqsave(&ha->hardware_lock, flags);
1642 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1643 
1644 	/* Enable the gpio_data reg for update. */
1645 	gpio_data |= GPDX_LED_UPDATE_MASK;
1646 
1647 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1648 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1649 
1650 	/* Set the color bits. */
1651 	qla24xx_flip_colors(ha, &led_color);
1652 
1653 	/* Clear out any previously set LED color. */
1654 	gpio_data &= ~GPDX_LED_COLOR_MASK;
1655 
1656 	/* Set the new input LED color to GPIOD. */
1657 	gpio_data |= led_color;
1658 
1659 	/* Set the modified gpio_data values. */
1660 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1661 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1662 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1663 }
1664 
1665 void
qla83xx_beacon_blink(struct scsi_qla_host * vha)1666 qla83xx_beacon_blink(struct scsi_qla_host *vha)
1667 {
1668 	uint32_t led_select_value;
1669 	struct qla_hw_data *ha = vha->hw;
1670 	uint16_t led_cfg[6];
1671 	uint16_t orig_led_cfg[6];
1672 
1673 	if (!IS_QLA83XX(ha) && !IS_QLA81XX(ha))
1674 		return;
1675 
1676 	if (IS_QLA2031(ha) && ha->beacon_blink_led) {
1677 		if (ha->flags.port0)
1678 			led_select_value = 0x00201320;
1679 		else
1680 			led_select_value = 0x00201328;
1681 
1682 		qla83xx_write_remote_reg(vha, led_select_value, 0x40002000);
1683 		qla83xx_write_remote_reg(vha, led_select_value + 4, 0x40002000);
1684 		msleep(1000);
1685 		qla83xx_write_remote_reg(vha, led_select_value, 0x40004000);
1686 		qla83xx_write_remote_reg(vha, led_select_value + 4, 0x40004000);
1687 	} else if ((IS_QLA8031(ha) || IS_QLA81XX(ha)) && ha->beacon_blink_led) {
1688 		int rval;
1689 
1690 		/* Save Current */
1691 		rval = qla81xx_get_led_config(vha, orig_led_cfg);
1692 		/* Do the blink */
1693 		if (rval == QLA_SUCCESS) {
1694 			if (IS_QLA81XX(ha)) {
1695 				led_cfg[0] = 0x4000;
1696 				led_cfg[1] = 0x2000;
1697 				led_cfg[2] = 0;
1698 				led_cfg[3] = 0;
1699 				led_cfg[4] = 0;
1700 				led_cfg[5] = 0;
1701 			} else {
1702 				led_cfg[0] = 0x4000;
1703 				led_cfg[1] = 0x4000;
1704 				led_cfg[2] = 0x4000;
1705 				led_cfg[3] = 0x2000;
1706 				led_cfg[4] = 0;
1707 				led_cfg[5] = 0x2000;
1708 			}
1709 			rval = qla81xx_set_led_config(vha, led_cfg);
1710 			msleep(1000);
1711 			if (IS_QLA81XX(ha)) {
1712 				led_cfg[0] = 0x4000;
1713 				led_cfg[1] = 0x2000;
1714 				led_cfg[2] = 0;
1715 			} else {
1716 				led_cfg[0] = 0x4000;
1717 				led_cfg[1] = 0x2000;
1718 				led_cfg[2] = 0x4000;
1719 				led_cfg[3] = 0x4000;
1720 				led_cfg[4] = 0;
1721 				led_cfg[5] = 0x2000;
1722 			}
1723 			rval = qla81xx_set_led_config(vha, led_cfg);
1724 		}
1725 		/* On exit, restore original (presumes no status change) */
1726 		qla81xx_set_led_config(vha, orig_led_cfg);
1727 	}
1728 }
1729 
1730 int
qla24xx_beacon_on(struct scsi_qla_host * vha)1731 qla24xx_beacon_on(struct scsi_qla_host *vha)
1732 {
1733 	uint32_t gpio_data;
1734 	unsigned long flags;
1735 	struct qla_hw_data *ha = vha->hw;
1736 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1737 
1738 	if (IS_QLA82XX(ha))
1739 		return QLA_SUCCESS;
1740 
1741 	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1742 		goto skip_gpio; /* let blink handle it */
1743 
1744 	if (ha->beacon_blink_led == 0) {
1745 		/* Enable firmware for update */
1746 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1747 
1748 		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1749 			return QLA_FUNCTION_FAILED;
1750 
1751 		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1752 		    QLA_SUCCESS) {
1753 			ql_log(ql_log_warn, vha, 0x7009,
1754 			    "Unable to update fw options (beacon on).\n");
1755 			return QLA_FUNCTION_FAILED;
1756 		}
1757 
1758 		if (IS_QLA2031(ha))
1759 			goto skip_gpio;
1760 
1761 		spin_lock_irqsave(&ha->hardware_lock, flags);
1762 		gpio_data = RD_REG_DWORD(&reg->gpiod);
1763 
1764 		/* Enable the gpio_data reg for update. */
1765 		gpio_data |= GPDX_LED_UPDATE_MASK;
1766 		WRT_REG_DWORD(&reg->gpiod, gpio_data);
1767 		RD_REG_DWORD(&reg->gpiod);
1768 
1769 		spin_unlock_irqrestore(&ha->hardware_lock, flags);
1770 	}
1771 
1772 	/* So all colors blink together. */
1773 	ha->beacon_color_state = 0;
1774 
1775 skip_gpio:
1776 	/* Let the per HBA timer kick off the blinking process. */
1777 	ha->beacon_blink_led = 1;
1778 
1779 	return QLA_SUCCESS;
1780 }
1781 
1782 int
qla24xx_beacon_off(struct scsi_qla_host * vha)1783 qla24xx_beacon_off(struct scsi_qla_host *vha)
1784 {
1785 	uint32_t gpio_data;
1786 	unsigned long flags;
1787 	struct qla_hw_data *ha = vha->hw;
1788 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1789 
1790 	if (IS_QLA82XX(ha))
1791 		return QLA_SUCCESS;
1792 
1793 	ha->beacon_blink_led = 0;
1794 
1795 	if (IS_QLA2031(ha))
1796 		goto set_fw_options;
1797 
1798 	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1799 		return QLA_SUCCESS;
1800 
1801 	ha->beacon_color_state = QLA_LED_ALL_ON;
1802 
1803 	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1804 
1805 	/* Give control back to firmware. */
1806 	spin_lock_irqsave(&ha->hardware_lock, flags);
1807 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1808 
1809 	/* Disable the gpio_data reg for update. */
1810 	gpio_data &= ~GPDX_LED_UPDATE_MASK;
1811 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1812 	RD_REG_DWORD(&reg->gpiod);
1813 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1814 
1815 set_fw_options:
1816 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1817 
1818 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1819 		ql_log(ql_log_warn, vha, 0x704d,
1820 		    "Unable to update fw options (beacon on).\n");
1821 		return QLA_FUNCTION_FAILED;
1822 	}
1823 
1824 	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1825 		ql_log(ql_log_warn, vha, 0x704e,
1826 		    "Unable to update fw options (beacon on).\n");
1827 		return QLA_FUNCTION_FAILED;
1828 	}
1829 
1830 	return QLA_SUCCESS;
1831 }
1832 
1833 
1834 /*
1835  * Flash support routines
1836  */
1837 
1838 /**
1839  * qla2x00_flash_enable() - Setup flash for reading and writing.
1840  * @ha: HA context
1841  */
1842 static void
qla2x00_flash_enable(struct qla_hw_data * ha)1843 qla2x00_flash_enable(struct qla_hw_data *ha)
1844 {
1845 	uint16_t data;
1846 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1847 
1848 	data = RD_REG_WORD(&reg->ctrl_status);
1849 	data |= CSR_FLASH_ENABLE;
1850 	WRT_REG_WORD(&reg->ctrl_status, data);
1851 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1852 }
1853 
1854 /**
1855  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1856  * @ha: HA context
1857  */
1858 static void
qla2x00_flash_disable(struct qla_hw_data * ha)1859 qla2x00_flash_disable(struct qla_hw_data *ha)
1860 {
1861 	uint16_t data;
1862 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1863 
1864 	data = RD_REG_WORD(&reg->ctrl_status);
1865 	data &= ~(CSR_FLASH_ENABLE);
1866 	WRT_REG_WORD(&reg->ctrl_status, data);
1867 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1868 }
1869 
1870 /**
1871  * qla2x00_read_flash_byte() - Reads a byte from flash
1872  * @ha: HA context
1873  * @addr: Address in flash to read
1874  *
1875  * A word is read from the chip, but, only the lower byte is valid.
1876  *
1877  * Returns the byte read from flash @addr.
1878  */
1879 static uint8_t
qla2x00_read_flash_byte(struct qla_hw_data * ha,uint32_t addr)1880 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1881 {
1882 	uint16_t data;
1883 	uint16_t bank_select;
1884 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1885 
1886 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1887 
1888 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1889 		/* Specify 64K address range: */
1890 		/*  clear out Module Select and Flash Address bits [19:16]. */
1891 		bank_select &= ~0xf8;
1892 		bank_select |= addr >> 12 & 0xf0;
1893 		bank_select |= CSR_FLASH_64K_BANK;
1894 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1895 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1896 
1897 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1898 		data = RD_REG_WORD(&reg->flash_data);
1899 
1900 		return (uint8_t)data;
1901 	}
1902 
1903 	/* Setup bit 16 of flash address. */
1904 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1905 		bank_select |= CSR_FLASH_64K_BANK;
1906 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1907 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1908 	} else if (((addr & BIT_16) == 0) &&
1909 	    (bank_select & CSR_FLASH_64K_BANK)) {
1910 		bank_select &= ~(CSR_FLASH_64K_BANK);
1911 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1912 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1913 	}
1914 
1915 	/* Always perform IO mapped accesses to the FLASH registers. */
1916 	if (ha->pio_address) {
1917 		uint16_t data2;
1918 
1919 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1920 		do {
1921 			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1922 			barrier();
1923 			cpu_relax();
1924 			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1925 		} while (data != data2);
1926 	} else {
1927 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1928 		data = qla2x00_debounce_register(&reg->flash_data);
1929 	}
1930 
1931 	return (uint8_t)data;
1932 }
1933 
1934 /**
1935  * qla2x00_write_flash_byte() - Write a byte to flash
1936  * @ha: HA context
1937  * @addr: Address in flash to write
1938  * @data: Data to write
1939  */
1940 static void
qla2x00_write_flash_byte(struct qla_hw_data * ha,uint32_t addr,uint8_t data)1941 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1942 {
1943 	uint16_t bank_select;
1944 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1945 
1946 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1947 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1948 		/* Specify 64K address range: */
1949 		/*  clear out Module Select and Flash Address bits [19:16]. */
1950 		bank_select &= ~0xf8;
1951 		bank_select |= addr >> 12 & 0xf0;
1952 		bank_select |= CSR_FLASH_64K_BANK;
1953 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1954 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1955 
1956 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1957 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1958 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1959 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1960 
1961 		return;
1962 	}
1963 
1964 	/* Setup bit 16 of flash address. */
1965 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1966 		bank_select |= CSR_FLASH_64K_BANK;
1967 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1968 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1969 	} else if (((addr & BIT_16) == 0) &&
1970 	    (bank_select & CSR_FLASH_64K_BANK)) {
1971 		bank_select &= ~(CSR_FLASH_64K_BANK);
1972 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1973 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1974 	}
1975 
1976 	/* Always perform IO mapped accesses to the FLASH registers. */
1977 	if (ha->pio_address) {
1978 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1979 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1980 	} else {
1981 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1982 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1983 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1984 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1985 	}
1986 }
1987 
1988 /**
1989  * qla2x00_poll_flash() - Polls flash for completion.
1990  * @ha: HA context
1991  * @addr: Address in flash to poll
1992  * @poll_data: Data to be polled
1993  * @man_id: Flash manufacturer ID
1994  * @flash_id: Flash ID
1995  *
1996  * This function polls the device until bit 7 of what is read matches data
1997  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
1998  * out (a fatal error).  The flash book recommeds reading bit 7 again after
1999  * reading bit 5 as a 1.
2000  *
2001  * Returns 0 on success, else non-zero.
2002  */
2003 static int
qla2x00_poll_flash(struct qla_hw_data * ha,uint32_t addr,uint8_t poll_data,uint8_t man_id,uint8_t flash_id)2004 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
2005     uint8_t man_id, uint8_t flash_id)
2006 {
2007 	int status;
2008 	uint8_t flash_data;
2009 	uint32_t cnt;
2010 
2011 	status = 1;
2012 
2013 	/* Wait for 30 seconds for command to finish. */
2014 	poll_data &= BIT_7;
2015 	for (cnt = 3000000; cnt; cnt--) {
2016 		flash_data = qla2x00_read_flash_byte(ha, addr);
2017 		if ((flash_data & BIT_7) == poll_data) {
2018 			status = 0;
2019 			break;
2020 		}
2021 
2022 		if (man_id != 0x40 && man_id != 0xda) {
2023 			if ((flash_data & BIT_5) && cnt > 2)
2024 				cnt = 2;
2025 		}
2026 		udelay(10);
2027 		barrier();
2028 		cond_resched();
2029 	}
2030 	return status;
2031 }
2032 
2033 /**
2034  * qla2x00_program_flash_address() - Programs a flash address
2035  * @ha: HA context
2036  * @addr: Address in flash to program
2037  * @data: Data to be written in flash
2038  * @man_id: Flash manufacturer ID
2039  * @flash_id: Flash ID
2040  *
2041  * Returns 0 on success, else non-zero.
2042  */
2043 static int
qla2x00_program_flash_address(struct qla_hw_data * ha,uint32_t addr,uint8_t data,uint8_t man_id,uint8_t flash_id)2044 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
2045     uint8_t data, uint8_t man_id, uint8_t flash_id)
2046 {
2047 	/* Write Program Command Sequence. */
2048 	if (IS_OEM_001(ha)) {
2049 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2050 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2051 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
2052 		qla2x00_write_flash_byte(ha, addr, data);
2053 	} else {
2054 		if (man_id == 0xda && flash_id == 0xc1) {
2055 			qla2x00_write_flash_byte(ha, addr, data);
2056 			if (addr & 0x7e)
2057 				return 0;
2058 		} else {
2059 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2060 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2061 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
2062 			qla2x00_write_flash_byte(ha, addr, data);
2063 		}
2064 	}
2065 
2066 	udelay(150);
2067 
2068 	/* Wait for write to complete. */
2069 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
2070 }
2071 
2072 /**
2073  * qla2x00_erase_flash() - Erase the flash.
2074  * @ha: HA context
2075  * @man_id: Flash manufacturer ID
2076  * @flash_id: Flash ID
2077  *
2078  * Returns 0 on success, else non-zero.
2079  */
2080 static int
qla2x00_erase_flash(struct qla_hw_data * ha,uint8_t man_id,uint8_t flash_id)2081 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
2082 {
2083 	/* Individual Sector Erase Command Sequence */
2084 	if (IS_OEM_001(ha)) {
2085 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2086 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2087 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
2088 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2089 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2090 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
2091 	} else {
2092 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2093 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2094 		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2095 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2096 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2097 		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
2098 	}
2099 
2100 	udelay(150);
2101 
2102 	/* Wait for erase to complete. */
2103 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
2104 }
2105 
2106 /**
2107  * qla2x00_erase_flash_sector() - Erase a flash sector.
2108  * @ha: HA context
2109  * @addr: Flash sector to erase
2110  * @sec_mask: Sector address mask
2111  * @man_id: Flash manufacturer ID
2112  * @flash_id: Flash ID
2113  *
2114  * Returns 0 on success, else non-zero.
2115  */
2116 static int
qla2x00_erase_flash_sector(struct qla_hw_data * ha,uint32_t addr,uint32_t sec_mask,uint8_t man_id,uint8_t flash_id)2117 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
2118     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
2119 {
2120 	/* Individual Sector Erase Command Sequence */
2121 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2122 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2123 	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2124 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2125 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2126 	if (man_id == 0x1f && flash_id == 0x13)
2127 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
2128 	else
2129 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
2130 
2131 	udelay(150);
2132 
2133 	/* Wait for erase to complete. */
2134 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
2135 }
2136 
2137 /**
2138  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
2139  * @man_id: Flash manufacturer ID
2140  * @flash_id: Flash ID
2141  */
2142 static void
qla2x00_get_flash_manufacturer(struct qla_hw_data * ha,uint8_t * man_id,uint8_t * flash_id)2143 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
2144     uint8_t *flash_id)
2145 {
2146 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2147 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2148 	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
2149 	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
2150 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
2151 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2152 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2153 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
2154 }
2155 
2156 static void
qla2x00_read_flash_data(struct qla_hw_data * ha,uint8_t * tmp_buf,uint32_t saddr,uint32_t length)2157 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
2158 	uint32_t saddr, uint32_t length)
2159 {
2160 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2161 	uint32_t midpoint, ilength;
2162 	uint8_t data;
2163 
2164 	midpoint = length / 2;
2165 
2166 	WRT_REG_WORD(&reg->nvram, 0);
2167 	RD_REG_WORD(&reg->nvram);
2168 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
2169 		if (ilength == midpoint) {
2170 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2171 			RD_REG_WORD(&reg->nvram);
2172 		}
2173 		data = qla2x00_read_flash_byte(ha, saddr);
2174 		if (saddr % 100)
2175 			udelay(10);
2176 		*tmp_buf = data;
2177 		cond_resched();
2178 	}
2179 }
2180 
2181 static inline void
qla2x00_suspend_hba(struct scsi_qla_host * vha)2182 qla2x00_suspend_hba(struct scsi_qla_host *vha)
2183 {
2184 	int cnt;
2185 	unsigned long flags;
2186 	struct qla_hw_data *ha = vha->hw;
2187 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2188 
2189 	/* Suspend HBA. */
2190 	scsi_block_requests(vha->host);
2191 	ha->isp_ops->disable_intrs(ha);
2192 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2193 
2194 	/* Pause RISC. */
2195 	spin_lock_irqsave(&ha->hardware_lock, flags);
2196 	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
2197 	RD_REG_WORD(&reg->hccr);
2198 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
2199 		for (cnt = 0; cnt < 30000; cnt++) {
2200 			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
2201 				break;
2202 			udelay(100);
2203 		}
2204 	} else {
2205 		udelay(10);
2206 	}
2207 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
2208 }
2209 
2210 static inline void
qla2x00_resume_hba(struct scsi_qla_host * vha)2211 qla2x00_resume_hba(struct scsi_qla_host *vha)
2212 {
2213 	struct qla_hw_data *ha = vha->hw;
2214 
2215 	/* Resume HBA. */
2216 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2217 	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
2218 	qla2xxx_wake_dpc(vha);
2219 	qla2x00_wait_for_chip_reset(vha);
2220 	scsi_unblock_requests(vha->host);
2221 }
2222 
2223 uint8_t *
qla2x00_read_optrom_data(struct scsi_qla_host * vha,uint8_t * buf,uint32_t offset,uint32_t length)2224 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2225     uint32_t offset, uint32_t length)
2226 {
2227 	uint32_t addr, midpoint;
2228 	uint8_t *data;
2229 	struct qla_hw_data *ha = vha->hw;
2230 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2231 
2232 	/* Suspend HBA. */
2233 	qla2x00_suspend_hba(vha);
2234 
2235 	/* Go with read. */
2236 	midpoint = ha->optrom_size / 2;
2237 
2238 	qla2x00_flash_enable(ha);
2239 	WRT_REG_WORD(&reg->nvram, 0);
2240 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
2241 	for (addr = offset, data = buf; addr < length; addr++, data++) {
2242 		if (addr == midpoint) {
2243 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2244 			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
2245 		}
2246 
2247 		*data = qla2x00_read_flash_byte(ha, addr);
2248 	}
2249 	qla2x00_flash_disable(ha);
2250 
2251 	/* Resume HBA. */
2252 	qla2x00_resume_hba(vha);
2253 
2254 	return buf;
2255 }
2256 
2257 int
qla2x00_write_optrom_data(struct scsi_qla_host * vha,uint8_t * buf,uint32_t offset,uint32_t length)2258 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2259     uint32_t offset, uint32_t length)
2260 {
2261 
2262 	int rval;
2263 	uint8_t man_id, flash_id, sec_number, data;
2264 	uint16_t wd;
2265 	uint32_t addr, liter, sec_mask, rest_addr;
2266 	struct qla_hw_data *ha = vha->hw;
2267 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2268 
2269 	/* Suspend HBA. */
2270 	qla2x00_suspend_hba(vha);
2271 
2272 	rval = QLA_SUCCESS;
2273 	sec_number = 0;
2274 
2275 	/* Reset ISP chip. */
2276 	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2277 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2278 
2279 	/* Go with write. */
2280 	qla2x00_flash_enable(ha);
2281 	do {	/* Loop once to provide quick error exit */
2282 		/* Structure of flash memory based on manufacturer */
2283 		if (IS_OEM_001(ha)) {
2284 			/* OEM variant with special flash part. */
2285 			man_id = flash_id = 0;
2286 			rest_addr = 0xffff;
2287 			sec_mask   = 0x10000;
2288 			goto update_flash;
2289 		}
2290 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2291 		switch (man_id) {
2292 		case 0x20: /* ST flash. */
2293 			if (flash_id == 0xd2 || flash_id == 0xe3) {
2294 				/*
2295 				 * ST m29w008at part - 64kb sector size with
2296 				 * 32kb,8kb,8kb,16kb sectors at memory address
2297 				 * 0xf0000.
2298 				 */
2299 				rest_addr = 0xffff;
2300 				sec_mask = 0x10000;
2301 				break;
2302 			}
2303 			/*
2304 			 * ST m29w010b part - 16kb sector size
2305 			 * Default to 16kb sectors
2306 			 */
2307 			rest_addr = 0x3fff;
2308 			sec_mask = 0x1c000;
2309 			break;
2310 		case 0x40: /* Mostel flash. */
2311 			/* Mostel v29c51001 part - 512 byte sector size. */
2312 			rest_addr = 0x1ff;
2313 			sec_mask = 0x1fe00;
2314 			break;
2315 		case 0xbf: /* SST flash. */
2316 			/* SST39sf10 part - 4kb sector size. */
2317 			rest_addr = 0xfff;
2318 			sec_mask = 0x1f000;
2319 			break;
2320 		case 0xda: /* Winbond flash. */
2321 			/* Winbond W29EE011 part - 256 byte sector size. */
2322 			rest_addr = 0x7f;
2323 			sec_mask = 0x1ff80;
2324 			break;
2325 		case 0xc2: /* Macronix flash. */
2326 			/* 64k sector size. */
2327 			if (flash_id == 0x38 || flash_id == 0x4f) {
2328 				rest_addr = 0xffff;
2329 				sec_mask = 0x10000;
2330 				break;
2331 			}
2332 			/* Fall through... */
2333 
2334 		case 0x1f: /* Atmel flash. */
2335 			/* 512k sector size. */
2336 			if (flash_id == 0x13) {
2337 				rest_addr = 0x7fffffff;
2338 				sec_mask =   0x80000000;
2339 				break;
2340 			}
2341 			/* Fall through... */
2342 
2343 		case 0x01: /* AMD flash. */
2344 			if (flash_id == 0x38 || flash_id == 0x40 ||
2345 			    flash_id == 0x4f) {
2346 				/* Am29LV081 part - 64kb sector size. */
2347 				/* Am29LV002BT part - 64kb sector size. */
2348 				rest_addr = 0xffff;
2349 				sec_mask = 0x10000;
2350 				break;
2351 			} else if (flash_id == 0x3e) {
2352 				/*
2353 				 * Am29LV008b part - 64kb sector size with
2354 				 * 32kb,8kb,8kb,16kb sector at memory address
2355 				 * h0xf0000.
2356 				 */
2357 				rest_addr = 0xffff;
2358 				sec_mask = 0x10000;
2359 				break;
2360 			} else if (flash_id == 0x20 || flash_id == 0x6e) {
2361 				/*
2362 				 * Am29LV010 part or AM29f010 - 16kb sector
2363 				 * size.
2364 				 */
2365 				rest_addr = 0x3fff;
2366 				sec_mask = 0x1c000;
2367 				break;
2368 			} else if (flash_id == 0x6d) {
2369 				/* Am29LV001 part - 8kb sector size. */
2370 				rest_addr = 0x1fff;
2371 				sec_mask = 0x1e000;
2372 				break;
2373 			}
2374 		default:
2375 			/* Default to 16 kb sector size. */
2376 			rest_addr = 0x3fff;
2377 			sec_mask = 0x1c000;
2378 			break;
2379 		}
2380 
2381 update_flash:
2382 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2383 			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2384 				rval = QLA_FUNCTION_FAILED;
2385 				break;
2386 			}
2387 		}
2388 
2389 		for (addr = offset, liter = 0; liter < length; liter++,
2390 		    addr++) {
2391 			data = buf[liter];
2392 			/* Are we at the beginning of a sector? */
2393 			if ((addr & rest_addr) == 0) {
2394 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2395 					if (addr >= 0x10000UL) {
2396 						if (((addr >> 12) & 0xf0) &&
2397 						    ((man_id == 0x01 &&
2398 							flash_id == 0x3e) ||
2399 						     (man_id == 0x20 &&
2400 							 flash_id == 0xd2))) {
2401 							sec_number++;
2402 							if (sec_number == 1) {
2403 								rest_addr =
2404 								    0x7fff;
2405 								sec_mask =
2406 								    0x18000;
2407 							} else if (
2408 							    sec_number == 2 ||
2409 							    sec_number == 3) {
2410 								rest_addr =
2411 								    0x1fff;
2412 								sec_mask =
2413 								    0x1e000;
2414 							} else if (
2415 							    sec_number == 4) {
2416 								rest_addr =
2417 								    0x3fff;
2418 								sec_mask =
2419 								    0x1c000;
2420 							}
2421 						}
2422 					}
2423 				} else if (addr == ha->optrom_size / 2) {
2424 					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2425 					RD_REG_WORD(&reg->nvram);
2426 				}
2427 
2428 				if (flash_id == 0xda && man_id == 0xc1) {
2429 					qla2x00_write_flash_byte(ha, 0x5555,
2430 					    0xaa);
2431 					qla2x00_write_flash_byte(ha, 0x2aaa,
2432 					    0x55);
2433 					qla2x00_write_flash_byte(ha, 0x5555,
2434 					    0xa0);
2435 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2436 					/* Then erase it */
2437 					if (qla2x00_erase_flash_sector(ha,
2438 					    addr, sec_mask, man_id,
2439 					    flash_id)) {
2440 						rval = QLA_FUNCTION_FAILED;
2441 						break;
2442 					}
2443 					if (man_id == 0x01 && flash_id == 0x6d)
2444 						sec_number++;
2445 				}
2446 			}
2447 
2448 			if (man_id == 0x01 && flash_id == 0x6d) {
2449 				if (sec_number == 1 &&
2450 				    addr == (rest_addr - 1)) {
2451 					rest_addr = 0x0fff;
2452 					sec_mask   = 0x1f000;
2453 				} else if (sec_number == 3 && (addr & 0x7ffe)) {
2454 					rest_addr = 0x3fff;
2455 					sec_mask   = 0x1c000;
2456 				}
2457 			}
2458 
2459 			if (qla2x00_program_flash_address(ha, addr, data,
2460 			    man_id, flash_id)) {
2461 				rval = QLA_FUNCTION_FAILED;
2462 				break;
2463 			}
2464 			cond_resched();
2465 		}
2466 	} while (0);
2467 	qla2x00_flash_disable(ha);
2468 
2469 	/* Resume HBA. */
2470 	qla2x00_resume_hba(vha);
2471 
2472 	return rval;
2473 }
2474 
2475 uint8_t *
qla24xx_read_optrom_data(struct scsi_qla_host * vha,uint8_t * buf,uint32_t offset,uint32_t length)2476 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2477     uint32_t offset, uint32_t length)
2478 {
2479 	struct qla_hw_data *ha = vha->hw;
2480 
2481 	/* Suspend HBA. */
2482 	scsi_block_requests(vha->host);
2483 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2484 
2485 	/* Go with read. */
2486 	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2487 
2488 	/* Resume HBA. */
2489 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2490 	scsi_unblock_requests(vha->host);
2491 
2492 	return buf;
2493 }
2494 
2495 int
qla24xx_write_optrom_data(struct scsi_qla_host * vha,uint8_t * buf,uint32_t offset,uint32_t length)2496 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2497     uint32_t offset, uint32_t length)
2498 {
2499 	int rval;
2500 	struct qla_hw_data *ha = vha->hw;
2501 
2502 	/* Suspend HBA. */
2503 	scsi_block_requests(vha->host);
2504 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2505 
2506 	/* Go with write. */
2507 	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2508 	    length >> 2);
2509 
2510 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2511 	scsi_unblock_requests(vha->host);
2512 
2513 	return rval;
2514 }
2515 
2516 uint8_t *
qla25xx_read_optrom_data(struct scsi_qla_host * vha,uint8_t * buf,uint32_t offset,uint32_t length)2517 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2518     uint32_t offset, uint32_t length)
2519 {
2520 	int rval;
2521 	dma_addr_t optrom_dma;
2522 	void *optrom;
2523 	uint8_t *pbuf;
2524 	uint32_t faddr, left, burst;
2525 	struct qla_hw_data *ha = vha->hw;
2526 
2527 	if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
2528 		goto try_fast;
2529 	if (offset & 0xfff)
2530 		goto slow_read;
2531 	if (length < OPTROM_BURST_SIZE)
2532 		goto slow_read;
2533 
2534 try_fast:
2535 	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2536 	    &optrom_dma, GFP_KERNEL);
2537 	if (!optrom) {
2538 		ql_log(ql_log_warn, vha, 0x00cc,
2539 		    "Unable to allocate memory for optrom burst read (%x KB).\n",
2540 		    OPTROM_BURST_SIZE / 1024);
2541 		goto slow_read;
2542 	}
2543 
2544 	pbuf = buf;
2545 	faddr = offset >> 2;
2546 	left = length >> 2;
2547 	burst = OPTROM_BURST_DWORDS;
2548 	while (left != 0) {
2549 		if (burst > left)
2550 			burst = left;
2551 
2552 		rval = qla2x00_dump_ram(vha, optrom_dma,
2553 		    flash_data_addr(ha, faddr), burst);
2554 		if (rval) {
2555 			ql_log(ql_log_warn, vha, 0x00f5,
2556 			    "Unable to burst-read optrom segment (%x/%x/%llx).\n",
2557 			    rval, flash_data_addr(ha, faddr),
2558 			    (unsigned long long)optrom_dma);
2559 			ql_log(ql_log_warn, vha, 0x00f6,
2560 			    "Reverting to slow-read.\n");
2561 
2562 			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2563 			    optrom, optrom_dma);
2564 			goto slow_read;
2565 		}
2566 
2567 		memcpy(pbuf, optrom, burst * 4);
2568 
2569 		left -= burst;
2570 		faddr += burst;
2571 		pbuf += burst * 4;
2572 	}
2573 
2574 	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2575 	    optrom_dma);
2576 
2577 	return buf;
2578 
2579 slow_read:
2580     return qla24xx_read_optrom_data(vha, buf, offset, length);
2581 }
2582 
2583 /**
2584  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2585  * @ha: HA context
2586  * @pcids: Pointer to the FCODE PCI data structure
2587  *
2588  * The process of retrieving the FCODE version information is at best
2589  * described as interesting.
2590  *
2591  * Within the first 100h bytes of the image an ASCII string is present
2592  * which contains several pieces of information including the FCODE
2593  * version.  Unfortunately it seems the only reliable way to retrieve
2594  * the version is by scanning for another sentinel within the string,
2595  * the FCODE build date:
2596  *
2597  *	... 2.00.02 10/17/02 ...
2598  *
2599  * Returns QLA_SUCCESS on successful retrieval of version.
2600  */
2601 static void
qla2x00_get_fcode_version(struct qla_hw_data * ha,uint32_t pcids)2602 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2603 {
2604 	int ret = QLA_FUNCTION_FAILED;
2605 	uint32_t istart, iend, iter, vend;
2606 	uint8_t do_next, rbyte, *vbyte;
2607 
2608 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2609 
2610 	/* Skip the PCI data structure. */
2611 	istart = pcids +
2612 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2613 		qla2x00_read_flash_byte(ha, pcids + 0x0A));
2614 	iend = istart + 0x100;
2615 	do {
2616 		/* Scan for the sentinel date string...eeewww. */
2617 		do_next = 0;
2618 		iter = istart;
2619 		while ((iter < iend) && !do_next) {
2620 			iter++;
2621 			if (qla2x00_read_flash_byte(ha, iter) == '/') {
2622 				if (qla2x00_read_flash_byte(ha, iter + 2) ==
2623 				    '/')
2624 					do_next++;
2625 				else if (qla2x00_read_flash_byte(ha,
2626 				    iter + 3) == '/')
2627 					do_next++;
2628 			}
2629 		}
2630 		if (!do_next)
2631 			break;
2632 
2633 		/* Backtrack to previous ' ' (space). */
2634 		do_next = 0;
2635 		while ((iter > istart) && !do_next) {
2636 			iter--;
2637 			if (qla2x00_read_flash_byte(ha, iter) == ' ')
2638 				do_next++;
2639 		}
2640 		if (!do_next)
2641 			break;
2642 
2643 		/*
2644 		 * Mark end of version tag, and find previous ' ' (space) or
2645 		 * string length (recent FCODE images -- major hack ahead!!!).
2646 		 */
2647 		vend = iter - 1;
2648 		do_next = 0;
2649 		while ((iter > istart) && !do_next) {
2650 			iter--;
2651 			rbyte = qla2x00_read_flash_byte(ha, iter);
2652 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2653 				do_next++;
2654 		}
2655 		if (!do_next)
2656 			break;
2657 
2658 		/* Mark beginning of version tag, and copy data. */
2659 		iter++;
2660 		if ((vend - iter) &&
2661 		    ((vend - iter) < sizeof(ha->fcode_revision))) {
2662 			vbyte = ha->fcode_revision;
2663 			while (iter <= vend) {
2664 				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
2665 				iter++;
2666 			}
2667 			ret = QLA_SUCCESS;
2668 		}
2669 	} while (0);
2670 
2671 	if (ret != QLA_SUCCESS)
2672 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2673 }
2674 
2675 int
qla2x00_get_flash_version(scsi_qla_host_t * vha,void * mbuf)2676 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2677 {
2678 	int ret = QLA_SUCCESS;
2679 	uint8_t code_type, last_image;
2680 	uint32_t pcihdr, pcids;
2681 	uint8_t *dbyte;
2682 	uint16_t *dcode;
2683 	struct qla_hw_data *ha = vha->hw;
2684 
2685 	if (!ha->pio_address || !mbuf)
2686 		return QLA_FUNCTION_FAILED;
2687 
2688 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2689 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2690 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2691 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2692 
2693 	qla2x00_flash_enable(ha);
2694 
2695 	/* Begin with first PCI expansion ROM header. */
2696 	pcihdr = 0;
2697 	last_image = 1;
2698 	do {
2699 		/* Verify PCI expansion ROM header. */
2700 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2701 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2702 			/* No signature */
2703 			ql_log(ql_log_fatal, vha, 0x0050,
2704 			    "No matching ROM signature.\n");
2705 			ret = QLA_FUNCTION_FAILED;
2706 			break;
2707 		}
2708 
2709 		/* Locate PCI data structure. */
2710 		pcids = pcihdr +
2711 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2712 			qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2713 
2714 		/* Validate signature of PCI data structure. */
2715 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2716 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2717 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2718 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2719 			/* Incorrect header. */
2720 			ql_log(ql_log_fatal, vha, 0x0051,
2721 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2722 			ret = QLA_FUNCTION_FAILED;
2723 			break;
2724 		}
2725 
2726 		/* Read version */
2727 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2728 		switch (code_type) {
2729 		case ROM_CODE_TYPE_BIOS:
2730 			/* Intel x86, PC-AT compatible. */
2731 			ha->bios_revision[0] =
2732 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2733 			ha->bios_revision[1] =
2734 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2735 			ql_dbg(ql_dbg_init, vha, 0x0052,
2736 			    "Read BIOS %d.%d.\n",
2737 			    ha->bios_revision[1], ha->bios_revision[0]);
2738 			break;
2739 		case ROM_CODE_TYPE_FCODE:
2740 			/* Open Firmware standard for PCI (FCode). */
2741 			/* Eeeewww... */
2742 			qla2x00_get_fcode_version(ha, pcids);
2743 			break;
2744 		case ROM_CODE_TYPE_EFI:
2745 			/* Extensible Firmware Interface (EFI). */
2746 			ha->efi_revision[0] =
2747 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2748 			ha->efi_revision[1] =
2749 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2750 			ql_dbg(ql_dbg_init, vha, 0x0053,
2751 			    "Read EFI %d.%d.\n",
2752 			    ha->efi_revision[1], ha->efi_revision[0]);
2753 			break;
2754 		default:
2755 			ql_log(ql_log_warn, vha, 0x0054,
2756 			    "Unrecognized code type %x at pcids %x.\n",
2757 			    code_type, pcids);
2758 			break;
2759 		}
2760 
2761 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2762 
2763 		/* Locate next PCI expansion ROM. */
2764 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2765 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2766 	} while (!last_image);
2767 
2768 	if (IS_QLA2322(ha)) {
2769 		/* Read firmware image information. */
2770 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2771 		dbyte = mbuf;
2772 		memset(dbyte, 0, 8);
2773 		dcode = (uint16_t *)dbyte;
2774 
2775 		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2776 		    8);
2777 		ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a,
2778 		    "Dumping fw "
2779 		    "ver from flash:.\n");
2780 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b,
2781 		    (uint8_t *)dbyte, 8);
2782 
2783 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2784 		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2785 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2786 		    dcode[3] == 0)) {
2787 			ql_log(ql_log_warn, vha, 0x0057,
2788 			    "Unrecognized fw revision at %x.\n",
2789 			    ha->flt_region_fw * 4);
2790 		} else {
2791 			/* values are in big endian */
2792 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2793 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2794 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2795 			ql_dbg(ql_dbg_init, vha, 0x0058,
2796 			    "FW Version: "
2797 			    "%d.%d.%d.\n", ha->fw_revision[0],
2798 			    ha->fw_revision[1], ha->fw_revision[2]);
2799 		}
2800 	}
2801 
2802 	qla2x00_flash_disable(ha);
2803 
2804 	return ret;
2805 }
2806 
2807 int
qla24xx_get_flash_version(scsi_qla_host_t * vha,void * mbuf)2808 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2809 {
2810 	int ret = QLA_SUCCESS;
2811 	uint32_t pcihdr, pcids;
2812 	uint32_t *dcode;
2813 	uint8_t *bcode;
2814 	uint8_t code_type, last_image;
2815 	int i;
2816 	struct qla_hw_data *ha = vha->hw;
2817 
2818 	if (IS_QLA82XX(ha))
2819 		return ret;
2820 
2821 	if (!mbuf)
2822 		return QLA_FUNCTION_FAILED;
2823 
2824 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2825 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2826 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2827 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2828 
2829 	dcode = mbuf;
2830 
2831 	/* Begin with first PCI expansion ROM header. */
2832 	pcihdr = ha->flt_region_boot << 2;
2833 	last_image = 1;
2834 	do {
2835 		/* Verify PCI expansion ROM header. */
2836 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2837 		bcode = mbuf + (pcihdr % 4);
2838 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2839 			/* No signature */
2840 			ql_log(ql_log_fatal, vha, 0x0059,
2841 			    "No matching ROM signature.\n");
2842 			ret = QLA_FUNCTION_FAILED;
2843 			break;
2844 		}
2845 
2846 		/* Locate PCI data structure. */
2847 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2848 
2849 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2850 		bcode = mbuf + (pcihdr % 4);
2851 
2852 		/* Validate signature of PCI data structure. */
2853 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2854 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2855 			/* Incorrect header. */
2856 			ql_log(ql_log_fatal, vha, 0x005a,
2857 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2858 			ret = QLA_FUNCTION_FAILED;
2859 			break;
2860 		}
2861 
2862 		/* Read version */
2863 		code_type = bcode[0x14];
2864 		switch (code_type) {
2865 		case ROM_CODE_TYPE_BIOS:
2866 			/* Intel x86, PC-AT compatible. */
2867 			ha->bios_revision[0] = bcode[0x12];
2868 			ha->bios_revision[1] = bcode[0x13];
2869 			ql_dbg(ql_dbg_init, vha, 0x005b,
2870 			    "Read BIOS %d.%d.\n",
2871 			    ha->bios_revision[1], ha->bios_revision[0]);
2872 			break;
2873 		case ROM_CODE_TYPE_FCODE:
2874 			/* Open Firmware standard for PCI (FCode). */
2875 			ha->fcode_revision[0] = bcode[0x12];
2876 			ha->fcode_revision[1] = bcode[0x13];
2877 			ql_dbg(ql_dbg_init, vha, 0x005c,
2878 			    "Read FCODE %d.%d.\n",
2879 			    ha->fcode_revision[1], ha->fcode_revision[0]);
2880 			break;
2881 		case ROM_CODE_TYPE_EFI:
2882 			/* Extensible Firmware Interface (EFI). */
2883 			ha->efi_revision[0] = bcode[0x12];
2884 			ha->efi_revision[1] = bcode[0x13];
2885 			ql_dbg(ql_dbg_init, vha, 0x005d,
2886 			    "Read EFI %d.%d.\n",
2887 			    ha->efi_revision[1], ha->efi_revision[0]);
2888 			break;
2889 		default:
2890 			ql_log(ql_log_warn, vha, 0x005e,
2891 			    "Unrecognized code type %x at pcids %x.\n",
2892 			    code_type, pcids);
2893 			break;
2894 		}
2895 
2896 		last_image = bcode[0x15] & BIT_7;
2897 
2898 		/* Locate next PCI expansion ROM. */
2899 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2900 	} while (!last_image);
2901 
2902 	/* Read firmware image information. */
2903 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2904 	dcode = mbuf;
2905 
2906 	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2907 	for (i = 0; i < 4; i++)
2908 		dcode[i] = be32_to_cpu(dcode[i]);
2909 
2910 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2911 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2912 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2913 	    dcode[3] == 0)) {
2914 		ql_log(ql_log_warn, vha, 0x005f,
2915 		    "Unrecognized fw revision at %x.\n",
2916 		    ha->flt_region_fw * 4);
2917 	} else {
2918 		ha->fw_revision[0] = dcode[0];
2919 		ha->fw_revision[1] = dcode[1];
2920 		ha->fw_revision[2] = dcode[2];
2921 		ha->fw_revision[3] = dcode[3];
2922 		ql_dbg(ql_dbg_init, vha, 0x0060,
2923 		    "Firmware revision %d.%d.%d.%d.\n",
2924 		    ha->fw_revision[0], ha->fw_revision[1],
2925 		    ha->fw_revision[2], ha->fw_revision[3]);
2926 	}
2927 
2928 	/* Check for golden firmware and get version if available */
2929 	if (!IS_QLA81XX(ha)) {
2930 		/* Golden firmware is not present in non 81XX adapters */
2931 		return ret;
2932 	}
2933 
2934 	memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
2935 	dcode = mbuf;
2936 	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
2937 	    ha->flt_region_gold_fw << 2, 32);
2938 
2939 	if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
2940 	    dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
2941 		ql_log(ql_log_warn, vha, 0x0056,
2942 		    "Unrecognized golden fw at 0x%x.\n",
2943 		    ha->flt_region_gold_fw * 4);
2944 		return ret;
2945 	}
2946 
2947 	for (i = 4; i < 8; i++)
2948 		ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);
2949 
2950 	return ret;
2951 }
2952 
2953 static int
qla2xxx_is_vpd_valid(uint8_t * pos,uint8_t * end)2954 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2955 {
2956 	if (pos >= end || *pos != 0x82)
2957 		return 0;
2958 
2959 	pos += 3 + pos[1];
2960 	if (pos >= end || *pos != 0x90)
2961 		return 0;
2962 
2963 	pos += 3 + pos[1];
2964 	if (pos >= end || *pos != 0x78)
2965 		return 0;
2966 
2967 	return 1;
2968 }
2969 
2970 int
qla2xxx_get_vpd_field(scsi_qla_host_t * vha,char * key,char * str,size_t size)2971 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2972 {
2973 	struct qla_hw_data *ha = vha->hw;
2974 	uint8_t *pos = ha->vpd;
2975 	uint8_t *end = pos + ha->vpd_size;
2976 	int len = 0;
2977 
2978 	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2979 		return 0;
2980 
2981 	while (pos < end && *pos != 0x78) {
2982 		len = (*pos == 0x82) ? pos[1] : pos[2];
2983 
2984 		if (!strncmp(pos, key, strlen(key)))
2985 			break;
2986 
2987 		if (*pos != 0x90 && *pos != 0x91)
2988 			pos += len;
2989 
2990 		pos += 3;
2991 	}
2992 
2993 	if (pos < end - len && *pos != 0x78)
2994 		return snprintf(str, size, "%.*s", len, pos + 3);
2995 
2996 	return 0;
2997 }
2998 
2999 int
qla24xx_read_fcp_prio_cfg(scsi_qla_host_t * vha)3000 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
3001 {
3002 	int len, max_len;
3003 	uint32_t fcp_prio_addr;
3004 	struct qla_hw_data *ha = vha->hw;
3005 
3006 	if (!ha->fcp_prio_cfg) {
3007 		ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
3008 		if (!ha->fcp_prio_cfg) {
3009 			ql_log(ql_log_warn, vha, 0x00d5,
3010 			    "Unable to allocate memory for fcp priorty data (%x).\n",
3011 			    FCP_PRIO_CFG_SIZE);
3012 			return QLA_FUNCTION_FAILED;
3013 		}
3014 	}
3015 	memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);
3016 
3017 	fcp_prio_addr = ha->flt_region_fcp_prio;
3018 
3019 	/* first read the fcp priority data header from flash */
3020 	ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
3021 			fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);
3022 
3023 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0))
3024 		goto fail;
3025 
3026 	/* read remaining FCP CMD config data from flash */
3027 	fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
3028 	len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
3029 	max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;
3030 
3031 	ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
3032 			fcp_prio_addr << 2, (len < max_len ? len : max_len));
3033 
3034 	/* revalidate the entire FCP priority config data, including entries */
3035 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1))
3036 		goto fail;
3037 
3038 	ha->flags.fcp_prio_enabled = 1;
3039 	return QLA_SUCCESS;
3040 fail:
3041 	vfree(ha->fcp_prio_cfg);
3042 	ha->fcp_prio_cfg = NULL;
3043 	return QLA_FUNCTION_FAILED;
3044 }
3045