1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include <asm/exec.h>
63 
64 #include <trace/events/task.h>
65 #include "internal.h"
66 
67 #include <trace/events/sched.h>
68 
69 int core_uses_pid;
70 char core_pattern[CORENAME_MAX_SIZE] = "core";
71 unsigned int core_pipe_limit;
72 int suid_dumpable = 0;
73 
74 struct core_name {
75 	char *corename;
76 	int used, size;
77 };
78 static atomic_t call_count = ATOMIC_INIT(1);
79 
80 /* The maximal length of core_pattern is also specified in sysctl.c */
81 
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84 
__register_binfmt(struct linux_binfmt * fmt,int insert)85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 	BUG_ON(!fmt);
88 	write_lock(&binfmt_lock);
89 	insert ? list_add(&fmt->lh, &formats) :
90 		 list_add_tail(&fmt->lh, &formats);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(__register_binfmt);
95 
unregister_binfmt(struct linux_binfmt * fmt)96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 	write_lock(&binfmt_lock);
99 	list_del(&fmt->lh);
100 	write_unlock(&binfmt_lock);
101 }
102 
103 EXPORT_SYMBOL(unregister_binfmt);
104 
put_binfmt(struct linux_binfmt * fmt)105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107 	module_put(fmt->module);
108 }
109 
110 /*
111  * Note that a shared library must be both readable and executable due to
112  * security reasons.
113  *
114  * Also note that we take the address to load from from the file itself.
115  */
SYSCALL_DEFINE1(uselib,const char __user *,library)116 SYSCALL_DEFINE1(uselib, const char __user *, library)
117 {
118 	struct file *file;
119 	char *tmp = getname(library);
120 	int error = PTR_ERR(tmp);
121 	static const struct open_flags uselib_flags = {
122 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
124 		.intent = LOOKUP_OPEN
125 	};
126 
127 	if (IS_ERR(tmp))
128 		goto out;
129 
130 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
131 	putname(tmp);
132 	error = PTR_ERR(file);
133 	if (IS_ERR(file))
134 		goto out;
135 
136 	error = -EINVAL;
137 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
138 		goto exit;
139 
140 	error = -EACCES;
141 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
142 		goto exit;
143 
144 	fsnotify_open(file);
145 
146 	error = -ENOEXEC;
147 	if(file->f_op) {
148 		struct linux_binfmt * fmt;
149 
150 		read_lock(&binfmt_lock);
151 		list_for_each_entry(fmt, &formats, lh) {
152 			if (!fmt->load_shlib)
153 				continue;
154 			if (!try_module_get(fmt->module))
155 				continue;
156 			read_unlock(&binfmt_lock);
157 			error = fmt->load_shlib(file);
158 			read_lock(&binfmt_lock);
159 			put_binfmt(fmt);
160 			if (error != -ENOEXEC)
161 				break;
162 		}
163 		read_unlock(&binfmt_lock);
164 	}
165 exit:
166 	fput(file);
167 out:
168   	return error;
169 }
170 
171 #ifdef CONFIG_MMU
172 /*
173  * The nascent bprm->mm is not visible until exec_mmap() but it can
174  * use a lot of memory, account these pages in current->mm temporary
175  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
176  * change the counter back via acct_arg_size(0).
177  */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)178 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
179 {
180 	struct mm_struct *mm = current->mm;
181 	long diff = (long)(pages - bprm->vma_pages);
182 
183 	if (!mm || !diff)
184 		return;
185 
186 	bprm->vma_pages = pages;
187 	add_mm_counter(mm, MM_ANONPAGES, diff);
188 }
189 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)190 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
191 		int write)
192 {
193 	struct page *page;
194 	int ret;
195 
196 #ifdef CONFIG_STACK_GROWSUP
197 	if (write) {
198 		ret = expand_downwards(bprm->vma, pos);
199 		if (ret < 0)
200 			return NULL;
201 	}
202 #endif
203 	ret = get_user_pages(current, bprm->mm, pos,
204 			1, write, 1, &page, NULL);
205 	if (ret <= 0)
206 		return NULL;
207 
208 	if (write) {
209 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
210 		struct rlimit *rlim;
211 
212 		acct_arg_size(bprm, size / PAGE_SIZE);
213 
214 		/*
215 		 * We've historically supported up to 32 pages (ARG_MAX)
216 		 * of argument strings even with small stacks
217 		 */
218 		if (size <= ARG_MAX)
219 			return page;
220 
221 		/*
222 		 * Limit to 1/4-th the stack size for the argv+env strings.
223 		 * This ensures that:
224 		 *  - the remaining binfmt code will not run out of stack space,
225 		 *  - the program will have a reasonable amount of stack left
226 		 *    to work from.
227 		 */
228 		rlim = current->signal->rlim;
229 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
230 			put_page(page);
231 			return NULL;
232 		}
233 	}
234 
235 	return page;
236 }
237 
put_arg_page(struct page * page)238 static void put_arg_page(struct page *page)
239 {
240 	put_page(page);
241 }
242 
free_arg_page(struct linux_binprm * bprm,int i)243 static void free_arg_page(struct linux_binprm *bprm, int i)
244 {
245 }
246 
free_arg_pages(struct linux_binprm * bprm)247 static void free_arg_pages(struct linux_binprm *bprm)
248 {
249 }
250 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)251 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
252 		struct page *page)
253 {
254 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
255 }
256 
__bprm_mm_init(struct linux_binprm * bprm)257 static int __bprm_mm_init(struct linux_binprm *bprm)
258 {
259 	int err;
260 	struct vm_area_struct *vma = NULL;
261 	struct mm_struct *mm = bprm->mm;
262 
263 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
264 	if (!vma)
265 		return -ENOMEM;
266 
267 	down_write(&mm->mmap_sem);
268 	vma->vm_mm = mm;
269 
270 	/*
271 	 * Place the stack at the largest stack address the architecture
272 	 * supports. Later, we'll move this to an appropriate place. We don't
273 	 * use STACK_TOP because that can depend on attributes which aren't
274 	 * configured yet.
275 	 */
276 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
277 	vma->vm_end = STACK_TOP_MAX;
278 	vma->vm_start = vma->vm_end - PAGE_SIZE;
279 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
280 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
281 	INIT_LIST_HEAD(&vma->anon_vma_chain);
282 
283 	err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
284 	if (err)
285 		goto err;
286 
287 	err = insert_vm_struct(mm, vma);
288 	if (err)
289 		goto err;
290 
291 	mm->stack_vm = mm->total_vm = 1;
292 	up_write(&mm->mmap_sem);
293 	bprm->p = vma->vm_end - sizeof(void *);
294 	return 0;
295 err:
296 	up_write(&mm->mmap_sem);
297 	bprm->vma = NULL;
298 	kmem_cache_free(vm_area_cachep, vma);
299 	return err;
300 }
301 
valid_arg_len(struct linux_binprm * bprm,long len)302 static bool valid_arg_len(struct linux_binprm *bprm, long len)
303 {
304 	return len <= MAX_ARG_STRLEN;
305 }
306 
307 #else
308 
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)309 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
310 {
311 }
312 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)313 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
314 		int write)
315 {
316 	struct page *page;
317 
318 	page = bprm->page[pos / PAGE_SIZE];
319 	if (!page && write) {
320 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
321 		if (!page)
322 			return NULL;
323 		bprm->page[pos / PAGE_SIZE] = page;
324 	}
325 
326 	return page;
327 }
328 
put_arg_page(struct page * page)329 static void put_arg_page(struct page *page)
330 {
331 }
332 
free_arg_page(struct linux_binprm * bprm,int i)333 static void free_arg_page(struct linux_binprm *bprm, int i)
334 {
335 	if (bprm->page[i]) {
336 		__free_page(bprm->page[i]);
337 		bprm->page[i] = NULL;
338 	}
339 }
340 
free_arg_pages(struct linux_binprm * bprm)341 static void free_arg_pages(struct linux_binprm *bprm)
342 {
343 	int i;
344 
345 	for (i = 0; i < MAX_ARG_PAGES; i++)
346 		free_arg_page(bprm, i);
347 }
348 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)349 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
350 		struct page *page)
351 {
352 }
353 
__bprm_mm_init(struct linux_binprm * bprm)354 static int __bprm_mm_init(struct linux_binprm *bprm)
355 {
356 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
357 	return 0;
358 }
359 
valid_arg_len(struct linux_binprm * bprm,long len)360 static bool valid_arg_len(struct linux_binprm *bprm, long len)
361 {
362 	return len <= bprm->p;
363 }
364 
365 #endif /* CONFIG_MMU */
366 
367 /*
368  * Create a new mm_struct and populate it with a temporary stack
369  * vm_area_struct.  We don't have enough context at this point to set the stack
370  * flags, permissions, and offset, so we use temporary values.  We'll update
371  * them later in setup_arg_pages().
372  */
bprm_mm_init(struct linux_binprm * bprm)373 int bprm_mm_init(struct linux_binprm *bprm)
374 {
375 	int err;
376 	struct mm_struct *mm = NULL;
377 
378 	bprm->mm = mm = mm_alloc();
379 	err = -ENOMEM;
380 	if (!mm)
381 		goto err;
382 
383 	err = init_new_context(current, mm);
384 	if (err)
385 		goto err;
386 
387 	err = __bprm_mm_init(bprm);
388 	if (err)
389 		goto err;
390 
391 	return 0;
392 
393 err:
394 	if (mm) {
395 		bprm->mm = NULL;
396 		mmdrop(mm);
397 	}
398 
399 	return err;
400 }
401 
402 struct user_arg_ptr {
403 #ifdef CONFIG_COMPAT
404 	bool is_compat;
405 #endif
406 	union {
407 		const char __user *const __user *native;
408 #ifdef CONFIG_COMPAT
409 		compat_uptr_t __user *compat;
410 #endif
411 	} ptr;
412 };
413 
get_user_arg_ptr(struct user_arg_ptr argv,int nr)414 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
415 {
416 	const char __user *native;
417 
418 #ifdef CONFIG_COMPAT
419 	if (unlikely(argv.is_compat)) {
420 		compat_uptr_t compat;
421 
422 		if (get_user(compat, argv.ptr.compat + nr))
423 			return ERR_PTR(-EFAULT);
424 
425 		return compat_ptr(compat);
426 	}
427 #endif
428 
429 	if (get_user(native, argv.ptr.native + nr))
430 		return ERR_PTR(-EFAULT);
431 
432 	return native;
433 }
434 
435 /*
436  * count() counts the number of strings in array ARGV.
437  */
count(struct user_arg_ptr argv,int max)438 static int count(struct user_arg_ptr argv, int max)
439 {
440 	int i = 0;
441 
442 	if (argv.ptr.native != NULL) {
443 		for (;;) {
444 			const char __user *p = get_user_arg_ptr(argv, i);
445 
446 			if (!p)
447 				break;
448 
449 			if (IS_ERR(p))
450 				return -EFAULT;
451 
452 			if (i++ >= max)
453 				return -E2BIG;
454 
455 			if (fatal_signal_pending(current))
456 				return -ERESTARTNOHAND;
457 			cond_resched();
458 		}
459 	}
460 	return i;
461 }
462 
463 /*
464  * 'copy_strings()' copies argument/environment strings from the old
465  * processes's memory to the new process's stack.  The call to get_user_pages()
466  * ensures the destination page is created and not swapped out.
467  */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)468 static int copy_strings(int argc, struct user_arg_ptr argv,
469 			struct linux_binprm *bprm)
470 {
471 	struct page *kmapped_page = NULL;
472 	char *kaddr = NULL;
473 	unsigned long kpos = 0;
474 	int ret;
475 
476 	while (argc-- > 0) {
477 		const char __user *str;
478 		int len;
479 		unsigned long pos;
480 
481 		ret = -EFAULT;
482 		str = get_user_arg_ptr(argv, argc);
483 		if (IS_ERR(str))
484 			goto out;
485 
486 		len = strnlen_user(str, MAX_ARG_STRLEN);
487 		if (!len)
488 			goto out;
489 
490 		ret = -E2BIG;
491 		if (!valid_arg_len(bprm, len))
492 			goto out;
493 
494 		/* We're going to work our way backwords. */
495 		pos = bprm->p;
496 		str += len;
497 		bprm->p -= len;
498 
499 		while (len > 0) {
500 			int offset, bytes_to_copy;
501 
502 			if (fatal_signal_pending(current)) {
503 				ret = -ERESTARTNOHAND;
504 				goto out;
505 			}
506 			cond_resched();
507 
508 			offset = pos % PAGE_SIZE;
509 			if (offset == 0)
510 				offset = PAGE_SIZE;
511 
512 			bytes_to_copy = offset;
513 			if (bytes_to_copy > len)
514 				bytes_to_copy = len;
515 
516 			offset -= bytes_to_copy;
517 			pos -= bytes_to_copy;
518 			str -= bytes_to_copy;
519 			len -= bytes_to_copy;
520 
521 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
522 				struct page *page;
523 
524 				page = get_arg_page(bprm, pos, 1);
525 				if (!page) {
526 					ret = -E2BIG;
527 					goto out;
528 				}
529 
530 				if (kmapped_page) {
531 					flush_kernel_dcache_page(kmapped_page);
532 					kunmap(kmapped_page);
533 					put_arg_page(kmapped_page);
534 				}
535 				kmapped_page = page;
536 				kaddr = kmap(kmapped_page);
537 				kpos = pos & PAGE_MASK;
538 				flush_arg_page(bprm, kpos, kmapped_page);
539 			}
540 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
541 				ret = -EFAULT;
542 				goto out;
543 			}
544 		}
545 	}
546 	ret = 0;
547 out:
548 	if (kmapped_page) {
549 		flush_kernel_dcache_page(kmapped_page);
550 		kunmap(kmapped_page);
551 		put_arg_page(kmapped_page);
552 	}
553 	return ret;
554 }
555 
556 /*
557  * Like copy_strings, but get argv and its values from kernel memory.
558  */
copy_strings_kernel(int argc,const char * const * __argv,struct linux_binprm * bprm)559 int copy_strings_kernel(int argc, const char *const *__argv,
560 			struct linux_binprm *bprm)
561 {
562 	int r;
563 	mm_segment_t oldfs = get_fs();
564 	struct user_arg_ptr argv = {
565 		.ptr.native = (const char __user *const  __user *)__argv,
566 	};
567 
568 	set_fs(KERNEL_DS);
569 	r = copy_strings(argc, argv, bprm);
570 	set_fs(oldfs);
571 
572 	return r;
573 }
574 EXPORT_SYMBOL(copy_strings_kernel);
575 
576 #ifdef CONFIG_MMU
577 
578 /*
579  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
580  * the binfmt code determines where the new stack should reside, we shift it to
581  * its final location.  The process proceeds as follows:
582  *
583  * 1) Use shift to calculate the new vma endpoints.
584  * 2) Extend vma to cover both the old and new ranges.  This ensures the
585  *    arguments passed to subsequent functions are consistent.
586  * 3) Move vma's page tables to the new range.
587  * 4) Free up any cleared pgd range.
588  * 5) Shrink the vma to cover only the new range.
589  */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)590 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
591 {
592 	struct mm_struct *mm = vma->vm_mm;
593 	unsigned long old_start = vma->vm_start;
594 	unsigned long old_end = vma->vm_end;
595 	unsigned long length = old_end - old_start;
596 	unsigned long new_start = old_start - shift;
597 	unsigned long new_end = old_end - shift;
598 	struct mmu_gather tlb;
599 
600 	BUG_ON(new_start > new_end);
601 
602 	/*
603 	 * ensure there are no vmas between where we want to go
604 	 * and where we are
605 	 */
606 	if (vma != find_vma(mm, new_start))
607 		return -EFAULT;
608 
609 	/*
610 	 * cover the whole range: [new_start, old_end)
611 	 */
612 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
613 		return -ENOMEM;
614 
615 	/*
616 	 * move the page tables downwards, on failure we rely on
617 	 * process cleanup to remove whatever mess we made.
618 	 */
619 	if (length != move_page_tables(vma, old_start,
620 				       vma, new_start, length))
621 		return -ENOMEM;
622 
623 	lru_add_drain();
624 	tlb_gather_mmu(&tlb, mm, 0);
625 	if (new_end > old_start) {
626 		/*
627 		 * when the old and new regions overlap clear from new_end.
628 		 */
629 		free_pgd_range(&tlb, new_end, old_end, new_end,
630 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
631 	} else {
632 		/*
633 		 * otherwise, clean from old_start; this is done to not touch
634 		 * the address space in [new_end, old_start) some architectures
635 		 * have constraints on va-space that make this illegal (IA64) -
636 		 * for the others its just a little faster.
637 		 */
638 		free_pgd_range(&tlb, old_start, old_end, new_end,
639 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
640 	}
641 	tlb_finish_mmu(&tlb, new_end, old_end);
642 
643 	/*
644 	 * Shrink the vma to just the new range.  Always succeeds.
645 	 */
646 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
647 
648 	return 0;
649 }
650 
651 /*
652  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
653  * the stack is optionally relocated, and some extra space is added.
654  */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)655 int setup_arg_pages(struct linux_binprm *bprm,
656 		    unsigned long stack_top,
657 		    int executable_stack)
658 {
659 	unsigned long ret;
660 	unsigned long stack_shift;
661 	struct mm_struct *mm = current->mm;
662 	struct vm_area_struct *vma = bprm->vma;
663 	struct vm_area_struct *prev = NULL;
664 	unsigned long vm_flags;
665 	unsigned long stack_base;
666 	unsigned long stack_size;
667 	unsigned long stack_expand;
668 	unsigned long rlim_stack;
669 
670 #ifdef CONFIG_STACK_GROWSUP
671 	/* Limit stack size to 1GB */
672 	stack_base = rlimit_max(RLIMIT_STACK);
673 	if (stack_base > (1 << 30))
674 		stack_base = 1 << 30;
675 
676 	/* Make sure we didn't let the argument array grow too large. */
677 	if (vma->vm_end - vma->vm_start > stack_base)
678 		return -ENOMEM;
679 
680 	stack_base = PAGE_ALIGN(stack_top - stack_base);
681 
682 	stack_shift = vma->vm_start - stack_base;
683 	mm->arg_start = bprm->p - stack_shift;
684 	bprm->p = vma->vm_end - stack_shift;
685 #else
686 	stack_top = arch_align_stack(stack_top);
687 	stack_top = PAGE_ALIGN(stack_top);
688 
689 	if (unlikely(stack_top < mmap_min_addr) ||
690 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
691 		return -ENOMEM;
692 
693 	stack_shift = vma->vm_end - stack_top;
694 
695 	bprm->p -= stack_shift;
696 	mm->arg_start = bprm->p;
697 #endif
698 
699 	if (bprm->loader)
700 		bprm->loader -= stack_shift;
701 	bprm->exec -= stack_shift;
702 
703 	down_write(&mm->mmap_sem);
704 	vm_flags = VM_STACK_FLAGS;
705 
706 	/*
707 	 * Adjust stack execute permissions; explicitly enable for
708 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
709 	 * (arch default) otherwise.
710 	 */
711 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
712 		vm_flags |= VM_EXEC;
713 	else if (executable_stack == EXSTACK_DISABLE_X)
714 		vm_flags &= ~VM_EXEC;
715 	vm_flags |= mm->def_flags;
716 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
717 
718 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
719 			vm_flags);
720 	if (ret)
721 		goto out_unlock;
722 	BUG_ON(prev != vma);
723 
724 	/* Move stack pages down in memory. */
725 	if (stack_shift) {
726 		ret = shift_arg_pages(vma, stack_shift);
727 		if (ret)
728 			goto out_unlock;
729 	}
730 
731 	/* mprotect_fixup is overkill to remove the temporary stack flags */
732 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
733 
734 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
735 	stack_size = vma->vm_end - vma->vm_start;
736 	/*
737 	 * Align this down to a page boundary as expand_stack
738 	 * will align it up.
739 	 */
740 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
741 #ifdef CONFIG_STACK_GROWSUP
742 	if (stack_size + stack_expand > rlim_stack)
743 		stack_base = vma->vm_start + rlim_stack;
744 	else
745 		stack_base = vma->vm_end + stack_expand;
746 #else
747 	if (stack_size + stack_expand > rlim_stack)
748 		stack_base = vma->vm_end - rlim_stack;
749 	else
750 		stack_base = vma->vm_start - stack_expand;
751 #endif
752 	current->mm->start_stack = bprm->p;
753 	ret = expand_stack(vma, stack_base);
754 	if (ret)
755 		ret = -EFAULT;
756 
757 out_unlock:
758 	up_write(&mm->mmap_sem);
759 	return ret;
760 }
761 EXPORT_SYMBOL(setup_arg_pages);
762 
763 #endif /* CONFIG_MMU */
764 
open_exec(const char * name)765 struct file *open_exec(const char *name)
766 {
767 	struct file *file;
768 	int err;
769 	static const struct open_flags open_exec_flags = {
770 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
771 		.acc_mode = MAY_EXEC | MAY_OPEN,
772 		.intent = LOOKUP_OPEN
773 	};
774 
775 	file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
776 	if (IS_ERR(file))
777 		goto out;
778 
779 	err = -EACCES;
780 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
781 		goto exit;
782 
783 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
784 		goto exit;
785 
786 	fsnotify_open(file);
787 
788 	err = deny_write_access(file);
789 	if (err)
790 		goto exit;
791 
792 out:
793 	return file;
794 
795 exit:
796 	fput(file);
797 	return ERR_PTR(err);
798 }
799 EXPORT_SYMBOL(open_exec);
800 
kernel_read(struct file * file,loff_t offset,char * addr,unsigned long count)801 int kernel_read(struct file *file, loff_t offset,
802 		char *addr, unsigned long count)
803 {
804 	mm_segment_t old_fs;
805 	loff_t pos = offset;
806 	int result;
807 
808 	old_fs = get_fs();
809 	set_fs(get_ds());
810 	/* The cast to a user pointer is valid due to the set_fs() */
811 	result = vfs_read(file, (void __user *)addr, count, &pos);
812 	set_fs(old_fs);
813 	return result;
814 }
815 
816 EXPORT_SYMBOL(kernel_read);
817 
exec_mmap(struct mm_struct * mm)818 static int exec_mmap(struct mm_struct *mm)
819 {
820 	struct task_struct *tsk;
821 	struct mm_struct * old_mm, *active_mm;
822 
823 	/* Notify parent that we're no longer interested in the old VM */
824 	tsk = current;
825 	old_mm = current->mm;
826 	mm_release(tsk, old_mm);
827 
828 	if (old_mm) {
829 		sync_mm_rss(old_mm);
830 		/*
831 		 * Make sure that if there is a core dump in progress
832 		 * for the old mm, we get out and die instead of going
833 		 * through with the exec.  We must hold mmap_sem around
834 		 * checking core_state and changing tsk->mm.
835 		 */
836 		down_read(&old_mm->mmap_sem);
837 		if (unlikely(old_mm->core_state)) {
838 			up_read(&old_mm->mmap_sem);
839 			return -EINTR;
840 		}
841 	}
842 	task_lock(tsk);
843 	active_mm = tsk->active_mm;
844 	tsk->mm = mm;
845 	tsk->active_mm = mm;
846 	activate_mm(active_mm, mm);
847 	task_unlock(tsk);
848 	arch_pick_mmap_layout(mm);
849 	if (old_mm) {
850 		up_read(&old_mm->mmap_sem);
851 		BUG_ON(active_mm != old_mm);
852 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
853 		mm_update_next_owner(old_mm);
854 		mmput(old_mm);
855 		return 0;
856 	}
857 	mmdrop(active_mm);
858 	return 0;
859 }
860 
861 /*
862  * This function makes sure the current process has its own signal table,
863  * so that flush_signal_handlers can later reset the handlers without
864  * disturbing other processes.  (Other processes might share the signal
865  * table via the CLONE_SIGHAND option to clone().)
866  */
de_thread(struct task_struct * tsk)867 static int de_thread(struct task_struct *tsk)
868 {
869 	struct signal_struct *sig = tsk->signal;
870 	struct sighand_struct *oldsighand = tsk->sighand;
871 	spinlock_t *lock = &oldsighand->siglock;
872 
873 	if (thread_group_empty(tsk))
874 		goto no_thread_group;
875 
876 	/*
877 	 * Kill all other threads in the thread group.
878 	 */
879 	spin_lock_irq(lock);
880 	if (signal_group_exit(sig)) {
881 		/*
882 		 * Another group action in progress, just
883 		 * return so that the signal is processed.
884 		 */
885 		spin_unlock_irq(lock);
886 		return -EAGAIN;
887 	}
888 
889 	sig->group_exit_task = tsk;
890 	sig->notify_count = zap_other_threads(tsk);
891 	if (!thread_group_leader(tsk))
892 		sig->notify_count--;
893 
894 	while (sig->notify_count) {
895 		__set_current_state(TASK_UNINTERRUPTIBLE);
896 		spin_unlock_irq(lock);
897 		schedule();
898 		spin_lock_irq(lock);
899 	}
900 	spin_unlock_irq(lock);
901 
902 	/*
903 	 * At this point all other threads have exited, all we have to
904 	 * do is to wait for the thread group leader to become inactive,
905 	 * and to assume its PID:
906 	 */
907 	if (!thread_group_leader(tsk)) {
908 		struct task_struct *leader = tsk->group_leader;
909 
910 		sig->notify_count = -1;	/* for exit_notify() */
911 		for (;;) {
912 			threadgroup_change_begin(tsk);
913 			write_lock_irq(&tasklist_lock);
914 			if (likely(leader->exit_state))
915 				break;
916 			__set_current_state(TASK_UNINTERRUPTIBLE);
917 			write_unlock_irq(&tasklist_lock);
918 			threadgroup_change_end(tsk);
919 			schedule();
920 		}
921 
922 		/*
923 		 * The only record we have of the real-time age of a
924 		 * process, regardless of execs it's done, is start_time.
925 		 * All the past CPU time is accumulated in signal_struct
926 		 * from sister threads now dead.  But in this non-leader
927 		 * exec, nothing survives from the original leader thread,
928 		 * whose birth marks the true age of this process now.
929 		 * When we take on its identity by switching to its PID, we
930 		 * also take its birthdate (always earlier than our own).
931 		 */
932 		tsk->start_time = leader->start_time;
933 
934 		BUG_ON(!same_thread_group(leader, tsk));
935 		BUG_ON(has_group_leader_pid(tsk));
936 		/*
937 		 * An exec() starts a new thread group with the
938 		 * TGID of the previous thread group. Rehash the
939 		 * two threads with a switched PID, and release
940 		 * the former thread group leader:
941 		 */
942 
943 		/* Become a process group leader with the old leader's pid.
944 		 * The old leader becomes a thread of the this thread group.
945 		 * Note: The old leader also uses this pid until release_task
946 		 *       is called.  Odd but simple and correct.
947 		 */
948 		detach_pid(tsk, PIDTYPE_PID);
949 		tsk->pid = leader->pid;
950 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
951 		transfer_pid(leader, tsk, PIDTYPE_PGID);
952 		transfer_pid(leader, tsk, PIDTYPE_SID);
953 
954 		list_replace_rcu(&leader->tasks, &tsk->tasks);
955 		list_replace_init(&leader->sibling, &tsk->sibling);
956 
957 		tsk->group_leader = tsk;
958 		leader->group_leader = tsk;
959 
960 		tsk->exit_signal = SIGCHLD;
961 		leader->exit_signal = -1;
962 
963 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
964 		leader->exit_state = EXIT_DEAD;
965 
966 		/*
967 		 * We are going to release_task()->ptrace_unlink() silently,
968 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
969 		 * the tracer wont't block again waiting for this thread.
970 		 */
971 		if (unlikely(leader->ptrace))
972 			__wake_up_parent(leader, leader->parent);
973 		write_unlock_irq(&tasklist_lock);
974 		threadgroup_change_end(tsk);
975 
976 		release_task(leader);
977 	}
978 
979 	sig->group_exit_task = NULL;
980 	sig->notify_count = 0;
981 
982 no_thread_group:
983 	/* we have changed execution domain */
984 	tsk->exit_signal = SIGCHLD;
985 
986 	exit_itimers(sig);
987 	flush_itimer_signals();
988 
989 	if (atomic_read(&oldsighand->count) != 1) {
990 		struct sighand_struct *newsighand;
991 		/*
992 		 * This ->sighand is shared with the CLONE_SIGHAND
993 		 * but not CLONE_THREAD task, switch to the new one.
994 		 */
995 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
996 		if (!newsighand)
997 			return -ENOMEM;
998 
999 		atomic_set(&newsighand->count, 1);
1000 		memcpy(newsighand->action, oldsighand->action,
1001 		       sizeof(newsighand->action));
1002 
1003 		write_lock_irq(&tasklist_lock);
1004 		spin_lock(&oldsighand->siglock);
1005 		rcu_assign_pointer(tsk->sighand, newsighand);
1006 		spin_unlock(&oldsighand->siglock);
1007 		write_unlock_irq(&tasklist_lock);
1008 
1009 		__cleanup_sighand(oldsighand);
1010 	}
1011 
1012 	BUG_ON(!thread_group_leader(tsk));
1013 	return 0;
1014 }
1015 
1016 /*
1017  * These functions flushes out all traces of the currently running executable
1018  * so that a new one can be started
1019  */
flush_old_files(struct files_struct * files)1020 static void flush_old_files(struct files_struct * files)
1021 {
1022 	long j = -1;
1023 	struct fdtable *fdt;
1024 
1025 	spin_lock(&files->file_lock);
1026 	for (;;) {
1027 		unsigned long set, i;
1028 
1029 		j++;
1030 		i = j * BITS_PER_LONG;
1031 		fdt = files_fdtable(files);
1032 		if (i >= fdt->max_fds)
1033 			break;
1034 		set = fdt->close_on_exec[j];
1035 		if (!set)
1036 			continue;
1037 		fdt->close_on_exec[j] = 0;
1038 		spin_unlock(&files->file_lock);
1039 		for ( ; set ; i++,set >>= 1) {
1040 			if (set & 1) {
1041 				sys_close(i);
1042 			}
1043 		}
1044 		spin_lock(&files->file_lock);
1045 
1046 	}
1047 	spin_unlock(&files->file_lock);
1048 }
1049 
get_task_comm(char * buf,struct task_struct * tsk)1050 char *get_task_comm(char *buf, struct task_struct *tsk)
1051 {
1052 	/* buf must be at least sizeof(tsk->comm) in size */
1053 	task_lock(tsk);
1054 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1055 	task_unlock(tsk);
1056 	return buf;
1057 }
1058 EXPORT_SYMBOL_GPL(get_task_comm);
1059 
set_task_comm(struct task_struct * tsk,char * buf)1060 void set_task_comm(struct task_struct *tsk, char *buf)
1061 {
1062 	task_lock(tsk);
1063 
1064 	trace_task_rename(tsk, buf);
1065 
1066 	/*
1067 	 * Threads may access current->comm without holding
1068 	 * the task lock, so write the string carefully.
1069 	 * Readers without a lock may see incomplete new
1070 	 * names but are safe from non-terminating string reads.
1071 	 */
1072 	memset(tsk->comm, 0, TASK_COMM_LEN);
1073 	wmb();
1074 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1075 	task_unlock(tsk);
1076 	perf_event_comm(tsk);
1077 }
1078 
filename_to_taskname(char * tcomm,const char * fn,unsigned int len)1079 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1080 {
1081 	int i, ch;
1082 
1083 	/* Copies the binary name from after last slash */
1084 	for (i = 0; (ch = *(fn++)) != '\0';) {
1085 		if (ch == '/')
1086 			i = 0; /* overwrite what we wrote */
1087 		else
1088 			if (i < len - 1)
1089 				tcomm[i++] = ch;
1090 	}
1091 	tcomm[i] = '\0';
1092 }
1093 
flush_old_exec(struct linux_binprm * bprm)1094 int flush_old_exec(struct linux_binprm * bprm)
1095 {
1096 	int retval;
1097 
1098 	/*
1099 	 * Make sure we have a private signal table and that
1100 	 * we are unassociated from the previous thread group.
1101 	 */
1102 	retval = de_thread(current);
1103 	if (retval)
1104 		goto out;
1105 
1106 	set_mm_exe_file(bprm->mm, bprm->file);
1107 
1108 	filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1109 	/*
1110 	 * Release all of the old mmap stuff
1111 	 */
1112 	acct_arg_size(bprm, 0);
1113 	retval = exec_mmap(bprm->mm);
1114 	if (retval)
1115 		goto out;
1116 
1117 	bprm->mm = NULL;		/* We're using it now */
1118 
1119 	set_fs(USER_DS);
1120 	current->flags &=
1121 		~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | PF_NOFREEZE);
1122 	flush_thread();
1123 	current->personality &= ~bprm->per_clear;
1124 
1125 	return 0;
1126 
1127 out:
1128 	return retval;
1129 }
1130 EXPORT_SYMBOL(flush_old_exec);
1131 
would_dump(struct linux_binprm * bprm,struct file * file)1132 void would_dump(struct linux_binprm *bprm, struct file *file)
1133 {
1134 	if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1135 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1136 }
1137 EXPORT_SYMBOL(would_dump);
1138 
setup_new_exec(struct linux_binprm * bprm)1139 void setup_new_exec(struct linux_binprm * bprm)
1140 {
1141 	arch_pick_mmap_layout(current->mm);
1142 
1143 	/* This is the point of no return */
1144 	current->sas_ss_sp = current->sas_ss_size = 0;
1145 
1146 	if (current_euid() == current_uid() && current_egid() == current_gid())
1147 		set_dumpable(current->mm, 1);
1148 	else
1149 		set_dumpable(current->mm, suid_dumpable);
1150 
1151 	set_task_comm(current, bprm->tcomm);
1152 
1153 	/* Set the new mm task size. We have to do that late because it may
1154 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1155 	 * some architectures like powerpc
1156 	 */
1157 	current->mm->task_size = TASK_SIZE;
1158 
1159 	/* install the new credentials */
1160 	if (bprm->cred->uid != current_euid() ||
1161 	    bprm->cred->gid != current_egid()) {
1162 		current->pdeath_signal = 0;
1163 	} else {
1164 		would_dump(bprm, bprm->file);
1165 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1166 			set_dumpable(current->mm, suid_dumpable);
1167 	}
1168 
1169 	/* An exec changes our domain. We are no longer part of the thread
1170 	   group */
1171 
1172 	current->self_exec_id++;
1173 
1174 	flush_signal_handlers(current, 0);
1175 	flush_old_files(current->files);
1176 }
1177 EXPORT_SYMBOL(setup_new_exec);
1178 
1179 /*
1180  * Prepare credentials and lock ->cred_guard_mutex.
1181  * install_exec_creds() commits the new creds and drops the lock.
1182  * Or, if exec fails before, free_bprm() should release ->cred and
1183  * and unlock.
1184  */
prepare_bprm_creds(struct linux_binprm * bprm)1185 int prepare_bprm_creds(struct linux_binprm *bprm)
1186 {
1187 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1188 		return -ERESTARTNOINTR;
1189 
1190 	bprm->cred = prepare_exec_creds();
1191 	if (likely(bprm->cred))
1192 		return 0;
1193 
1194 	mutex_unlock(&current->signal->cred_guard_mutex);
1195 	return -ENOMEM;
1196 }
1197 
free_bprm(struct linux_binprm * bprm)1198 void free_bprm(struct linux_binprm *bprm)
1199 {
1200 	free_arg_pages(bprm);
1201 	if (bprm->cred) {
1202 		mutex_unlock(&current->signal->cred_guard_mutex);
1203 		abort_creds(bprm->cred);
1204 	}
1205 	/* If a binfmt changed the interp, free it. */
1206 	if (bprm->interp != bprm->filename)
1207 		kfree(bprm->interp);
1208 	kfree(bprm);
1209 }
1210 
bprm_change_interp(char * interp,struct linux_binprm * bprm)1211 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1212 {
1213 	/* If a binfmt changed the interp, free it first. */
1214 	if (bprm->interp != bprm->filename)
1215 		kfree(bprm->interp);
1216 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1217 	if (!bprm->interp)
1218 		return -ENOMEM;
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL(bprm_change_interp);
1222 
1223 /*
1224  * install the new credentials for this executable
1225  */
install_exec_creds(struct linux_binprm * bprm)1226 void install_exec_creds(struct linux_binprm *bprm)
1227 {
1228 	security_bprm_committing_creds(bprm);
1229 
1230 	commit_creds(bprm->cred);
1231 	bprm->cred = NULL;
1232 
1233 	/*
1234 	 * Disable monitoring for regular users
1235 	 * when executing setuid binaries. Must
1236 	 * wait until new credentials are committed
1237 	 * by commit_creds() above
1238 	 */
1239 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1240 		perf_event_exit_task(current);
1241 	/*
1242 	 * cred_guard_mutex must be held at least to this point to prevent
1243 	 * ptrace_attach() from altering our determination of the task's
1244 	 * credentials; any time after this it may be unlocked.
1245 	 */
1246 	security_bprm_committed_creds(bprm);
1247 	mutex_unlock(&current->signal->cred_guard_mutex);
1248 }
1249 EXPORT_SYMBOL(install_exec_creds);
1250 
1251 /*
1252  * determine how safe it is to execute the proposed program
1253  * - the caller must hold ->cred_guard_mutex to protect against
1254  *   PTRACE_ATTACH
1255  */
check_unsafe_exec(struct linux_binprm * bprm)1256 static int check_unsafe_exec(struct linux_binprm *bprm)
1257 {
1258 	struct task_struct *p = current, *t;
1259 	unsigned n_fs;
1260 	int res = 0;
1261 
1262 	if (p->ptrace) {
1263 		if (p->ptrace & PT_PTRACE_CAP)
1264 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1265 		else
1266 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1267 	}
1268 
1269 	n_fs = 1;
1270 	spin_lock(&p->fs->lock);
1271 	rcu_read_lock();
1272 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1273 		if (t->fs == p->fs)
1274 			n_fs++;
1275 	}
1276 	rcu_read_unlock();
1277 
1278 	if (p->fs->users > n_fs) {
1279 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1280 	} else {
1281 		res = -EAGAIN;
1282 		if (!p->fs->in_exec) {
1283 			p->fs->in_exec = 1;
1284 			res = 1;
1285 		}
1286 	}
1287 	spin_unlock(&p->fs->lock);
1288 
1289 	return res;
1290 }
1291 
1292 /*
1293  * Fill the binprm structure from the inode.
1294  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1295  *
1296  * This may be called multiple times for binary chains (scripts for example).
1297  */
prepare_binprm(struct linux_binprm * bprm)1298 int prepare_binprm(struct linux_binprm *bprm)
1299 {
1300 	umode_t mode;
1301 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1302 	int retval;
1303 
1304 	mode = inode->i_mode;
1305 	if (bprm->file->f_op == NULL)
1306 		return -EACCES;
1307 
1308 	/* clear any previous set[ug]id data from a previous binary */
1309 	bprm->cred->euid = current_euid();
1310 	bprm->cred->egid = current_egid();
1311 
1312 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1313 		/* Set-uid? */
1314 		if (mode & S_ISUID) {
1315 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1316 			bprm->cred->euid = inode->i_uid;
1317 		}
1318 
1319 		/* Set-gid? */
1320 		/*
1321 		 * If setgid is set but no group execute bit then this
1322 		 * is a candidate for mandatory locking, not a setgid
1323 		 * executable.
1324 		 */
1325 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1326 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1327 			bprm->cred->egid = inode->i_gid;
1328 		}
1329 	}
1330 
1331 	/* fill in binprm security blob */
1332 	retval = security_bprm_set_creds(bprm);
1333 	if (retval)
1334 		return retval;
1335 	bprm->cred_prepared = 1;
1336 
1337 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1338 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1339 }
1340 
1341 EXPORT_SYMBOL(prepare_binprm);
1342 
1343 /*
1344  * Arguments are '\0' separated strings found at the location bprm->p
1345  * points to; chop off the first by relocating brpm->p to right after
1346  * the first '\0' encountered.
1347  */
remove_arg_zero(struct linux_binprm * bprm)1348 int remove_arg_zero(struct linux_binprm *bprm)
1349 {
1350 	int ret = 0;
1351 	unsigned long offset;
1352 	char *kaddr;
1353 	struct page *page;
1354 
1355 	if (!bprm->argc)
1356 		return 0;
1357 
1358 	do {
1359 		offset = bprm->p & ~PAGE_MASK;
1360 		page = get_arg_page(bprm, bprm->p, 0);
1361 		if (!page) {
1362 			ret = -EFAULT;
1363 			goto out;
1364 		}
1365 		kaddr = kmap_atomic(page);
1366 
1367 		for (; offset < PAGE_SIZE && kaddr[offset];
1368 				offset++, bprm->p++)
1369 			;
1370 
1371 		kunmap_atomic(kaddr);
1372 		put_arg_page(page);
1373 
1374 		if (offset == PAGE_SIZE)
1375 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1376 	} while (offset == PAGE_SIZE);
1377 
1378 	bprm->p++;
1379 	bprm->argc--;
1380 	ret = 0;
1381 
1382 out:
1383 	return ret;
1384 }
1385 EXPORT_SYMBOL(remove_arg_zero);
1386 
1387 /*
1388  * cycle the list of binary formats handler, until one recognizes the image
1389  */
search_binary_handler(struct linux_binprm * bprm,struct pt_regs * regs)1390 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1391 {
1392 	unsigned int depth = bprm->recursion_depth;
1393 	int try,retval;
1394 	struct linux_binfmt *fmt;
1395 	pid_t old_pid, old_vpid;
1396 
1397 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1398 	if (depth > 5)
1399 		return -ELOOP;
1400 
1401 	retval = security_bprm_check(bprm);
1402 	if (retval)
1403 		return retval;
1404 
1405 	retval = audit_bprm(bprm);
1406 	if (retval)
1407 		return retval;
1408 
1409 	/* Need to fetch pid before load_binary changes it */
1410 	old_pid = current->pid;
1411 	rcu_read_lock();
1412 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1413 	rcu_read_unlock();
1414 
1415 	retval = -ENOENT;
1416 	for (try=0; try<2; try++) {
1417 		read_lock(&binfmt_lock);
1418 		list_for_each_entry(fmt, &formats, lh) {
1419 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1420 			if (!fn)
1421 				continue;
1422 			if (!try_module_get(fmt->module))
1423 				continue;
1424 			read_unlock(&binfmt_lock);
1425 			bprm->recursion_depth = depth + 1;
1426 			retval = fn(bprm, regs);
1427 			bprm->recursion_depth = depth;
1428 			if (retval >= 0) {
1429 				if (depth == 0) {
1430 					trace_sched_process_exec(current, old_pid, bprm);
1431 					ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1432 				}
1433 				put_binfmt(fmt);
1434 				allow_write_access(bprm->file);
1435 				if (bprm->file)
1436 					fput(bprm->file);
1437 				bprm->file = NULL;
1438 				current->did_exec = 1;
1439 				proc_exec_connector(current);
1440 				return retval;
1441 			}
1442 			read_lock(&binfmt_lock);
1443 			put_binfmt(fmt);
1444 			if (retval != -ENOEXEC || bprm->mm == NULL)
1445 				break;
1446 			if (!bprm->file) {
1447 				read_unlock(&binfmt_lock);
1448 				return retval;
1449 			}
1450 		}
1451 		read_unlock(&binfmt_lock);
1452 #ifdef CONFIG_MODULES
1453 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1454 			break;
1455 		} else {
1456 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1457 			if (printable(bprm->buf[0]) &&
1458 			    printable(bprm->buf[1]) &&
1459 			    printable(bprm->buf[2]) &&
1460 			    printable(bprm->buf[3]))
1461 				break; /* -ENOEXEC */
1462 			if (try)
1463 				break; /* -ENOEXEC */
1464 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1465 		}
1466 #else
1467 		break;
1468 #endif
1469 	}
1470 	return retval;
1471 }
1472 
1473 EXPORT_SYMBOL(search_binary_handler);
1474 
1475 /*
1476  * sys_execve() executes a new program.
1477  */
do_execve_common(const char * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,struct pt_regs * regs)1478 static int do_execve_common(const char *filename,
1479 				struct user_arg_ptr argv,
1480 				struct user_arg_ptr envp,
1481 				struct pt_regs *regs)
1482 {
1483 	struct linux_binprm *bprm;
1484 	struct file *file;
1485 	struct files_struct *displaced;
1486 	bool clear_in_exec;
1487 	int retval;
1488 	const struct cred *cred = current_cred();
1489 
1490 	/*
1491 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1492 	 * set*uid() to execve() because too many poorly written programs
1493 	 * don't check setuid() return code.  Here we additionally recheck
1494 	 * whether NPROC limit is still exceeded.
1495 	 */
1496 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1497 	    atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1498 		retval = -EAGAIN;
1499 		goto out_ret;
1500 	}
1501 
1502 	/* We're below the limit (still or again), so we don't want to make
1503 	 * further execve() calls fail. */
1504 	current->flags &= ~PF_NPROC_EXCEEDED;
1505 
1506 	retval = unshare_files(&displaced);
1507 	if (retval)
1508 		goto out_ret;
1509 
1510 	retval = -ENOMEM;
1511 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1512 	if (!bprm)
1513 		goto out_files;
1514 
1515 	retval = prepare_bprm_creds(bprm);
1516 	if (retval)
1517 		goto out_free;
1518 
1519 	retval = check_unsafe_exec(bprm);
1520 	if (retval < 0)
1521 		goto out_free;
1522 	clear_in_exec = retval;
1523 	current->in_execve = 1;
1524 
1525 	file = open_exec(filename);
1526 	retval = PTR_ERR(file);
1527 	if (IS_ERR(file))
1528 		goto out_unmark;
1529 
1530 	sched_exec();
1531 
1532 	bprm->file = file;
1533 	bprm->filename = filename;
1534 	bprm->interp = filename;
1535 
1536 	retval = bprm_mm_init(bprm);
1537 	if (retval)
1538 		goto out_file;
1539 
1540 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1541 	if ((retval = bprm->argc) < 0)
1542 		goto out;
1543 
1544 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1545 	if ((retval = bprm->envc) < 0)
1546 		goto out;
1547 
1548 	retval = prepare_binprm(bprm);
1549 	if (retval < 0)
1550 		goto out;
1551 
1552 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1553 	if (retval < 0)
1554 		goto out;
1555 
1556 	bprm->exec = bprm->p;
1557 	retval = copy_strings(bprm->envc, envp, bprm);
1558 	if (retval < 0)
1559 		goto out;
1560 
1561 	retval = copy_strings(bprm->argc, argv, bprm);
1562 	if (retval < 0)
1563 		goto out;
1564 
1565 	retval = search_binary_handler(bprm,regs);
1566 	if (retval < 0)
1567 		goto out;
1568 
1569 	/* execve succeeded */
1570 	current->fs->in_exec = 0;
1571 	current->in_execve = 0;
1572 	acct_update_integrals(current);
1573 	free_bprm(bprm);
1574 	if (displaced)
1575 		put_files_struct(displaced);
1576 	return retval;
1577 
1578 out:
1579 	if (bprm->mm) {
1580 		acct_arg_size(bprm, 0);
1581 		mmput(bprm->mm);
1582 	}
1583 
1584 out_file:
1585 	if (bprm->file) {
1586 		allow_write_access(bprm->file);
1587 		fput(bprm->file);
1588 	}
1589 
1590 out_unmark:
1591 	if (clear_in_exec)
1592 		current->fs->in_exec = 0;
1593 	current->in_execve = 0;
1594 
1595 out_free:
1596 	free_bprm(bprm);
1597 
1598 out_files:
1599 	if (displaced)
1600 		reset_files_struct(displaced);
1601 out_ret:
1602 	return retval;
1603 }
1604 
do_execve(const char * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,struct pt_regs * regs)1605 int do_execve(const char *filename,
1606 	const char __user *const __user *__argv,
1607 	const char __user *const __user *__envp,
1608 	struct pt_regs *regs)
1609 {
1610 	struct user_arg_ptr argv = { .ptr.native = __argv };
1611 	struct user_arg_ptr envp = { .ptr.native = __envp };
1612 	return do_execve_common(filename, argv, envp, regs);
1613 }
1614 
1615 #ifdef CONFIG_COMPAT
compat_do_execve(char * filename,compat_uptr_t __user * __argv,compat_uptr_t __user * __envp,struct pt_regs * regs)1616 int compat_do_execve(char *filename,
1617 	compat_uptr_t __user *__argv,
1618 	compat_uptr_t __user *__envp,
1619 	struct pt_regs *regs)
1620 {
1621 	struct user_arg_ptr argv = {
1622 		.is_compat = true,
1623 		.ptr.compat = __argv,
1624 	};
1625 	struct user_arg_ptr envp = {
1626 		.is_compat = true,
1627 		.ptr.compat = __envp,
1628 	};
1629 	return do_execve_common(filename, argv, envp, regs);
1630 }
1631 #endif
1632 
set_binfmt(struct linux_binfmt * new)1633 void set_binfmt(struct linux_binfmt *new)
1634 {
1635 	struct mm_struct *mm = current->mm;
1636 
1637 	if (mm->binfmt)
1638 		module_put(mm->binfmt->module);
1639 
1640 	mm->binfmt = new;
1641 	if (new)
1642 		__module_get(new->module);
1643 }
1644 
1645 EXPORT_SYMBOL(set_binfmt);
1646 
expand_corename(struct core_name * cn)1647 static int expand_corename(struct core_name *cn)
1648 {
1649 	char *old_corename = cn->corename;
1650 
1651 	cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1652 	cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1653 
1654 	if (!cn->corename) {
1655 		kfree(old_corename);
1656 		return -ENOMEM;
1657 	}
1658 
1659 	return 0;
1660 }
1661 
cn_printf(struct core_name * cn,const char * fmt,...)1662 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1663 {
1664 	char *cur;
1665 	int need;
1666 	int ret;
1667 	va_list arg;
1668 
1669 	va_start(arg, fmt);
1670 	need = vsnprintf(NULL, 0, fmt, arg);
1671 	va_end(arg);
1672 
1673 	if (likely(need < cn->size - cn->used - 1))
1674 		goto out_printf;
1675 
1676 	ret = expand_corename(cn);
1677 	if (ret)
1678 		goto expand_fail;
1679 
1680 out_printf:
1681 	cur = cn->corename + cn->used;
1682 	va_start(arg, fmt);
1683 	vsnprintf(cur, need + 1, fmt, arg);
1684 	va_end(arg);
1685 	cn->used += need;
1686 	return 0;
1687 
1688 expand_fail:
1689 	return ret;
1690 }
1691 
cn_escape(char * str)1692 static void cn_escape(char *str)
1693 {
1694 	for (; *str; str++)
1695 		if (*str == '/')
1696 			*str = '!';
1697 }
1698 
cn_print_exe_file(struct core_name * cn)1699 static int cn_print_exe_file(struct core_name *cn)
1700 {
1701 	struct file *exe_file;
1702 	char *pathbuf, *path;
1703 	int ret;
1704 
1705 	exe_file = get_mm_exe_file(current->mm);
1706 	if (!exe_file) {
1707 		char *commstart = cn->corename + cn->used;
1708 		ret = cn_printf(cn, "%s (path unknown)", current->comm);
1709 		cn_escape(commstart);
1710 		return ret;
1711 	}
1712 
1713 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1714 	if (!pathbuf) {
1715 		ret = -ENOMEM;
1716 		goto put_exe_file;
1717 	}
1718 
1719 	path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1720 	if (IS_ERR(path)) {
1721 		ret = PTR_ERR(path);
1722 		goto free_buf;
1723 	}
1724 
1725 	cn_escape(path);
1726 
1727 	ret = cn_printf(cn, "%s", path);
1728 
1729 free_buf:
1730 	kfree(pathbuf);
1731 put_exe_file:
1732 	fput(exe_file);
1733 	return ret;
1734 }
1735 
1736 /* format_corename will inspect the pattern parameter, and output a
1737  * name into corename, which must have space for at least
1738  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1739  */
format_corename(struct core_name * cn,long signr)1740 static int format_corename(struct core_name *cn, long signr)
1741 {
1742 	const struct cred *cred = current_cred();
1743 	const char *pat_ptr = core_pattern;
1744 	int ispipe = (*pat_ptr == '|');
1745 	int pid_in_pattern = 0;
1746 	int err = 0;
1747 
1748 	cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1749 	cn->corename = kmalloc(cn->size, GFP_KERNEL);
1750 	cn->used = 0;
1751 
1752 	if (!cn->corename)
1753 		return -ENOMEM;
1754 
1755 	/* Repeat as long as we have more pattern to process and more output
1756 	   space */
1757 	while (*pat_ptr) {
1758 		if (*pat_ptr != '%') {
1759 			if (*pat_ptr == 0)
1760 				goto out;
1761 			err = cn_printf(cn, "%c", *pat_ptr++);
1762 		} else {
1763 			switch (*++pat_ptr) {
1764 			/* single % at the end, drop that */
1765 			case 0:
1766 				goto out;
1767 			/* Double percent, output one percent */
1768 			case '%':
1769 				err = cn_printf(cn, "%c", '%');
1770 				break;
1771 			/* pid */
1772 			case 'p':
1773 				pid_in_pattern = 1;
1774 				err = cn_printf(cn, "%d",
1775 					      task_tgid_vnr(current));
1776 				break;
1777 			/* uid */
1778 			case 'u':
1779 				err = cn_printf(cn, "%d", cred->uid);
1780 				break;
1781 			/* gid */
1782 			case 'g':
1783 				err = cn_printf(cn, "%d", cred->gid);
1784 				break;
1785 			/* signal that caused the coredump */
1786 			case 's':
1787 				err = cn_printf(cn, "%ld", signr);
1788 				break;
1789 			/* UNIX time of coredump */
1790 			case 't': {
1791 				struct timeval tv;
1792 				do_gettimeofday(&tv);
1793 				err = cn_printf(cn, "%lu", tv.tv_sec);
1794 				break;
1795 			}
1796 			/* hostname */
1797 			case 'h': {
1798 				char *namestart = cn->corename + cn->used;
1799 				down_read(&uts_sem);
1800 				err = cn_printf(cn, "%s",
1801 					      utsname()->nodename);
1802 				up_read(&uts_sem);
1803 				cn_escape(namestart);
1804 				break;
1805 			}
1806 			/* executable */
1807 			case 'e': {
1808 				char *commstart = cn->corename + cn->used;
1809 				err = cn_printf(cn, "%s", current->comm);
1810 				cn_escape(commstart);
1811 				break;
1812 			}
1813 			case 'E':
1814 				err = cn_print_exe_file(cn);
1815 				break;
1816 			/* core limit size */
1817 			case 'c':
1818 				err = cn_printf(cn, "%lu",
1819 					      rlimit(RLIMIT_CORE));
1820 				break;
1821 			default:
1822 				break;
1823 			}
1824 			++pat_ptr;
1825 		}
1826 
1827 		if (err)
1828 			return err;
1829 	}
1830 
1831 	/* Backward compatibility with core_uses_pid:
1832 	 *
1833 	 * If core_pattern does not include a %p (as is the default)
1834 	 * and core_uses_pid is set, then .%pid will be appended to
1835 	 * the filename. Do not do this for piped commands. */
1836 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1837 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1838 		if (err)
1839 			return err;
1840 	}
1841 out:
1842 	return ispipe;
1843 }
1844 
zap_process(struct task_struct * start,int exit_code)1845 static int zap_process(struct task_struct *start, int exit_code)
1846 {
1847 	struct task_struct *t;
1848 	int nr = 0;
1849 
1850 	start->signal->flags = SIGNAL_GROUP_EXIT;
1851 	start->signal->group_exit_code = exit_code;
1852 	start->signal->group_stop_count = 0;
1853 
1854 	t = start;
1855 	do {
1856 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1857 		if (t != current && t->mm) {
1858 			sigaddset(&t->pending.signal, SIGKILL);
1859 			signal_wake_up(t, 1);
1860 			nr++;
1861 		}
1862 	} while_each_thread(start, t);
1863 
1864 	return nr;
1865 }
1866 
zap_threads(struct task_struct * tsk,struct mm_struct * mm,struct core_state * core_state,int exit_code)1867 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1868 				struct core_state *core_state, int exit_code)
1869 {
1870 	struct task_struct *g, *p;
1871 	unsigned long flags;
1872 	int nr = -EAGAIN;
1873 
1874 	spin_lock_irq(&tsk->sighand->siglock);
1875 	if (!signal_group_exit(tsk->signal)) {
1876 		mm->core_state = core_state;
1877 		nr = zap_process(tsk, exit_code);
1878 	}
1879 	spin_unlock_irq(&tsk->sighand->siglock);
1880 	if (unlikely(nr < 0))
1881 		return nr;
1882 
1883 	if (atomic_read(&mm->mm_users) == nr + 1)
1884 		goto done;
1885 	/*
1886 	 * We should find and kill all tasks which use this mm, and we should
1887 	 * count them correctly into ->nr_threads. We don't take tasklist
1888 	 * lock, but this is safe wrt:
1889 	 *
1890 	 * fork:
1891 	 *	None of sub-threads can fork after zap_process(leader). All
1892 	 *	processes which were created before this point should be
1893 	 *	visible to zap_threads() because copy_process() adds the new
1894 	 *	process to the tail of init_task.tasks list, and lock/unlock
1895 	 *	of ->siglock provides a memory barrier.
1896 	 *
1897 	 * do_exit:
1898 	 *	The caller holds mm->mmap_sem. This means that the task which
1899 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1900 	 *	its ->mm.
1901 	 *
1902 	 * de_thread:
1903 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1904 	 *	we must see either old or new leader, this does not matter.
1905 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1906 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1907 	 *	it can't fail.
1908 	 *
1909 	 *	Note also that "g" can be the old leader with ->mm == NULL
1910 	 *	and already unhashed and thus removed from ->thread_group.
1911 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1912 	 *	clear the ->next pointer, we will find the new leader via
1913 	 *	next_thread().
1914 	 */
1915 	rcu_read_lock();
1916 	for_each_process(g) {
1917 		if (g == tsk->group_leader)
1918 			continue;
1919 		if (g->flags & PF_KTHREAD)
1920 			continue;
1921 		p = g;
1922 		do {
1923 			if (p->mm) {
1924 				if (unlikely(p->mm == mm)) {
1925 					lock_task_sighand(p, &flags);
1926 					nr += zap_process(p, exit_code);
1927 					unlock_task_sighand(p, &flags);
1928 				}
1929 				break;
1930 			}
1931 		} while_each_thread(g, p);
1932 	}
1933 	rcu_read_unlock();
1934 done:
1935 	atomic_set(&core_state->nr_threads, nr);
1936 	return nr;
1937 }
1938 
coredump_wait(int exit_code,struct core_state * core_state)1939 static int coredump_wait(int exit_code, struct core_state *core_state)
1940 {
1941 	struct task_struct *tsk = current;
1942 	struct mm_struct *mm = tsk->mm;
1943 	int core_waiters = -EBUSY;
1944 
1945 	init_completion(&core_state->startup);
1946 	core_state->dumper.task = tsk;
1947 	core_state->dumper.next = NULL;
1948 
1949 	down_write(&mm->mmap_sem);
1950 	if (!mm->core_state)
1951 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1952 	up_write(&mm->mmap_sem);
1953 
1954 	if (core_waiters > 0)
1955 		wait_for_completion(&core_state->startup);
1956 
1957 	return core_waiters;
1958 }
1959 
coredump_finish(struct mm_struct * mm)1960 static void coredump_finish(struct mm_struct *mm)
1961 {
1962 	struct core_thread *curr, *next;
1963 	struct task_struct *task;
1964 
1965 	next = mm->core_state->dumper.next;
1966 	while ((curr = next) != NULL) {
1967 		next = curr->next;
1968 		task = curr->task;
1969 		/*
1970 		 * see exit_mm(), curr->task must not see
1971 		 * ->task == NULL before we read ->next.
1972 		 */
1973 		smp_mb();
1974 		curr->task = NULL;
1975 		wake_up_process(task);
1976 	}
1977 
1978 	mm->core_state = NULL;
1979 }
1980 
1981 /*
1982  * set_dumpable converts traditional three-value dumpable to two flags and
1983  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1984  * these bits are not changed atomically.  So get_dumpable can observe the
1985  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1986  * return either old dumpable or new one by paying attention to the order of
1987  * modifying the bits.
1988  *
1989  * dumpable |   mm->flags (binary)
1990  * old  new | initial interim  final
1991  * ---------+-----------------------
1992  *  0    1  |   00      01      01
1993  *  0    2  |   00      10(*)   11
1994  *  1    0  |   01      00      00
1995  *  1    2  |   01      11      11
1996  *  2    0  |   11      10(*)   00
1997  *  2    1  |   11      11      01
1998  *
1999  * (*) get_dumpable regards interim value of 10 as 11.
2000  */
set_dumpable(struct mm_struct * mm,int value)2001 void set_dumpable(struct mm_struct *mm, int value)
2002 {
2003 	switch (value) {
2004 	case 0:
2005 		clear_bit(MMF_DUMPABLE, &mm->flags);
2006 		smp_wmb();
2007 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
2008 		break;
2009 	case 1:
2010 		set_bit(MMF_DUMPABLE, &mm->flags);
2011 		smp_wmb();
2012 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
2013 		break;
2014 	case 2:
2015 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
2016 		smp_wmb();
2017 		set_bit(MMF_DUMPABLE, &mm->flags);
2018 		break;
2019 	}
2020 }
2021 
__get_dumpable(unsigned long mm_flags)2022 static int __get_dumpable(unsigned long mm_flags)
2023 {
2024 	int ret;
2025 
2026 	ret = mm_flags & MMF_DUMPABLE_MASK;
2027 	return (ret >= 2) ? 2 : ret;
2028 }
2029 
2030 /*
2031  * This returns the actual value of the suid_dumpable flag. For things
2032  * that are using this for checking for privilege transitions, it must
2033  * test against SUID_DUMP_USER rather than treating it as a boolean
2034  * value.
2035  */
get_dumpable(struct mm_struct * mm)2036 int get_dumpable(struct mm_struct *mm)
2037 {
2038 	return __get_dumpable(mm->flags);
2039 }
2040 
wait_for_dump_helpers(struct file * file)2041 static void wait_for_dump_helpers(struct file *file)
2042 {
2043 	struct pipe_inode_info *pipe;
2044 
2045 	pipe = file->f_path.dentry->d_inode->i_pipe;
2046 
2047 	pipe_lock(pipe);
2048 	pipe->readers++;
2049 	pipe->writers--;
2050 
2051 	while ((pipe->readers > 1) && (!signal_pending(current))) {
2052 		wake_up_interruptible_sync(&pipe->wait);
2053 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
2054 		pipe_wait(pipe);
2055 	}
2056 
2057 	pipe->readers--;
2058 	pipe->writers++;
2059 	pipe_unlock(pipe);
2060 
2061 }
2062 
2063 
2064 /*
2065  * umh_pipe_setup
2066  * helper function to customize the process used
2067  * to collect the core in userspace.  Specifically
2068  * it sets up a pipe and installs it as fd 0 (stdin)
2069  * for the process.  Returns 0 on success, or
2070  * PTR_ERR on failure.
2071  * Note that it also sets the core limit to 1.  This
2072  * is a special value that we use to trap recursive
2073  * core dumps
2074  */
umh_pipe_setup(struct subprocess_info * info,struct cred * new)2075 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
2076 {
2077 	struct file *rp, *wp;
2078 	struct fdtable *fdt;
2079 	struct coredump_params *cp = (struct coredump_params *)info->data;
2080 	struct files_struct *cf = current->files;
2081 
2082 	wp = create_write_pipe(0);
2083 	if (IS_ERR(wp))
2084 		return PTR_ERR(wp);
2085 
2086 	rp = create_read_pipe(wp, 0);
2087 	if (IS_ERR(rp)) {
2088 		free_write_pipe(wp);
2089 		return PTR_ERR(rp);
2090 	}
2091 
2092 	cp->file = wp;
2093 
2094 	sys_close(0);
2095 	fd_install(0, rp);
2096 	spin_lock(&cf->file_lock);
2097 	fdt = files_fdtable(cf);
2098 	__set_open_fd(0, fdt);
2099 	__clear_close_on_exec(0, fdt);
2100 	spin_unlock(&cf->file_lock);
2101 
2102 	/* and disallow core files too */
2103 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2104 
2105 	return 0;
2106 }
2107 
do_coredump(long signr,int exit_code,struct pt_regs * regs)2108 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
2109 {
2110 	struct core_state core_state;
2111 	struct core_name cn;
2112 	struct mm_struct *mm = current->mm;
2113 	struct linux_binfmt * binfmt;
2114 	const struct cred *old_cred;
2115 	struct cred *cred;
2116 	int retval = 0;
2117 	int flag = 0;
2118 	int ispipe;
2119 	static atomic_t core_dump_count = ATOMIC_INIT(0);
2120 	struct coredump_params cprm = {
2121 		.signr = signr,
2122 		.regs = regs,
2123 		.limit = rlimit(RLIMIT_CORE),
2124 		/*
2125 		 * We must use the same mm->flags while dumping core to avoid
2126 		 * inconsistency of bit flags, since this flag is not protected
2127 		 * by any locks.
2128 		 */
2129 		.mm_flags = mm->flags,
2130 	};
2131 
2132 	audit_core_dumps(signr);
2133 
2134 	binfmt = mm->binfmt;
2135 	if (!binfmt || !binfmt->core_dump)
2136 		goto fail;
2137 	if (!__get_dumpable(cprm.mm_flags))
2138 		goto fail;
2139 
2140 	cred = prepare_creds();
2141 	if (!cred)
2142 		goto fail;
2143 	/*
2144 	 *	We cannot trust fsuid as being the "true" uid of the
2145 	 *	process nor do we know its entire history. We only know it
2146 	 *	was tainted so we dump it as root in mode 2.
2147 	 */
2148 	if (__get_dumpable(cprm.mm_flags) == 2) {
2149 		/* Setuid core dump mode */
2150 		flag = O_EXCL;		/* Stop rewrite attacks */
2151 		cred->fsuid = 0;	/* Dump root private */
2152 	}
2153 
2154 	retval = coredump_wait(exit_code, &core_state);
2155 	if (retval < 0)
2156 		goto fail_creds;
2157 
2158 	old_cred = override_creds(cred);
2159 
2160 	/*
2161 	 * Clear any false indication of pending signals that might
2162 	 * be seen by the filesystem code called to write the core file.
2163 	 */
2164 	clear_thread_flag(TIF_SIGPENDING);
2165 
2166 	ispipe = format_corename(&cn, signr);
2167 
2168  	if (ispipe) {
2169 		int dump_count;
2170 		char **helper_argv;
2171 
2172 		if (ispipe < 0) {
2173 			printk(KERN_WARNING "format_corename failed\n");
2174 			printk(KERN_WARNING "Aborting core\n");
2175 			goto fail_corename;
2176 		}
2177 
2178 		if (cprm.limit == 1) {
2179 			/*
2180 			 * Normally core limits are irrelevant to pipes, since
2181 			 * we're not writing to the file system, but we use
2182 			 * cprm.limit of 1 here as a speacial value. Any
2183 			 * non-1 limit gets set to RLIM_INFINITY below, but
2184 			 * a limit of 0 skips the dump.  This is a consistent
2185 			 * way to catch recursive crashes.  We can still crash
2186 			 * if the core_pattern binary sets RLIM_CORE =  !1
2187 			 * but it runs as root, and can do lots of stupid things
2188 			 * Note that we use task_tgid_vnr here to grab the pid
2189 			 * of the process group leader.  That way we get the
2190 			 * right pid if a thread in a multi-threaded
2191 			 * core_pattern process dies.
2192 			 */
2193 			printk(KERN_WARNING
2194 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
2195 				task_tgid_vnr(current), current->comm);
2196 			printk(KERN_WARNING "Aborting core\n");
2197 			goto fail_unlock;
2198 		}
2199 		cprm.limit = RLIM_INFINITY;
2200 
2201 		dump_count = atomic_inc_return(&core_dump_count);
2202 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2203 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2204 			       task_tgid_vnr(current), current->comm);
2205 			printk(KERN_WARNING "Skipping core dump\n");
2206 			goto fail_dropcount;
2207 		}
2208 
2209 		helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2210 		if (!helper_argv) {
2211 			printk(KERN_WARNING "%s failed to allocate memory\n",
2212 			       __func__);
2213 			goto fail_dropcount;
2214 		}
2215 
2216 		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2217 					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2218 					NULL, &cprm);
2219 		argv_free(helper_argv);
2220 		if (retval) {
2221  			printk(KERN_INFO "Core dump to %s pipe failed\n",
2222 			       cn.corename);
2223 			goto close_fail;
2224  		}
2225 	} else {
2226 		struct inode *inode;
2227 
2228 		if (cprm.limit < binfmt->min_coredump)
2229 			goto fail_unlock;
2230 
2231 		cprm.file = filp_open(cn.corename,
2232 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2233 				 0600);
2234 		if (IS_ERR(cprm.file))
2235 			goto fail_unlock;
2236 
2237 		inode = cprm.file->f_path.dentry->d_inode;
2238 		if (inode->i_nlink > 1)
2239 			goto close_fail;
2240 		if (d_unhashed(cprm.file->f_path.dentry))
2241 			goto close_fail;
2242 		/*
2243 		 * AK: actually i see no reason to not allow this for named
2244 		 * pipes etc, but keep the previous behaviour for now.
2245 		 */
2246 		if (!S_ISREG(inode->i_mode))
2247 			goto close_fail;
2248 		/*
2249 		 * Dont allow local users get cute and trick others to coredump
2250 		 * into their pre-created files.
2251 		 */
2252 		if (inode->i_uid != current_fsuid())
2253 			goto close_fail;
2254 		if (!cprm.file->f_op || !cprm.file->f_op->write)
2255 			goto close_fail;
2256 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2257 			goto close_fail;
2258 	}
2259 
2260 	retval = binfmt->core_dump(&cprm);
2261 	if (retval)
2262 		current->signal->group_exit_code |= 0x80;
2263 
2264 	if (ispipe && core_pipe_limit)
2265 		wait_for_dump_helpers(cprm.file);
2266 close_fail:
2267 	if (cprm.file)
2268 		filp_close(cprm.file, NULL);
2269 fail_dropcount:
2270 	if (ispipe)
2271 		atomic_dec(&core_dump_count);
2272 fail_unlock:
2273 	kfree(cn.corename);
2274 fail_corename:
2275 	coredump_finish(mm);
2276 	revert_creds(old_cred);
2277 fail_creds:
2278 	put_cred(cred);
2279 fail:
2280 	return;
2281 }
2282 
2283 /*
2284  * Core dumping helper functions.  These are the only things you should
2285  * do on a core-file: use only these functions to write out all the
2286  * necessary info.
2287  */
dump_write(struct file * file,const void * addr,int nr)2288 int dump_write(struct file *file, const void *addr, int nr)
2289 {
2290 	return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2291 }
2292 EXPORT_SYMBOL(dump_write);
2293 
dump_seek(struct file * file,loff_t off)2294 int dump_seek(struct file *file, loff_t off)
2295 {
2296 	int ret = 1;
2297 
2298 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2299 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2300 			return 0;
2301 	} else {
2302 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2303 
2304 		if (!buf)
2305 			return 0;
2306 		while (off > 0) {
2307 			unsigned long n = off;
2308 
2309 			if (n > PAGE_SIZE)
2310 				n = PAGE_SIZE;
2311 			if (!dump_write(file, buf, n)) {
2312 				ret = 0;
2313 				break;
2314 			}
2315 			off -= n;
2316 		}
2317 		free_page((unsigned long)buf);
2318 	}
2319 	return ret;
2320 }
2321 EXPORT_SYMBOL(dump_seek);
2322