1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include <asm/exec.h>
63
64 #include <trace/events/task.h>
65 #include "internal.h"
66
67 #include <trace/events/sched.h>
68
69 int core_uses_pid;
70 char core_pattern[CORENAME_MAX_SIZE] = "core";
71 unsigned int core_pipe_limit;
72 int suid_dumpable = 0;
73
74 struct core_name {
75 char *corename;
76 int used, size;
77 };
78 static atomic_t call_count = ATOMIC_INIT(1);
79
80 /* The maximal length of core_pattern is also specified in sysctl.c */
81
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84
__register_binfmt(struct linux_binfmt * fmt,int insert)85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 BUG_ON(!fmt);
88 write_lock(&binfmt_lock);
89 insert ? list_add(&fmt->lh, &formats) :
90 list_add_tail(&fmt->lh, &formats);
91 write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(__register_binfmt);
95
unregister_binfmt(struct linux_binfmt * fmt)96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 write_lock(&binfmt_lock);
99 list_del(&fmt->lh);
100 write_unlock(&binfmt_lock);
101 }
102
103 EXPORT_SYMBOL(unregister_binfmt);
104
put_binfmt(struct linux_binfmt * fmt)105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107 module_put(fmt->module);
108 }
109
110 /*
111 * Note that a shared library must be both readable and executable due to
112 * security reasons.
113 *
114 * Also note that we take the address to load from from the file itself.
115 */
SYSCALL_DEFINE1(uselib,const char __user *,library)116 SYSCALL_DEFINE1(uselib, const char __user *, library)
117 {
118 struct file *file;
119 char *tmp = getname(library);
120 int error = PTR_ERR(tmp);
121 static const struct open_flags uselib_flags = {
122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
124 .intent = LOOKUP_OPEN
125 };
126
127 if (IS_ERR(tmp))
128 goto out;
129
130 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
131 putname(tmp);
132 error = PTR_ERR(file);
133 if (IS_ERR(file))
134 goto out;
135
136 error = -EINVAL;
137 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
138 goto exit;
139
140 error = -EACCES;
141 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
142 goto exit;
143
144 fsnotify_open(file);
145
146 error = -ENOEXEC;
147 if(file->f_op) {
148 struct linux_binfmt * fmt;
149
150 read_lock(&binfmt_lock);
151 list_for_each_entry(fmt, &formats, lh) {
152 if (!fmt->load_shlib)
153 continue;
154 if (!try_module_get(fmt->module))
155 continue;
156 read_unlock(&binfmt_lock);
157 error = fmt->load_shlib(file);
158 read_lock(&binfmt_lock);
159 put_binfmt(fmt);
160 if (error != -ENOEXEC)
161 break;
162 }
163 read_unlock(&binfmt_lock);
164 }
165 exit:
166 fput(file);
167 out:
168 return error;
169 }
170
171 #ifdef CONFIG_MMU
172 /*
173 * The nascent bprm->mm is not visible until exec_mmap() but it can
174 * use a lot of memory, account these pages in current->mm temporary
175 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
176 * change the counter back via acct_arg_size(0).
177 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)178 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
179 {
180 struct mm_struct *mm = current->mm;
181 long diff = (long)(pages - bprm->vma_pages);
182
183 if (!mm || !diff)
184 return;
185
186 bprm->vma_pages = pages;
187 add_mm_counter(mm, MM_ANONPAGES, diff);
188 }
189
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)190 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
191 int write)
192 {
193 struct page *page;
194 int ret;
195
196 #ifdef CONFIG_STACK_GROWSUP
197 if (write) {
198 ret = expand_downwards(bprm->vma, pos);
199 if (ret < 0)
200 return NULL;
201 }
202 #endif
203 ret = get_user_pages(current, bprm->mm, pos,
204 1, write, 1, &page, NULL);
205 if (ret <= 0)
206 return NULL;
207
208 if (write) {
209 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
210 struct rlimit *rlim;
211
212 acct_arg_size(bprm, size / PAGE_SIZE);
213
214 /*
215 * We've historically supported up to 32 pages (ARG_MAX)
216 * of argument strings even with small stacks
217 */
218 if (size <= ARG_MAX)
219 return page;
220
221 /*
222 * Limit to 1/4-th the stack size for the argv+env strings.
223 * This ensures that:
224 * - the remaining binfmt code will not run out of stack space,
225 * - the program will have a reasonable amount of stack left
226 * to work from.
227 */
228 rlim = current->signal->rlim;
229 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
230 put_page(page);
231 return NULL;
232 }
233 }
234
235 return page;
236 }
237
put_arg_page(struct page * page)238 static void put_arg_page(struct page *page)
239 {
240 put_page(page);
241 }
242
free_arg_page(struct linux_binprm * bprm,int i)243 static void free_arg_page(struct linux_binprm *bprm, int i)
244 {
245 }
246
free_arg_pages(struct linux_binprm * bprm)247 static void free_arg_pages(struct linux_binprm *bprm)
248 {
249 }
250
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)251 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
252 struct page *page)
253 {
254 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
255 }
256
__bprm_mm_init(struct linux_binprm * bprm)257 static int __bprm_mm_init(struct linux_binprm *bprm)
258 {
259 int err;
260 struct vm_area_struct *vma = NULL;
261 struct mm_struct *mm = bprm->mm;
262
263 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
264 if (!vma)
265 return -ENOMEM;
266
267 down_write(&mm->mmap_sem);
268 vma->vm_mm = mm;
269
270 /*
271 * Place the stack at the largest stack address the architecture
272 * supports. Later, we'll move this to an appropriate place. We don't
273 * use STACK_TOP because that can depend on attributes which aren't
274 * configured yet.
275 */
276 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
277 vma->vm_end = STACK_TOP_MAX;
278 vma->vm_start = vma->vm_end - PAGE_SIZE;
279 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
280 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
281 INIT_LIST_HEAD(&vma->anon_vma_chain);
282
283 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
284 if (err)
285 goto err;
286
287 err = insert_vm_struct(mm, vma);
288 if (err)
289 goto err;
290
291 mm->stack_vm = mm->total_vm = 1;
292 up_write(&mm->mmap_sem);
293 bprm->p = vma->vm_end - sizeof(void *);
294 return 0;
295 err:
296 up_write(&mm->mmap_sem);
297 bprm->vma = NULL;
298 kmem_cache_free(vm_area_cachep, vma);
299 return err;
300 }
301
valid_arg_len(struct linux_binprm * bprm,long len)302 static bool valid_arg_len(struct linux_binprm *bprm, long len)
303 {
304 return len <= MAX_ARG_STRLEN;
305 }
306
307 #else
308
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)309 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
310 {
311 }
312
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)313 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
314 int write)
315 {
316 struct page *page;
317
318 page = bprm->page[pos / PAGE_SIZE];
319 if (!page && write) {
320 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
321 if (!page)
322 return NULL;
323 bprm->page[pos / PAGE_SIZE] = page;
324 }
325
326 return page;
327 }
328
put_arg_page(struct page * page)329 static void put_arg_page(struct page *page)
330 {
331 }
332
free_arg_page(struct linux_binprm * bprm,int i)333 static void free_arg_page(struct linux_binprm *bprm, int i)
334 {
335 if (bprm->page[i]) {
336 __free_page(bprm->page[i]);
337 bprm->page[i] = NULL;
338 }
339 }
340
free_arg_pages(struct linux_binprm * bprm)341 static void free_arg_pages(struct linux_binprm *bprm)
342 {
343 int i;
344
345 for (i = 0; i < MAX_ARG_PAGES; i++)
346 free_arg_page(bprm, i);
347 }
348
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)349 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
350 struct page *page)
351 {
352 }
353
__bprm_mm_init(struct linux_binprm * bprm)354 static int __bprm_mm_init(struct linux_binprm *bprm)
355 {
356 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
357 return 0;
358 }
359
valid_arg_len(struct linux_binprm * bprm,long len)360 static bool valid_arg_len(struct linux_binprm *bprm, long len)
361 {
362 return len <= bprm->p;
363 }
364
365 #endif /* CONFIG_MMU */
366
367 /*
368 * Create a new mm_struct and populate it with a temporary stack
369 * vm_area_struct. We don't have enough context at this point to set the stack
370 * flags, permissions, and offset, so we use temporary values. We'll update
371 * them later in setup_arg_pages().
372 */
bprm_mm_init(struct linux_binprm * bprm)373 int bprm_mm_init(struct linux_binprm *bprm)
374 {
375 int err;
376 struct mm_struct *mm = NULL;
377
378 bprm->mm = mm = mm_alloc();
379 err = -ENOMEM;
380 if (!mm)
381 goto err;
382
383 err = init_new_context(current, mm);
384 if (err)
385 goto err;
386
387 err = __bprm_mm_init(bprm);
388 if (err)
389 goto err;
390
391 return 0;
392
393 err:
394 if (mm) {
395 bprm->mm = NULL;
396 mmdrop(mm);
397 }
398
399 return err;
400 }
401
402 struct user_arg_ptr {
403 #ifdef CONFIG_COMPAT
404 bool is_compat;
405 #endif
406 union {
407 const char __user *const __user *native;
408 #ifdef CONFIG_COMPAT
409 compat_uptr_t __user *compat;
410 #endif
411 } ptr;
412 };
413
get_user_arg_ptr(struct user_arg_ptr argv,int nr)414 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
415 {
416 const char __user *native;
417
418 #ifdef CONFIG_COMPAT
419 if (unlikely(argv.is_compat)) {
420 compat_uptr_t compat;
421
422 if (get_user(compat, argv.ptr.compat + nr))
423 return ERR_PTR(-EFAULT);
424
425 return compat_ptr(compat);
426 }
427 #endif
428
429 if (get_user(native, argv.ptr.native + nr))
430 return ERR_PTR(-EFAULT);
431
432 return native;
433 }
434
435 /*
436 * count() counts the number of strings in array ARGV.
437 */
count(struct user_arg_ptr argv,int max)438 static int count(struct user_arg_ptr argv, int max)
439 {
440 int i = 0;
441
442 if (argv.ptr.native != NULL) {
443 for (;;) {
444 const char __user *p = get_user_arg_ptr(argv, i);
445
446 if (!p)
447 break;
448
449 if (IS_ERR(p))
450 return -EFAULT;
451
452 if (i++ >= max)
453 return -E2BIG;
454
455 if (fatal_signal_pending(current))
456 return -ERESTARTNOHAND;
457 cond_resched();
458 }
459 }
460 return i;
461 }
462
463 /*
464 * 'copy_strings()' copies argument/environment strings from the old
465 * processes's memory to the new process's stack. The call to get_user_pages()
466 * ensures the destination page is created and not swapped out.
467 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)468 static int copy_strings(int argc, struct user_arg_ptr argv,
469 struct linux_binprm *bprm)
470 {
471 struct page *kmapped_page = NULL;
472 char *kaddr = NULL;
473 unsigned long kpos = 0;
474 int ret;
475
476 while (argc-- > 0) {
477 const char __user *str;
478 int len;
479 unsigned long pos;
480
481 ret = -EFAULT;
482 str = get_user_arg_ptr(argv, argc);
483 if (IS_ERR(str))
484 goto out;
485
486 len = strnlen_user(str, MAX_ARG_STRLEN);
487 if (!len)
488 goto out;
489
490 ret = -E2BIG;
491 if (!valid_arg_len(bprm, len))
492 goto out;
493
494 /* We're going to work our way backwords. */
495 pos = bprm->p;
496 str += len;
497 bprm->p -= len;
498
499 while (len > 0) {
500 int offset, bytes_to_copy;
501
502 if (fatal_signal_pending(current)) {
503 ret = -ERESTARTNOHAND;
504 goto out;
505 }
506 cond_resched();
507
508 offset = pos % PAGE_SIZE;
509 if (offset == 0)
510 offset = PAGE_SIZE;
511
512 bytes_to_copy = offset;
513 if (bytes_to_copy > len)
514 bytes_to_copy = len;
515
516 offset -= bytes_to_copy;
517 pos -= bytes_to_copy;
518 str -= bytes_to_copy;
519 len -= bytes_to_copy;
520
521 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
522 struct page *page;
523
524 page = get_arg_page(bprm, pos, 1);
525 if (!page) {
526 ret = -E2BIG;
527 goto out;
528 }
529
530 if (kmapped_page) {
531 flush_kernel_dcache_page(kmapped_page);
532 kunmap(kmapped_page);
533 put_arg_page(kmapped_page);
534 }
535 kmapped_page = page;
536 kaddr = kmap(kmapped_page);
537 kpos = pos & PAGE_MASK;
538 flush_arg_page(bprm, kpos, kmapped_page);
539 }
540 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
541 ret = -EFAULT;
542 goto out;
543 }
544 }
545 }
546 ret = 0;
547 out:
548 if (kmapped_page) {
549 flush_kernel_dcache_page(kmapped_page);
550 kunmap(kmapped_page);
551 put_arg_page(kmapped_page);
552 }
553 return ret;
554 }
555
556 /*
557 * Like copy_strings, but get argv and its values from kernel memory.
558 */
copy_strings_kernel(int argc,const char * const * __argv,struct linux_binprm * bprm)559 int copy_strings_kernel(int argc, const char *const *__argv,
560 struct linux_binprm *bprm)
561 {
562 int r;
563 mm_segment_t oldfs = get_fs();
564 struct user_arg_ptr argv = {
565 .ptr.native = (const char __user *const __user *)__argv,
566 };
567
568 set_fs(KERNEL_DS);
569 r = copy_strings(argc, argv, bprm);
570 set_fs(oldfs);
571
572 return r;
573 }
574 EXPORT_SYMBOL(copy_strings_kernel);
575
576 #ifdef CONFIG_MMU
577
578 /*
579 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
580 * the binfmt code determines where the new stack should reside, we shift it to
581 * its final location. The process proceeds as follows:
582 *
583 * 1) Use shift to calculate the new vma endpoints.
584 * 2) Extend vma to cover both the old and new ranges. This ensures the
585 * arguments passed to subsequent functions are consistent.
586 * 3) Move vma's page tables to the new range.
587 * 4) Free up any cleared pgd range.
588 * 5) Shrink the vma to cover only the new range.
589 */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)590 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
591 {
592 struct mm_struct *mm = vma->vm_mm;
593 unsigned long old_start = vma->vm_start;
594 unsigned long old_end = vma->vm_end;
595 unsigned long length = old_end - old_start;
596 unsigned long new_start = old_start - shift;
597 unsigned long new_end = old_end - shift;
598 struct mmu_gather tlb;
599
600 BUG_ON(new_start > new_end);
601
602 /*
603 * ensure there are no vmas between where we want to go
604 * and where we are
605 */
606 if (vma != find_vma(mm, new_start))
607 return -EFAULT;
608
609 /*
610 * cover the whole range: [new_start, old_end)
611 */
612 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
613 return -ENOMEM;
614
615 /*
616 * move the page tables downwards, on failure we rely on
617 * process cleanup to remove whatever mess we made.
618 */
619 if (length != move_page_tables(vma, old_start,
620 vma, new_start, length))
621 return -ENOMEM;
622
623 lru_add_drain();
624 tlb_gather_mmu(&tlb, mm, 0);
625 if (new_end > old_start) {
626 /*
627 * when the old and new regions overlap clear from new_end.
628 */
629 free_pgd_range(&tlb, new_end, old_end, new_end,
630 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
631 } else {
632 /*
633 * otherwise, clean from old_start; this is done to not touch
634 * the address space in [new_end, old_start) some architectures
635 * have constraints on va-space that make this illegal (IA64) -
636 * for the others its just a little faster.
637 */
638 free_pgd_range(&tlb, old_start, old_end, new_end,
639 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
640 }
641 tlb_finish_mmu(&tlb, new_end, old_end);
642
643 /*
644 * Shrink the vma to just the new range. Always succeeds.
645 */
646 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
647
648 return 0;
649 }
650
651 /*
652 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
653 * the stack is optionally relocated, and some extra space is added.
654 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)655 int setup_arg_pages(struct linux_binprm *bprm,
656 unsigned long stack_top,
657 int executable_stack)
658 {
659 unsigned long ret;
660 unsigned long stack_shift;
661 struct mm_struct *mm = current->mm;
662 struct vm_area_struct *vma = bprm->vma;
663 struct vm_area_struct *prev = NULL;
664 unsigned long vm_flags;
665 unsigned long stack_base;
666 unsigned long stack_size;
667 unsigned long stack_expand;
668 unsigned long rlim_stack;
669
670 #ifdef CONFIG_STACK_GROWSUP
671 /* Limit stack size to 1GB */
672 stack_base = rlimit_max(RLIMIT_STACK);
673 if (stack_base > (1 << 30))
674 stack_base = 1 << 30;
675
676 /* Make sure we didn't let the argument array grow too large. */
677 if (vma->vm_end - vma->vm_start > stack_base)
678 return -ENOMEM;
679
680 stack_base = PAGE_ALIGN(stack_top - stack_base);
681
682 stack_shift = vma->vm_start - stack_base;
683 mm->arg_start = bprm->p - stack_shift;
684 bprm->p = vma->vm_end - stack_shift;
685 #else
686 stack_top = arch_align_stack(stack_top);
687 stack_top = PAGE_ALIGN(stack_top);
688
689 if (unlikely(stack_top < mmap_min_addr) ||
690 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
691 return -ENOMEM;
692
693 stack_shift = vma->vm_end - stack_top;
694
695 bprm->p -= stack_shift;
696 mm->arg_start = bprm->p;
697 #endif
698
699 if (bprm->loader)
700 bprm->loader -= stack_shift;
701 bprm->exec -= stack_shift;
702
703 down_write(&mm->mmap_sem);
704 vm_flags = VM_STACK_FLAGS;
705
706 /*
707 * Adjust stack execute permissions; explicitly enable for
708 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
709 * (arch default) otherwise.
710 */
711 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
712 vm_flags |= VM_EXEC;
713 else if (executable_stack == EXSTACK_DISABLE_X)
714 vm_flags &= ~VM_EXEC;
715 vm_flags |= mm->def_flags;
716 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
717
718 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
719 vm_flags);
720 if (ret)
721 goto out_unlock;
722 BUG_ON(prev != vma);
723
724 /* Move stack pages down in memory. */
725 if (stack_shift) {
726 ret = shift_arg_pages(vma, stack_shift);
727 if (ret)
728 goto out_unlock;
729 }
730
731 /* mprotect_fixup is overkill to remove the temporary stack flags */
732 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
733
734 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
735 stack_size = vma->vm_end - vma->vm_start;
736 /*
737 * Align this down to a page boundary as expand_stack
738 * will align it up.
739 */
740 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
741 #ifdef CONFIG_STACK_GROWSUP
742 if (stack_size + stack_expand > rlim_stack)
743 stack_base = vma->vm_start + rlim_stack;
744 else
745 stack_base = vma->vm_end + stack_expand;
746 #else
747 if (stack_size + stack_expand > rlim_stack)
748 stack_base = vma->vm_end - rlim_stack;
749 else
750 stack_base = vma->vm_start - stack_expand;
751 #endif
752 current->mm->start_stack = bprm->p;
753 ret = expand_stack(vma, stack_base);
754 if (ret)
755 ret = -EFAULT;
756
757 out_unlock:
758 up_write(&mm->mmap_sem);
759 return ret;
760 }
761 EXPORT_SYMBOL(setup_arg_pages);
762
763 #endif /* CONFIG_MMU */
764
open_exec(const char * name)765 struct file *open_exec(const char *name)
766 {
767 struct file *file;
768 int err;
769 static const struct open_flags open_exec_flags = {
770 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
771 .acc_mode = MAY_EXEC | MAY_OPEN,
772 .intent = LOOKUP_OPEN
773 };
774
775 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
776 if (IS_ERR(file))
777 goto out;
778
779 err = -EACCES;
780 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
781 goto exit;
782
783 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
784 goto exit;
785
786 fsnotify_open(file);
787
788 err = deny_write_access(file);
789 if (err)
790 goto exit;
791
792 out:
793 return file;
794
795 exit:
796 fput(file);
797 return ERR_PTR(err);
798 }
799 EXPORT_SYMBOL(open_exec);
800
kernel_read(struct file * file,loff_t offset,char * addr,unsigned long count)801 int kernel_read(struct file *file, loff_t offset,
802 char *addr, unsigned long count)
803 {
804 mm_segment_t old_fs;
805 loff_t pos = offset;
806 int result;
807
808 old_fs = get_fs();
809 set_fs(get_ds());
810 /* The cast to a user pointer is valid due to the set_fs() */
811 result = vfs_read(file, (void __user *)addr, count, &pos);
812 set_fs(old_fs);
813 return result;
814 }
815
816 EXPORT_SYMBOL(kernel_read);
817
exec_mmap(struct mm_struct * mm)818 static int exec_mmap(struct mm_struct *mm)
819 {
820 struct task_struct *tsk;
821 struct mm_struct * old_mm, *active_mm;
822
823 /* Notify parent that we're no longer interested in the old VM */
824 tsk = current;
825 old_mm = current->mm;
826 mm_release(tsk, old_mm);
827
828 if (old_mm) {
829 sync_mm_rss(old_mm);
830 /*
831 * Make sure that if there is a core dump in progress
832 * for the old mm, we get out and die instead of going
833 * through with the exec. We must hold mmap_sem around
834 * checking core_state and changing tsk->mm.
835 */
836 down_read(&old_mm->mmap_sem);
837 if (unlikely(old_mm->core_state)) {
838 up_read(&old_mm->mmap_sem);
839 return -EINTR;
840 }
841 }
842 task_lock(tsk);
843 active_mm = tsk->active_mm;
844 tsk->mm = mm;
845 tsk->active_mm = mm;
846 activate_mm(active_mm, mm);
847 task_unlock(tsk);
848 arch_pick_mmap_layout(mm);
849 if (old_mm) {
850 up_read(&old_mm->mmap_sem);
851 BUG_ON(active_mm != old_mm);
852 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
853 mm_update_next_owner(old_mm);
854 mmput(old_mm);
855 return 0;
856 }
857 mmdrop(active_mm);
858 return 0;
859 }
860
861 /*
862 * This function makes sure the current process has its own signal table,
863 * so that flush_signal_handlers can later reset the handlers without
864 * disturbing other processes. (Other processes might share the signal
865 * table via the CLONE_SIGHAND option to clone().)
866 */
de_thread(struct task_struct * tsk)867 static int de_thread(struct task_struct *tsk)
868 {
869 struct signal_struct *sig = tsk->signal;
870 struct sighand_struct *oldsighand = tsk->sighand;
871 spinlock_t *lock = &oldsighand->siglock;
872
873 if (thread_group_empty(tsk))
874 goto no_thread_group;
875
876 /*
877 * Kill all other threads in the thread group.
878 */
879 spin_lock_irq(lock);
880 if (signal_group_exit(sig)) {
881 /*
882 * Another group action in progress, just
883 * return so that the signal is processed.
884 */
885 spin_unlock_irq(lock);
886 return -EAGAIN;
887 }
888
889 sig->group_exit_task = tsk;
890 sig->notify_count = zap_other_threads(tsk);
891 if (!thread_group_leader(tsk))
892 sig->notify_count--;
893
894 while (sig->notify_count) {
895 __set_current_state(TASK_UNINTERRUPTIBLE);
896 spin_unlock_irq(lock);
897 schedule();
898 spin_lock_irq(lock);
899 }
900 spin_unlock_irq(lock);
901
902 /*
903 * At this point all other threads have exited, all we have to
904 * do is to wait for the thread group leader to become inactive,
905 * and to assume its PID:
906 */
907 if (!thread_group_leader(tsk)) {
908 struct task_struct *leader = tsk->group_leader;
909
910 sig->notify_count = -1; /* for exit_notify() */
911 for (;;) {
912 threadgroup_change_begin(tsk);
913 write_lock_irq(&tasklist_lock);
914 if (likely(leader->exit_state))
915 break;
916 __set_current_state(TASK_UNINTERRUPTIBLE);
917 write_unlock_irq(&tasklist_lock);
918 threadgroup_change_end(tsk);
919 schedule();
920 }
921
922 /*
923 * The only record we have of the real-time age of a
924 * process, regardless of execs it's done, is start_time.
925 * All the past CPU time is accumulated in signal_struct
926 * from sister threads now dead. But in this non-leader
927 * exec, nothing survives from the original leader thread,
928 * whose birth marks the true age of this process now.
929 * When we take on its identity by switching to its PID, we
930 * also take its birthdate (always earlier than our own).
931 */
932 tsk->start_time = leader->start_time;
933
934 BUG_ON(!same_thread_group(leader, tsk));
935 BUG_ON(has_group_leader_pid(tsk));
936 /*
937 * An exec() starts a new thread group with the
938 * TGID of the previous thread group. Rehash the
939 * two threads with a switched PID, and release
940 * the former thread group leader:
941 */
942
943 /* Become a process group leader with the old leader's pid.
944 * The old leader becomes a thread of the this thread group.
945 * Note: The old leader also uses this pid until release_task
946 * is called. Odd but simple and correct.
947 */
948 detach_pid(tsk, PIDTYPE_PID);
949 tsk->pid = leader->pid;
950 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
951 transfer_pid(leader, tsk, PIDTYPE_PGID);
952 transfer_pid(leader, tsk, PIDTYPE_SID);
953
954 list_replace_rcu(&leader->tasks, &tsk->tasks);
955 list_replace_init(&leader->sibling, &tsk->sibling);
956
957 tsk->group_leader = tsk;
958 leader->group_leader = tsk;
959
960 tsk->exit_signal = SIGCHLD;
961 leader->exit_signal = -1;
962
963 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
964 leader->exit_state = EXIT_DEAD;
965
966 /*
967 * We are going to release_task()->ptrace_unlink() silently,
968 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
969 * the tracer wont't block again waiting for this thread.
970 */
971 if (unlikely(leader->ptrace))
972 __wake_up_parent(leader, leader->parent);
973 write_unlock_irq(&tasklist_lock);
974 threadgroup_change_end(tsk);
975
976 release_task(leader);
977 }
978
979 sig->group_exit_task = NULL;
980 sig->notify_count = 0;
981
982 no_thread_group:
983 /* we have changed execution domain */
984 tsk->exit_signal = SIGCHLD;
985
986 exit_itimers(sig);
987 flush_itimer_signals();
988
989 if (atomic_read(&oldsighand->count) != 1) {
990 struct sighand_struct *newsighand;
991 /*
992 * This ->sighand is shared with the CLONE_SIGHAND
993 * but not CLONE_THREAD task, switch to the new one.
994 */
995 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
996 if (!newsighand)
997 return -ENOMEM;
998
999 atomic_set(&newsighand->count, 1);
1000 memcpy(newsighand->action, oldsighand->action,
1001 sizeof(newsighand->action));
1002
1003 write_lock_irq(&tasklist_lock);
1004 spin_lock(&oldsighand->siglock);
1005 rcu_assign_pointer(tsk->sighand, newsighand);
1006 spin_unlock(&oldsighand->siglock);
1007 write_unlock_irq(&tasklist_lock);
1008
1009 __cleanup_sighand(oldsighand);
1010 }
1011
1012 BUG_ON(!thread_group_leader(tsk));
1013 return 0;
1014 }
1015
1016 /*
1017 * These functions flushes out all traces of the currently running executable
1018 * so that a new one can be started
1019 */
flush_old_files(struct files_struct * files)1020 static void flush_old_files(struct files_struct * files)
1021 {
1022 long j = -1;
1023 struct fdtable *fdt;
1024
1025 spin_lock(&files->file_lock);
1026 for (;;) {
1027 unsigned long set, i;
1028
1029 j++;
1030 i = j * BITS_PER_LONG;
1031 fdt = files_fdtable(files);
1032 if (i >= fdt->max_fds)
1033 break;
1034 set = fdt->close_on_exec[j];
1035 if (!set)
1036 continue;
1037 fdt->close_on_exec[j] = 0;
1038 spin_unlock(&files->file_lock);
1039 for ( ; set ; i++,set >>= 1) {
1040 if (set & 1) {
1041 sys_close(i);
1042 }
1043 }
1044 spin_lock(&files->file_lock);
1045
1046 }
1047 spin_unlock(&files->file_lock);
1048 }
1049
get_task_comm(char * buf,struct task_struct * tsk)1050 char *get_task_comm(char *buf, struct task_struct *tsk)
1051 {
1052 /* buf must be at least sizeof(tsk->comm) in size */
1053 task_lock(tsk);
1054 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1055 task_unlock(tsk);
1056 return buf;
1057 }
1058 EXPORT_SYMBOL_GPL(get_task_comm);
1059
set_task_comm(struct task_struct * tsk,char * buf)1060 void set_task_comm(struct task_struct *tsk, char *buf)
1061 {
1062 task_lock(tsk);
1063
1064 trace_task_rename(tsk, buf);
1065
1066 /*
1067 * Threads may access current->comm without holding
1068 * the task lock, so write the string carefully.
1069 * Readers without a lock may see incomplete new
1070 * names but are safe from non-terminating string reads.
1071 */
1072 memset(tsk->comm, 0, TASK_COMM_LEN);
1073 wmb();
1074 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1075 task_unlock(tsk);
1076 perf_event_comm(tsk);
1077 }
1078
filename_to_taskname(char * tcomm,const char * fn,unsigned int len)1079 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1080 {
1081 int i, ch;
1082
1083 /* Copies the binary name from after last slash */
1084 for (i = 0; (ch = *(fn++)) != '\0';) {
1085 if (ch == '/')
1086 i = 0; /* overwrite what we wrote */
1087 else
1088 if (i < len - 1)
1089 tcomm[i++] = ch;
1090 }
1091 tcomm[i] = '\0';
1092 }
1093
flush_old_exec(struct linux_binprm * bprm)1094 int flush_old_exec(struct linux_binprm * bprm)
1095 {
1096 int retval;
1097
1098 /*
1099 * Make sure we have a private signal table and that
1100 * we are unassociated from the previous thread group.
1101 */
1102 retval = de_thread(current);
1103 if (retval)
1104 goto out;
1105
1106 set_mm_exe_file(bprm->mm, bprm->file);
1107
1108 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1109 /*
1110 * Release all of the old mmap stuff
1111 */
1112 acct_arg_size(bprm, 0);
1113 retval = exec_mmap(bprm->mm);
1114 if (retval)
1115 goto out;
1116
1117 bprm->mm = NULL; /* We're using it now */
1118
1119 set_fs(USER_DS);
1120 current->flags &=
1121 ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | PF_NOFREEZE);
1122 flush_thread();
1123 current->personality &= ~bprm->per_clear;
1124
1125 return 0;
1126
1127 out:
1128 return retval;
1129 }
1130 EXPORT_SYMBOL(flush_old_exec);
1131
would_dump(struct linux_binprm * bprm,struct file * file)1132 void would_dump(struct linux_binprm *bprm, struct file *file)
1133 {
1134 if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1135 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1136 }
1137 EXPORT_SYMBOL(would_dump);
1138
setup_new_exec(struct linux_binprm * bprm)1139 void setup_new_exec(struct linux_binprm * bprm)
1140 {
1141 arch_pick_mmap_layout(current->mm);
1142
1143 /* This is the point of no return */
1144 current->sas_ss_sp = current->sas_ss_size = 0;
1145
1146 if (current_euid() == current_uid() && current_egid() == current_gid())
1147 set_dumpable(current->mm, 1);
1148 else
1149 set_dumpable(current->mm, suid_dumpable);
1150
1151 set_task_comm(current, bprm->tcomm);
1152
1153 /* Set the new mm task size. We have to do that late because it may
1154 * depend on TIF_32BIT which is only updated in flush_thread() on
1155 * some architectures like powerpc
1156 */
1157 current->mm->task_size = TASK_SIZE;
1158
1159 /* install the new credentials */
1160 if (bprm->cred->uid != current_euid() ||
1161 bprm->cred->gid != current_egid()) {
1162 current->pdeath_signal = 0;
1163 } else {
1164 would_dump(bprm, bprm->file);
1165 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1166 set_dumpable(current->mm, suid_dumpable);
1167 }
1168
1169 /* An exec changes our domain. We are no longer part of the thread
1170 group */
1171
1172 current->self_exec_id++;
1173
1174 flush_signal_handlers(current, 0);
1175 flush_old_files(current->files);
1176 }
1177 EXPORT_SYMBOL(setup_new_exec);
1178
1179 /*
1180 * Prepare credentials and lock ->cred_guard_mutex.
1181 * install_exec_creds() commits the new creds and drops the lock.
1182 * Or, if exec fails before, free_bprm() should release ->cred and
1183 * and unlock.
1184 */
prepare_bprm_creds(struct linux_binprm * bprm)1185 int prepare_bprm_creds(struct linux_binprm *bprm)
1186 {
1187 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1188 return -ERESTARTNOINTR;
1189
1190 bprm->cred = prepare_exec_creds();
1191 if (likely(bprm->cred))
1192 return 0;
1193
1194 mutex_unlock(¤t->signal->cred_guard_mutex);
1195 return -ENOMEM;
1196 }
1197
free_bprm(struct linux_binprm * bprm)1198 void free_bprm(struct linux_binprm *bprm)
1199 {
1200 free_arg_pages(bprm);
1201 if (bprm->cred) {
1202 mutex_unlock(¤t->signal->cred_guard_mutex);
1203 abort_creds(bprm->cred);
1204 }
1205 /* If a binfmt changed the interp, free it. */
1206 if (bprm->interp != bprm->filename)
1207 kfree(bprm->interp);
1208 kfree(bprm);
1209 }
1210
bprm_change_interp(char * interp,struct linux_binprm * bprm)1211 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1212 {
1213 /* If a binfmt changed the interp, free it first. */
1214 if (bprm->interp != bprm->filename)
1215 kfree(bprm->interp);
1216 bprm->interp = kstrdup(interp, GFP_KERNEL);
1217 if (!bprm->interp)
1218 return -ENOMEM;
1219 return 0;
1220 }
1221 EXPORT_SYMBOL(bprm_change_interp);
1222
1223 /*
1224 * install the new credentials for this executable
1225 */
install_exec_creds(struct linux_binprm * bprm)1226 void install_exec_creds(struct linux_binprm *bprm)
1227 {
1228 security_bprm_committing_creds(bprm);
1229
1230 commit_creds(bprm->cred);
1231 bprm->cred = NULL;
1232
1233 /*
1234 * Disable monitoring for regular users
1235 * when executing setuid binaries. Must
1236 * wait until new credentials are committed
1237 * by commit_creds() above
1238 */
1239 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1240 perf_event_exit_task(current);
1241 /*
1242 * cred_guard_mutex must be held at least to this point to prevent
1243 * ptrace_attach() from altering our determination of the task's
1244 * credentials; any time after this it may be unlocked.
1245 */
1246 security_bprm_committed_creds(bprm);
1247 mutex_unlock(¤t->signal->cred_guard_mutex);
1248 }
1249 EXPORT_SYMBOL(install_exec_creds);
1250
1251 /*
1252 * determine how safe it is to execute the proposed program
1253 * - the caller must hold ->cred_guard_mutex to protect against
1254 * PTRACE_ATTACH
1255 */
check_unsafe_exec(struct linux_binprm * bprm)1256 static int check_unsafe_exec(struct linux_binprm *bprm)
1257 {
1258 struct task_struct *p = current, *t;
1259 unsigned n_fs;
1260 int res = 0;
1261
1262 if (p->ptrace) {
1263 if (p->ptrace & PT_PTRACE_CAP)
1264 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1265 else
1266 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1267 }
1268
1269 n_fs = 1;
1270 spin_lock(&p->fs->lock);
1271 rcu_read_lock();
1272 for (t = next_thread(p); t != p; t = next_thread(t)) {
1273 if (t->fs == p->fs)
1274 n_fs++;
1275 }
1276 rcu_read_unlock();
1277
1278 if (p->fs->users > n_fs) {
1279 bprm->unsafe |= LSM_UNSAFE_SHARE;
1280 } else {
1281 res = -EAGAIN;
1282 if (!p->fs->in_exec) {
1283 p->fs->in_exec = 1;
1284 res = 1;
1285 }
1286 }
1287 spin_unlock(&p->fs->lock);
1288
1289 return res;
1290 }
1291
1292 /*
1293 * Fill the binprm structure from the inode.
1294 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1295 *
1296 * This may be called multiple times for binary chains (scripts for example).
1297 */
prepare_binprm(struct linux_binprm * bprm)1298 int prepare_binprm(struct linux_binprm *bprm)
1299 {
1300 umode_t mode;
1301 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1302 int retval;
1303
1304 mode = inode->i_mode;
1305 if (bprm->file->f_op == NULL)
1306 return -EACCES;
1307
1308 /* clear any previous set[ug]id data from a previous binary */
1309 bprm->cred->euid = current_euid();
1310 bprm->cred->egid = current_egid();
1311
1312 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1313 /* Set-uid? */
1314 if (mode & S_ISUID) {
1315 bprm->per_clear |= PER_CLEAR_ON_SETID;
1316 bprm->cred->euid = inode->i_uid;
1317 }
1318
1319 /* Set-gid? */
1320 /*
1321 * If setgid is set but no group execute bit then this
1322 * is a candidate for mandatory locking, not a setgid
1323 * executable.
1324 */
1325 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1326 bprm->per_clear |= PER_CLEAR_ON_SETID;
1327 bprm->cred->egid = inode->i_gid;
1328 }
1329 }
1330
1331 /* fill in binprm security blob */
1332 retval = security_bprm_set_creds(bprm);
1333 if (retval)
1334 return retval;
1335 bprm->cred_prepared = 1;
1336
1337 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1338 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1339 }
1340
1341 EXPORT_SYMBOL(prepare_binprm);
1342
1343 /*
1344 * Arguments are '\0' separated strings found at the location bprm->p
1345 * points to; chop off the first by relocating brpm->p to right after
1346 * the first '\0' encountered.
1347 */
remove_arg_zero(struct linux_binprm * bprm)1348 int remove_arg_zero(struct linux_binprm *bprm)
1349 {
1350 int ret = 0;
1351 unsigned long offset;
1352 char *kaddr;
1353 struct page *page;
1354
1355 if (!bprm->argc)
1356 return 0;
1357
1358 do {
1359 offset = bprm->p & ~PAGE_MASK;
1360 page = get_arg_page(bprm, bprm->p, 0);
1361 if (!page) {
1362 ret = -EFAULT;
1363 goto out;
1364 }
1365 kaddr = kmap_atomic(page);
1366
1367 for (; offset < PAGE_SIZE && kaddr[offset];
1368 offset++, bprm->p++)
1369 ;
1370
1371 kunmap_atomic(kaddr);
1372 put_arg_page(page);
1373
1374 if (offset == PAGE_SIZE)
1375 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1376 } while (offset == PAGE_SIZE);
1377
1378 bprm->p++;
1379 bprm->argc--;
1380 ret = 0;
1381
1382 out:
1383 return ret;
1384 }
1385 EXPORT_SYMBOL(remove_arg_zero);
1386
1387 /*
1388 * cycle the list of binary formats handler, until one recognizes the image
1389 */
search_binary_handler(struct linux_binprm * bprm,struct pt_regs * regs)1390 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1391 {
1392 unsigned int depth = bprm->recursion_depth;
1393 int try,retval;
1394 struct linux_binfmt *fmt;
1395 pid_t old_pid, old_vpid;
1396
1397 /* This allows 4 levels of binfmt rewrites before failing hard. */
1398 if (depth > 5)
1399 return -ELOOP;
1400
1401 retval = security_bprm_check(bprm);
1402 if (retval)
1403 return retval;
1404
1405 retval = audit_bprm(bprm);
1406 if (retval)
1407 return retval;
1408
1409 /* Need to fetch pid before load_binary changes it */
1410 old_pid = current->pid;
1411 rcu_read_lock();
1412 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1413 rcu_read_unlock();
1414
1415 retval = -ENOENT;
1416 for (try=0; try<2; try++) {
1417 read_lock(&binfmt_lock);
1418 list_for_each_entry(fmt, &formats, lh) {
1419 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1420 if (!fn)
1421 continue;
1422 if (!try_module_get(fmt->module))
1423 continue;
1424 read_unlock(&binfmt_lock);
1425 bprm->recursion_depth = depth + 1;
1426 retval = fn(bprm, regs);
1427 bprm->recursion_depth = depth;
1428 if (retval >= 0) {
1429 if (depth == 0) {
1430 trace_sched_process_exec(current, old_pid, bprm);
1431 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1432 }
1433 put_binfmt(fmt);
1434 allow_write_access(bprm->file);
1435 if (bprm->file)
1436 fput(bprm->file);
1437 bprm->file = NULL;
1438 current->did_exec = 1;
1439 proc_exec_connector(current);
1440 return retval;
1441 }
1442 read_lock(&binfmt_lock);
1443 put_binfmt(fmt);
1444 if (retval != -ENOEXEC || bprm->mm == NULL)
1445 break;
1446 if (!bprm->file) {
1447 read_unlock(&binfmt_lock);
1448 return retval;
1449 }
1450 }
1451 read_unlock(&binfmt_lock);
1452 #ifdef CONFIG_MODULES
1453 if (retval != -ENOEXEC || bprm->mm == NULL) {
1454 break;
1455 } else {
1456 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1457 if (printable(bprm->buf[0]) &&
1458 printable(bprm->buf[1]) &&
1459 printable(bprm->buf[2]) &&
1460 printable(bprm->buf[3]))
1461 break; /* -ENOEXEC */
1462 if (try)
1463 break; /* -ENOEXEC */
1464 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1465 }
1466 #else
1467 break;
1468 #endif
1469 }
1470 return retval;
1471 }
1472
1473 EXPORT_SYMBOL(search_binary_handler);
1474
1475 /*
1476 * sys_execve() executes a new program.
1477 */
do_execve_common(const char * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,struct pt_regs * regs)1478 static int do_execve_common(const char *filename,
1479 struct user_arg_ptr argv,
1480 struct user_arg_ptr envp,
1481 struct pt_regs *regs)
1482 {
1483 struct linux_binprm *bprm;
1484 struct file *file;
1485 struct files_struct *displaced;
1486 bool clear_in_exec;
1487 int retval;
1488 const struct cred *cred = current_cred();
1489
1490 /*
1491 * We move the actual failure in case of RLIMIT_NPROC excess from
1492 * set*uid() to execve() because too many poorly written programs
1493 * don't check setuid() return code. Here we additionally recheck
1494 * whether NPROC limit is still exceeded.
1495 */
1496 if ((current->flags & PF_NPROC_EXCEEDED) &&
1497 atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1498 retval = -EAGAIN;
1499 goto out_ret;
1500 }
1501
1502 /* We're below the limit (still or again), so we don't want to make
1503 * further execve() calls fail. */
1504 current->flags &= ~PF_NPROC_EXCEEDED;
1505
1506 retval = unshare_files(&displaced);
1507 if (retval)
1508 goto out_ret;
1509
1510 retval = -ENOMEM;
1511 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1512 if (!bprm)
1513 goto out_files;
1514
1515 retval = prepare_bprm_creds(bprm);
1516 if (retval)
1517 goto out_free;
1518
1519 retval = check_unsafe_exec(bprm);
1520 if (retval < 0)
1521 goto out_free;
1522 clear_in_exec = retval;
1523 current->in_execve = 1;
1524
1525 file = open_exec(filename);
1526 retval = PTR_ERR(file);
1527 if (IS_ERR(file))
1528 goto out_unmark;
1529
1530 sched_exec();
1531
1532 bprm->file = file;
1533 bprm->filename = filename;
1534 bprm->interp = filename;
1535
1536 retval = bprm_mm_init(bprm);
1537 if (retval)
1538 goto out_file;
1539
1540 bprm->argc = count(argv, MAX_ARG_STRINGS);
1541 if ((retval = bprm->argc) < 0)
1542 goto out;
1543
1544 bprm->envc = count(envp, MAX_ARG_STRINGS);
1545 if ((retval = bprm->envc) < 0)
1546 goto out;
1547
1548 retval = prepare_binprm(bprm);
1549 if (retval < 0)
1550 goto out;
1551
1552 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1553 if (retval < 0)
1554 goto out;
1555
1556 bprm->exec = bprm->p;
1557 retval = copy_strings(bprm->envc, envp, bprm);
1558 if (retval < 0)
1559 goto out;
1560
1561 retval = copy_strings(bprm->argc, argv, bprm);
1562 if (retval < 0)
1563 goto out;
1564
1565 retval = search_binary_handler(bprm,regs);
1566 if (retval < 0)
1567 goto out;
1568
1569 /* execve succeeded */
1570 current->fs->in_exec = 0;
1571 current->in_execve = 0;
1572 acct_update_integrals(current);
1573 free_bprm(bprm);
1574 if (displaced)
1575 put_files_struct(displaced);
1576 return retval;
1577
1578 out:
1579 if (bprm->mm) {
1580 acct_arg_size(bprm, 0);
1581 mmput(bprm->mm);
1582 }
1583
1584 out_file:
1585 if (bprm->file) {
1586 allow_write_access(bprm->file);
1587 fput(bprm->file);
1588 }
1589
1590 out_unmark:
1591 if (clear_in_exec)
1592 current->fs->in_exec = 0;
1593 current->in_execve = 0;
1594
1595 out_free:
1596 free_bprm(bprm);
1597
1598 out_files:
1599 if (displaced)
1600 reset_files_struct(displaced);
1601 out_ret:
1602 return retval;
1603 }
1604
do_execve(const char * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,struct pt_regs * regs)1605 int do_execve(const char *filename,
1606 const char __user *const __user *__argv,
1607 const char __user *const __user *__envp,
1608 struct pt_regs *regs)
1609 {
1610 struct user_arg_ptr argv = { .ptr.native = __argv };
1611 struct user_arg_ptr envp = { .ptr.native = __envp };
1612 return do_execve_common(filename, argv, envp, regs);
1613 }
1614
1615 #ifdef CONFIG_COMPAT
compat_do_execve(char * filename,compat_uptr_t __user * __argv,compat_uptr_t __user * __envp,struct pt_regs * regs)1616 int compat_do_execve(char *filename,
1617 compat_uptr_t __user *__argv,
1618 compat_uptr_t __user *__envp,
1619 struct pt_regs *regs)
1620 {
1621 struct user_arg_ptr argv = {
1622 .is_compat = true,
1623 .ptr.compat = __argv,
1624 };
1625 struct user_arg_ptr envp = {
1626 .is_compat = true,
1627 .ptr.compat = __envp,
1628 };
1629 return do_execve_common(filename, argv, envp, regs);
1630 }
1631 #endif
1632
set_binfmt(struct linux_binfmt * new)1633 void set_binfmt(struct linux_binfmt *new)
1634 {
1635 struct mm_struct *mm = current->mm;
1636
1637 if (mm->binfmt)
1638 module_put(mm->binfmt->module);
1639
1640 mm->binfmt = new;
1641 if (new)
1642 __module_get(new->module);
1643 }
1644
1645 EXPORT_SYMBOL(set_binfmt);
1646
expand_corename(struct core_name * cn)1647 static int expand_corename(struct core_name *cn)
1648 {
1649 char *old_corename = cn->corename;
1650
1651 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1652 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1653
1654 if (!cn->corename) {
1655 kfree(old_corename);
1656 return -ENOMEM;
1657 }
1658
1659 return 0;
1660 }
1661
cn_printf(struct core_name * cn,const char * fmt,...)1662 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1663 {
1664 char *cur;
1665 int need;
1666 int ret;
1667 va_list arg;
1668
1669 va_start(arg, fmt);
1670 need = vsnprintf(NULL, 0, fmt, arg);
1671 va_end(arg);
1672
1673 if (likely(need < cn->size - cn->used - 1))
1674 goto out_printf;
1675
1676 ret = expand_corename(cn);
1677 if (ret)
1678 goto expand_fail;
1679
1680 out_printf:
1681 cur = cn->corename + cn->used;
1682 va_start(arg, fmt);
1683 vsnprintf(cur, need + 1, fmt, arg);
1684 va_end(arg);
1685 cn->used += need;
1686 return 0;
1687
1688 expand_fail:
1689 return ret;
1690 }
1691
cn_escape(char * str)1692 static void cn_escape(char *str)
1693 {
1694 for (; *str; str++)
1695 if (*str == '/')
1696 *str = '!';
1697 }
1698
cn_print_exe_file(struct core_name * cn)1699 static int cn_print_exe_file(struct core_name *cn)
1700 {
1701 struct file *exe_file;
1702 char *pathbuf, *path;
1703 int ret;
1704
1705 exe_file = get_mm_exe_file(current->mm);
1706 if (!exe_file) {
1707 char *commstart = cn->corename + cn->used;
1708 ret = cn_printf(cn, "%s (path unknown)", current->comm);
1709 cn_escape(commstart);
1710 return ret;
1711 }
1712
1713 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1714 if (!pathbuf) {
1715 ret = -ENOMEM;
1716 goto put_exe_file;
1717 }
1718
1719 path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1720 if (IS_ERR(path)) {
1721 ret = PTR_ERR(path);
1722 goto free_buf;
1723 }
1724
1725 cn_escape(path);
1726
1727 ret = cn_printf(cn, "%s", path);
1728
1729 free_buf:
1730 kfree(pathbuf);
1731 put_exe_file:
1732 fput(exe_file);
1733 return ret;
1734 }
1735
1736 /* format_corename will inspect the pattern parameter, and output a
1737 * name into corename, which must have space for at least
1738 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1739 */
format_corename(struct core_name * cn,long signr)1740 static int format_corename(struct core_name *cn, long signr)
1741 {
1742 const struct cred *cred = current_cred();
1743 const char *pat_ptr = core_pattern;
1744 int ispipe = (*pat_ptr == '|');
1745 int pid_in_pattern = 0;
1746 int err = 0;
1747
1748 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1749 cn->corename = kmalloc(cn->size, GFP_KERNEL);
1750 cn->used = 0;
1751
1752 if (!cn->corename)
1753 return -ENOMEM;
1754
1755 /* Repeat as long as we have more pattern to process and more output
1756 space */
1757 while (*pat_ptr) {
1758 if (*pat_ptr != '%') {
1759 if (*pat_ptr == 0)
1760 goto out;
1761 err = cn_printf(cn, "%c", *pat_ptr++);
1762 } else {
1763 switch (*++pat_ptr) {
1764 /* single % at the end, drop that */
1765 case 0:
1766 goto out;
1767 /* Double percent, output one percent */
1768 case '%':
1769 err = cn_printf(cn, "%c", '%');
1770 break;
1771 /* pid */
1772 case 'p':
1773 pid_in_pattern = 1;
1774 err = cn_printf(cn, "%d",
1775 task_tgid_vnr(current));
1776 break;
1777 /* uid */
1778 case 'u':
1779 err = cn_printf(cn, "%d", cred->uid);
1780 break;
1781 /* gid */
1782 case 'g':
1783 err = cn_printf(cn, "%d", cred->gid);
1784 break;
1785 /* signal that caused the coredump */
1786 case 's':
1787 err = cn_printf(cn, "%ld", signr);
1788 break;
1789 /* UNIX time of coredump */
1790 case 't': {
1791 struct timeval tv;
1792 do_gettimeofday(&tv);
1793 err = cn_printf(cn, "%lu", tv.tv_sec);
1794 break;
1795 }
1796 /* hostname */
1797 case 'h': {
1798 char *namestart = cn->corename + cn->used;
1799 down_read(&uts_sem);
1800 err = cn_printf(cn, "%s",
1801 utsname()->nodename);
1802 up_read(&uts_sem);
1803 cn_escape(namestart);
1804 break;
1805 }
1806 /* executable */
1807 case 'e': {
1808 char *commstart = cn->corename + cn->used;
1809 err = cn_printf(cn, "%s", current->comm);
1810 cn_escape(commstart);
1811 break;
1812 }
1813 case 'E':
1814 err = cn_print_exe_file(cn);
1815 break;
1816 /* core limit size */
1817 case 'c':
1818 err = cn_printf(cn, "%lu",
1819 rlimit(RLIMIT_CORE));
1820 break;
1821 default:
1822 break;
1823 }
1824 ++pat_ptr;
1825 }
1826
1827 if (err)
1828 return err;
1829 }
1830
1831 /* Backward compatibility with core_uses_pid:
1832 *
1833 * If core_pattern does not include a %p (as is the default)
1834 * and core_uses_pid is set, then .%pid will be appended to
1835 * the filename. Do not do this for piped commands. */
1836 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1837 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1838 if (err)
1839 return err;
1840 }
1841 out:
1842 return ispipe;
1843 }
1844
zap_process(struct task_struct * start,int exit_code)1845 static int zap_process(struct task_struct *start, int exit_code)
1846 {
1847 struct task_struct *t;
1848 int nr = 0;
1849
1850 start->signal->flags = SIGNAL_GROUP_EXIT;
1851 start->signal->group_exit_code = exit_code;
1852 start->signal->group_stop_count = 0;
1853
1854 t = start;
1855 do {
1856 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1857 if (t != current && t->mm) {
1858 sigaddset(&t->pending.signal, SIGKILL);
1859 signal_wake_up(t, 1);
1860 nr++;
1861 }
1862 } while_each_thread(start, t);
1863
1864 return nr;
1865 }
1866
zap_threads(struct task_struct * tsk,struct mm_struct * mm,struct core_state * core_state,int exit_code)1867 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1868 struct core_state *core_state, int exit_code)
1869 {
1870 struct task_struct *g, *p;
1871 unsigned long flags;
1872 int nr = -EAGAIN;
1873
1874 spin_lock_irq(&tsk->sighand->siglock);
1875 if (!signal_group_exit(tsk->signal)) {
1876 mm->core_state = core_state;
1877 nr = zap_process(tsk, exit_code);
1878 }
1879 spin_unlock_irq(&tsk->sighand->siglock);
1880 if (unlikely(nr < 0))
1881 return nr;
1882
1883 if (atomic_read(&mm->mm_users) == nr + 1)
1884 goto done;
1885 /*
1886 * We should find and kill all tasks which use this mm, and we should
1887 * count them correctly into ->nr_threads. We don't take tasklist
1888 * lock, but this is safe wrt:
1889 *
1890 * fork:
1891 * None of sub-threads can fork after zap_process(leader). All
1892 * processes which were created before this point should be
1893 * visible to zap_threads() because copy_process() adds the new
1894 * process to the tail of init_task.tasks list, and lock/unlock
1895 * of ->siglock provides a memory barrier.
1896 *
1897 * do_exit:
1898 * The caller holds mm->mmap_sem. This means that the task which
1899 * uses this mm can't pass exit_mm(), so it can't exit or clear
1900 * its ->mm.
1901 *
1902 * de_thread:
1903 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1904 * we must see either old or new leader, this does not matter.
1905 * However, it can change p->sighand, so lock_task_sighand(p)
1906 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1907 * it can't fail.
1908 *
1909 * Note also that "g" can be the old leader with ->mm == NULL
1910 * and already unhashed and thus removed from ->thread_group.
1911 * This is OK, __unhash_process()->list_del_rcu() does not
1912 * clear the ->next pointer, we will find the new leader via
1913 * next_thread().
1914 */
1915 rcu_read_lock();
1916 for_each_process(g) {
1917 if (g == tsk->group_leader)
1918 continue;
1919 if (g->flags & PF_KTHREAD)
1920 continue;
1921 p = g;
1922 do {
1923 if (p->mm) {
1924 if (unlikely(p->mm == mm)) {
1925 lock_task_sighand(p, &flags);
1926 nr += zap_process(p, exit_code);
1927 unlock_task_sighand(p, &flags);
1928 }
1929 break;
1930 }
1931 } while_each_thread(g, p);
1932 }
1933 rcu_read_unlock();
1934 done:
1935 atomic_set(&core_state->nr_threads, nr);
1936 return nr;
1937 }
1938
coredump_wait(int exit_code,struct core_state * core_state)1939 static int coredump_wait(int exit_code, struct core_state *core_state)
1940 {
1941 struct task_struct *tsk = current;
1942 struct mm_struct *mm = tsk->mm;
1943 int core_waiters = -EBUSY;
1944
1945 init_completion(&core_state->startup);
1946 core_state->dumper.task = tsk;
1947 core_state->dumper.next = NULL;
1948
1949 down_write(&mm->mmap_sem);
1950 if (!mm->core_state)
1951 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1952 up_write(&mm->mmap_sem);
1953
1954 if (core_waiters > 0)
1955 wait_for_completion(&core_state->startup);
1956
1957 return core_waiters;
1958 }
1959
coredump_finish(struct mm_struct * mm)1960 static void coredump_finish(struct mm_struct *mm)
1961 {
1962 struct core_thread *curr, *next;
1963 struct task_struct *task;
1964
1965 next = mm->core_state->dumper.next;
1966 while ((curr = next) != NULL) {
1967 next = curr->next;
1968 task = curr->task;
1969 /*
1970 * see exit_mm(), curr->task must not see
1971 * ->task == NULL before we read ->next.
1972 */
1973 smp_mb();
1974 curr->task = NULL;
1975 wake_up_process(task);
1976 }
1977
1978 mm->core_state = NULL;
1979 }
1980
1981 /*
1982 * set_dumpable converts traditional three-value dumpable to two flags and
1983 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1984 * these bits are not changed atomically. So get_dumpable can observe the
1985 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1986 * return either old dumpable or new one by paying attention to the order of
1987 * modifying the bits.
1988 *
1989 * dumpable | mm->flags (binary)
1990 * old new | initial interim final
1991 * ---------+-----------------------
1992 * 0 1 | 00 01 01
1993 * 0 2 | 00 10(*) 11
1994 * 1 0 | 01 00 00
1995 * 1 2 | 01 11 11
1996 * 2 0 | 11 10(*) 00
1997 * 2 1 | 11 11 01
1998 *
1999 * (*) get_dumpable regards interim value of 10 as 11.
2000 */
set_dumpable(struct mm_struct * mm,int value)2001 void set_dumpable(struct mm_struct *mm, int value)
2002 {
2003 switch (value) {
2004 case 0:
2005 clear_bit(MMF_DUMPABLE, &mm->flags);
2006 smp_wmb();
2007 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
2008 break;
2009 case 1:
2010 set_bit(MMF_DUMPABLE, &mm->flags);
2011 smp_wmb();
2012 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
2013 break;
2014 case 2:
2015 set_bit(MMF_DUMP_SECURELY, &mm->flags);
2016 smp_wmb();
2017 set_bit(MMF_DUMPABLE, &mm->flags);
2018 break;
2019 }
2020 }
2021
__get_dumpable(unsigned long mm_flags)2022 static int __get_dumpable(unsigned long mm_flags)
2023 {
2024 int ret;
2025
2026 ret = mm_flags & MMF_DUMPABLE_MASK;
2027 return (ret >= 2) ? 2 : ret;
2028 }
2029
2030 /*
2031 * This returns the actual value of the suid_dumpable flag. For things
2032 * that are using this for checking for privilege transitions, it must
2033 * test against SUID_DUMP_USER rather than treating it as a boolean
2034 * value.
2035 */
get_dumpable(struct mm_struct * mm)2036 int get_dumpable(struct mm_struct *mm)
2037 {
2038 return __get_dumpable(mm->flags);
2039 }
2040
wait_for_dump_helpers(struct file * file)2041 static void wait_for_dump_helpers(struct file *file)
2042 {
2043 struct pipe_inode_info *pipe;
2044
2045 pipe = file->f_path.dentry->d_inode->i_pipe;
2046
2047 pipe_lock(pipe);
2048 pipe->readers++;
2049 pipe->writers--;
2050
2051 while ((pipe->readers > 1) && (!signal_pending(current))) {
2052 wake_up_interruptible_sync(&pipe->wait);
2053 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
2054 pipe_wait(pipe);
2055 }
2056
2057 pipe->readers--;
2058 pipe->writers++;
2059 pipe_unlock(pipe);
2060
2061 }
2062
2063
2064 /*
2065 * umh_pipe_setup
2066 * helper function to customize the process used
2067 * to collect the core in userspace. Specifically
2068 * it sets up a pipe and installs it as fd 0 (stdin)
2069 * for the process. Returns 0 on success, or
2070 * PTR_ERR on failure.
2071 * Note that it also sets the core limit to 1. This
2072 * is a special value that we use to trap recursive
2073 * core dumps
2074 */
umh_pipe_setup(struct subprocess_info * info,struct cred * new)2075 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
2076 {
2077 struct file *rp, *wp;
2078 struct fdtable *fdt;
2079 struct coredump_params *cp = (struct coredump_params *)info->data;
2080 struct files_struct *cf = current->files;
2081
2082 wp = create_write_pipe(0);
2083 if (IS_ERR(wp))
2084 return PTR_ERR(wp);
2085
2086 rp = create_read_pipe(wp, 0);
2087 if (IS_ERR(rp)) {
2088 free_write_pipe(wp);
2089 return PTR_ERR(rp);
2090 }
2091
2092 cp->file = wp;
2093
2094 sys_close(0);
2095 fd_install(0, rp);
2096 spin_lock(&cf->file_lock);
2097 fdt = files_fdtable(cf);
2098 __set_open_fd(0, fdt);
2099 __clear_close_on_exec(0, fdt);
2100 spin_unlock(&cf->file_lock);
2101
2102 /* and disallow core files too */
2103 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2104
2105 return 0;
2106 }
2107
do_coredump(long signr,int exit_code,struct pt_regs * regs)2108 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
2109 {
2110 struct core_state core_state;
2111 struct core_name cn;
2112 struct mm_struct *mm = current->mm;
2113 struct linux_binfmt * binfmt;
2114 const struct cred *old_cred;
2115 struct cred *cred;
2116 int retval = 0;
2117 int flag = 0;
2118 int ispipe;
2119 static atomic_t core_dump_count = ATOMIC_INIT(0);
2120 struct coredump_params cprm = {
2121 .signr = signr,
2122 .regs = regs,
2123 .limit = rlimit(RLIMIT_CORE),
2124 /*
2125 * We must use the same mm->flags while dumping core to avoid
2126 * inconsistency of bit flags, since this flag is not protected
2127 * by any locks.
2128 */
2129 .mm_flags = mm->flags,
2130 };
2131
2132 audit_core_dumps(signr);
2133
2134 binfmt = mm->binfmt;
2135 if (!binfmt || !binfmt->core_dump)
2136 goto fail;
2137 if (!__get_dumpable(cprm.mm_flags))
2138 goto fail;
2139
2140 cred = prepare_creds();
2141 if (!cred)
2142 goto fail;
2143 /*
2144 * We cannot trust fsuid as being the "true" uid of the
2145 * process nor do we know its entire history. We only know it
2146 * was tainted so we dump it as root in mode 2.
2147 */
2148 if (__get_dumpable(cprm.mm_flags) == 2) {
2149 /* Setuid core dump mode */
2150 flag = O_EXCL; /* Stop rewrite attacks */
2151 cred->fsuid = 0; /* Dump root private */
2152 }
2153
2154 retval = coredump_wait(exit_code, &core_state);
2155 if (retval < 0)
2156 goto fail_creds;
2157
2158 old_cred = override_creds(cred);
2159
2160 /*
2161 * Clear any false indication of pending signals that might
2162 * be seen by the filesystem code called to write the core file.
2163 */
2164 clear_thread_flag(TIF_SIGPENDING);
2165
2166 ispipe = format_corename(&cn, signr);
2167
2168 if (ispipe) {
2169 int dump_count;
2170 char **helper_argv;
2171
2172 if (ispipe < 0) {
2173 printk(KERN_WARNING "format_corename failed\n");
2174 printk(KERN_WARNING "Aborting core\n");
2175 goto fail_corename;
2176 }
2177
2178 if (cprm.limit == 1) {
2179 /*
2180 * Normally core limits are irrelevant to pipes, since
2181 * we're not writing to the file system, but we use
2182 * cprm.limit of 1 here as a speacial value. Any
2183 * non-1 limit gets set to RLIM_INFINITY below, but
2184 * a limit of 0 skips the dump. This is a consistent
2185 * way to catch recursive crashes. We can still crash
2186 * if the core_pattern binary sets RLIM_CORE = !1
2187 * but it runs as root, and can do lots of stupid things
2188 * Note that we use task_tgid_vnr here to grab the pid
2189 * of the process group leader. That way we get the
2190 * right pid if a thread in a multi-threaded
2191 * core_pattern process dies.
2192 */
2193 printk(KERN_WARNING
2194 "Process %d(%s) has RLIMIT_CORE set to 1\n",
2195 task_tgid_vnr(current), current->comm);
2196 printk(KERN_WARNING "Aborting core\n");
2197 goto fail_unlock;
2198 }
2199 cprm.limit = RLIM_INFINITY;
2200
2201 dump_count = atomic_inc_return(&core_dump_count);
2202 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2203 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2204 task_tgid_vnr(current), current->comm);
2205 printk(KERN_WARNING "Skipping core dump\n");
2206 goto fail_dropcount;
2207 }
2208
2209 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2210 if (!helper_argv) {
2211 printk(KERN_WARNING "%s failed to allocate memory\n",
2212 __func__);
2213 goto fail_dropcount;
2214 }
2215
2216 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2217 NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2218 NULL, &cprm);
2219 argv_free(helper_argv);
2220 if (retval) {
2221 printk(KERN_INFO "Core dump to %s pipe failed\n",
2222 cn.corename);
2223 goto close_fail;
2224 }
2225 } else {
2226 struct inode *inode;
2227
2228 if (cprm.limit < binfmt->min_coredump)
2229 goto fail_unlock;
2230
2231 cprm.file = filp_open(cn.corename,
2232 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2233 0600);
2234 if (IS_ERR(cprm.file))
2235 goto fail_unlock;
2236
2237 inode = cprm.file->f_path.dentry->d_inode;
2238 if (inode->i_nlink > 1)
2239 goto close_fail;
2240 if (d_unhashed(cprm.file->f_path.dentry))
2241 goto close_fail;
2242 /*
2243 * AK: actually i see no reason to not allow this for named
2244 * pipes etc, but keep the previous behaviour for now.
2245 */
2246 if (!S_ISREG(inode->i_mode))
2247 goto close_fail;
2248 /*
2249 * Dont allow local users get cute and trick others to coredump
2250 * into their pre-created files.
2251 */
2252 if (inode->i_uid != current_fsuid())
2253 goto close_fail;
2254 if (!cprm.file->f_op || !cprm.file->f_op->write)
2255 goto close_fail;
2256 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2257 goto close_fail;
2258 }
2259
2260 retval = binfmt->core_dump(&cprm);
2261 if (retval)
2262 current->signal->group_exit_code |= 0x80;
2263
2264 if (ispipe && core_pipe_limit)
2265 wait_for_dump_helpers(cprm.file);
2266 close_fail:
2267 if (cprm.file)
2268 filp_close(cprm.file, NULL);
2269 fail_dropcount:
2270 if (ispipe)
2271 atomic_dec(&core_dump_count);
2272 fail_unlock:
2273 kfree(cn.corename);
2274 fail_corename:
2275 coredump_finish(mm);
2276 revert_creds(old_cred);
2277 fail_creds:
2278 put_cred(cred);
2279 fail:
2280 return;
2281 }
2282
2283 /*
2284 * Core dumping helper functions. These are the only things you should
2285 * do on a core-file: use only these functions to write out all the
2286 * necessary info.
2287 */
dump_write(struct file * file,const void * addr,int nr)2288 int dump_write(struct file *file, const void *addr, int nr)
2289 {
2290 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2291 }
2292 EXPORT_SYMBOL(dump_write);
2293
dump_seek(struct file * file,loff_t off)2294 int dump_seek(struct file *file, loff_t off)
2295 {
2296 int ret = 1;
2297
2298 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2299 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2300 return 0;
2301 } else {
2302 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2303
2304 if (!buf)
2305 return 0;
2306 while (off > 0) {
2307 unsigned long n = off;
2308
2309 if (n > PAGE_SIZE)
2310 n = PAGE_SIZE;
2311 if (!dump_write(file, buf, n)) {
2312 ret = 0;
2313 break;
2314 }
2315 off -= n;
2316 }
2317 free_page((unsigned long)buf);
2318 }
2319 return ret;
2320 }
2321 EXPORT_SYMBOL(dump_seek);
2322