1 /*
2  * dmm.c
3  *
4  * DSP-BIOS Bridge driver support functions for TI OMAP processors.
5  *
6  * The Dynamic Memory Manager (DMM) module manages the DSP Virtual address
7  * space that can be directly mapped to any MPU buffer or memory region
8  *
9  * Notes:
10  *   Region: Generic memory entitiy having a start address and a size
11  *   Chunk:  Reserved region
12  *
13  * Copyright (C) 2005-2006 Texas Instruments, Inc.
14  *
15  * This package is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License version 2 as
17  * published by the Free Software Foundation.
18  *
19  * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
21  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
22  */
23 #include <linux/types.h>
24 
25 /*  ----------------------------------- Host OS */
26 #include <dspbridge/host_os.h>
27 
28 /*  ----------------------------------- DSP/BIOS Bridge */
29 #include <dspbridge/dbdefs.h>
30 
31 /*  ----------------------------------- OS Adaptation Layer */
32 #include <dspbridge/sync.h>
33 
34 /*  ----------------------------------- Platform Manager */
35 #include <dspbridge/dev.h>
36 #include <dspbridge/proc.h>
37 
38 /*  ----------------------------------- This */
39 #include <dspbridge/dmm.h>
40 
41 /*  ----------------------------------- Defines, Data Structures, Typedefs */
42 #define DMM_ADDR_VIRTUAL(a) \
43 	(((struct map_page *)(a) - virtual_mapping_table) * PG_SIZE4K +\
44 	dyn_mem_map_beg)
45 #define DMM_ADDR_TO_INDEX(a) (((a) - dyn_mem_map_beg) / PG_SIZE4K)
46 
47 /* DMM Mgr */
48 struct dmm_object {
49 	/* Dmm Lock is used to serialize access mem manager for
50 	 * multi-threads. */
51 	spinlock_t dmm_lock;	/* Lock to access dmm mgr */
52 };
53 
54 struct map_page {
55 	u32 region_size:15;
56 	u32 mapped_size:15;
57 	u32 reserved:1;
58 	u32 mapped:1;
59 };
60 
61 /*  Create the free list */
62 static struct map_page *virtual_mapping_table;
63 static u32 free_region;		/* The index of free region */
64 static u32 free_size;
65 static u32 dyn_mem_map_beg;	/* The Beginning of dynamic memory mapping */
66 static u32 table_size;		/* The size of virt and phys pages tables */
67 
68 /*  ----------------------------------- Function Prototypes */
69 static struct map_page *get_region(u32 addr);
70 static struct map_page *get_free_region(u32 len);
71 static struct map_page *get_mapped_region(u32 addrs);
72 
73 /*  ======== dmm_create_tables ========
74  *  Purpose:
75  *      Create table to hold the information of physical address
76  *      the buffer pages that is passed by the user, and the table
77  *      to hold the information of the virtual memory that is reserved
78  *      for DSP.
79  */
dmm_create_tables(struct dmm_object * dmm_mgr,u32 addr,u32 size)80 int dmm_create_tables(struct dmm_object *dmm_mgr, u32 addr, u32 size)
81 {
82 	struct dmm_object *dmm_obj = (struct dmm_object *)dmm_mgr;
83 	int status = 0;
84 
85 	status = dmm_delete_tables(dmm_obj);
86 	if (!status) {
87 		dyn_mem_map_beg = addr;
88 		table_size = PG_ALIGN_HIGH(size, PG_SIZE4K) / PG_SIZE4K;
89 		/*  Create the free list */
90 		virtual_mapping_table = __vmalloc(table_size *
91 				sizeof(struct map_page), GFP_KERNEL |
92 				__GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
93 		if (virtual_mapping_table == NULL)
94 			status = -ENOMEM;
95 		else {
96 			/* On successful allocation,
97 			 * all entries are zero ('free') */
98 			free_region = 0;
99 			free_size = table_size * PG_SIZE4K;
100 			virtual_mapping_table[0].region_size = table_size;
101 		}
102 	}
103 
104 	if (status)
105 		pr_err("%s: failure, status 0x%x\n", __func__, status);
106 
107 	return status;
108 }
109 
110 /*
111  *  ======== dmm_create ========
112  *  Purpose:
113  *      Create a dynamic memory manager object.
114  */
dmm_create(struct dmm_object ** dmm_manager,struct dev_object * hdev_obj,const struct dmm_mgrattrs * mgr_attrts)115 int dmm_create(struct dmm_object **dmm_manager,
116 		      struct dev_object *hdev_obj,
117 		      const struct dmm_mgrattrs *mgr_attrts)
118 {
119 	struct dmm_object *dmm_obj = NULL;
120 	int status = 0;
121 
122 	*dmm_manager = NULL;
123 	/* create, zero, and tag a cmm mgr object */
124 	dmm_obj = kzalloc(sizeof(struct dmm_object), GFP_KERNEL);
125 	if (dmm_obj != NULL) {
126 		spin_lock_init(&dmm_obj->dmm_lock);
127 		*dmm_manager = dmm_obj;
128 	} else {
129 		status = -ENOMEM;
130 	}
131 
132 	return status;
133 }
134 
135 /*
136  *  ======== dmm_destroy ========
137  *  Purpose:
138  *      Release the communication memory manager resources.
139  */
dmm_destroy(struct dmm_object * dmm_mgr)140 int dmm_destroy(struct dmm_object *dmm_mgr)
141 {
142 	struct dmm_object *dmm_obj = (struct dmm_object *)dmm_mgr;
143 	int status = 0;
144 
145 	if (dmm_mgr) {
146 		status = dmm_delete_tables(dmm_obj);
147 		if (!status)
148 			kfree(dmm_obj);
149 	} else
150 		status = -EFAULT;
151 
152 	return status;
153 }
154 
155 /*
156  *  ======== dmm_delete_tables ========
157  *  Purpose:
158  *      Delete DMM Tables.
159  */
dmm_delete_tables(struct dmm_object * dmm_mgr)160 int dmm_delete_tables(struct dmm_object *dmm_mgr)
161 {
162 	int status = 0;
163 
164 	/* Delete all DMM tables */
165 	if (dmm_mgr)
166 		vfree(virtual_mapping_table);
167 	else
168 		status = -EFAULT;
169 	return status;
170 }
171 
172 /*
173  *  ======== dmm_get_handle ========
174  *  Purpose:
175  *      Return the dynamic memory manager object for this device.
176  *      This is typically called from the client process.
177  */
dmm_get_handle(void * hprocessor,struct dmm_object ** dmm_manager)178 int dmm_get_handle(void *hprocessor, struct dmm_object **dmm_manager)
179 {
180 	int status = 0;
181 	struct dev_object *hdev_obj;
182 
183 	if (hprocessor != NULL)
184 		status = proc_get_dev_object(hprocessor, &hdev_obj);
185 	else
186 		hdev_obj = dev_get_first();	/* default */
187 
188 	if (!status)
189 		status = dev_get_dmm_mgr(hdev_obj, dmm_manager);
190 
191 	return status;
192 }
193 
194 /*
195  *  ======== dmm_map_memory ========
196  *  Purpose:
197  *      Add a mapping block to the reserved chunk. DMM assumes that this block
198  *  will be mapped in the DSP/IVA's address space. DMM returns an error if a
199  *  mapping overlaps another one. This function stores the info that will be
200  *  required later while unmapping the block.
201  */
dmm_map_memory(struct dmm_object * dmm_mgr,u32 addr,u32 size)202 int dmm_map_memory(struct dmm_object *dmm_mgr, u32 addr, u32 size)
203 {
204 	struct dmm_object *dmm_obj = (struct dmm_object *)dmm_mgr;
205 	struct map_page *chunk;
206 	int status = 0;
207 
208 	spin_lock(&dmm_obj->dmm_lock);
209 	/* Find the Reserved memory chunk containing the DSP block to
210 	 * be mapped */
211 	chunk = (struct map_page *)get_region(addr);
212 	if (chunk != NULL) {
213 		/* Mark the region 'mapped', leave the 'reserved' info as-is */
214 		chunk->mapped = true;
215 		chunk->mapped_size = (size / PG_SIZE4K);
216 	} else
217 		status = -ENOENT;
218 	spin_unlock(&dmm_obj->dmm_lock);
219 
220 	dev_dbg(bridge, "%s dmm_mgr %p, addr %x, size %x\n\tstatus %x, "
221 		"chunk %p", __func__, dmm_mgr, addr, size, status, chunk);
222 
223 	return status;
224 }
225 
226 /*
227  *  ======== dmm_reserve_memory ========
228  *  Purpose:
229  *      Reserve a chunk of virtually contiguous DSP/IVA address space.
230  */
dmm_reserve_memory(struct dmm_object * dmm_mgr,u32 size,u32 * prsv_addr)231 int dmm_reserve_memory(struct dmm_object *dmm_mgr, u32 size,
232 			      u32 *prsv_addr)
233 {
234 	int status = 0;
235 	struct dmm_object *dmm_obj = (struct dmm_object *)dmm_mgr;
236 	struct map_page *node;
237 	u32 rsv_addr = 0;
238 	u32 rsv_size = 0;
239 
240 	spin_lock(&dmm_obj->dmm_lock);
241 
242 	/* Try to get a DSP chunk from the free list */
243 	node = get_free_region(size);
244 	if (node != NULL) {
245 		/*  DSP chunk of given size is available. */
246 		rsv_addr = DMM_ADDR_VIRTUAL(node);
247 		/* Calculate the number entries to use */
248 		rsv_size = size / PG_SIZE4K;
249 		if (rsv_size < node->region_size) {
250 			/* Mark remainder of free region */
251 			node[rsv_size].mapped = false;
252 			node[rsv_size].reserved = false;
253 			node[rsv_size].region_size =
254 			    node->region_size - rsv_size;
255 			node[rsv_size].mapped_size = 0;
256 		}
257 		/*  get_region will return first fit chunk. But we only use what
258 		   is requested. */
259 		node->mapped = false;
260 		node->reserved = true;
261 		node->region_size = rsv_size;
262 		node->mapped_size = 0;
263 		/* Return the chunk's starting address */
264 		*prsv_addr = rsv_addr;
265 	} else
266 		/*dSP chunk of given size is not available */
267 		status = -ENOMEM;
268 
269 	spin_unlock(&dmm_obj->dmm_lock);
270 
271 	dev_dbg(bridge, "%s dmm_mgr %p, size %x, prsv_addr %p\n\tstatus %x, "
272 		"rsv_addr %x, rsv_size %x\n", __func__, dmm_mgr, size,
273 		prsv_addr, status, rsv_addr, rsv_size);
274 
275 	return status;
276 }
277 
278 /*
279  *  ======== dmm_un_map_memory ========
280  *  Purpose:
281  *      Remove the mapped block from the reserved chunk.
282  */
dmm_un_map_memory(struct dmm_object * dmm_mgr,u32 addr,u32 * psize)283 int dmm_un_map_memory(struct dmm_object *dmm_mgr, u32 addr, u32 *psize)
284 {
285 	struct dmm_object *dmm_obj = (struct dmm_object *)dmm_mgr;
286 	struct map_page *chunk;
287 	int status = 0;
288 
289 	spin_lock(&dmm_obj->dmm_lock);
290 	chunk = get_mapped_region(addr);
291 	if (chunk == NULL)
292 		status = -ENOENT;
293 
294 	if (!status) {
295 		/* Unmap the region */
296 		*psize = chunk->mapped_size * PG_SIZE4K;
297 		chunk->mapped = false;
298 		chunk->mapped_size = 0;
299 	}
300 	spin_unlock(&dmm_obj->dmm_lock);
301 
302 	dev_dbg(bridge, "%s: dmm_mgr %p, addr %x, psize %p\n\tstatus %x, "
303 		"chunk %p\n", __func__, dmm_mgr, addr, psize, status, chunk);
304 
305 	return status;
306 }
307 
308 /*
309  *  ======== dmm_un_reserve_memory ========
310  *  Purpose:
311  *      Free a chunk of reserved DSP/IVA address space.
312  */
dmm_un_reserve_memory(struct dmm_object * dmm_mgr,u32 rsv_addr)313 int dmm_un_reserve_memory(struct dmm_object *dmm_mgr, u32 rsv_addr)
314 {
315 	struct dmm_object *dmm_obj = (struct dmm_object *)dmm_mgr;
316 	struct map_page *chunk;
317 	u32 i;
318 	int status = 0;
319 	u32 chunk_size;
320 
321 	spin_lock(&dmm_obj->dmm_lock);
322 
323 	/* Find the chunk containing the reserved address */
324 	chunk = get_mapped_region(rsv_addr);
325 	if (chunk == NULL)
326 		status = -ENOENT;
327 
328 	if (!status) {
329 		/* Free all the mapped pages for this reserved region */
330 		i = 0;
331 		while (i < chunk->region_size) {
332 			if (chunk[i].mapped) {
333 				/* Remove mapping from the page tables. */
334 				chunk_size = chunk[i].mapped_size;
335 				/* Clear the mapping flags */
336 				chunk[i].mapped = false;
337 				chunk[i].mapped_size = 0;
338 				i += chunk_size;
339 			} else
340 				i++;
341 		}
342 		/* Clear the flags (mark the region 'free') */
343 		chunk->reserved = false;
344 		/* NOTE: We do NOT coalesce free regions here.
345 		 * Free regions are coalesced in get_region(), as it traverses
346 		 *the whole mapping table
347 		 */
348 	}
349 	spin_unlock(&dmm_obj->dmm_lock);
350 
351 	dev_dbg(bridge, "%s: dmm_mgr %p, rsv_addr %x\n\tstatus %x chunk %p",
352 		__func__, dmm_mgr, rsv_addr, status, chunk);
353 
354 	return status;
355 }
356 
357 /*
358  *  ======== get_region ========
359  *  Purpose:
360  *      Returns a region containing the specified memory region
361  */
get_region(u32 addr)362 static struct map_page *get_region(u32 addr)
363 {
364 	struct map_page *curr_region = NULL;
365 	u32 i = 0;
366 
367 	if (virtual_mapping_table != NULL) {
368 		/* find page mapped by this address */
369 		i = DMM_ADDR_TO_INDEX(addr);
370 		if (i < table_size)
371 			curr_region = virtual_mapping_table + i;
372 	}
373 
374 	dev_dbg(bridge, "%s: curr_region %p, free_region %d, free_size %d\n",
375 		__func__, curr_region, free_region, free_size);
376 	return curr_region;
377 }
378 
379 /*
380  *  ======== get_free_region ========
381  *  Purpose:
382  *  Returns the requested free region
383  */
get_free_region(u32 len)384 static struct map_page *get_free_region(u32 len)
385 {
386 	struct map_page *curr_region = NULL;
387 	u32 i = 0;
388 	u32 region_size = 0;
389 	u32 next_i = 0;
390 
391 	if (virtual_mapping_table == NULL)
392 		return curr_region;
393 	if (len > free_size) {
394 		/* Find the largest free region
395 		 * (coalesce during the traversal) */
396 		while (i < table_size) {
397 			region_size = virtual_mapping_table[i].region_size;
398 			next_i = i + region_size;
399 			if (virtual_mapping_table[i].reserved == false) {
400 				/* Coalesce, if possible */
401 				if (next_i < table_size &&
402 				    virtual_mapping_table[next_i].reserved
403 				    == false) {
404 					virtual_mapping_table[i].region_size +=
405 					    virtual_mapping_table
406 					    [next_i].region_size;
407 					continue;
408 				}
409 				region_size *= PG_SIZE4K;
410 				if (region_size > free_size) {
411 					free_region = i;
412 					free_size = region_size;
413 				}
414 			}
415 			i = next_i;
416 		}
417 	}
418 	if (len <= free_size) {
419 		curr_region = virtual_mapping_table + free_region;
420 		free_region += (len / PG_SIZE4K);
421 		free_size -= len;
422 	}
423 	return curr_region;
424 }
425 
426 /*
427  *  ======== get_mapped_region ========
428  *  Purpose:
429  *  Returns the requestedmapped region
430  */
get_mapped_region(u32 addrs)431 static struct map_page *get_mapped_region(u32 addrs)
432 {
433 	u32 i = 0;
434 	struct map_page *curr_region = NULL;
435 
436 	if (virtual_mapping_table == NULL)
437 		return curr_region;
438 
439 	i = DMM_ADDR_TO_INDEX(addrs);
440 	if (i < table_size && (virtual_mapping_table[i].mapped ||
441 			       virtual_mapping_table[i].reserved))
442 		curr_region = virtual_mapping_table + i;
443 	return curr_region;
444 }
445 
446 #ifdef DSP_DMM_DEBUG
dmm_mem_map_dump(struct dmm_object * dmm_mgr)447 u32 dmm_mem_map_dump(struct dmm_object *dmm_mgr)
448 {
449 	struct map_page *curr_node = NULL;
450 	u32 i;
451 	u32 freemem = 0;
452 	u32 bigsize = 0;
453 
454 	spin_lock(&dmm_mgr->dmm_lock);
455 
456 	if (virtual_mapping_table != NULL) {
457 		for (i = 0; i < table_size; i +=
458 		     virtual_mapping_table[i].region_size) {
459 			curr_node = virtual_mapping_table + i;
460 			if (curr_node->reserved) {
461 				/*printk("RESERVED size = 0x%x, "
462 				   "Map size = 0x%x\n",
463 				   (curr_node->region_size * PG_SIZE4K),
464 				   (curr_node->mapped == false) ? 0 :
465 				   (curr_node->mapped_size * PG_SIZE4K));
466 				 */
467 			} else {
468 /*				printk("UNRESERVED size = 0x%x\n",
469 					(curr_node->region_size * PG_SIZE4K));
470  */
471 				freemem += (curr_node->region_size * PG_SIZE4K);
472 				if (curr_node->region_size > bigsize)
473 					bigsize = curr_node->region_size;
474 			}
475 		}
476 	}
477 	spin_unlock(&dmm_mgr->dmm_lock);
478 	printk(KERN_INFO "Total DSP VA FREE memory = %d Mbytes\n",
479 	       freemem / (1024 * 1024));
480 	printk(KERN_INFO "Total DSP VA USED memory= %d Mbytes \n",
481 	       (((table_size * PG_SIZE4K) - freemem)) / (1024 * 1024));
482 	printk(KERN_INFO "DSP VA - Biggest FREE block = %d Mbytes \n\n",
483 	       (bigsize * PG_SIZE4K / (1024 * 1024)));
484 
485 	return 0;
486 }
487 #endif
488