1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2006, Intel Corporation.
4 *
5 * Copyright (C) 2006-2008 Intel Corporation
6 * Author: Ashok Raj <ashok.raj@intel.com>
7 * Author: Shaohua Li <shaohua.li@intel.com>
8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12 * tables.
13 *
14 * These routines are used by both DMA-remapping and Interrupt-remapping
15 */
16
17 #define pr_fmt(fmt) "DMAR: " fmt
18
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/timer.h>
23 #include <linux/irq.h>
24 #include <linux/interrupt.h>
25 #include <linux/tboot.h>
26 #include <linux/dmi.h>
27 #include <linux/slab.h>
28 #include <linux/iommu.h>
29 #include <linux/numa.h>
30 #include <linux/limits.h>
31 #include <asm/irq_remapping.h>
32
33 #include "iommu.h"
34 #include "../irq_remapping.h"
35 #include "perf.h"
36 #include "trace.h"
37
38 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
39 struct dmar_res_callback {
40 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
41 void *arg[ACPI_DMAR_TYPE_RESERVED];
42 bool ignore_unhandled;
43 bool print_entry;
44 };
45
46 /*
47 * Assumptions:
48 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
49 * before IO devices managed by that unit.
50 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
51 * after IO devices managed by that unit.
52 * 3) Hotplug events are rare.
53 *
54 * Locking rules for DMA and interrupt remapping related global data structures:
55 * 1) Use dmar_global_lock in process context
56 * 2) Use RCU in interrupt context
57 */
58 DECLARE_RWSEM(dmar_global_lock);
59 LIST_HEAD(dmar_drhd_units);
60
61 struct acpi_table_header * __initdata dmar_tbl;
62 static int dmar_dev_scope_status = 1;
63 static DEFINE_IDA(dmar_seq_ids);
64
65 static int alloc_iommu(struct dmar_drhd_unit *drhd);
66 static void free_iommu(struct intel_iommu *iommu);
67
dmar_register_drhd_unit(struct dmar_drhd_unit * drhd)68 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
69 {
70 /*
71 * add INCLUDE_ALL at the tail, so scan the list will find it at
72 * the very end.
73 */
74 if (drhd->include_all)
75 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
76 else
77 list_add_rcu(&drhd->list, &dmar_drhd_units);
78 }
79
dmar_alloc_dev_scope(void * start,void * end,int * cnt)80 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
81 {
82 struct acpi_dmar_device_scope *scope;
83
84 *cnt = 0;
85 while (start < end) {
86 scope = start;
87 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
88 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
90 (*cnt)++;
91 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
92 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
93 pr_warn("Unsupported device scope\n");
94 }
95 start += scope->length;
96 }
97 if (*cnt == 0)
98 return NULL;
99
100 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
101 }
102
dmar_free_dev_scope(struct dmar_dev_scope ** devices,int * cnt)103 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
104 {
105 int i;
106 struct device *tmp_dev;
107
108 if (*devices && *cnt) {
109 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
110 put_device(tmp_dev);
111 kfree(*devices);
112 }
113
114 *devices = NULL;
115 *cnt = 0;
116 }
117
118 /* Optimize out kzalloc()/kfree() for normal cases */
119 static char dmar_pci_notify_info_buf[64];
120
121 static struct dmar_pci_notify_info *
dmar_alloc_pci_notify_info(struct pci_dev * dev,unsigned long event)122 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
123 {
124 int level = 0;
125 size_t size;
126 struct pci_dev *tmp;
127 struct dmar_pci_notify_info *info;
128
129 BUG_ON(dev->is_virtfn);
130
131 /*
132 * Ignore devices that have a domain number higher than what can
133 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
134 */
135 if (pci_domain_nr(dev->bus) > U16_MAX)
136 return NULL;
137
138 /* Only generate path[] for device addition event */
139 if (event == BUS_NOTIFY_ADD_DEVICE)
140 for (tmp = dev; tmp; tmp = tmp->bus->self)
141 level++;
142
143 size = struct_size(info, path, level);
144 if (size <= sizeof(dmar_pci_notify_info_buf)) {
145 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
146 } else {
147 info = kzalloc(size, GFP_KERNEL);
148 if (!info) {
149 if (dmar_dev_scope_status == 0)
150 dmar_dev_scope_status = -ENOMEM;
151 return NULL;
152 }
153 }
154
155 info->event = event;
156 info->dev = dev;
157 info->seg = pci_domain_nr(dev->bus);
158 info->level = level;
159 if (event == BUS_NOTIFY_ADD_DEVICE) {
160 for (tmp = dev; tmp; tmp = tmp->bus->self) {
161 level--;
162 info->path[level].bus = tmp->bus->number;
163 info->path[level].device = PCI_SLOT(tmp->devfn);
164 info->path[level].function = PCI_FUNC(tmp->devfn);
165 if (pci_is_root_bus(tmp->bus))
166 info->bus = tmp->bus->number;
167 }
168 }
169
170 return info;
171 }
172
dmar_free_pci_notify_info(struct dmar_pci_notify_info * info)173 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
174 {
175 if ((void *)info != dmar_pci_notify_info_buf)
176 kfree(info);
177 }
178
dmar_match_pci_path(struct dmar_pci_notify_info * info,int bus,struct acpi_dmar_pci_path * path,int count)179 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
180 struct acpi_dmar_pci_path *path, int count)
181 {
182 int i;
183
184 if (info->bus != bus)
185 goto fallback;
186 if (info->level != count)
187 goto fallback;
188
189 for (i = 0; i < count; i++) {
190 if (path[i].device != info->path[i].device ||
191 path[i].function != info->path[i].function)
192 goto fallback;
193 }
194
195 return true;
196
197 fallback:
198
199 if (count != 1)
200 return false;
201
202 i = info->level - 1;
203 if (bus == info->path[i].bus &&
204 path[0].device == info->path[i].device &&
205 path[0].function == info->path[i].function) {
206 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
207 bus, path[0].device, path[0].function);
208 return true;
209 }
210
211 return false;
212 }
213
214 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
dmar_insert_dev_scope(struct dmar_pci_notify_info * info,void * start,void * end,u16 segment,struct dmar_dev_scope * devices,int devices_cnt)215 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
216 void *start, void*end, u16 segment,
217 struct dmar_dev_scope *devices,
218 int devices_cnt)
219 {
220 int i, level;
221 struct device *tmp, *dev = &info->dev->dev;
222 struct acpi_dmar_device_scope *scope;
223 struct acpi_dmar_pci_path *path;
224
225 if (segment != info->seg)
226 return 0;
227
228 for (; start < end; start += scope->length) {
229 scope = start;
230 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
231 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
232 continue;
233
234 path = (struct acpi_dmar_pci_path *)(scope + 1);
235 level = (scope->length - sizeof(*scope)) / sizeof(*path);
236 if (!dmar_match_pci_path(info, scope->bus, path, level))
237 continue;
238
239 /*
240 * We expect devices with endpoint scope to have normal PCI
241 * headers, and devices with bridge scope to have bridge PCI
242 * headers. However PCI NTB devices may be listed in the
243 * DMAR table with bridge scope, even though they have a
244 * normal PCI header. NTB devices are identified by class
245 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
246 * for this special case.
247 */
248 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
249 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
250 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
251 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
252 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
253 pr_warn("Device scope type does not match for %s\n",
254 pci_name(info->dev));
255 return -EINVAL;
256 }
257
258 for_each_dev_scope(devices, devices_cnt, i, tmp)
259 if (tmp == NULL) {
260 devices[i].bus = info->dev->bus->number;
261 devices[i].devfn = info->dev->devfn;
262 rcu_assign_pointer(devices[i].dev,
263 get_device(dev));
264 return 1;
265 }
266 BUG_ON(i >= devices_cnt);
267 }
268
269 return 0;
270 }
271
dmar_remove_dev_scope(struct dmar_pci_notify_info * info,u16 segment,struct dmar_dev_scope * devices,int count)272 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
273 struct dmar_dev_scope *devices, int count)
274 {
275 int index;
276 struct device *tmp;
277
278 if (info->seg != segment)
279 return 0;
280
281 for_each_active_dev_scope(devices, count, index, tmp)
282 if (tmp == &info->dev->dev) {
283 RCU_INIT_POINTER(devices[index].dev, NULL);
284 synchronize_rcu();
285 put_device(tmp);
286 return 1;
287 }
288
289 return 0;
290 }
291
dmar_pci_bus_add_dev(struct dmar_pci_notify_info * info)292 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
293 {
294 int ret = 0;
295 struct dmar_drhd_unit *dmaru;
296 struct acpi_dmar_hardware_unit *drhd;
297
298 for_each_drhd_unit(dmaru) {
299 if (dmaru->include_all)
300 continue;
301
302 drhd = container_of(dmaru->hdr,
303 struct acpi_dmar_hardware_unit, header);
304 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
305 ((void *)drhd) + drhd->header.length,
306 dmaru->segment,
307 dmaru->devices, dmaru->devices_cnt);
308 if (ret)
309 break;
310 }
311 if (ret >= 0)
312 ret = dmar_iommu_notify_scope_dev(info);
313 if (ret < 0 && dmar_dev_scope_status == 0)
314 dmar_dev_scope_status = ret;
315
316 if (ret >= 0)
317 intel_irq_remap_add_device(info);
318
319 return ret;
320 }
321
dmar_pci_bus_del_dev(struct dmar_pci_notify_info * info)322 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
323 {
324 struct dmar_drhd_unit *dmaru;
325
326 for_each_drhd_unit(dmaru)
327 if (dmar_remove_dev_scope(info, dmaru->segment,
328 dmaru->devices, dmaru->devices_cnt))
329 break;
330 dmar_iommu_notify_scope_dev(info);
331 }
332
vf_inherit_msi_domain(struct pci_dev * pdev)333 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
334 {
335 struct pci_dev *physfn = pci_physfn(pdev);
336
337 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
338 }
339
dmar_pci_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)340 static int dmar_pci_bus_notifier(struct notifier_block *nb,
341 unsigned long action, void *data)
342 {
343 struct pci_dev *pdev = to_pci_dev(data);
344 struct dmar_pci_notify_info *info;
345
346 /* Only care about add/remove events for physical functions.
347 * For VFs we actually do the lookup based on the corresponding
348 * PF in device_to_iommu() anyway. */
349 if (pdev->is_virtfn) {
350 /*
351 * Ensure that the VF device inherits the irq domain of the
352 * PF device. Ideally the device would inherit the domain
353 * from the bus, but DMAR can have multiple units per bus
354 * which makes this impossible. The VF 'bus' could inherit
355 * from the PF device, but that's yet another x86'sism to
356 * inflict on everybody else.
357 */
358 if (action == BUS_NOTIFY_ADD_DEVICE)
359 vf_inherit_msi_domain(pdev);
360 return NOTIFY_DONE;
361 }
362
363 if (action != BUS_NOTIFY_ADD_DEVICE &&
364 action != BUS_NOTIFY_REMOVED_DEVICE)
365 return NOTIFY_DONE;
366
367 info = dmar_alloc_pci_notify_info(pdev, action);
368 if (!info)
369 return NOTIFY_DONE;
370
371 down_write(&dmar_global_lock);
372 if (action == BUS_NOTIFY_ADD_DEVICE)
373 dmar_pci_bus_add_dev(info);
374 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
375 dmar_pci_bus_del_dev(info);
376 up_write(&dmar_global_lock);
377
378 dmar_free_pci_notify_info(info);
379
380 return NOTIFY_OK;
381 }
382
383 static struct notifier_block dmar_pci_bus_nb = {
384 .notifier_call = dmar_pci_bus_notifier,
385 .priority = 1,
386 };
387
388 static struct dmar_drhd_unit *
dmar_find_dmaru(struct acpi_dmar_hardware_unit * drhd)389 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
390 {
391 struct dmar_drhd_unit *dmaru;
392
393 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
394 dmar_rcu_check())
395 if (dmaru->segment == drhd->segment &&
396 dmaru->reg_base_addr == drhd->address)
397 return dmaru;
398
399 return NULL;
400 }
401
402 /*
403 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
404 * structure which uniquely represent one DMA remapping hardware unit
405 * present in the platform
406 */
dmar_parse_one_drhd(struct acpi_dmar_header * header,void * arg)407 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
408 {
409 struct acpi_dmar_hardware_unit *drhd;
410 struct dmar_drhd_unit *dmaru;
411 int ret;
412
413 drhd = (struct acpi_dmar_hardware_unit *)header;
414 dmaru = dmar_find_dmaru(drhd);
415 if (dmaru)
416 goto out;
417
418 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
419 if (!dmaru)
420 return -ENOMEM;
421
422 /*
423 * If header is allocated from slab by ACPI _DSM method, we need to
424 * copy the content because the memory buffer will be freed on return.
425 */
426 dmaru->hdr = (void *)(dmaru + 1);
427 memcpy(dmaru->hdr, header, header->length);
428 dmaru->reg_base_addr = drhd->address;
429 dmaru->segment = drhd->segment;
430 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
431 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
432 ((void *)drhd) + drhd->header.length,
433 &dmaru->devices_cnt);
434 if (dmaru->devices_cnt && dmaru->devices == NULL) {
435 kfree(dmaru);
436 return -ENOMEM;
437 }
438
439 ret = alloc_iommu(dmaru);
440 if (ret) {
441 dmar_free_dev_scope(&dmaru->devices,
442 &dmaru->devices_cnt);
443 kfree(dmaru);
444 return ret;
445 }
446 dmar_register_drhd_unit(dmaru);
447
448 out:
449 if (arg)
450 (*(int *)arg)++;
451
452 return 0;
453 }
454
dmar_free_drhd(struct dmar_drhd_unit * dmaru)455 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
456 {
457 if (dmaru->devices && dmaru->devices_cnt)
458 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
459 if (dmaru->iommu)
460 free_iommu(dmaru->iommu);
461 kfree(dmaru);
462 }
463
dmar_parse_one_andd(struct acpi_dmar_header * header,void * arg)464 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
465 void *arg)
466 {
467 struct acpi_dmar_andd *andd = (void *)header;
468
469 /* Check for NUL termination within the designated length */
470 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
471 pr_warn(FW_BUG
472 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
473 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
474 dmi_get_system_info(DMI_BIOS_VENDOR),
475 dmi_get_system_info(DMI_BIOS_VERSION),
476 dmi_get_system_info(DMI_PRODUCT_VERSION));
477 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
478 return -EINVAL;
479 }
480 pr_info("ANDD device: %x name: %s\n", andd->device_number,
481 andd->device_name);
482
483 return 0;
484 }
485
486 #ifdef CONFIG_ACPI_NUMA
dmar_parse_one_rhsa(struct acpi_dmar_header * header,void * arg)487 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
488 {
489 struct acpi_dmar_rhsa *rhsa;
490 struct dmar_drhd_unit *drhd;
491
492 rhsa = (struct acpi_dmar_rhsa *)header;
493 for_each_drhd_unit(drhd) {
494 if (drhd->reg_base_addr == rhsa->base_address) {
495 int node = pxm_to_node(rhsa->proximity_domain);
496
497 if (node != NUMA_NO_NODE && !node_online(node))
498 node = NUMA_NO_NODE;
499 drhd->iommu->node = node;
500 return 0;
501 }
502 }
503 pr_warn(FW_BUG
504 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
505 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
506 rhsa->base_address,
507 dmi_get_system_info(DMI_BIOS_VENDOR),
508 dmi_get_system_info(DMI_BIOS_VERSION),
509 dmi_get_system_info(DMI_PRODUCT_VERSION));
510 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
511
512 return 0;
513 }
514 #else
515 #define dmar_parse_one_rhsa dmar_res_noop
516 #endif
517
518 static void
dmar_table_print_dmar_entry(struct acpi_dmar_header * header)519 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
520 {
521 struct acpi_dmar_hardware_unit *drhd;
522 struct acpi_dmar_reserved_memory *rmrr;
523 struct acpi_dmar_atsr *atsr;
524 struct acpi_dmar_rhsa *rhsa;
525 struct acpi_dmar_satc *satc;
526
527 switch (header->type) {
528 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
529 drhd = container_of(header, struct acpi_dmar_hardware_unit,
530 header);
531 pr_info("DRHD base: %#016Lx flags: %#x\n",
532 (unsigned long long)drhd->address, drhd->flags);
533 break;
534 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
535 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
536 header);
537 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
538 (unsigned long long)rmrr->base_address,
539 (unsigned long long)rmrr->end_address);
540 break;
541 case ACPI_DMAR_TYPE_ROOT_ATS:
542 atsr = container_of(header, struct acpi_dmar_atsr, header);
543 pr_info("ATSR flags: %#x\n", atsr->flags);
544 break;
545 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
546 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
547 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
548 (unsigned long long)rhsa->base_address,
549 rhsa->proximity_domain);
550 break;
551 case ACPI_DMAR_TYPE_NAMESPACE:
552 /* We don't print this here because we need to sanity-check
553 it first. So print it in dmar_parse_one_andd() instead. */
554 break;
555 case ACPI_DMAR_TYPE_SATC:
556 satc = container_of(header, struct acpi_dmar_satc, header);
557 pr_info("SATC flags: 0x%x\n", satc->flags);
558 break;
559 }
560 }
561
562 /**
563 * dmar_table_detect - checks to see if the platform supports DMAR devices
564 */
dmar_table_detect(void)565 static int __init dmar_table_detect(void)
566 {
567 acpi_status status = AE_OK;
568
569 /* if we could find DMAR table, then there are DMAR devices */
570 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
571
572 if (ACPI_SUCCESS(status) && !dmar_tbl) {
573 pr_warn("Unable to map DMAR\n");
574 status = AE_NOT_FOUND;
575 }
576
577 return ACPI_SUCCESS(status) ? 0 : -ENOENT;
578 }
579
dmar_walk_remapping_entries(struct acpi_dmar_header * start,size_t len,struct dmar_res_callback * cb)580 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
581 size_t len, struct dmar_res_callback *cb)
582 {
583 struct acpi_dmar_header *iter, *next;
584 struct acpi_dmar_header *end = ((void *)start) + len;
585
586 for (iter = start; iter < end; iter = next) {
587 next = (void *)iter + iter->length;
588 if (iter->length == 0) {
589 /* Avoid looping forever on bad ACPI tables */
590 pr_debug(FW_BUG "Invalid 0-length structure\n");
591 break;
592 } else if (next > end) {
593 /* Avoid passing table end */
594 pr_warn(FW_BUG "Record passes table end\n");
595 return -EINVAL;
596 }
597
598 if (cb->print_entry)
599 dmar_table_print_dmar_entry(iter);
600
601 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
602 /* continue for forward compatibility */
603 pr_debug("Unknown DMAR structure type %d\n",
604 iter->type);
605 } else if (cb->cb[iter->type]) {
606 int ret;
607
608 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
609 if (ret)
610 return ret;
611 } else if (!cb->ignore_unhandled) {
612 pr_warn("No handler for DMAR structure type %d\n",
613 iter->type);
614 return -EINVAL;
615 }
616 }
617
618 return 0;
619 }
620
dmar_walk_dmar_table(struct acpi_table_dmar * dmar,struct dmar_res_callback * cb)621 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
622 struct dmar_res_callback *cb)
623 {
624 return dmar_walk_remapping_entries((void *)(dmar + 1),
625 dmar->header.length - sizeof(*dmar), cb);
626 }
627
628 /**
629 * parse_dmar_table - parses the DMA reporting table
630 */
631 static int __init
parse_dmar_table(void)632 parse_dmar_table(void)
633 {
634 struct acpi_table_dmar *dmar;
635 int drhd_count = 0;
636 int ret;
637 struct dmar_res_callback cb = {
638 .print_entry = true,
639 .ignore_unhandled = true,
640 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
641 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
642 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
643 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
644 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
645 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
646 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
647 };
648
649 /*
650 * Do it again, earlier dmar_tbl mapping could be mapped with
651 * fixed map.
652 */
653 dmar_table_detect();
654
655 /*
656 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
657 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
658 */
659 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
660
661 dmar = (struct acpi_table_dmar *)dmar_tbl;
662 if (!dmar)
663 return -ENODEV;
664
665 if (dmar->width < PAGE_SHIFT - 1) {
666 pr_warn("Invalid DMAR haw\n");
667 return -EINVAL;
668 }
669
670 pr_info("Host address width %d\n", dmar->width + 1);
671 ret = dmar_walk_dmar_table(dmar, &cb);
672 if (ret == 0 && drhd_count == 0)
673 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
674
675 return ret;
676 }
677
dmar_pci_device_match(struct dmar_dev_scope devices[],int cnt,struct pci_dev * dev)678 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
679 int cnt, struct pci_dev *dev)
680 {
681 int index;
682 struct device *tmp;
683
684 while (dev) {
685 for_each_active_dev_scope(devices, cnt, index, tmp)
686 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
687 return 1;
688
689 /* Check our parent */
690 dev = dev->bus->self;
691 }
692
693 return 0;
694 }
695
696 struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev * dev)697 dmar_find_matched_drhd_unit(struct pci_dev *dev)
698 {
699 struct dmar_drhd_unit *dmaru;
700 struct acpi_dmar_hardware_unit *drhd;
701
702 dev = pci_physfn(dev);
703
704 rcu_read_lock();
705 for_each_drhd_unit(dmaru) {
706 drhd = container_of(dmaru->hdr,
707 struct acpi_dmar_hardware_unit,
708 header);
709
710 if (dmaru->include_all &&
711 drhd->segment == pci_domain_nr(dev->bus))
712 goto out;
713
714 if (dmar_pci_device_match(dmaru->devices,
715 dmaru->devices_cnt, dev))
716 goto out;
717 }
718 dmaru = NULL;
719 out:
720 rcu_read_unlock();
721
722 return dmaru;
723 }
724
dmar_acpi_insert_dev_scope(u8 device_number,struct acpi_device * adev)725 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
726 struct acpi_device *adev)
727 {
728 struct dmar_drhd_unit *dmaru;
729 struct acpi_dmar_hardware_unit *drhd;
730 struct acpi_dmar_device_scope *scope;
731 struct device *tmp;
732 int i;
733 struct acpi_dmar_pci_path *path;
734
735 for_each_drhd_unit(dmaru) {
736 drhd = container_of(dmaru->hdr,
737 struct acpi_dmar_hardware_unit,
738 header);
739
740 for (scope = (void *)(drhd + 1);
741 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
742 scope = ((void *)scope) + scope->length) {
743 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
744 continue;
745 if (scope->enumeration_id != device_number)
746 continue;
747
748 path = (void *)(scope + 1);
749 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
750 dev_name(&adev->dev), dmaru->reg_base_addr,
751 scope->bus, path->device, path->function);
752 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
753 if (tmp == NULL) {
754 dmaru->devices[i].bus = scope->bus;
755 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
756 path->function);
757 rcu_assign_pointer(dmaru->devices[i].dev,
758 get_device(&adev->dev));
759 return;
760 }
761 BUG_ON(i >= dmaru->devices_cnt);
762 }
763 }
764 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
765 device_number, dev_name(&adev->dev));
766 }
767
dmar_acpi_dev_scope_init(void)768 static int __init dmar_acpi_dev_scope_init(void)
769 {
770 struct acpi_dmar_andd *andd;
771
772 if (dmar_tbl == NULL)
773 return -ENODEV;
774
775 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
776 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
777 andd = ((void *)andd) + andd->header.length) {
778 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
779 acpi_handle h;
780 struct acpi_device *adev;
781
782 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
783 andd->device_name,
784 &h))) {
785 pr_err("Failed to find handle for ACPI object %s\n",
786 andd->device_name);
787 continue;
788 }
789 adev = acpi_fetch_acpi_dev(h);
790 if (!adev) {
791 pr_err("Failed to get device for ACPI object %s\n",
792 andd->device_name);
793 continue;
794 }
795 dmar_acpi_insert_dev_scope(andd->device_number, adev);
796 }
797 }
798 return 0;
799 }
800
dmar_dev_scope_init(void)801 int __init dmar_dev_scope_init(void)
802 {
803 struct pci_dev *dev = NULL;
804 struct dmar_pci_notify_info *info;
805
806 if (dmar_dev_scope_status != 1)
807 return dmar_dev_scope_status;
808
809 if (list_empty(&dmar_drhd_units)) {
810 dmar_dev_scope_status = -ENODEV;
811 } else {
812 dmar_dev_scope_status = 0;
813
814 dmar_acpi_dev_scope_init();
815
816 for_each_pci_dev(dev) {
817 if (dev->is_virtfn)
818 continue;
819
820 info = dmar_alloc_pci_notify_info(dev,
821 BUS_NOTIFY_ADD_DEVICE);
822 if (!info) {
823 pci_dev_put(dev);
824 return dmar_dev_scope_status;
825 } else {
826 dmar_pci_bus_add_dev(info);
827 dmar_free_pci_notify_info(info);
828 }
829 }
830 }
831
832 return dmar_dev_scope_status;
833 }
834
dmar_register_bus_notifier(void)835 void __init dmar_register_bus_notifier(void)
836 {
837 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
838 }
839
840
dmar_table_init(void)841 int __init dmar_table_init(void)
842 {
843 static int dmar_table_initialized;
844 int ret;
845
846 if (dmar_table_initialized == 0) {
847 ret = parse_dmar_table();
848 if (ret < 0) {
849 if (ret != -ENODEV)
850 pr_info("Parse DMAR table failure.\n");
851 } else if (list_empty(&dmar_drhd_units)) {
852 pr_info("No DMAR devices found\n");
853 ret = -ENODEV;
854 }
855
856 if (ret < 0)
857 dmar_table_initialized = ret;
858 else
859 dmar_table_initialized = 1;
860 }
861
862 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
863 }
864
warn_invalid_dmar(u64 addr,const char * message)865 static void warn_invalid_dmar(u64 addr, const char *message)
866 {
867 pr_warn_once(FW_BUG
868 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
869 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
870 addr, message,
871 dmi_get_system_info(DMI_BIOS_VENDOR),
872 dmi_get_system_info(DMI_BIOS_VERSION),
873 dmi_get_system_info(DMI_PRODUCT_VERSION));
874 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
875 }
876
877 static int __ref
dmar_validate_one_drhd(struct acpi_dmar_header * entry,void * arg)878 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
879 {
880 struct acpi_dmar_hardware_unit *drhd;
881 void __iomem *addr;
882 u64 cap, ecap;
883
884 drhd = (void *)entry;
885 if (!drhd->address) {
886 warn_invalid_dmar(0, "");
887 return -EINVAL;
888 }
889
890 if (arg)
891 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
892 else
893 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
894 if (!addr) {
895 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
896 return -EINVAL;
897 }
898
899 cap = dmar_readq(addr + DMAR_CAP_REG);
900 ecap = dmar_readq(addr + DMAR_ECAP_REG);
901
902 if (arg)
903 iounmap(addr);
904 else
905 early_iounmap(addr, VTD_PAGE_SIZE);
906
907 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
908 warn_invalid_dmar(drhd->address, " returns all ones");
909 return -EINVAL;
910 }
911
912 return 0;
913 }
914
detect_intel_iommu(void)915 void __init detect_intel_iommu(void)
916 {
917 int ret;
918 struct dmar_res_callback validate_drhd_cb = {
919 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
920 .ignore_unhandled = true,
921 };
922
923 down_write(&dmar_global_lock);
924 ret = dmar_table_detect();
925 if (!ret)
926 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
927 &validate_drhd_cb);
928 if (!ret && !no_iommu && !iommu_detected &&
929 (!dmar_disabled || dmar_platform_optin())) {
930 iommu_detected = 1;
931 /* Make sure ACS will be enabled */
932 pci_request_acs();
933 }
934
935 #ifdef CONFIG_X86
936 if (!ret) {
937 x86_init.iommu.iommu_init = intel_iommu_init;
938 x86_platform.iommu_shutdown = intel_iommu_shutdown;
939 }
940
941 #endif
942
943 if (dmar_tbl) {
944 acpi_put_table(dmar_tbl);
945 dmar_tbl = NULL;
946 }
947 up_write(&dmar_global_lock);
948 }
949
unmap_iommu(struct intel_iommu * iommu)950 static void unmap_iommu(struct intel_iommu *iommu)
951 {
952 iounmap(iommu->reg);
953 release_mem_region(iommu->reg_phys, iommu->reg_size);
954 }
955
956 /**
957 * map_iommu: map the iommu's registers
958 * @iommu: the iommu to map
959 * @phys_addr: the physical address of the base resgister
960 *
961 * Memory map the iommu's registers. Start w/ a single page, and
962 * possibly expand if that turns out to be insufficent.
963 */
map_iommu(struct intel_iommu * iommu,u64 phys_addr)964 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
965 {
966 int map_size, err=0;
967
968 iommu->reg_phys = phys_addr;
969 iommu->reg_size = VTD_PAGE_SIZE;
970
971 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
972 pr_err("Can't reserve memory\n");
973 err = -EBUSY;
974 goto out;
975 }
976
977 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
978 if (!iommu->reg) {
979 pr_err("Can't map the region\n");
980 err = -ENOMEM;
981 goto release;
982 }
983
984 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
985 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
986
987 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
988 err = -EINVAL;
989 warn_invalid_dmar(phys_addr, " returns all ones");
990 goto unmap;
991 }
992 if (ecap_vcs(iommu->ecap))
993 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
994
995 /* the registers might be more than one page */
996 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
997 cap_max_fault_reg_offset(iommu->cap));
998 map_size = VTD_PAGE_ALIGN(map_size);
999 if (map_size > iommu->reg_size) {
1000 iounmap(iommu->reg);
1001 release_mem_region(iommu->reg_phys, iommu->reg_size);
1002 iommu->reg_size = map_size;
1003 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1004 iommu->name)) {
1005 pr_err("Can't reserve memory\n");
1006 err = -EBUSY;
1007 goto out;
1008 }
1009 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1010 if (!iommu->reg) {
1011 pr_err("Can't map the region\n");
1012 err = -ENOMEM;
1013 goto release;
1014 }
1015 }
1016 err = 0;
1017 goto out;
1018
1019 unmap:
1020 iounmap(iommu->reg);
1021 release:
1022 release_mem_region(iommu->reg_phys, iommu->reg_size);
1023 out:
1024 return err;
1025 }
1026
alloc_iommu(struct dmar_drhd_unit * drhd)1027 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1028 {
1029 struct intel_iommu *iommu;
1030 u32 ver, sts;
1031 int agaw = -1;
1032 int msagaw = -1;
1033 int err;
1034
1035 if (!drhd->reg_base_addr) {
1036 warn_invalid_dmar(0, "");
1037 return -EINVAL;
1038 }
1039
1040 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1041 if (!iommu)
1042 return -ENOMEM;
1043
1044 iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1045 DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1046 if (iommu->seq_id < 0) {
1047 pr_err("Failed to allocate seq_id\n");
1048 err = iommu->seq_id;
1049 goto error;
1050 }
1051 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1052
1053 err = map_iommu(iommu, drhd->reg_base_addr);
1054 if (err) {
1055 pr_err("Failed to map %s\n", iommu->name);
1056 goto error_free_seq_id;
1057 }
1058
1059 err = -EINVAL;
1060 if (cap_sagaw(iommu->cap) == 0) {
1061 pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1062 iommu->name);
1063 drhd->ignored = 1;
1064 }
1065
1066 if (!drhd->ignored) {
1067 agaw = iommu_calculate_agaw(iommu);
1068 if (agaw < 0) {
1069 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1070 iommu->seq_id);
1071 drhd->ignored = 1;
1072 }
1073 }
1074 if (!drhd->ignored) {
1075 msagaw = iommu_calculate_max_sagaw(iommu);
1076 if (msagaw < 0) {
1077 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1078 iommu->seq_id);
1079 drhd->ignored = 1;
1080 agaw = -1;
1081 }
1082 }
1083 iommu->agaw = agaw;
1084 iommu->msagaw = msagaw;
1085 iommu->segment = drhd->segment;
1086
1087 iommu->node = NUMA_NO_NODE;
1088
1089 ver = readl(iommu->reg + DMAR_VER_REG);
1090 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1091 iommu->name,
1092 (unsigned long long)drhd->reg_base_addr,
1093 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1094 (unsigned long long)iommu->cap,
1095 (unsigned long long)iommu->ecap);
1096
1097 /* Reflect status in gcmd */
1098 sts = readl(iommu->reg + DMAR_GSTS_REG);
1099 if (sts & DMA_GSTS_IRES)
1100 iommu->gcmd |= DMA_GCMD_IRE;
1101 if (sts & DMA_GSTS_TES)
1102 iommu->gcmd |= DMA_GCMD_TE;
1103 if (sts & DMA_GSTS_QIES)
1104 iommu->gcmd |= DMA_GCMD_QIE;
1105
1106 raw_spin_lock_init(&iommu->register_lock);
1107
1108 /*
1109 * This is only for hotplug; at boot time intel_iommu_enabled won't
1110 * be set yet. When intel_iommu_init() runs, it registers the units
1111 * present at boot time, then sets intel_iommu_enabled.
1112 */
1113 if (intel_iommu_enabled && !drhd->ignored) {
1114 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1115 intel_iommu_groups,
1116 "%s", iommu->name);
1117 if (err)
1118 goto err_unmap;
1119
1120 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1121 if (err)
1122 goto err_sysfs;
1123 }
1124
1125 drhd->iommu = iommu;
1126 iommu->drhd = drhd;
1127
1128 return 0;
1129
1130 err_sysfs:
1131 iommu_device_sysfs_remove(&iommu->iommu);
1132 err_unmap:
1133 unmap_iommu(iommu);
1134 error_free_seq_id:
1135 ida_free(&dmar_seq_ids, iommu->seq_id);
1136 error:
1137 kfree(iommu);
1138 return err;
1139 }
1140
free_iommu(struct intel_iommu * iommu)1141 static void free_iommu(struct intel_iommu *iommu)
1142 {
1143 if (intel_iommu_enabled && !iommu->drhd->ignored) {
1144 iommu_device_unregister(&iommu->iommu);
1145 iommu_device_sysfs_remove(&iommu->iommu);
1146 }
1147
1148 if (iommu->irq) {
1149 if (iommu->pr_irq) {
1150 free_irq(iommu->pr_irq, iommu);
1151 dmar_free_hwirq(iommu->pr_irq);
1152 iommu->pr_irq = 0;
1153 }
1154 free_irq(iommu->irq, iommu);
1155 dmar_free_hwirq(iommu->irq);
1156 iommu->irq = 0;
1157 }
1158
1159 if (iommu->qi) {
1160 free_page((unsigned long)iommu->qi->desc);
1161 kfree(iommu->qi->desc_status);
1162 kfree(iommu->qi);
1163 }
1164
1165 if (iommu->reg)
1166 unmap_iommu(iommu);
1167
1168 ida_free(&dmar_seq_ids, iommu->seq_id);
1169 kfree(iommu);
1170 }
1171
1172 /*
1173 * Reclaim all the submitted descriptors which have completed its work.
1174 */
reclaim_free_desc(struct q_inval * qi)1175 static inline void reclaim_free_desc(struct q_inval *qi)
1176 {
1177 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1178 qi->desc_status[qi->free_tail] == QI_ABORT) {
1179 qi->desc_status[qi->free_tail] = QI_FREE;
1180 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1181 qi->free_cnt++;
1182 }
1183 }
1184
qi_type_string(u8 type)1185 static const char *qi_type_string(u8 type)
1186 {
1187 switch (type) {
1188 case QI_CC_TYPE:
1189 return "Context-cache Invalidation";
1190 case QI_IOTLB_TYPE:
1191 return "IOTLB Invalidation";
1192 case QI_DIOTLB_TYPE:
1193 return "Device-TLB Invalidation";
1194 case QI_IEC_TYPE:
1195 return "Interrupt Entry Cache Invalidation";
1196 case QI_IWD_TYPE:
1197 return "Invalidation Wait";
1198 case QI_EIOTLB_TYPE:
1199 return "PASID-based IOTLB Invalidation";
1200 case QI_PC_TYPE:
1201 return "PASID-cache Invalidation";
1202 case QI_DEIOTLB_TYPE:
1203 return "PASID-based Device-TLB Invalidation";
1204 case QI_PGRP_RESP_TYPE:
1205 return "Page Group Response";
1206 default:
1207 return "UNKNOWN";
1208 }
1209 }
1210
qi_dump_fault(struct intel_iommu * iommu,u32 fault)1211 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1212 {
1213 unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1214 u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1215 struct qi_desc *desc = iommu->qi->desc + head;
1216
1217 if (fault & DMA_FSTS_IQE)
1218 pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1219 DMAR_IQER_REG_IQEI(iqe_err));
1220 if (fault & DMA_FSTS_ITE)
1221 pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1222 DMAR_IQER_REG_ITESID(iqe_err));
1223 if (fault & DMA_FSTS_ICE)
1224 pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1225 DMAR_IQER_REG_ICESID(iqe_err));
1226
1227 pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1228 qi_type_string(desc->qw0 & 0xf),
1229 (unsigned long long)desc->qw0,
1230 (unsigned long long)desc->qw1);
1231
1232 head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1233 head <<= qi_shift(iommu);
1234 desc = iommu->qi->desc + head;
1235
1236 pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1237 qi_type_string(desc->qw0 & 0xf),
1238 (unsigned long long)desc->qw0,
1239 (unsigned long long)desc->qw1);
1240 }
1241
qi_check_fault(struct intel_iommu * iommu,int index,int wait_index)1242 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1243 {
1244 u32 fault;
1245 int head, tail;
1246 struct q_inval *qi = iommu->qi;
1247 int shift = qi_shift(iommu);
1248
1249 if (qi->desc_status[wait_index] == QI_ABORT)
1250 return -EAGAIN;
1251
1252 fault = readl(iommu->reg + DMAR_FSTS_REG);
1253 if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1254 qi_dump_fault(iommu, fault);
1255
1256 /*
1257 * If IQE happens, the head points to the descriptor associated
1258 * with the error. No new descriptors are fetched until the IQE
1259 * is cleared.
1260 */
1261 if (fault & DMA_FSTS_IQE) {
1262 head = readl(iommu->reg + DMAR_IQH_REG);
1263 if ((head >> shift) == index) {
1264 struct qi_desc *desc = qi->desc + head;
1265
1266 /*
1267 * desc->qw2 and desc->qw3 are either reserved or
1268 * used by software as private data. We won't print
1269 * out these two qw's for security consideration.
1270 */
1271 memcpy(desc, qi->desc + (wait_index << shift),
1272 1 << shift);
1273 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1274 pr_info("Invalidation Queue Error (IQE) cleared\n");
1275 return -EINVAL;
1276 }
1277 }
1278
1279 /*
1280 * If ITE happens, all pending wait_desc commands are aborted.
1281 * No new descriptors are fetched until the ITE is cleared.
1282 */
1283 if (fault & DMA_FSTS_ITE) {
1284 head = readl(iommu->reg + DMAR_IQH_REG);
1285 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1286 head |= 1;
1287 tail = readl(iommu->reg + DMAR_IQT_REG);
1288 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1289
1290 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1291 pr_info("Invalidation Time-out Error (ITE) cleared\n");
1292
1293 do {
1294 if (qi->desc_status[head] == QI_IN_USE)
1295 qi->desc_status[head] = QI_ABORT;
1296 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1297 } while (head != tail);
1298
1299 if (qi->desc_status[wait_index] == QI_ABORT)
1300 return -EAGAIN;
1301 }
1302
1303 if (fault & DMA_FSTS_ICE) {
1304 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1305 pr_info("Invalidation Completion Error (ICE) cleared\n");
1306 }
1307
1308 return 0;
1309 }
1310
1311 /*
1312 * Function to submit invalidation descriptors of all types to the queued
1313 * invalidation interface(QI). Multiple descriptors can be submitted at a
1314 * time, a wait descriptor will be appended to each submission to ensure
1315 * hardware has completed the invalidation before return. Wait descriptors
1316 * can be part of the submission but it will not be polled for completion.
1317 */
qi_submit_sync(struct intel_iommu * iommu,struct qi_desc * desc,unsigned int count,unsigned long options)1318 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1319 unsigned int count, unsigned long options)
1320 {
1321 struct q_inval *qi = iommu->qi;
1322 s64 devtlb_start_ktime = 0;
1323 s64 iotlb_start_ktime = 0;
1324 s64 iec_start_ktime = 0;
1325 struct qi_desc wait_desc;
1326 int wait_index, index;
1327 unsigned long flags;
1328 int offset, shift;
1329 int rc, i;
1330 u64 type;
1331
1332 if (!qi)
1333 return 0;
1334
1335 type = desc->qw0 & GENMASK_ULL(3, 0);
1336
1337 if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1338 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1339 iotlb_start_ktime = ktime_to_ns(ktime_get());
1340
1341 if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1342 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1343 devtlb_start_ktime = ktime_to_ns(ktime_get());
1344
1345 if (type == QI_IEC_TYPE &&
1346 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1347 iec_start_ktime = ktime_to_ns(ktime_get());
1348
1349 restart:
1350 rc = 0;
1351
1352 raw_spin_lock_irqsave(&qi->q_lock, flags);
1353 /*
1354 * Check if we have enough empty slots in the queue to submit,
1355 * the calculation is based on:
1356 * # of desc + 1 wait desc + 1 space between head and tail
1357 */
1358 while (qi->free_cnt < count + 2) {
1359 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1360 cpu_relax();
1361 raw_spin_lock_irqsave(&qi->q_lock, flags);
1362 }
1363
1364 index = qi->free_head;
1365 wait_index = (index + count) % QI_LENGTH;
1366 shift = qi_shift(iommu);
1367
1368 for (i = 0; i < count; i++) {
1369 offset = ((index + i) % QI_LENGTH) << shift;
1370 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1371 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1372 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1373 desc[i].qw2, desc[i].qw3);
1374 }
1375 qi->desc_status[wait_index] = QI_IN_USE;
1376
1377 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1378 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1379 if (options & QI_OPT_WAIT_DRAIN)
1380 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1381 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1382 wait_desc.qw2 = 0;
1383 wait_desc.qw3 = 0;
1384
1385 offset = wait_index << shift;
1386 memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1387
1388 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1389 qi->free_cnt -= count + 1;
1390
1391 /*
1392 * update the HW tail register indicating the presence of
1393 * new descriptors.
1394 */
1395 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1396
1397 while (qi->desc_status[wait_index] != QI_DONE) {
1398 /*
1399 * We will leave the interrupts disabled, to prevent interrupt
1400 * context to queue another cmd while a cmd is already submitted
1401 * and waiting for completion on this cpu. This is to avoid
1402 * a deadlock where the interrupt context can wait indefinitely
1403 * for free slots in the queue.
1404 */
1405 rc = qi_check_fault(iommu, index, wait_index);
1406 if (rc)
1407 break;
1408
1409 raw_spin_unlock(&qi->q_lock);
1410 cpu_relax();
1411 raw_spin_lock(&qi->q_lock);
1412 }
1413
1414 for (i = 0; i < count; i++)
1415 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1416
1417 reclaim_free_desc(qi);
1418 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1419
1420 if (rc == -EAGAIN)
1421 goto restart;
1422
1423 if (iotlb_start_ktime)
1424 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1425 ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1426
1427 if (devtlb_start_ktime)
1428 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1429 ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1430
1431 if (iec_start_ktime)
1432 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1433 ktime_to_ns(ktime_get()) - iec_start_ktime);
1434
1435 return rc;
1436 }
1437
1438 /*
1439 * Flush the global interrupt entry cache.
1440 */
qi_global_iec(struct intel_iommu * iommu)1441 void qi_global_iec(struct intel_iommu *iommu)
1442 {
1443 struct qi_desc desc;
1444
1445 desc.qw0 = QI_IEC_TYPE;
1446 desc.qw1 = 0;
1447 desc.qw2 = 0;
1448 desc.qw3 = 0;
1449
1450 /* should never fail */
1451 qi_submit_sync(iommu, &desc, 1, 0);
1452 }
1453
qi_flush_context(struct intel_iommu * iommu,u16 did,u16 sid,u8 fm,u64 type)1454 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1455 u64 type)
1456 {
1457 struct qi_desc desc;
1458
1459 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1460 | QI_CC_GRAN(type) | QI_CC_TYPE;
1461 desc.qw1 = 0;
1462 desc.qw2 = 0;
1463 desc.qw3 = 0;
1464
1465 qi_submit_sync(iommu, &desc, 1, 0);
1466 }
1467
qi_flush_iotlb(struct intel_iommu * iommu,u16 did,u64 addr,unsigned int size_order,u64 type)1468 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1469 unsigned int size_order, u64 type)
1470 {
1471 u8 dw = 0, dr = 0;
1472
1473 struct qi_desc desc;
1474 int ih = 0;
1475
1476 if (cap_write_drain(iommu->cap))
1477 dw = 1;
1478
1479 if (cap_read_drain(iommu->cap))
1480 dr = 1;
1481
1482 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1483 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1484 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1485 | QI_IOTLB_AM(size_order);
1486 desc.qw2 = 0;
1487 desc.qw3 = 0;
1488
1489 qi_submit_sync(iommu, &desc, 1, 0);
1490 }
1491
qi_flush_dev_iotlb(struct intel_iommu * iommu,u16 sid,u16 pfsid,u16 qdep,u64 addr,unsigned mask)1492 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1493 u16 qdep, u64 addr, unsigned mask)
1494 {
1495 struct qi_desc desc;
1496
1497 if (mask) {
1498 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1499 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1500 } else
1501 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1502
1503 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1504 qdep = 0;
1505
1506 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1507 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1508 desc.qw2 = 0;
1509 desc.qw3 = 0;
1510
1511 qi_submit_sync(iommu, &desc, 1, 0);
1512 }
1513
1514 /* PASID-based IOTLB invalidation */
qi_flush_piotlb(struct intel_iommu * iommu,u16 did,u32 pasid,u64 addr,unsigned long npages,bool ih)1515 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1516 unsigned long npages, bool ih)
1517 {
1518 struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1519
1520 /*
1521 * npages == -1 means a PASID-selective invalidation, otherwise,
1522 * a positive value for Page-selective-within-PASID invalidation.
1523 * 0 is not a valid input.
1524 */
1525 if (WARN_ON(!npages)) {
1526 pr_err("Invalid input npages = %ld\n", npages);
1527 return;
1528 }
1529
1530 if (npages == -1) {
1531 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1532 QI_EIOTLB_DID(did) |
1533 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1534 QI_EIOTLB_TYPE;
1535 desc.qw1 = 0;
1536 } else {
1537 int mask = ilog2(__roundup_pow_of_two(npages));
1538 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1539
1540 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1541 addr = ALIGN_DOWN(addr, align);
1542
1543 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1544 QI_EIOTLB_DID(did) |
1545 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1546 QI_EIOTLB_TYPE;
1547 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1548 QI_EIOTLB_IH(ih) |
1549 QI_EIOTLB_AM(mask);
1550 }
1551
1552 qi_submit_sync(iommu, &desc, 1, 0);
1553 }
1554
1555 /* PASID-based device IOTLB Invalidate */
qi_flush_dev_iotlb_pasid(struct intel_iommu * iommu,u16 sid,u16 pfsid,u32 pasid,u16 qdep,u64 addr,unsigned int size_order)1556 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1557 u32 pasid, u16 qdep, u64 addr, unsigned int size_order)
1558 {
1559 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1560 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1561
1562 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1563 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1564 QI_DEV_IOTLB_PFSID(pfsid);
1565
1566 /*
1567 * If S bit is 0, we only flush a single page. If S bit is set,
1568 * The least significant zero bit indicates the invalidation address
1569 * range. VT-d spec 6.5.2.6.
1570 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1571 * size order = 0 is PAGE_SIZE 4KB
1572 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1573 * ECAP.
1574 */
1575 if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1576 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1577 addr, size_order);
1578
1579 /* Take page address */
1580 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1581
1582 if (size_order) {
1583 /*
1584 * Existing 0s in address below size_order may be the least
1585 * significant bit, we must set them to 1s to avoid having
1586 * smaller size than desired.
1587 */
1588 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1589 VTD_PAGE_SHIFT);
1590 /* Clear size_order bit to indicate size */
1591 desc.qw1 &= ~mask;
1592 /* Set the S bit to indicate flushing more than 1 page */
1593 desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1594 }
1595
1596 qi_submit_sync(iommu, &desc, 1, 0);
1597 }
1598
qi_flush_pasid_cache(struct intel_iommu * iommu,u16 did,u64 granu,u32 pasid)1599 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1600 u64 granu, u32 pasid)
1601 {
1602 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1603
1604 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1605 QI_PC_GRAN(granu) | QI_PC_TYPE;
1606 qi_submit_sync(iommu, &desc, 1, 0);
1607 }
1608
1609 /*
1610 * Disable Queued Invalidation interface.
1611 */
dmar_disable_qi(struct intel_iommu * iommu)1612 void dmar_disable_qi(struct intel_iommu *iommu)
1613 {
1614 unsigned long flags;
1615 u32 sts;
1616 cycles_t start_time = get_cycles();
1617
1618 if (!ecap_qis(iommu->ecap))
1619 return;
1620
1621 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1622
1623 sts = readl(iommu->reg + DMAR_GSTS_REG);
1624 if (!(sts & DMA_GSTS_QIES))
1625 goto end;
1626
1627 /*
1628 * Give a chance to HW to complete the pending invalidation requests.
1629 */
1630 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1631 readl(iommu->reg + DMAR_IQH_REG)) &&
1632 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1633 cpu_relax();
1634
1635 iommu->gcmd &= ~DMA_GCMD_QIE;
1636 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1637
1638 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1639 !(sts & DMA_GSTS_QIES), sts);
1640 end:
1641 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1642 }
1643
1644 /*
1645 * Enable queued invalidation.
1646 */
__dmar_enable_qi(struct intel_iommu * iommu)1647 static void __dmar_enable_qi(struct intel_iommu *iommu)
1648 {
1649 u32 sts;
1650 unsigned long flags;
1651 struct q_inval *qi = iommu->qi;
1652 u64 val = virt_to_phys(qi->desc);
1653
1654 qi->free_head = qi->free_tail = 0;
1655 qi->free_cnt = QI_LENGTH;
1656
1657 /*
1658 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1659 * is present.
1660 */
1661 if (ecap_smts(iommu->ecap))
1662 val |= (1 << 11) | 1;
1663
1664 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1665
1666 /* write zero to the tail reg */
1667 writel(0, iommu->reg + DMAR_IQT_REG);
1668
1669 dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1670
1671 iommu->gcmd |= DMA_GCMD_QIE;
1672 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1673
1674 /* Make sure hardware complete it */
1675 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1676
1677 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1678 }
1679
1680 /*
1681 * Enable Queued Invalidation interface. This is a must to support
1682 * interrupt-remapping. Also used by DMA-remapping, which replaces
1683 * register based IOTLB invalidation.
1684 */
dmar_enable_qi(struct intel_iommu * iommu)1685 int dmar_enable_qi(struct intel_iommu *iommu)
1686 {
1687 struct q_inval *qi;
1688 struct page *desc_page;
1689
1690 if (!ecap_qis(iommu->ecap))
1691 return -ENOENT;
1692
1693 /*
1694 * queued invalidation is already setup and enabled.
1695 */
1696 if (iommu->qi)
1697 return 0;
1698
1699 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1700 if (!iommu->qi)
1701 return -ENOMEM;
1702
1703 qi = iommu->qi;
1704
1705 /*
1706 * Need two pages to accommodate 256 descriptors of 256 bits each
1707 * if the remapping hardware supports scalable mode translation.
1708 */
1709 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1710 !!ecap_smts(iommu->ecap));
1711 if (!desc_page) {
1712 kfree(qi);
1713 iommu->qi = NULL;
1714 return -ENOMEM;
1715 }
1716
1717 qi->desc = page_address(desc_page);
1718
1719 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1720 if (!qi->desc_status) {
1721 free_page((unsigned long) qi->desc);
1722 kfree(qi);
1723 iommu->qi = NULL;
1724 return -ENOMEM;
1725 }
1726
1727 raw_spin_lock_init(&qi->q_lock);
1728
1729 __dmar_enable_qi(iommu);
1730
1731 return 0;
1732 }
1733
1734 /* iommu interrupt handling. Most stuff are MSI-like. */
1735
1736 enum faulttype {
1737 DMA_REMAP,
1738 INTR_REMAP,
1739 UNKNOWN,
1740 };
1741
1742 static const char *dma_remap_fault_reasons[] =
1743 {
1744 "Software",
1745 "Present bit in root entry is clear",
1746 "Present bit in context entry is clear",
1747 "Invalid context entry",
1748 "Access beyond MGAW",
1749 "PTE Write access is not set",
1750 "PTE Read access is not set",
1751 "Next page table ptr is invalid",
1752 "Root table address invalid",
1753 "Context table ptr is invalid",
1754 "non-zero reserved fields in RTP",
1755 "non-zero reserved fields in CTP",
1756 "non-zero reserved fields in PTE",
1757 "PCE for translation request specifies blocking",
1758 };
1759
1760 static const char * const dma_remap_sm_fault_reasons[] = {
1761 "SM: Invalid Root Table Address",
1762 "SM: TTM 0 for request with PASID",
1763 "SM: TTM 0 for page group request",
1764 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1765 "SM: Error attempting to access Root Entry",
1766 "SM: Present bit in Root Entry is clear",
1767 "SM: Non-zero reserved field set in Root Entry",
1768 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1769 "SM: Error attempting to access Context Entry",
1770 "SM: Present bit in Context Entry is clear",
1771 "SM: Non-zero reserved field set in the Context Entry",
1772 "SM: Invalid Context Entry",
1773 "SM: DTE field in Context Entry is clear",
1774 "SM: PASID Enable field in Context Entry is clear",
1775 "SM: PASID is larger than the max in Context Entry",
1776 "SM: PRE field in Context-Entry is clear",
1777 "SM: RID_PASID field error in Context-Entry",
1778 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1779 "SM: Error attempting to access the PASID Directory Entry",
1780 "SM: Present bit in Directory Entry is clear",
1781 "SM: Non-zero reserved field set in PASID Directory Entry",
1782 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1783 "SM: Error attempting to access PASID Table Entry",
1784 "SM: Present bit in PASID Table Entry is clear",
1785 "SM: Non-zero reserved field set in PASID Table Entry",
1786 "SM: Invalid Scalable-Mode PASID Table Entry",
1787 "SM: ERE field is clear in PASID Table Entry",
1788 "SM: SRE field is clear in PASID Table Entry",
1789 "Unknown", "Unknown",/* 0x5E-0x5F */
1790 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1791 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1792 "SM: Error attempting to access first-level paging entry",
1793 "SM: Present bit in first-level paging entry is clear",
1794 "SM: Non-zero reserved field set in first-level paging entry",
1795 "SM: Error attempting to access FL-PML4 entry",
1796 "SM: First-level entry address beyond MGAW in Nested translation",
1797 "SM: Read permission error in FL-PML4 entry in Nested translation",
1798 "SM: Read permission error in first-level paging entry in Nested translation",
1799 "SM: Write permission error in first-level paging entry in Nested translation",
1800 "SM: Error attempting to access second-level paging entry",
1801 "SM: Read/Write permission error in second-level paging entry",
1802 "SM: Non-zero reserved field set in second-level paging entry",
1803 "SM: Invalid second-level page table pointer",
1804 "SM: A/D bit update needed in second-level entry when set up in no snoop",
1805 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1806 "SM: Address in first-level translation is not canonical",
1807 "SM: U/S set 0 for first-level translation with user privilege",
1808 "SM: No execute permission for request with PASID and ER=1",
1809 "SM: Address beyond the DMA hardware max",
1810 "SM: Second-level entry address beyond the max",
1811 "SM: No write permission for Write/AtomicOp request",
1812 "SM: No read permission for Read/AtomicOp request",
1813 "SM: Invalid address-interrupt address",
1814 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1815 "SM: A/D bit update needed in first-level entry when set up in no snoop",
1816 };
1817
1818 static const char *irq_remap_fault_reasons[] =
1819 {
1820 "Detected reserved fields in the decoded interrupt-remapped request",
1821 "Interrupt index exceeded the interrupt-remapping table size",
1822 "Present field in the IRTE entry is clear",
1823 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1824 "Detected reserved fields in the IRTE entry",
1825 "Blocked a compatibility format interrupt request",
1826 "Blocked an interrupt request due to source-id verification failure",
1827 };
1828
dmar_get_fault_reason(u8 fault_reason,int * fault_type)1829 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1830 {
1831 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1832 ARRAY_SIZE(irq_remap_fault_reasons))) {
1833 *fault_type = INTR_REMAP;
1834 return irq_remap_fault_reasons[fault_reason - 0x20];
1835 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1836 ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1837 *fault_type = DMA_REMAP;
1838 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1839 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1840 *fault_type = DMA_REMAP;
1841 return dma_remap_fault_reasons[fault_reason];
1842 } else {
1843 *fault_type = UNKNOWN;
1844 return "Unknown";
1845 }
1846 }
1847
1848
dmar_msi_reg(struct intel_iommu * iommu,int irq)1849 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1850 {
1851 if (iommu->irq == irq)
1852 return DMAR_FECTL_REG;
1853 else if (iommu->pr_irq == irq)
1854 return DMAR_PECTL_REG;
1855 else
1856 BUG();
1857 }
1858
dmar_msi_unmask(struct irq_data * data)1859 void dmar_msi_unmask(struct irq_data *data)
1860 {
1861 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1862 int reg = dmar_msi_reg(iommu, data->irq);
1863 unsigned long flag;
1864
1865 /* unmask it */
1866 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1867 writel(0, iommu->reg + reg);
1868 /* Read a reg to force flush the post write */
1869 readl(iommu->reg + reg);
1870 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1871 }
1872
dmar_msi_mask(struct irq_data * data)1873 void dmar_msi_mask(struct irq_data *data)
1874 {
1875 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1876 int reg = dmar_msi_reg(iommu, data->irq);
1877 unsigned long flag;
1878
1879 /* mask it */
1880 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1881 writel(DMA_FECTL_IM, iommu->reg + reg);
1882 /* Read a reg to force flush the post write */
1883 readl(iommu->reg + reg);
1884 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1885 }
1886
dmar_msi_write(int irq,struct msi_msg * msg)1887 void dmar_msi_write(int irq, struct msi_msg *msg)
1888 {
1889 struct intel_iommu *iommu = irq_get_handler_data(irq);
1890 int reg = dmar_msi_reg(iommu, irq);
1891 unsigned long flag;
1892
1893 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1894 writel(msg->data, iommu->reg + reg + 4);
1895 writel(msg->address_lo, iommu->reg + reg + 8);
1896 writel(msg->address_hi, iommu->reg + reg + 12);
1897 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1898 }
1899
dmar_msi_read(int irq,struct msi_msg * msg)1900 void dmar_msi_read(int irq, struct msi_msg *msg)
1901 {
1902 struct intel_iommu *iommu = irq_get_handler_data(irq);
1903 int reg = dmar_msi_reg(iommu, irq);
1904 unsigned long flag;
1905
1906 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1907 msg->data = readl(iommu->reg + reg + 4);
1908 msg->address_lo = readl(iommu->reg + reg + 8);
1909 msg->address_hi = readl(iommu->reg + reg + 12);
1910 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1911 }
1912
dmar_fault_do_one(struct intel_iommu * iommu,int type,u8 fault_reason,u32 pasid,u16 source_id,unsigned long long addr)1913 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1914 u8 fault_reason, u32 pasid, u16 source_id,
1915 unsigned long long addr)
1916 {
1917 const char *reason;
1918 int fault_type;
1919
1920 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1921
1922 if (fault_type == INTR_REMAP) {
1923 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1924 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1925 PCI_FUNC(source_id & 0xFF), addr >> 48,
1926 fault_reason, reason);
1927
1928 return 0;
1929 }
1930
1931 if (pasid == INVALID_IOASID)
1932 pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1933 type ? "DMA Read" : "DMA Write",
1934 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1935 PCI_FUNC(source_id & 0xFF), addr,
1936 fault_reason, reason);
1937 else
1938 pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1939 type ? "DMA Read" : "DMA Write", pasid,
1940 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1941 PCI_FUNC(source_id & 0xFF), addr,
1942 fault_reason, reason);
1943
1944 dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
1945
1946 return 0;
1947 }
1948
1949 #define PRIMARY_FAULT_REG_LEN (16)
dmar_fault(int irq,void * dev_id)1950 irqreturn_t dmar_fault(int irq, void *dev_id)
1951 {
1952 struct intel_iommu *iommu = dev_id;
1953 int reg, fault_index;
1954 u32 fault_status;
1955 unsigned long flag;
1956 static DEFINE_RATELIMIT_STATE(rs,
1957 DEFAULT_RATELIMIT_INTERVAL,
1958 DEFAULT_RATELIMIT_BURST);
1959
1960 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1961 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1962 if (fault_status && __ratelimit(&rs))
1963 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1964
1965 /* TBD: ignore advanced fault log currently */
1966 if (!(fault_status & DMA_FSTS_PPF))
1967 goto unlock_exit;
1968
1969 fault_index = dma_fsts_fault_record_index(fault_status);
1970 reg = cap_fault_reg_offset(iommu->cap);
1971 while (1) {
1972 /* Disable printing, simply clear the fault when ratelimited */
1973 bool ratelimited = !__ratelimit(&rs);
1974 u8 fault_reason;
1975 u16 source_id;
1976 u64 guest_addr;
1977 u32 pasid;
1978 int type;
1979 u32 data;
1980 bool pasid_present;
1981
1982 /* highest 32 bits */
1983 data = readl(iommu->reg + reg +
1984 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1985 if (!(data & DMA_FRCD_F))
1986 break;
1987
1988 if (!ratelimited) {
1989 fault_reason = dma_frcd_fault_reason(data);
1990 type = dma_frcd_type(data);
1991
1992 pasid = dma_frcd_pasid_value(data);
1993 data = readl(iommu->reg + reg +
1994 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1995 source_id = dma_frcd_source_id(data);
1996
1997 pasid_present = dma_frcd_pasid_present(data);
1998 guest_addr = dmar_readq(iommu->reg + reg +
1999 fault_index * PRIMARY_FAULT_REG_LEN);
2000 guest_addr = dma_frcd_page_addr(guest_addr);
2001 }
2002
2003 /* clear the fault */
2004 writel(DMA_FRCD_F, iommu->reg + reg +
2005 fault_index * PRIMARY_FAULT_REG_LEN + 12);
2006
2007 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2008
2009 if (!ratelimited)
2010 /* Using pasid -1 if pasid is not present */
2011 dmar_fault_do_one(iommu, type, fault_reason,
2012 pasid_present ? pasid : INVALID_IOASID,
2013 source_id, guest_addr);
2014
2015 fault_index++;
2016 if (fault_index >= cap_num_fault_regs(iommu->cap))
2017 fault_index = 0;
2018 raw_spin_lock_irqsave(&iommu->register_lock, flag);
2019 }
2020
2021 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2022 iommu->reg + DMAR_FSTS_REG);
2023
2024 unlock_exit:
2025 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2026 return IRQ_HANDLED;
2027 }
2028
dmar_set_interrupt(struct intel_iommu * iommu)2029 int dmar_set_interrupt(struct intel_iommu *iommu)
2030 {
2031 int irq, ret;
2032
2033 /*
2034 * Check if the fault interrupt is already initialized.
2035 */
2036 if (iommu->irq)
2037 return 0;
2038
2039 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2040 if (irq > 0) {
2041 iommu->irq = irq;
2042 } else {
2043 pr_err("No free IRQ vectors\n");
2044 return -EINVAL;
2045 }
2046
2047 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2048 if (ret)
2049 pr_err("Can't request irq\n");
2050 return ret;
2051 }
2052
enable_drhd_fault_handling(void)2053 int __init enable_drhd_fault_handling(void)
2054 {
2055 struct dmar_drhd_unit *drhd;
2056 struct intel_iommu *iommu;
2057
2058 /*
2059 * Enable fault control interrupt.
2060 */
2061 for_each_iommu(iommu, drhd) {
2062 u32 fault_status;
2063 int ret = dmar_set_interrupt(iommu);
2064
2065 if (ret) {
2066 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2067 (unsigned long long)drhd->reg_base_addr, ret);
2068 return -1;
2069 }
2070
2071 /*
2072 * Clear any previous faults.
2073 */
2074 dmar_fault(iommu->irq, iommu);
2075 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2076 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2077 }
2078
2079 return 0;
2080 }
2081
2082 /*
2083 * Re-enable Queued Invalidation interface.
2084 */
dmar_reenable_qi(struct intel_iommu * iommu)2085 int dmar_reenable_qi(struct intel_iommu *iommu)
2086 {
2087 if (!ecap_qis(iommu->ecap))
2088 return -ENOENT;
2089
2090 if (!iommu->qi)
2091 return -ENOENT;
2092
2093 /*
2094 * First disable queued invalidation.
2095 */
2096 dmar_disable_qi(iommu);
2097 /*
2098 * Then enable queued invalidation again. Since there is no pending
2099 * invalidation requests now, it's safe to re-enable queued
2100 * invalidation.
2101 */
2102 __dmar_enable_qi(iommu);
2103
2104 return 0;
2105 }
2106
2107 /*
2108 * Check interrupt remapping support in DMAR table description.
2109 */
dmar_ir_support(void)2110 int __init dmar_ir_support(void)
2111 {
2112 struct acpi_table_dmar *dmar;
2113 dmar = (struct acpi_table_dmar *)dmar_tbl;
2114 if (!dmar)
2115 return 0;
2116 return dmar->flags & 0x1;
2117 }
2118
2119 /* Check whether DMAR units are in use */
dmar_in_use(void)2120 static inline bool dmar_in_use(void)
2121 {
2122 return irq_remapping_enabled || intel_iommu_enabled;
2123 }
2124
dmar_free_unused_resources(void)2125 static int __init dmar_free_unused_resources(void)
2126 {
2127 struct dmar_drhd_unit *dmaru, *dmaru_n;
2128
2129 if (dmar_in_use())
2130 return 0;
2131
2132 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2133 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2134
2135 down_write(&dmar_global_lock);
2136 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2137 list_del(&dmaru->list);
2138 dmar_free_drhd(dmaru);
2139 }
2140 up_write(&dmar_global_lock);
2141
2142 return 0;
2143 }
2144
2145 late_initcall(dmar_free_unused_resources);
2146
2147 /*
2148 * DMAR Hotplug Support
2149 * For more details, please refer to Intel(R) Virtualization Technology
2150 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2151 * "Remapping Hardware Unit Hot Plug".
2152 */
2153 static guid_t dmar_hp_guid =
2154 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2155 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2156
2157 /*
2158 * Currently there's only one revision and BIOS will not check the revision id,
2159 * so use 0 for safety.
2160 */
2161 #define DMAR_DSM_REV_ID 0
2162 #define DMAR_DSM_FUNC_DRHD 1
2163 #define DMAR_DSM_FUNC_ATSR 2
2164 #define DMAR_DSM_FUNC_RHSA 3
2165 #define DMAR_DSM_FUNC_SATC 4
2166
dmar_detect_dsm(acpi_handle handle,int func)2167 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2168 {
2169 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2170 }
2171
dmar_walk_dsm_resource(acpi_handle handle,int func,dmar_res_handler_t handler,void * arg)2172 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2173 dmar_res_handler_t handler, void *arg)
2174 {
2175 int ret = -ENODEV;
2176 union acpi_object *obj;
2177 struct acpi_dmar_header *start;
2178 struct dmar_res_callback callback;
2179 static int res_type[] = {
2180 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2181 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2182 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2183 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2184 };
2185
2186 if (!dmar_detect_dsm(handle, func))
2187 return 0;
2188
2189 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2190 func, NULL, ACPI_TYPE_BUFFER);
2191 if (!obj)
2192 return -ENODEV;
2193
2194 memset(&callback, 0, sizeof(callback));
2195 callback.cb[res_type[func]] = handler;
2196 callback.arg[res_type[func]] = arg;
2197 start = (struct acpi_dmar_header *)obj->buffer.pointer;
2198 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2199
2200 ACPI_FREE(obj);
2201
2202 return ret;
2203 }
2204
dmar_hp_add_drhd(struct acpi_dmar_header * header,void * arg)2205 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2206 {
2207 int ret;
2208 struct dmar_drhd_unit *dmaru;
2209
2210 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2211 if (!dmaru)
2212 return -ENODEV;
2213
2214 ret = dmar_ir_hotplug(dmaru, true);
2215 if (ret == 0)
2216 ret = dmar_iommu_hotplug(dmaru, true);
2217
2218 return ret;
2219 }
2220
dmar_hp_remove_drhd(struct acpi_dmar_header * header,void * arg)2221 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2222 {
2223 int i, ret;
2224 struct device *dev;
2225 struct dmar_drhd_unit *dmaru;
2226
2227 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2228 if (!dmaru)
2229 return 0;
2230
2231 /*
2232 * All PCI devices managed by this unit should have been destroyed.
2233 */
2234 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2235 for_each_active_dev_scope(dmaru->devices,
2236 dmaru->devices_cnt, i, dev)
2237 return -EBUSY;
2238 }
2239
2240 ret = dmar_ir_hotplug(dmaru, false);
2241 if (ret == 0)
2242 ret = dmar_iommu_hotplug(dmaru, false);
2243
2244 return ret;
2245 }
2246
dmar_hp_release_drhd(struct acpi_dmar_header * header,void * arg)2247 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2248 {
2249 struct dmar_drhd_unit *dmaru;
2250
2251 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2252 if (dmaru) {
2253 list_del_rcu(&dmaru->list);
2254 synchronize_rcu();
2255 dmar_free_drhd(dmaru);
2256 }
2257
2258 return 0;
2259 }
2260
dmar_hotplug_insert(acpi_handle handle)2261 static int dmar_hotplug_insert(acpi_handle handle)
2262 {
2263 int ret;
2264 int drhd_count = 0;
2265
2266 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2267 &dmar_validate_one_drhd, (void *)1);
2268 if (ret)
2269 goto out;
2270
2271 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2272 &dmar_parse_one_drhd, (void *)&drhd_count);
2273 if (ret == 0 && drhd_count == 0) {
2274 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2275 goto out;
2276 } else if (ret) {
2277 goto release_drhd;
2278 }
2279
2280 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2281 &dmar_parse_one_rhsa, NULL);
2282 if (ret)
2283 goto release_drhd;
2284
2285 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2286 &dmar_parse_one_atsr, NULL);
2287 if (ret)
2288 goto release_atsr;
2289
2290 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2291 &dmar_hp_add_drhd, NULL);
2292 if (!ret)
2293 return 0;
2294
2295 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2296 &dmar_hp_remove_drhd, NULL);
2297 release_atsr:
2298 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2299 &dmar_release_one_atsr, NULL);
2300 release_drhd:
2301 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2302 &dmar_hp_release_drhd, NULL);
2303 out:
2304 return ret;
2305 }
2306
dmar_hotplug_remove(acpi_handle handle)2307 static int dmar_hotplug_remove(acpi_handle handle)
2308 {
2309 int ret;
2310
2311 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2312 &dmar_check_one_atsr, NULL);
2313 if (ret)
2314 return ret;
2315
2316 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2317 &dmar_hp_remove_drhd, NULL);
2318 if (ret == 0) {
2319 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2320 &dmar_release_one_atsr, NULL));
2321 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2322 &dmar_hp_release_drhd, NULL));
2323 } else {
2324 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2325 &dmar_hp_add_drhd, NULL);
2326 }
2327
2328 return ret;
2329 }
2330
dmar_get_dsm_handle(acpi_handle handle,u32 lvl,void * context,void ** retval)2331 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2332 void *context, void **retval)
2333 {
2334 acpi_handle *phdl = retval;
2335
2336 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2337 *phdl = handle;
2338 return AE_CTRL_TERMINATE;
2339 }
2340
2341 return AE_OK;
2342 }
2343
dmar_device_hotplug(acpi_handle handle,bool insert)2344 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2345 {
2346 int ret;
2347 acpi_handle tmp = NULL;
2348 acpi_status status;
2349
2350 if (!dmar_in_use())
2351 return 0;
2352
2353 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2354 tmp = handle;
2355 } else {
2356 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2357 ACPI_UINT32_MAX,
2358 dmar_get_dsm_handle,
2359 NULL, NULL, &tmp);
2360 if (ACPI_FAILURE(status)) {
2361 pr_warn("Failed to locate _DSM method.\n");
2362 return -ENXIO;
2363 }
2364 }
2365 if (tmp == NULL)
2366 return 0;
2367
2368 down_write(&dmar_global_lock);
2369 if (insert)
2370 ret = dmar_hotplug_insert(tmp);
2371 else
2372 ret = dmar_hotplug_remove(tmp);
2373 up_write(&dmar_global_lock);
2374
2375 return ret;
2376 }
2377
dmar_device_add(acpi_handle handle)2378 int dmar_device_add(acpi_handle handle)
2379 {
2380 return dmar_device_hotplug(handle, true);
2381 }
2382
dmar_device_remove(acpi_handle handle)2383 int dmar_device_remove(acpi_handle handle)
2384 {
2385 return dmar_device_hotplug(handle, false);
2386 }
2387
2388 /*
2389 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2390 *
2391 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2392 * the ACPI DMAR table. This means that the platform boot firmware has made
2393 * sure no device can issue DMA outside of RMRR regions.
2394 */
dmar_platform_optin(void)2395 bool dmar_platform_optin(void)
2396 {
2397 struct acpi_table_dmar *dmar;
2398 acpi_status status;
2399 bool ret;
2400
2401 status = acpi_get_table(ACPI_SIG_DMAR, 0,
2402 (struct acpi_table_header **)&dmar);
2403 if (ACPI_FAILURE(status))
2404 return false;
2405
2406 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2407 acpi_put_table((struct acpi_table_header *)dmar);
2408
2409 return ret;
2410 }
2411 EXPORT_SYMBOL_GPL(dmar_platform_optin);
2412