1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38 #include <linux/slab.h>
39 #include <asm/iommu_table.h>
40
41 #define PREFIX "DMAR: "
42
43 /* No locks are needed as DMA remapping hardware unit
44 * list is constructed at boot time and hotplug of
45 * these units are not supported by the architecture.
46 */
47 LIST_HEAD(dmar_drhd_units);
48
49 static struct acpi_table_header * __initdata dmar_tbl;
50 static acpi_size dmar_tbl_size;
51
dmar_register_drhd_unit(struct dmar_drhd_unit * drhd)52 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
53 {
54 /*
55 * add INCLUDE_ALL at the tail, so scan the list will find it at
56 * the very end.
57 */
58 if (drhd->include_all)
59 list_add_tail(&drhd->list, &dmar_drhd_units);
60 else
61 list_add(&drhd->list, &dmar_drhd_units);
62 }
63
dmar_parse_one_dev_scope(struct acpi_dmar_device_scope * scope,struct pci_dev ** dev,u16 segment)64 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
65 struct pci_dev **dev, u16 segment)
66 {
67 struct pci_bus *bus;
68 struct pci_dev *pdev = NULL;
69 struct acpi_dmar_pci_path *path;
70 int count;
71
72 bus = pci_find_bus(segment, scope->bus);
73 path = (struct acpi_dmar_pci_path *)(scope + 1);
74 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
75 / sizeof(struct acpi_dmar_pci_path);
76
77 while (count) {
78 if (pdev)
79 pci_dev_put(pdev);
80 /*
81 * Some BIOSes list non-exist devices in DMAR table, just
82 * ignore it
83 */
84 if (!bus) {
85 printk(KERN_WARNING
86 PREFIX "Device scope bus [%d] not found\n",
87 scope->bus);
88 break;
89 }
90 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
91 if (!pdev) {
92 printk(KERN_WARNING PREFIX
93 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
94 segment, bus->number, path->dev, path->fn);
95 break;
96 }
97 path ++;
98 count --;
99 bus = pdev->subordinate;
100 }
101 if (!pdev) {
102 printk(KERN_WARNING PREFIX
103 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
104 segment, scope->bus, path->dev, path->fn);
105 *dev = NULL;
106 return 0;
107 }
108 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
109 pdev->subordinate) || (scope->entry_type == \
110 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
111 pci_dev_put(pdev);
112 printk(KERN_WARNING PREFIX
113 "Device scope type does not match for %s\n",
114 pci_name(pdev));
115 return -EINVAL;
116 }
117 *dev = pdev;
118 return 0;
119 }
120
dmar_parse_dev_scope(void * start,void * end,int * cnt,struct pci_dev *** devices,u16 segment)121 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
122 struct pci_dev ***devices, u16 segment)
123 {
124 struct acpi_dmar_device_scope *scope;
125 void * tmp = start;
126 int index;
127 int ret;
128
129 *cnt = 0;
130 while (start < end) {
131 scope = start;
132 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
133 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
134 (*cnt)++;
135 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
136 printk(KERN_WARNING PREFIX
137 "Unsupported device scope\n");
138 }
139 start += scope->length;
140 }
141 if (*cnt == 0)
142 return 0;
143
144 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
145 if (!*devices)
146 return -ENOMEM;
147
148 start = tmp;
149 index = 0;
150 while (start < end) {
151 scope = start;
152 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
153 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
154 ret = dmar_parse_one_dev_scope(scope,
155 &(*devices)[index], segment);
156 if (ret) {
157 kfree(*devices);
158 return ret;
159 }
160 index ++;
161 }
162 start += scope->length;
163 }
164
165 return 0;
166 }
167
168 /**
169 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
170 * structure which uniquely represent one DMA remapping hardware unit
171 * present in the platform
172 */
173 static int __init
dmar_parse_one_drhd(struct acpi_dmar_header * header)174 dmar_parse_one_drhd(struct acpi_dmar_header *header)
175 {
176 struct acpi_dmar_hardware_unit *drhd;
177 struct dmar_drhd_unit *dmaru;
178 int ret = 0;
179
180 drhd = (struct acpi_dmar_hardware_unit *)header;
181 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
182 if (!dmaru)
183 return -ENOMEM;
184
185 dmaru->hdr = header;
186 dmaru->reg_base_addr = drhd->address;
187 dmaru->segment = drhd->segment;
188 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
189
190 ret = alloc_iommu(dmaru);
191 if (ret) {
192 kfree(dmaru);
193 return ret;
194 }
195 dmar_register_drhd_unit(dmaru);
196 return 0;
197 }
198
dmar_parse_dev(struct dmar_drhd_unit * dmaru)199 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
200 {
201 struct acpi_dmar_hardware_unit *drhd;
202 int ret = 0;
203
204 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
205
206 if (dmaru->include_all)
207 return 0;
208
209 ret = dmar_parse_dev_scope((void *)(drhd + 1),
210 ((void *)drhd) + drhd->header.length,
211 &dmaru->devices_cnt, &dmaru->devices,
212 drhd->segment);
213 if (ret) {
214 list_del(&dmaru->list);
215 kfree(dmaru);
216 }
217 return ret;
218 }
219
220 #ifdef CONFIG_DMAR
221 LIST_HEAD(dmar_rmrr_units);
222
dmar_register_rmrr_unit(struct dmar_rmrr_unit * rmrr)223 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
224 {
225 list_add(&rmrr->list, &dmar_rmrr_units);
226 }
227
228
229 static int __init
dmar_parse_one_rmrr(struct acpi_dmar_header * header)230 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
231 {
232 struct acpi_dmar_reserved_memory *rmrr;
233 struct dmar_rmrr_unit *rmrru;
234
235 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
236 if (!rmrru)
237 return -ENOMEM;
238
239 rmrru->hdr = header;
240 rmrr = (struct acpi_dmar_reserved_memory *)header;
241 rmrru->base_address = rmrr->base_address;
242 rmrru->end_address = rmrr->end_address;
243
244 dmar_register_rmrr_unit(rmrru);
245 return 0;
246 }
247
248 static int __init
rmrr_parse_dev(struct dmar_rmrr_unit * rmrru)249 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
250 {
251 struct acpi_dmar_reserved_memory *rmrr;
252 int ret;
253
254 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
255 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
256 ((void *)rmrr) + rmrr->header.length,
257 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
258
259 if (ret || (rmrru->devices_cnt == 0)) {
260 list_del(&rmrru->list);
261 kfree(rmrru);
262 }
263 return ret;
264 }
265
266 static LIST_HEAD(dmar_atsr_units);
267
dmar_parse_one_atsr(struct acpi_dmar_header * hdr)268 static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
269 {
270 struct acpi_dmar_atsr *atsr;
271 struct dmar_atsr_unit *atsru;
272
273 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
274 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
275 if (!atsru)
276 return -ENOMEM;
277
278 atsru->hdr = hdr;
279 atsru->include_all = atsr->flags & 0x1;
280
281 list_add(&atsru->list, &dmar_atsr_units);
282
283 return 0;
284 }
285
atsr_parse_dev(struct dmar_atsr_unit * atsru)286 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
287 {
288 int rc;
289 struct acpi_dmar_atsr *atsr;
290
291 if (atsru->include_all)
292 return 0;
293
294 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
295 rc = dmar_parse_dev_scope((void *)(atsr + 1),
296 (void *)atsr + atsr->header.length,
297 &atsru->devices_cnt, &atsru->devices,
298 atsr->segment);
299 if (rc || !atsru->devices_cnt) {
300 list_del(&atsru->list);
301 kfree(atsru);
302 }
303
304 return rc;
305 }
306
dmar_find_matched_atsr_unit(struct pci_dev * dev)307 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
308 {
309 int i;
310 struct pci_bus *bus;
311 struct acpi_dmar_atsr *atsr;
312 struct dmar_atsr_unit *atsru;
313
314 dev = pci_physfn(dev);
315
316 list_for_each_entry(atsru, &dmar_atsr_units, list) {
317 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
318 if (atsr->segment == pci_domain_nr(dev->bus))
319 goto found;
320 }
321
322 return 0;
323
324 found:
325 for (bus = dev->bus; bus; bus = bus->parent) {
326 struct pci_dev *bridge = bus->self;
327
328 if (!bridge || !pci_is_pcie(bridge) ||
329 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
330 return 0;
331
332 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
333 for (i = 0; i < atsru->devices_cnt; i++)
334 if (atsru->devices[i] == bridge)
335 return 1;
336 break;
337 }
338 }
339
340 if (atsru->include_all)
341 return 1;
342
343 return 0;
344 }
345 #endif
346
347 #ifdef CONFIG_ACPI_NUMA
348 static int __init
dmar_parse_one_rhsa(struct acpi_dmar_header * header)349 dmar_parse_one_rhsa(struct acpi_dmar_header *header)
350 {
351 struct acpi_dmar_rhsa *rhsa;
352 struct dmar_drhd_unit *drhd;
353
354 rhsa = (struct acpi_dmar_rhsa *)header;
355 for_each_drhd_unit(drhd) {
356 if (drhd->reg_base_addr == rhsa->base_address) {
357 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
358
359 if (!node_online(node))
360 node = -1;
361 drhd->iommu->node = node;
362 return 0;
363 }
364 }
365 WARN_TAINT(
366 1, TAINT_FIRMWARE_WORKAROUND,
367 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
368 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
369 drhd->reg_base_addr,
370 dmi_get_system_info(DMI_BIOS_VENDOR),
371 dmi_get_system_info(DMI_BIOS_VERSION),
372 dmi_get_system_info(DMI_PRODUCT_VERSION));
373
374 return 0;
375 }
376 #endif
377
378 static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header * header)379 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
380 {
381 struct acpi_dmar_hardware_unit *drhd;
382 struct acpi_dmar_reserved_memory *rmrr;
383 struct acpi_dmar_atsr *atsr;
384 struct acpi_dmar_rhsa *rhsa;
385
386 switch (header->type) {
387 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
388 drhd = container_of(header, struct acpi_dmar_hardware_unit,
389 header);
390 printk (KERN_INFO PREFIX
391 "DRHD base: %#016Lx flags: %#x\n",
392 (unsigned long long)drhd->address, drhd->flags);
393 break;
394 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
395 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
396 header);
397 printk (KERN_INFO PREFIX
398 "RMRR base: %#016Lx end: %#016Lx\n",
399 (unsigned long long)rmrr->base_address,
400 (unsigned long long)rmrr->end_address);
401 break;
402 case ACPI_DMAR_TYPE_ATSR:
403 atsr = container_of(header, struct acpi_dmar_atsr, header);
404 printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
405 break;
406 case ACPI_DMAR_HARDWARE_AFFINITY:
407 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
408 printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
409 (unsigned long long)rhsa->base_address,
410 rhsa->proximity_domain);
411 break;
412 }
413 }
414
415 /**
416 * dmar_table_detect - checks to see if the platform supports DMAR devices
417 */
dmar_table_detect(void)418 static int __init dmar_table_detect(void)
419 {
420 acpi_status status = AE_OK;
421
422 /* if we could find DMAR table, then there are DMAR devices */
423 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
424 (struct acpi_table_header **)&dmar_tbl,
425 &dmar_tbl_size);
426
427 if (ACPI_SUCCESS(status) && !dmar_tbl) {
428 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
429 status = AE_NOT_FOUND;
430 }
431
432 return (ACPI_SUCCESS(status) ? 1 : 0);
433 }
434
435 /**
436 * parse_dmar_table - parses the DMA reporting table
437 */
438 static int __init
parse_dmar_table(void)439 parse_dmar_table(void)
440 {
441 struct acpi_table_dmar *dmar;
442 struct acpi_dmar_header *entry_header;
443 int ret = 0;
444
445 /*
446 * Do it again, earlier dmar_tbl mapping could be mapped with
447 * fixed map.
448 */
449 dmar_table_detect();
450
451 /*
452 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
453 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
454 */
455 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
456
457 dmar = (struct acpi_table_dmar *)dmar_tbl;
458 if (!dmar)
459 return -ENODEV;
460
461 if (dmar->width < PAGE_SHIFT - 1) {
462 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
463 return -EINVAL;
464 }
465
466 printk (KERN_INFO PREFIX "Host address width %d\n",
467 dmar->width + 1);
468
469 entry_header = (struct acpi_dmar_header *)(dmar + 1);
470 while (((unsigned long)entry_header) <
471 (((unsigned long)dmar) + dmar_tbl->length)) {
472 /* Avoid looping forever on bad ACPI tables */
473 if (entry_header->length == 0) {
474 printk(KERN_WARNING PREFIX
475 "Invalid 0-length structure\n");
476 ret = -EINVAL;
477 break;
478 }
479
480 dmar_table_print_dmar_entry(entry_header);
481
482 switch (entry_header->type) {
483 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
484 ret = dmar_parse_one_drhd(entry_header);
485 break;
486 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
487 #ifdef CONFIG_DMAR
488 ret = dmar_parse_one_rmrr(entry_header);
489 #endif
490 break;
491 case ACPI_DMAR_TYPE_ATSR:
492 #ifdef CONFIG_DMAR
493 ret = dmar_parse_one_atsr(entry_header);
494 #endif
495 break;
496 case ACPI_DMAR_HARDWARE_AFFINITY:
497 #ifdef CONFIG_ACPI_NUMA
498 ret = dmar_parse_one_rhsa(entry_header);
499 #endif
500 break;
501 default:
502 printk(KERN_WARNING PREFIX
503 "Unknown DMAR structure type %d\n",
504 entry_header->type);
505 ret = 0; /* for forward compatibility */
506 break;
507 }
508 if (ret)
509 break;
510
511 entry_header = ((void *)entry_header + entry_header->length);
512 }
513 return ret;
514 }
515
dmar_pci_device_match(struct pci_dev * devices[],int cnt,struct pci_dev * dev)516 static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
517 struct pci_dev *dev)
518 {
519 int index;
520
521 while (dev) {
522 for (index = 0; index < cnt; index++)
523 if (dev == devices[index])
524 return 1;
525
526 /* Check our parent */
527 dev = dev->bus->self;
528 }
529
530 return 0;
531 }
532
533 struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev * dev)534 dmar_find_matched_drhd_unit(struct pci_dev *dev)
535 {
536 struct dmar_drhd_unit *dmaru = NULL;
537 struct acpi_dmar_hardware_unit *drhd;
538
539 dev = pci_physfn(dev);
540
541 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
542 drhd = container_of(dmaru->hdr,
543 struct acpi_dmar_hardware_unit,
544 header);
545
546 if (dmaru->include_all &&
547 drhd->segment == pci_domain_nr(dev->bus))
548 return dmaru;
549
550 if (dmar_pci_device_match(dmaru->devices,
551 dmaru->devices_cnt, dev))
552 return dmaru;
553 }
554
555 return NULL;
556 }
557
dmar_dev_scope_init(void)558 int __init dmar_dev_scope_init(void)
559 {
560 struct dmar_drhd_unit *drhd, *drhd_n;
561 int ret = -ENODEV;
562
563 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
564 ret = dmar_parse_dev(drhd);
565 if (ret)
566 return ret;
567 }
568
569 #ifdef CONFIG_DMAR
570 {
571 struct dmar_rmrr_unit *rmrr, *rmrr_n;
572 struct dmar_atsr_unit *atsr, *atsr_n;
573
574 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
575 ret = rmrr_parse_dev(rmrr);
576 if (ret)
577 return ret;
578 }
579
580 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
581 ret = atsr_parse_dev(atsr);
582 if (ret)
583 return ret;
584 }
585 }
586 #endif
587
588 return ret;
589 }
590
591
dmar_table_init(void)592 int __init dmar_table_init(void)
593 {
594 static int dmar_table_initialized;
595 int ret;
596
597 if (dmar_table_initialized)
598 return 0;
599
600 dmar_table_initialized = 1;
601
602 ret = parse_dmar_table();
603 if (ret) {
604 if (ret != -ENODEV)
605 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
606 return ret;
607 }
608
609 if (list_empty(&dmar_drhd_units)) {
610 printk(KERN_INFO PREFIX "No DMAR devices found\n");
611 return -ENODEV;
612 }
613
614 #ifdef CONFIG_DMAR
615 if (list_empty(&dmar_rmrr_units))
616 printk(KERN_INFO PREFIX "No RMRR found\n");
617
618 if (list_empty(&dmar_atsr_units))
619 printk(KERN_INFO PREFIX "No ATSR found\n");
620 #endif
621
622 return 0;
623 }
624
warn_invalid_dmar(u64 addr,const char * message)625 static void warn_invalid_dmar(u64 addr, const char *message)
626 {
627 WARN_TAINT_ONCE(
628 1, TAINT_FIRMWARE_WORKAROUND,
629 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
630 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
631 addr, message,
632 dmi_get_system_info(DMI_BIOS_VENDOR),
633 dmi_get_system_info(DMI_BIOS_VERSION),
634 dmi_get_system_info(DMI_PRODUCT_VERSION));
635 }
636
check_zero_address(void)637 int __init check_zero_address(void)
638 {
639 struct acpi_table_dmar *dmar;
640 struct acpi_dmar_header *entry_header;
641 struct acpi_dmar_hardware_unit *drhd;
642
643 dmar = (struct acpi_table_dmar *)dmar_tbl;
644 entry_header = (struct acpi_dmar_header *)(dmar + 1);
645
646 while (((unsigned long)entry_header) <
647 (((unsigned long)dmar) + dmar_tbl->length)) {
648 /* Avoid looping forever on bad ACPI tables */
649 if (entry_header->length == 0) {
650 printk(KERN_WARNING PREFIX
651 "Invalid 0-length structure\n");
652 return 0;
653 }
654
655 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
656 void __iomem *addr;
657 u64 cap, ecap;
658
659 drhd = (void *)entry_header;
660 if (!drhd->address) {
661 warn_invalid_dmar(0, "");
662 goto failed;
663 }
664
665 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
666 if (!addr ) {
667 printk("IOMMU: can't validate: %llx\n", drhd->address);
668 goto failed;
669 }
670 cap = dmar_readq(addr + DMAR_CAP_REG);
671 ecap = dmar_readq(addr + DMAR_ECAP_REG);
672 early_iounmap(addr, VTD_PAGE_SIZE);
673 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
674 warn_invalid_dmar(drhd->address,
675 " returns all ones");
676 goto failed;
677 }
678 }
679
680 entry_header = ((void *)entry_header + entry_header->length);
681 }
682 return 1;
683
684 failed:
685 #ifdef CONFIG_DMAR
686 dmar_disabled = 1;
687 #endif
688 return 0;
689 }
690
detect_intel_iommu(void)691 int __init detect_intel_iommu(void)
692 {
693 int ret;
694
695 ret = dmar_table_detect();
696 if (ret)
697 ret = check_zero_address();
698 {
699 #ifdef CONFIG_INTR_REMAP
700 struct acpi_table_dmar *dmar;
701 /*
702 * for now we will disable dma-remapping when interrupt
703 * remapping is enabled.
704 * When support for queued invalidation for IOTLB invalidation
705 * is added, we will not need this any more.
706 */
707 dmar = (struct acpi_table_dmar *) dmar_tbl;
708 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
709 printk(KERN_INFO
710 "Queued invalidation will be enabled to support "
711 "x2apic and Intr-remapping.\n");
712 #endif
713 #ifdef CONFIG_DMAR
714 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
715 iommu_detected = 1;
716 /* Make sure ACS will be enabled */
717 pci_request_acs();
718 }
719 #endif
720 #ifdef CONFIG_X86
721 if (ret)
722 x86_init.iommu.iommu_init = intel_iommu_init;
723 #endif
724 }
725 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
726 dmar_tbl = NULL;
727
728 return ret ? 1 : -ENODEV;
729 }
730
731
alloc_iommu(struct dmar_drhd_unit * drhd)732 int alloc_iommu(struct dmar_drhd_unit *drhd)
733 {
734 struct intel_iommu *iommu;
735 int map_size;
736 u32 ver;
737 static int iommu_allocated = 0;
738 int agaw = 0;
739 int msagaw = 0;
740
741 if (!drhd->reg_base_addr) {
742 warn_invalid_dmar(0, "");
743 return -EINVAL;
744 }
745
746 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
747 if (!iommu)
748 return -ENOMEM;
749
750 iommu->seq_id = iommu_allocated++;
751 sprintf (iommu->name, "dmar%d", iommu->seq_id);
752
753 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
754 if (!iommu->reg) {
755 printk(KERN_ERR "IOMMU: can't map the region\n");
756 goto error;
757 }
758 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
759 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
760
761 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
762 warn_invalid_dmar(drhd->reg_base_addr, " returns all ones");
763 goto err_unmap;
764 }
765
766 #ifdef CONFIG_DMAR
767 agaw = iommu_calculate_agaw(iommu);
768 if (agaw < 0) {
769 printk(KERN_ERR
770 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
771 iommu->seq_id);
772 goto err_unmap;
773 }
774 msagaw = iommu_calculate_max_sagaw(iommu);
775 if (msagaw < 0) {
776 printk(KERN_ERR
777 "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
778 iommu->seq_id);
779 goto err_unmap;
780 }
781 #endif
782 iommu->agaw = agaw;
783 iommu->msagaw = msagaw;
784
785 iommu->node = -1;
786
787 /* the registers might be more than one page */
788 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
789 cap_max_fault_reg_offset(iommu->cap));
790 map_size = VTD_PAGE_ALIGN(map_size);
791 if (map_size > VTD_PAGE_SIZE) {
792 iounmap(iommu->reg);
793 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
794 if (!iommu->reg) {
795 printk(KERN_ERR "IOMMU: can't map the region\n");
796 goto error;
797 }
798 }
799
800 ver = readl(iommu->reg + DMAR_VER_REG);
801 pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
802 iommu->seq_id,
803 (unsigned long long)drhd->reg_base_addr,
804 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
805 (unsigned long long)iommu->cap,
806 (unsigned long long)iommu->ecap);
807
808 spin_lock_init(&iommu->register_lock);
809
810 drhd->iommu = iommu;
811 return 0;
812
813 err_unmap:
814 iounmap(iommu->reg);
815 error:
816 kfree(iommu);
817 return -1;
818 }
819
free_iommu(struct intel_iommu * iommu)820 void free_iommu(struct intel_iommu *iommu)
821 {
822 if (!iommu)
823 return;
824
825 #ifdef CONFIG_DMAR
826 free_dmar_iommu(iommu);
827 #endif
828
829 if (iommu->reg)
830 iounmap(iommu->reg);
831 kfree(iommu);
832 }
833
834 /*
835 * Reclaim all the submitted descriptors which have completed its work.
836 */
reclaim_free_desc(struct q_inval * qi)837 static inline void reclaim_free_desc(struct q_inval *qi)
838 {
839 while (qi->desc_status[qi->free_tail] == QI_DONE ||
840 qi->desc_status[qi->free_tail] == QI_ABORT) {
841 qi->desc_status[qi->free_tail] = QI_FREE;
842 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
843 qi->free_cnt++;
844 }
845 }
846
qi_check_fault(struct intel_iommu * iommu,int index)847 static int qi_check_fault(struct intel_iommu *iommu, int index)
848 {
849 u32 fault;
850 int head, tail;
851 struct q_inval *qi = iommu->qi;
852 int wait_index = (index + 1) % QI_LENGTH;
853
854 if (qi->desc_status[wait_index] == QI_ABORT)
855 return -EAGAIN;
856
857 fault = readl(iommu->reg + DMAR_FSTS_REG);
858
859 /*
860 * If IQE happens, the head points to the descriptor associated
861 * with the error. No new descriptors are fetched until the IQE
862 * is cleared.
863 */
864 if (fault & DMA_FSTS_IQE) {
865 head = readl(iommu->reg + DMAR_IQH_REG);
866 if ((head >> DMAR_IQ_SHIFT) == index) {
867 printk(KERN_ERR "VT-d detected invalid descriptor: "
868 "low=%llx, high=%llx\n",
869 (unsigned long long)qi->desc[index].low,
870 (unsigned long long)qi->desc[index].high);
871 memcpy(&qi->desc[index], &qi->desc[wait_index],
872 sizeof(struct qi_desc));
873 __iommu_flush_cache(iommu, &qi->desc[index],
874 sizeof(struct qi_desc));
875 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
876 return -EINVAL;
877 }
878 }
879
880 /*
881 * If ITE happens, all pending wait_desc commands are aborted.
882 * No new descriptors are fetched until the ITE is cleared.
883 */
884 if (fault & DMA_FSTS_ITE) {
885 head = readl(iommu->reg + DMAR_IQH_REG);
886 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
887 head |= 1;
888 tail = readl(iommu->reg + DMAR_IQT_REG);
889 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
890
891 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
892
893 do {
894 if (qi->desc_status[head] == QI_IN_USE)
895 qi->desc_status[head] = QI_ABORT;
896 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
897 } while (head != tail);
898
899 if (qi->desc_status[wait_index] == QI_ABORT)
900 return -EAGAIN;
901 }
902
903 if (fault & DMA_FSTS_ICE)
904 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
905
906 return 0;
907 }
908
909 /*
910 * Submit the queued invalidation descriptor to the remapping
911 * hardware unit and wait for its completion.
912 */
qi_submit_sync(struct qi_desc * desc,struct intel_iommu * iommu)913 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
914 {
915 int rc;
916 struct q_inval *qi = iommu->qi;
917 struct qi_desc *hw, wait_desc;
918 int wait_index, index;
919 unsigned long flags;
920
921 if (!qi)
922 return 0;
923
924 hw = qi->desc;
925
926 restart:
927 rc = 0;
928
929 spin_lock_irqsave(&qi->q_lock, flags);
930 while (qi->free_cnt < 3) {
931 spin_unlock_irqrestore(&qi->q_lock, flags);
932 cpu_relax();
933 spin_lock_irqsave(&qi->q_lock, flags);
934 }
935
936 index = qi->free_head;
937 wait_index = (index + 1) % QI_LENGTH;
938
939 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
940
941 hw[index] = *desc;
942
943 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
944 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
945 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
946
947 hw[wait_index] = wait_desc;
948
949 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
950 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
951
952 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
953 qi->free_cnt -= 2;
954
955 /*
956 * update the HW tail register indicating the presence of
957 * new descriptors.
958 */
959 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
960
961 while (qi->desc_status[wait_index] != QI_DONE) {
962 /*
963 * We will leave the interrupts disabled, to prevent interrupt
964 * context to queue another cmd while a cmd is already submitted
965 * and waiting for completion on this cpu. This is to avoid
966 * a deadlock where the interrupt context can wait indefinitely
967 * for free slots in the queue.
968 */
969 rc = qi_check_fault(iommu, index);
970 if (rc)
971 break;
972
973 spin_unlock(&qi->q_lock);
974 cpu_relax();
975 spin_lock(&qi->q_lock);
976 }
977
978 qi->desc_status[index] = QI_DONE;
979
980 reclaim_free_desc(qi);
981 spin_unlock_irqrestore(&qi->q_lock, flags);
982
983 if (rc == -EAGAIN)
984 goto restart;
985
986 return rc;
987 }
988
989 /*
990 * Flush the global interrupt entry cache.
991 */
qi_global_iec(struct intel_iommu * iommu)992 void qi_global_iec(struct intel_iommu *iommu)
993 {
994 struct qi_desc desc;
995
996 desc.low = QI_IEC_TYPE;
997 desc.high = 0;
998
999 /* should never fail */
1000 qi_submit_sync(&desc, iommu);
1001 }
1002
qi_flush_context(struct intel_iommu * iommu,u16 did,u16 sid,u8 fm,u64 type)1003 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1004 u64 type)
1005 {
1006 struct qi_desc desc;
1007
1008 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1009 | QI_CC_GRAN(type) | QI_CC_TYPE;
1010 desc.high = 0;
1011
1012 qi_submit_sync(&desc, iommu);
1013 }
1014
qi_flush_iotlb(struct intel_iommu * iommu,u16 did,u64 addr,unsigned int size_order,u64 type)1015 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1016 unsigned int size_order, u64 type)
1017 {
1018 u8 dw = 0, dr = 0;
1019
1020 struct qi_desc desc;
1021 int ih = 0;
1022
1023 if (cap_write_drain(iommu->cap))
1024 dw = 1;
1025
1026 if (cap_read_drain(iommu->cap))
1027 dr = 1;
1028
1029 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1030 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1031 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1032 | QI_IOTLB_AM(size_order);
1033
1034 qi_submit_sync(&desc, iommu);
1035 }
1036
qi_flush_dev_iotlb(struct intel_iommu * iommu,u16 sid,u16 qdep,u64 addr,unsigned mask)1037 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1038 u64 addr, unsigned mask)
1039 {
1040 struct qi_desc desc;
1041
1042 if (mask) {
1043 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1044 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1045 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1046 } else
1047 desc.high = QI_DEV_IOTLB_ADDR(addr);
1048
1049 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1050 qdep = 0;
1051
1052 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1053 QI_DIOTLB_TYPE;
1054
1055 qi_submit_sync(&desc, iommu);
1056 }
1057
1058 /*
1059 * Disable Queued Invalidation interface.
1060 */
dmar_disable_qi(struct intel_iommu * iommu)1061 void dmar_disable_qi(struct intel_iommu *iommu)
1062 {
1063 unsigned long flags;
1064 u32 sts;
1065 cycles_t start_time = get_cycles();
1066
1067 if (!ecap_qis(iommu->ecap))
1068 return;
1069
1070 spin_lock_irqsave(&iommu->register_lock, flags);
1071
1072 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
1073 if (!(sts & DMA_GSTS_QIES))
1074 goto end;
1075
1076 /*
1077 * Give a chance to HW to complete the pending invalidation requests.
1078 */
1079 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1080 readl(iommu->reg + DMAR_IQH_REG)) &&
1081 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1082 cpu_relax();
1083
1084 iommu->gcmd &= ~DMA_GCMD_QIE;
1085 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1086
1087 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1088 !(sts & DMA_GSTS_QIES), sts);
1089 end:
1090 spin_unlock_irqrestore(&iommu->register_lock, flags);
1091 }
1092
1093 /*
1094 * Enable queued invalidation.
1095 */
__dmar_enable_qi(struct intel_iommu * iommu)1096 static void __dmar_enable_qi(struct intel_iommu *iommu)
1097 {
1098 u32 sts;
1099 unsigned long flags;
1100 struct q_inval *qi = iommu->qi;
1101
1102 qi->free_head = qi->free_tail = 0;
1103 qi->free_cnt = QI_LENGTH;
1104
1105 spin_lock_irqsave(&iommu->register_lock, flags);
1106
1107 /* write zero to the tail reg */
1108 writel(0, iommu->reg + DMAR_IQT_REG);
1109
1110 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1111
1112 iommu->gcmd |= DMA_GCMD_QIE;
1113 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1114
1115 /* Make sure hardware complete it */
1116 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1117
1118 spin_unlock_irqrestore(&iommu->register_lock, flags);
1119 }
1120
1121 /*
1122 * Enable Queued Invalidation interface. This is a must to support
1123 * interrupt-remapping. Also used by DMA-remapping, which replaces
1124 * register based IOTLB invalidation.
1125 */
dmar_enable_qi(struct intel_iommu * iommu)1126 int dmar_enable_qi(struct intel_iommu *iommu)
1127 {
1128 struct q_inval *qi;
1129 struct page *desc_page;
1130
1131 if (!ecap_qis(iommu->ecap))
1132 return -ENOENT;
1133
1134 /*
1135 * queued invalidation is already setup and enabled.
1136 */
1137 if (iommu->qi)
1138 return 0;
1139
1140 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1141 if (!iommu->qi)
1142 return -ENOMEM;
1143
1144 qi = iommu->qi;
1145
1146
1147 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1148 if (!desc_page) {
1149 kfree(qi);
1150 iommu->qi = 0;
1151 return -ENOMEM;
1152 }
1153
1154 qi->desc = page_address(desc_page);
1155
1156 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1157 if (!qi->desc_status) {
1158 free_page((unsigned long) qi->desc);
1159 kfree(qi);
1160 iommu->qi = 0;
1161 return -ENOMEM;
1162 }
1163
1164 qi->free_head = qi->free_tail = 0;
1165 qi->free_cnt = QI_LENGTH;
1166
1167 spin_lock_init(&qi->q_lock);
1168
1169 __dmar_enable_qi(iommu);
1170
1171 return 0;
1172 }
1173
1174 /* iommu interrupt handling. Most stuff are MSI-like. */
1175
1176 enum faulttype {
1177 DMA_REMAP,
1178 INTR_REMAP,
1179 UNKNOWN,
1180 };
1181
1182 static const char *dma_remap_fault_reasons[] =
1183 {
1184 "Software",
1185 "Present bit in root entry is clear",
1186 "Present bit in context entry is clear",
1187 "Invalid context entry",
1188 "Access beyond MGAW",
1189 "PTE Write access is not set",
1190 "PTE Read access is not set",
1191 "Next page table ptr is invalid",
1192 "Root table address invalid",
1193 "Context table ptr is invalid",
1194 "non-zero reserved fields in RTP",
1195 "non-zero reserved fields in CTP",
1196 "non-zero reserved fields in PTE",
1197 };
1198
1199 static const char *intr_remap_fault_reasons[] =
1200 {
1201 "Detected reserved fields in the decoded interrupt-remapped request",
1202 "Interrupt index exceeded the interrupt-remapping table size",
1203 "Present field in the IRTE entry is clear",
1204 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1205 "Detected reserved fields in the IRTE entry",
1206 "Blocked a compatibility format interrupt request",
1207 "Blocked an interrupt request due to source-id verification failure",
1208 };
1209
1210 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1211
dmar_get_fault_reason(u8 fault_reason,int * fault_type)1212 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1213 {
1214 if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
1215 ARRAY_SIZE(intr_remap_fault_reasons))) {
1216 *fault_type = INTR_REMAP;
1217 return intr_remap_fault_reasons[fault_reason - 0x20];
1218 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1219 *fault_type = DMA_REMAP;
1220 return dma_remap_fault_reasons[fault_reason];
1221 } else {
1222 *fault_type = UNKNOWN;
1223 return "Unknown";
1224 }
1225 }
1226
dmar_msi_unmask(struct irq_data * data)1227 void dmar_msi_unmask(struct irq_data *data)
1228 {
1229 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1230 unsigned long flag;
1231
1232 /* unmask it */
1233 spin_lock_irqsave(&iommu->register_lock, flag);
1234 writel(0, iommu->reg + DMAR_FECTL_REG);
1235 /* Read a reg to force flush the post write */
1236 readl(iommu->reg + DMAR_FECTL_REG);
1237 spin_unlock_irqrestore(&iommu->register_lock, flag);
1238 }
1239
dmar_msi_mask(struct irq_data * data)1240 void dmar_msi_mask(struct irq_data *data)
1241 {
1242 unsigned long flag;
1243 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1244
1245 /* mask it */
1246 spin_lock_irqsave(&iommu->register_lock, flag);
1247 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1248 /* Read a reg to force flush the post write */
1249 readl(iommu->reg + DMAR_FECTL_REG);
1250 spin_unlock_irqrestore(&iommu->register_lock, flag);
1251 }
1252
dmar_msi_write(int irq,struct msi_msg * msg)1253 void dmar_msi_write(int irq, struct msi_msg *msg)
1254 {
1255 struct intel_iommu *iommu = irq_get_handler_data(irq);
1256 unsigned long flag;
1257
1258 spin_lock_irqsave(&iommu->register_lock, flag);
1259 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1260 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1261 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1262 spin_unlock_irqrestore(&iommu->register_lock, flag);
1263 }
1264
dmar_msi_read(int irq,struct msi_msg * msg)1265 void dmar_msi_read(int irq, struct msi_msg *msg)
1266 {
1267 struct intel_iommu *iommu = irq_get_handler_data(irq);
1268 unsigned long flag;
1269
1270 spin_lock_irqsave(&iommu->register_lock, flag);
1271 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1272 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1273 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1274 spin_unlock_irqrestore(&iommu->register_lock, flag);
1275 }
1276
dmar_fault_do_one(struct intel_iommu * iommu,int type,u8 fault_reason,u16 source_id,unsigned long long addr)1277 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1278 u8 fault_reason, u16 source_id, unsigned long long addr)
1279 {
1280 const char *reason;
1281 int fault_type;
1282
1283 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1284
1285 if (fault_type == INTR_REMAP)
1286 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
1287 "fault index %llx\n"
1288 "INTR-REMAP:[fault reason %02d] %s\n",
1289 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1290 PCI_FUNC(source_id & 0xFF), addr >> 48,
1291 fault_reason, reason);
1292 else
1293 printk(KERN_ERR
1294 "DMAR:[%s] Request device [%02x:%02x.%d] "
1295 "fault addr %llx \n"
1296 "DMAR:[fault reason %02d] %s\n",
1297 (type ? "DMA Read" : "DMA Write"),
1298 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1299 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1300 return 0;
1301 }
1302
1303 #define PRIMARY_FAULT_REG_LEN (16)
dmar_fault(int irq,void * dev_id)1304 irqreturn_t dmar_fault(int irq, void *dev_id)
1305 {
1306 struct intel_iommu *iommu = dev_id;
1307 int reg, fault_index;
1308 u32 fault_status;
1309 unsigned long flag;
1310
1311 spin_lock_irqsave(&iommu->register_lock, flag);
1312 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1313 if (fault_status)
1314 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1315 fault_status);
1316
1317 /* TBD: ignore advanced fault log currently */
1318 if (!(fault_status & DMA_FSTS_PPF))
1319 goto clear_rest;
1320
1321 fault_index = dma_fsts_fault_record_index(fault_status);
1322 reg = cap_fault_reg_offset(iommu->cap);
1323 while (1) {
1324 u8 fault_reason;
1325 u16 source_id;
1326 u64 guest_addr;
1327 int type;
1328 u32 data;
1329
1330 /* highest 32 bits */
1331 data = readl(iommu->reg + reg +
1332 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1333 if (!(data & DMA_FRCD_F))
1334 break;
1335
1336 fault_reason = dma_frcd_fault_reason(data);
1337 type = dma_frcd_type(data);
1338
1339 data = readl(iommu->reg + reg +
1340 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1341 source_id = dma_frcd_source_id(data);
1342
1343 guest_addr = dmar_readq(iommu->reg + reg +
1344 fault_index * PRIMARY_FAULT_REG_LEN);
1345 guest_addr = dma_frcd_page_addr(guest_addr);
1346 /* clear the fault */
1347 writel(DMA_FRCD_F, iommu->reg + reg +
1348 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1349
1350 spin_unlock_irqrestore(&iommu->register_lock, flag);
1351
1352 dmar_fault_do_one(iommu, type, fault_reason,
1353 source_id, guest_addr);
1354
1355 fault_index++;
1356 if (fault_index >= cap_num_fault_regs(iommu->cap))
1357 fault_index = 0;
1358 spin_lock_irqsave(&iommu->register_lock, flag);
1359 }
1360 clear_rest:
1361 /* clear all the other faults */
1362 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1363 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1364
1365 spin_unlock_irqrestore(&iommu->register_lock, flag);
1366 return IRQ_HANDLED;
1367 }
1368
dmar_set_interrupt(struct intel_iommu * iommu)1369 int dmar_set_interrupt(struct intel_iommu *iommu)
1370 {
1371 int irq, ret;
1372
1373 /*
1374 * Check if the fault interrupt is already initialized.
1375 */
1376 if (iommu->irq)
1377 return 0;
1378
1379 irq = create_irq();
1380 if (!irq) {
1381 printk(KERN_ERR "IOMMU: no free vectors\n");
1382 return -EINVAL;
1383 }
1384
1385 irq_set_handler_data(irq, iommu);
1386 iommu->irq = irq;
1387
1388 ret = arch_setup_dmar_msi(irq);
1389 if (ret) {
1390 irq_set_handler_data(irq, NULL);
1391 iommu->irq = 0;
1392 destroy_irq(irq);
1393 return ret;
1394 }
1395
1396 ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1397 if (ret)
1398 printk(KERN_ERR "IOMMU: can't request irq\n");
1399 return ret;
1400 }
1401
enable_drhd_fault_handling(void)1402 int __init enable_drhd_fault_handling(void)
1403 {
1404 struct dmar_drhd_unit *drhd;
1405
1406 /*
1407 * Enable fault control interrupt.
1408 */
1409 for_each_drhd_unit(drhd) {
1410 int ret;
1411 struct intel_iommu *iommu = drhd->iommu;
1412 ret = dmar_set_interrupt(iommu);
1413
1414 if (ret) {
1415 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1416 " interrupt, ret %d\n",
1417 (unsigned long long)drhd->reg_base_addr, ret);
1418 return -1;
1419 }
1420
1421 /*
1422 * Clear any previous faults.
1423 */
1424 dmar_fault(iommu->irq, iommu);
1425 }
1426
1427 return 0;
1428 }
1429
1430 /*
1431 * Re-enable Queued Invalidation interface.
1432 */
dmar_reenable_qi(struct intel_iommu * iommu)1433 int dmar_reenable_qi(struct intel_iommu *iommu)
1434 {
1435 if (!ecap_qis(iommu->ecap))
1436 return -ENOENT;
1437
1438 if (!iommu->qi)
1439 return -ENOENT;
1440
1441 /*
1442 * First disable queued invalidation.
1443 */
1444 dmar_disable_qi(iommu);
1445 /*
1446 * Then enable queued invalidation again. Since there is no pending
1447 * invalidation requests now, it's safe to re-enable queued
1448 * invalidation.
1449 */
1450 __dmar_enable_qi(iommu);
1451
1452 return 0;
1453 }
1454
1455 /*
1456 * Check interrupt remapping support in DMAR table description.
1457 */
dmar_ir_support(void)1458 int __init dmar_ir_support(void)
1459 {
1460 struct acpi_table_dmar *dmar;
1461 dmar = (struct acpi_table_dmar *)dmar_tbl;
1462 if (!dmar)
1463 return 0;
1464 return dmar->flags & 0x1;
1465 }
1466 IOMMU_INIT_POST(detect_intel_iommu);
1467