1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 */
5 #ifndef LINUX_DMAENGINE_H
6 #define LINUX_DMAENGINE_H
7
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/uio.h>
11 #include <linux/bug.h>
12 #include <linux/scatterlist.h>
13 #include <linux/bitmap.h>
14 #include <linux/types.h>
15 #include <asm/page.h>
16
17 /**
18 * typedef dma_cookie_t - an opaque DMA cookie
19 *
20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21 */
22 typedef s32 dma_cookie_t;
23 #define DMA_MIN_COOKIE 1
24
dma_submit_error(dma_cookie_t cookie)25 static inline int dma_submit_error(dma_cookie_t cookie)
26 {
27 return cookie < 0 ? cookie : 0;
28 }
29
30 /**
31 * enum dma_status - DMA transaction status
32 * @DMA_COMPLETE: transaction completed
33 * @DMA_IN_PROGRESS: transaction not yet processed
34 * @DMA_PAUSED: transaction is paused
35 * @DMA_ERROR: transaction failed
36 */
37 enum dma_status {
38 DMA_COMPLETE,
39 DMA_IN_PROGRESS,
40 DMA_PAUSED,
41 DMA_ERROR,
42 DMA_OUT_OF_ORDER,
43 };
44
45 /**
46 * enum dma_transaction_type - DMA transaction types/indexes
47 *
48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
49 * automatically set as dma devices are registered.
50 */
51 enum dma_transaction_type {
52 DMA_MEMCPY,
53 DMA_XOR,
54 DMA_PQ,
55 DMA_XOR_VAL,
56 DMA_PQ_VAL,
57 DMA_MEMSET,
58 DMA_MEMSET_SG,
59 DMA_INTERRUPT,
60 DMA_PRIVATE,
61 DMA_ASYNC_TX,
62 DMA_SLAVE,
63 DMA_CYCLIC,
64 DMA_INTERLEAVE,
65 DMA_COMPLETION_NO_ORDER,
66 DMA_REPEAT,
67 DMA_LOAD_EOT,
68 /* last transaction type for creation of the capabilities mask */
69 DMA_TX_TYPE_END,
70 };
71
72 /**
73 * enum dma_transfer_direction - dma transfer mode and direction indicator
74 * @DMA_MEM_TO_MEM: Async/Memcpy mode
75 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
76 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
77 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
78 */
79 enum dma_transfer_direction {
80 DMA_MEM_TO_MEM,
81 DMA_MEM_TO_DEV,
82 DMA_DEV_TO_MEM,
83 DMA_DEV_TO_DEV,
84 DMA_TRANS_NONE,
85 };
86
87 /**
88 * Interleaved Transfer Request
89 * ----------------------------
90 * A chunk is collection of contiguous bytes to be transferred.
91 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
92 * ICGs may or may not change between chunks.
93 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
94 * that when repeated an integral number of times, specifies the transfer.
95 * A transfer template is specification of a Frame, the number of times
96 * it is to be repeated and other per-transfer attributes.
97 *
98 * Practically, a client driver would have ready a template for each
99 * type of transfer it is going to need during its lifetime and
100 * set only 'src_start' and 'dst_start' before submitting the requests.
101 *
102 *
103 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
104 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
105 *
106 * == Chunk size
107 * ... ICG
108 */
109
110 /**
111 * struct data_chunk - Element of scatter-gather list that makes a frame.
112 * @size: Number of bytes to read from source.
113 * size_dst := fn(op, size_src), so doesn't mean much for destination.
114 * @icg: Number of bytes to jump after last src/dst address of this
115 * chunk and before first src/dst address for next chunk.
116 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
117 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
118 * @dst_icg: Number of bytes to jump after last dst address of this
119 * chunk and before the first dst address for next chunk.
120 * Ignored if dst_inc is true and dst_sgl is false.
121 * @src_icg: Number of bytes to jump after last src address of this
122 * chunk and before the first src address for next chunk.
123 * Ignored if src_inc is true and src_sgl is false.
124 */
125 struct data_chunk {
126 size_t size;
127 size_t icg;
128 size_t dst_icg;
129 size_t src_icg;
130 };
131
132 /**
133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134 * and attributes.
135 * @src_start: Bus address of source for the first chunk.
136 * @dst_start: Bus address of destination for the first chunk.
137 * @dir: Specifies the type of Source and Destination.
138 * @src_inc: If the source address increments after reading from it.
139 * @dst_inc: If the destination address increments after writing to it.
140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141 * Otherwise, source is read contiguously (icg ignored).
142 * Ignored if src_inc is false.
143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144 * Otherwise, destination is filled contiguously (icg ignored).
145 * Ignored if dst_inc is false.
146 * @numf: Number of frames in this template.
147 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148 * @sgl: Array of {chunk,icg} pairs that make up a frame.
149 */
150 struct dma_interleaved_template {
151 dma_addr_t src_start;
152 dma_addr_t dst_start;
153 enum dma_transfer_direction dir;
154 bool src_inc;
155 bool dst_inc;
156 bool src_sgl;
157 bool dst_sgl;
158 size_t numf;
159 size_t frame_size;
160 struct data_chunk sgl[];
161 };
162
163 /**
164 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
165 * control completion, and communicate status.
166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
167 * this transaction
168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
169 * acknowledges receipt, i.e. has a chance to establish any dependency
170 * chains
171 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
172 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
173 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
174 * sources that were the result of a previous operation, in the case of a PQ
175 * operation it continues the calculation with new sources
176 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
177 * on the result of this operation
178 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
179 * cleared or freed
180 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
181 * data and the descriptor should be in different format from normal
182 * data descriptors.
183 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
184 * repeated when it ends until a transaction is issued on the same channel
185 * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
186 * interleaved transactions and is ignored for all other transaction types.
187 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
188 * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
189 * repeated transaction ends. Not setting this flag when the previously queued
190 * transaction is marked with DMA_PREP_REPEAT will cause the new transaction
191 * to never be processed and stay in the issued queue forever. The flag is
192 * ignored if the previous transaction is not a repeated transaction.
193 */
194 enum dma_ctrl_flags {
195 DMA_PREP_INTERRUPT = (1 << 0),
196 DMA_CTRL_ACK = (1 << 1),
197 DMA_PREP_PQ_DISABLE_P = (1 << 2),
198 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
199 DMA_PREP_CONTINUE = (1 << 4),
200 DMA_PREP_FENCE = (1 << 5),
201 DMA_CTRL_REUSE = (1 << 6),
202 DMA_PREP_CMD = (1 << 7),
203 DMA_PREP_REPEAT = (1 << 8),
204 DMA_PREP_LOAD_EOT = (1 << 9),
205 };
206
207 /**
208 * enum sum_check_bits - bit position of pq_check_flags
209 */
210 enum sum_check_bits {
211 SUM_CHECK_P = 0,
212 SUM_CHECK_Q = 1,
213 };
214
215 /**
216 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
217 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
218 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
219 */
220 enum sum_check_flags {
221 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
222 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
223 };
224
225
226 /**
227 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
228 * See linux/cpumask.h
229 */
230 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
231
232 /**
233 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
234 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
235 * client driver and it is attached (via the dmaengine_desc_attach_metadata()
236 * helper) to the descriptor.
237 *
238 * Client drivers interested to use this mode can follow:
239 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
240 * 1. prepare the descriptor (dmaengine_prep_*)
241 * construct the metadata in the client's buffer
242 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the
243 * descriptor
244 * 3. submit the transfer
245 * - DMA_DEV_TO_MEM:
246 * 1. prepare the descriptor (dmaengine_prep_*)
247 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the
248 * descriptor
249 * 3. submit the transfer
250 * 4. when the transfer is completed, the metadata should be available in the
251 * attached buffer
252 *
253 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
254 * driver. The client driver can ask for the pointer, maximum size and the
255 * currently used size of the metadata and can directly update or read it.
256 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
257 * provided as helper functions.
258 *
259 * Note: the metadata area for the descriptor is no longer valid after the
260 * transfer has been completed (valid up to the point when the completion
261 * callback returns if used).
262 *
263 * Client drivers interested to use this mode can follow:
264 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
265 * 1. prepare the descriptor (dmaengine_prep_*)
266 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
267 * metadata area
268 * 3. update the metadata at the pointer
269 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount
270 * of data the client has placed into the metadata buffer
271 * 5. submit the transfer
272 * - DMA_DEV_TO_MEM:
273 * 1. prepare the descriptor (dmaengine_prep_*)
274 * 2. submit the transfer
275 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
276 * pointer to the engine's metadata area
277 * 4. Read out the metadata from the pointer
278 *
279 * Note: the two mode is not compatible and clients must use one mode for a
280 * descriptor.
281 */
282 enum dma_desc_metadata_mode {
283 DESC_METADATA_NONE = 0,
284 DESC_METADATA_CLIENT = BIT(0),
285 DESC_METADATA_ENGINE = BIT(1),
286 };
287
288 /**
289 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
290 * @memcpy_count: transaction counter
291 * @bytes_transferred: byte counter
292 */
293 struct dma_chan_percpu {
294 /* stats */
295 unsigned long memcpy_count;
296 unsigned long bytes_transferred;
297 };
298
299 /**
300 * struct dma_router - DMA router structure
301 * @dev: pointer to the DMA router device
302 * @route_free: function to be called when the route can be disconnected
303 */
304 struct dma_router {
305 struct device *dev;
306 void (*route_free)(struct device *dev, void *route_data);
307 };
308
309 /**
310 * struct dma_chan - devices supply DMA channels, clients use them
311 * @device: ptr to the dma device who supplies this channel, always !%NULL
312 * @slave: ptr to the device using this channel
313 * @cookie: last cookie value returned to client
314 * @completed_cookie: last completed cookie for this channel
315 * @chan_id: channel ID for sysfs
316 * @dev: class device for sysfs
317 * @name: backlink name for sysfs
318 * @dbg_client_name: slave name for debugfs in format:
319 * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
320 * @device_node: used to add this to the device chan list
321 * @local: per-cpu pointer to a struct dma_chan_percpu
322 * @client_count: how many clients are using this channel
323 * @table_count: number of appearances in the mem-to-mem allocation table
324 * @router: pointer to the DMA router structure
325 * @route_data: channel specific data for the router
326 * @private: private data for certain client-channel associations
327 */
328 struct dma_chan {
329 struct dma_device *device;
330 struct device *slave;
331 dma_cookie_t cookie;
332 dma_cookie_t completed_cookie;
333
334 /* sysfs */
335 int chan_id;
336 struct dma_chan_dev *dev;
337 const char *name;
338 #ifdef CONFIG_DEBUG_FS
339 char *dbg_client_name;
340 #endif
341
342 struct list_head device_node;
343 struct dma_chan_percpu __percpu *local;
344 int client_count;
345 int table_count;
346
347 /* DMA router */
348 struct dma_router *router;
349 void *route_data;
350
351 void *private;
352 };
353
354 /**
355 * struct dma_chan_dev - relate sysfs device node to backing channel device
356 * @chan: driver channel device
357 * @device: sysfs device
358 * @dev_id: parent dma_device dev_id
359 * @chan_dma_dev: The channel is using custom/different dma-mapping
360 * compared to the parent dma_device
361 */
362 struct dma_chan_dev {
363 struct dma_chan *chan;
364 struct device device;
365 int dev_id;
366 bool chan_dma_dev;
367 };
368
369 /**
370 * enum dma_slave_buswidth - defines bus width of the DMA slave
371 * device, source or target buses
372 */
373 enum dma_slave_buswidth {
374 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
375 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
376 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
377 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
378 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
379 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
380 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
381 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
382 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
383 DMA_SLAVE_BUSWIDTH_128_BYTES = 128,
384 };
385
386 /**
387 * struct dma_slave_config - dma slave channel runtime config
388 * @direction: whether the data shall go in or out on this slave
389 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
390 * legal values. DEPRECATED, drivers should use the direction argument
391 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
392 * the dir field in the dma_interleaved_template structure.
393 * @src_addr: this is the physical address where DMA slave data
394 * should be read (RX), if the source is memory this argument is
395 * ignored.
396 * @dst_addr: this is the physical address where DMA slave data
397 * should be written (TX), if the destination is memory this argument
398 * is ignored.
399 * @src_addr_width: this is the width in bytes of the source (RX)
400 * register where DMA data shall be read. If the source
401 * is memory this may be ignored depending on architecture.
402 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128.
403 * @dst_addr_width: same as src_addr_width but for destination
404 * target (TX) mutatis mutandis.
405 * @src_maxburst: the maximum number of words (note: words, as in
406 * units of the src_addr_width member, not bytes) that can be sent
407 * in one burst to the device. Typically something like half the
408 * FIFO depth on I/O peripherals so you don't overflow it. This
409 * may or may not be applicable on memory sources.
410 * @dst_maxburst: same as src_maxburst but for destination target
411 * mutatis mutandis.
412 * @src_port_window_size: The length of the register area in words the data need
413 * to be accessed on the device side. It is only used for devices which is using
414 * an area instead of a single register to receive the data. Typically the DMA
415 * loops in this area in order to transfer the data.
416 * @dst_port_window_size: same as src_port_window_size but for the destination
417 * port.
418 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
419 * with 'true' if peripheral should be flow controller. Direction will be
420 * selected at Runtime.
421 * @peripheral_config: peripheral configuration for programming peripheral
422 * for dmaengine transfer
423 * @peripheral_size: peripheral configuration buffer size
424 *
425 * This struct is passed in as configuration data to a DMA engine
426 * in order to set up a certain channel for DMA transport at runtime.
427 * The DMA device/engine has to provide support for an additional
428 * callback in the dma_device structure, device_config and this struct
429 * will then be passed in as an argument to the function.
430 *
431 * The rationale for adding configuration information to this struct is as
432 * follows: if it is likely that more than one DMA slave controllers in
433 * the world will support the configuration option, then make it generic.
434 * If not: if it is fixed so that it be sent in static from the platform
435 * data, then prefer to do that.
436 */
437 struct dma_slave_config {
438 enum dma_transfer_direction direction;
439 phys_addr_t src_addr;
440 phys_addr_t dst_addr;
441 enum dma_slave_buswidth src_addr_width;
442 enum dma_slave_buswidth dst_addr_width;
443 u32 src_maxburst;
444 u32 dst_maxburst;
445 u32 src_port_window_size;
446 u32 dst_port_window_size;
447 bool device_fc;
448 void *peripheral_config;
449 size_t peripheral_size;
450 };
451
452 /**
453 * enum dma_residue_granularity - Granularity of the reported transfer residue
454 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
455 * DMA channel is only able to tell whether a descriptor has been completed or
456 * not, which means residue reporting is not supported by this channel. The
457 * residue field of the dma_tx_state field will always be 0.
458 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
459 * completed segment of the transfer (For cyclic transfers this is after each
460 * period). This is typically implemented by having the hardware generate an
461 * interrupt after each transferred segment and then the drivers updates the
462 * outstanding residue by the size of the segment. Another possibility is if
463 * the hardware supports scatter-gather and the segment descriptor has a field
464 * which gets set after the segment has been completed. The driver then counts
465 * the number of segments without the flag set to compute the residue.
466 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
467 * burst. This is typically only supported if the hardware has a progress
468 * register of some sort (E.g. a register with the current read/write address
469 * or a register with the amount of bursts/beats/bytes that have been
470 * transferred or still need to be transferred).
471 */
472 enum dma_residue_granularity {
473 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
474 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
475 DMA_RESIDUE_GRANULARITY_BURST = 2,
476 };
477
478 /**
479 * struct dma_slave_caps - expose capabilities of a slave channel only
480 * @src_addr_widths: bit mask of src addr widths the channel supports.
481 * Width is specified in bytes, e.g. for a channel supporting
482 * a width of 4 the mask should have BIT(4) set.
483 * @dst_addr_widths: bit mask of dst addr widths the channel supports
484 * @directions: bit mask of slave directions the channel supports.
485 * Since the enum dma_transfer_direction is not defined as bit flag for
486 * each type, the dma controller should set BIT(<TYPE>) and same
487 * should be checked by controller as well
488 * @min_burst: min burst capability per-transfer
489 * @max_burst: max burst capability per-transfer
490 * @max_sg_burst: max number of SG list entries executed in a single burst
491 * DMA tansaction with no software intervention for reinitialization.
492 * Zero value means unlimited number of entries.
493 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
494 * for resume later)
495 * @cmd_resume: true, if resume is supported
496 * @cmd_terminate: true, if terminate cmd is supported
497 * @residue_granularity: granularity of the reported transfer residue
498 * @descriptor_reuse: if a descriptor can be reused by client and
499 * resubmitted multiple times
500 */
501 struct dma_slave_caps {
502 u32 src_addr_widths;
503 u32 dst_addr_widths;
504 u32 directions;
505 u32 min_burst;
506 u32 max_burst;
507 u32 max_sg_burst;
508 bool cmd_pause;
509 bool cmd_resume;
510 bool cmd_terminate;
511 enum dma_residue_granularity residue_granularity;
512 bool descriptor_reuse;
513 };
514
dma_chan_name(struct dma_chan * chan)515 static inline const char *dma_chan_name(struct dma_chan *chan)
516 {
517 return dev_name(&chan->dev->device);
518 }
519
520 void dma_chan_cleanup(struct kref *kref);
521
522 /**
523 * typedef dma_filter_fn - callback filter for dma_request_channel
524 * @chan: channel to be reviewed
525 * @filter_param: opaque parameter passed through dma_request_channel
526 *
527 * When this optional parameter is specified in a call to dma_request_channel a
528 * suitable channel is passed to this routine for further dispositioning before
529 * being returned. Where 'suitable' indicates a non-busy channel that
530 * satisfies the given capability mask. It returns 'true' to indicate that the
531 * channel is suitable.
532 */
533 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
534
535 typedef void (*dma_async_tx_callback)(void *dma_async_param);
536
537 enum dmaengine_tx_result {
538 DMA_TRANS_NOERROR = 0, /* SUCCESS */
539 DMA_TRANS_READ_FAILED, /* Source DMA read failed */
540 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
541 DMA_TRANS_ABORTED, /* Op never submitted / aborted */
542 };
543
544 struct dmaengine_result {
545 enum dmaengine_tx_result result;
546 u32 residue;
547 };
548
549 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
550 const struct dmaengine_result *result);
551
552 struct dmaengine_unmap_data {
553 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
554 u16 map_cnt;
555 #else
556 u8 map_cnt;
557 #endif
558 u8 to_cnt;
559 u8 from_cnt;
560 u8 bidi_cnt;
561 struct device *dev;
562 struct kref kref;
563 size_t len;
564 dma_addr_t addr[];
565 };
566
567 struct dma_async_tx_descriptor;
568
569 struct dma_descriptor_metadata_ops {
570 int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
571 size_t len);
572
573 void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
574 size_t *payload_len, size_t *max_len);
575 int (*set_len)(struct dma_async_tx_descriptor *desc,
576 size_t payload_len);
577 };
578
579 /**
580 * struct dma_async_tx_descriptor - async transaction descriptor
581 * ---dma generic offload fields---
582 * @cookie: tracking cookie for this transaction, set to -EBUSY if
583 * this tx is sitting on a dependency list
584 * @flags: flags to augment operation preparation, control completion, and
585 * communicate status
586 * @phys: physical address of the descriptor
587 * @chan: target channel for this operation
588 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
589 * descriptor pending. To be pushed on .issue_pending() call
590 * @callback: routine to call after this operation is complete
591 * @callback_param: general parameter to pass to the callback routine
592 * @desc_metadata_mode: core managed metadata mode to protect mixed use of
593 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
594 * DESC_METADATA_NONE
595 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
596 * DMA driver if metadata mode is supported with the descriptor
597 * ---async_tx api specific fields---
598 * @next: at completion submit this descriptor
599 * @parent: pointer to the next level up in the dependency chain
600 * @lock: protect the parent and next pointers
601 */
602 struct dma_async_tx_descriptor {
603 dma_cookie_t cookie;
604 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
605 dma_addr_t phys;
606 struct dma_chan *chan;
607 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
608 int (*desc_free)(struct dma_async_tx_descriptor *tx);
609 dma_async_tx_callback callback;
610 dma_async_tx_callback_result callback_result;
611 void *callback_param;
612 struct dmaengine_unmap_data *unmap;
613 enum dma_desc_metadata_mode desc_metadata_mode;
614 struct dma_descriptor_metadata_ops *metadata_ops;
615 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
616 struct dma_async_tx_descriptor *next;
617 struct dma_async_tx_descriptor *parent;
618 spinlock_t lock;
619 #endif
620 };
621
622 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)623 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
624 struct dmaengine_unmap_data *unmap)
625 {
626 kref_get(&unmap->kref);
627 tx->unmap = unmap;
628 }
629
630 struct dmaengine_unmap_data *
631 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
632 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
633 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)634 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
635 struct dmaengine_unmap_data *unmap)
636 {
637 }
638 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)639 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
640 {
641 return NULL;
642 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)643 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
644 {
645 }
646 #endif
647
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)648 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
649 {
650 if (!tx->unmap)
651 return;
652
653 dmaengine_unmap_put(tx->unmap);
654 tx->unmap = NULL;
655 }
656
657 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)658 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
659 {
660 }
txd_unlock(struct dma_async_tx_descriptor * txd)661 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
662 {
663 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)664 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
665 {
666 BUG();
667 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)668 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
669 {
670 }
txd_clear_next(struct dma_async_tx_descriptor * txd)671 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
672 {
673 }
txd_next(struct dma_async_tx_descriptor * txd)674 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
675 {
676 return NULL;
677 }
txd_parent(struct dma_async_tx_descriptor * txd)678 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
679 {
680 return NULL;
681 }
682
683 #else
txd_lock(struct dma_async_tx_descriptor * txd)684 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
685 {
686 spin_lock_bh(&txd->lock);
687 }
txd_unlock(struct dma_async_tx_descriptor * txd)688 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
689 {
690 spin_unlock_bh(&txd->lock);
691 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)692 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
693 {
694 txd->next = next;
695 next->parent = txd;
696 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)697 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
698 {
699 txd->parent = NULL;
700 }
txd_clear_next(struct dma_async_tx_descriptor * txd)701 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
702 {
703 txd->next = NULL;
704 }
txd_parent(struct dma_async_tx_descriptor * txd)705 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
706 {
707 return txd->parent;
708 }
txd_next(struct dma_async_tx_descriptor * txd)709 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
710 {
711 return txd->next;
712 }
713 #endif
714
715 /**
716 * struct dma_tx_state - filled in to report the status of
717 * a transfer.
718 * @last: last completed DMA cookie
719 * @used: last issued DMA cookie (i.e. the one in progress)
720 * @residue: the remaining number of bytes left to transmit
721 * on the selected transfer for states DMA_IN_PROGRESS and
722 * DMA_PAUSED if this is implemented in the driver, else 0
723 * @in_flight_bytes: amount of data in bytes cached by the DMA.
724 */
725 struct dma_tx_state {
726 dma_cookie_t last;
727 dma_cookie_t used;
728 u32 residue;
729 u32 in_flight_bytes;
730 };
731
732 /**
733 * enum dmaengine_alignment - defines alignment of the DMA async tx
734 * buffers
735 */
736 enum dmaengine_alignment {
737 DMAENGINE_ALIGN_1_BYTE = 0,
738 DMAENGINE_ALIGN_2_BYTES = 1,
739 DMAENGINE_ALIGN_4_BYTES = 2,
740 DMAENGINE_ALIGN_8_BYTES = 3,
741 DMAENGINE_ALIGN_16_BYTES = 4,
742 DMAENGINE_ALIGN_32_BYTES = 5,
743 DMAENGINE_ALIGN_64_BYTES = 6,
744 DMAENGINE_ALIGN_128_BYTES = 7,
745 DMAENGINE_ALIGN_256_BYTES = 8,
746 };
747
748 /**
749 * struct dma_slave_map - associates slave device and it's slave channel with
750 * parameter to be used by a filter function
751 * @devname: name of the device
752 * @slave: slave channel name
753 * @param: opaque parameter to pass to struct dma_filter.fn
754 */
755 struct dma_slave_map {
756 const char *devname;
757 const char *slave;
758 void *param;
759 };
760
761 /**
762 * struct dma_filter - information for slave device/channel to filter_fn/param
763 * mapping
764 * @fn: filter function callback
765 * @mapcnt: number of slave device/channel in the map
766 * @map: array of channel to filter mapping data
767 */
768 struct dma_filter {
769 dma_filter_fn fn;
770 int mapcnt;
771 const struct dma_slave_map *map;
772 };
773
774 /**
775 * struct dma_device - info on the entity supplying DMA services
776 * @ref: reference is taken and put every time a channel is allocated or freed
777 * @chancnt: how many DMA channels are supported
778 * @privatecnt: how many DMA channels are requested by dma_request_channel
779 * @channels: the list of struct dma_chan
780 * @global_node: list_head for global dma_device_list
781 * @filter: information for device/slave to filter function/param mapping
782 * @cap_mask: one or more dma_capability flags
783 * @desc_metadata_modes: supported metadata modes by the DMA device
784 * @max_xor: maximum number of xor sources, 0 if no capability
785 * @max_pq: maximum number of PQ sources and PQ-continue capability
786 * @copy_align: alignment shift for memcpy operations
787 * @xor_align: alignment shift for xor operations
788 * @pq_align: alignment shift for pq operations
789 * @fill_align: alignment shift for memset operations
790 * @dev_id: unique device ID
791 * @dev: struct device reference for dma mapping api
792 * @owner: owner module (automatically set based on the provided dev)
793 * @chan_ida: unique channel ID
794 * @src_addr_widths: bit mask of src addr widths the device supports
795 * Width is specified in bytes, e.g. for a device supporting
796 * a width of 4 the mask should have BIT(4) set.
797 * @dst_addr_widths: bit mask of dst addr widths the device supports
798 * @directions: bit mask of slave directions the device supports.
799 * Since the enum dma_transfer_direction is not defined as bit flag for
800 * each type, the dma controller should set BIT(<TYPE>) and same
801 * should be checked by controller as well
802 * @min_burst: min burst capability per-transfer
803 * @max_burst: max burst capability per-transfer
804 * @max_sg_burst: max number of SG list entries executed in a single burst
805 * DMA tansaction with no software intervention for reinitialization.
806 * Zero value means unlimited number of entries.
807 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
808 * @residue_granularity: granularity of the transfer residue reported
809 * by tx_status
810 * @device_alloc_chan_resources: allocate resources and return the
811 * number of allocated descriptors
812 * @device_router_config: optional callback for DMA router configuration
813 * @device_free_chan_resources: release DMA channel's resources
814 * @device_prep_dma_memcpy: prepares a memcpy operation
815 * @device_prep_dma_xor: prepares a xor operation
816 * @device_prep_dma_xor_val: prepares a xor validation operation
817 * @device_prep_dma_pq: prepares a pq operation
818 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
819 * @device_prep_dma_memset: prepares a memset operation
820 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
821 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
822 * @device_prep_slave_sg: prepares a slave dma operation
823 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
824 * The function takes a buffer of size buf_len. The callback function will
825 * be called after period_len bytes have been transferred.
826 * @device_prep_interleaved_dma: Transfer expression in a generic way.
827 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
828 * @device_caps: May be used to override the generic DMA slave capabilities
829 * with per-channel specific ones
830 * @device_config: Pushes a new configuration to a channel, return 0 or an error
831 * code
832 * @device_pause: Pauses any transfer happening on a channel. Returns
833 * 0 or an error code
834 * @device_resume: Resumes any transfer on a channel previously
835 * paused. Returns 0 or an error code
836 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
837 * or an error code
838 * @device_synchronize: Synchronizes the termination of a transfers to the
839 * current context.
840 * @device_tx_status: poll for transaction completion, the optional
841 * txstate parameter can be supplied with a pointer to get a
842 * struct with auxiliary transfer status information, otherwise the call
843 * will just return a simple status code
844 * @device_issue_pending: push pending transactions to hardware
845 * @device_release: called sometime atfer dma_async_device_unregister() is
846 * called and there are no further references to this structure. This
847 * must be implemented to free resources however many existing drivers
848 * do not and are therefore not safe to unbind while in use.
849 * @dbg_summary_show: optional routine to show contents in debugfs; default code
850 * will be used when this is omitted, but custom code can show extra,
851 * controller specific information.
852 * @dbg_dev_root: the root folder in debugfs for this device
853 */
854 struct dma_device {
855 struct kref ref;
856 unsigned int chancnt;
857 unsigned int privatecnt;
858 struct list_head channels;
859 struct list_head global_node;
860 struct dma_filter filter;
861 dma_cap_mask_t cap_mask;
862 enum dma_desc_metadata_mode desc_metadata_modes;
863 unsigned short max_xor;
864 unsigned short max_pq;
865 enum dmaengine_alignment copy_align;
866 enum dmaengine_alignment xor_align;
867 enum dmaengine_alignment pq_align;
868 enum dmaengine_alignment fill_align;
869 #define DMA_HAS_PQ_CONTINUE (1 << 15)
870
871 int dev_id;
872 struct device *dev;
873 struct module *owner;
874 struct ida chan_ida;
875
876 u32 src_addr_widths;
877 u32 dst_addr_widths;
878 u32 directions;
879 u32 min_burst;
880 u32 max_burst;
881 u32 max_sg_burst;
882 bool descriptor_reuse;
883 enum dma_residue_granularity residue_granularity;
884
885 int (*device_alloc_chan_resources)(struct dma_chan *chan);
886 int (*device_router_config)(struct dma_chan *chan);
887 void (*device_free_chan_resources)(struct dma_chan *chan);
888
889 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
890 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
891 size_t len, unsigned long flags);
892 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
893 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
894 unsigned int src_cnt, size_t len, unsigned long flags);
895 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
896 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
897 size_t len, enum sum_check_flags *result, unsigned long flags);
898 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
899 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
900 unsigned int src_cnt, const unsigned char *scf,
901 size_t len, unsigned long flags);
902 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
903 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
904 unsigned int src_cnt, const unsigned char *scf, size_t len,
905 enum sum_check_flags *pqres, unsigned long flags);
906 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
907 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
908 unsigned long flags);
909 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
910 struct dma_chan *chan, struct scatterlist *sg,
911 unsigned int nents, int value, unsigned long flags);
912 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
913 struct dma_chan *chan, unsigned long flags);
914
915 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
916 struct dma_chan *chan, struct scatterlist *sgl,
917 unsigned int sg_len, enum dma_transfer_direction direction,
918 unsigned long flags, void *context);
919 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
920 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
921 size_t period_len, enum dma_transfer_direction direction,
922 unsigned long flags);
923 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
924 struct dma_chan *chan, struct dma_interleaved_template *xt,
925 unsigned long flags);
926 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
927 struct dma_chan *chan, dma_addr_t dst, u64 data,
928 unsigned long flags);
929
930 void (*device_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
931 int (*device_config)(struct dma_chan *chan, struct dma_slave_config *config);
932 int (*device_pause)(struct dma_chan *chan);
933 int (*device_resume)(struct dma_chan *chan);
934 int (*device_terminate_all)(struct dma_chan *chan);
935 void (*device_synchronize)(struct dma_chan *chan);
936
937 enum dma_status (*device_tx_status)(struct dma_chan *chan,
938 dma_cookie_t cookie,
939 struct dma_tx_state *txstate);
940 void (*device_issue_pending)(struct dma_chan *chan);
941 void (*device_release)(struct dma_device *dev);
942 /* debugfs support */
943 void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
944 struct dentry *dbg_dev_root;
945 };
946
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)947 static inline int dmaengine_slave_config(struct dma_chan *chan,
948 struct dma_slave_config *config)
949 {
950 if (chan->device->device_config)
951 return chan->device->device_config(chan, config);
952
953 return -ENOSYS;
954 }
955
is_slave_direction(enum dma_transfer_direction direction)956 static inline bool is_slave_direction(enum dma_transfer_direction direction)
957 {
958 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM) ||
959 (direction == DMA_DEV_TO_DEV);
960 }
961
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)962 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
963 struct dma_chan *chan, dma_addr_t buf, size_t len,
964 enum dma_transfer_direction dir, unsigned long flags)
965 {
966 struct scatterlist sg;
967 sg_init_table(&sg, 1);
968 sg_dma_address(&sg) = buf;
969 sg_dma_len(&sg) = len;
970
971 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
972 return NULL;
973
974 return chan->device->device_prep_slave_sg(chan, &sg, 1,
975 dir, flags, NULL);
976 }
977
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)978 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
979 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
980 enum dma_transfer_direction dir, unsigned long flags)
981 {
982 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
983 return NULL;
984
985 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
986 dir, flags, NULL);
987 }
988
989 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
990 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)991 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
992 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
993 enum dma_transfer_direction dir, unsigned long flags,
994 struct rio_dma_ext *rio_ext)
995 {
996 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
997 return NULL;
998
999 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
1000 dir, flags, rio_ext);
1001 }
1002 #endif
1003
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)1004 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
1005 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1006 size_t period_len, enum dma_transfer_direction dir,
1007 unsigned long flags)
1008 {
1009 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1010 return NULL;
1011
1012 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
1013 period_len, dir, flags);
1014 }
1015
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)1016 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1017 struct dma_chan *chan, struct dma_interleaved_template *xt,
1018 unsigned long flags)
1019 {
1020 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1021 return NULL;
1022 if (flags & DMA_PREP_REPEAT &&
1023 !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1024 return NULL;
1025
1026 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1027 }
1028
1029 /**
1030 * dmaengine_prep_dma_memset() - Prepare a DMA memset descriptor.
1031 * @chan: The channel to be used for this descriptor
1032 * @dest: Address of buffer to be set
1033 * @value: Treated as a single byte value that fills the destination buffer
1034 * @len: The total size of dest
1035 * @flags: DMA engine flags
1036 */
dmaengine_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1037 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1038 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1039 unsigned long flags)
1040 {
1041 if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
1042 return NULL;
1043
1044 return chan->device->device_prep_dma_memset(chan, dest, value,
1045 len, flags);
1046 }
1047
dmaengine_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1048 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1049 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1050 size_t len, unsigned long flags)
1051 {
1052 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1053 return NULL;
1054
1055 return chan->device->device_prep_dma_memcpy(chan, dest, src,
1056 len, flags);
1057 }
1058
dmaengine_is_metadata_mode_supported(struct dma_chan * chan,enum dma_desc_metadata_mode mode)1059 static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1060 enum dma_desc_metadata_mode mode)
1061 {
1062 if (!chan)
1063 return false;
1064
1065 return !!(chan->device->desc_metadata_modes & mode);
1066 }
1067
1068 #ifdef CONFIG_DMA_ENGINE
1069 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1070 void *data, size_t len);
1071 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1072 size_t *payload_len, size_t *max_len);
1073 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1074 size_t payload_len);
1075 #else /* CONFIG_DMA_ENGINE */
dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor * desc,void * data,size_t len)1076 static inline int dmaengine_desc_attach_metadata(
1077 struct dma_async_tx_descriptor *desc, void *data, size_t len)
1078 {
1079 return -EINVAL;
1080 }
dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor * desc,size_t * payload_len,size_t * max_len)1081 static inline void *dmaengine_desc_get_metadata_ptr(
1082 struct dma_async_tx_descriptor *desc, size_t *payload_len,
1083 size_t *max_len)
1084 {
1085 return NULL;
1086 }
dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor * desc,size_t payload_len)1087 static inline int dmaengine_desc_set_metadata_len(
1088 struct dma_async_tx_descriptor *desc, size_t payload_len)
1089 {
1090 return -EINVAL;
1091 }
1092 #endif /* CONFIG_DMA_ENGINE */
1093
1094 /**
1095 * dmaengine_terminate_all() - Terminate all active DMA transfers
1096 * @chan: The channel for which to terminate the transfers
1097 *
1098 * This function is DEPRECATED use either dmaengine_terminate_sync() or
1099 * dmaengine_terminate_async() instead.
1100 */
dmaengine_terminate_all(struct dma_chan * chan)1101 static inline int dmaengine_terminate_all(struct dma_chan *chan)
1102 {
1103 if (chan->device->device_terminate_all)
1104 return chan->device->device_terminate_all(chan);
1105
1106 return -ENOSYS;
1107 }
1108
1109 /**
1110 * dmaengine_terminate_async() - Terminate all active DMA transfers
1111 * @chan: The channel for which to terminate the transfers
1112 *
1113 * Calling this function will terminate all active and pending descriptors
1114 * that have previously been submitted to the channel. It is not guaranteed
1115 * though that the transfer for the active descriptor has stopped when the
1116 * function returns. Furthermore it is possible the complete callback of a
1117 * submitted transfer is still running when this function returns.
1118 *
1119 * dmaengine_synchronize() needs to be called before it is safe to free
1120 * any memory that is accessed by previously submitted descriptors or before
1121 * freeing any resources accessed from within the completion callback of any
1122 * previously submitted descriptors.
1123 *
1124 * This function can be called from atomic context as well as from within a
1125 * complete callback of a descriptor submitted on the same channel.
1126 *
1127 * If none of the two conditions above apply consider using
1128 * dmaengine_terminate_sync() instead.
1129 */
dmaengine_terminate_async(struct dma_chan * chan)1130 static inline int dmaengine_terminate_async(struct dma_chan *chan)
1131 {
1132 if (chan->device->device_terminate_all)
1133 return chan->device->device_terminate_all(chan);
1134
1135 return -EINVAL;
1136 }
1137
1138 /**
1139 * dmaengine_synchronize() - Synchronize DMA channel termination
1140 * @chan: The channel to synchronize
1141 *
1142 * Synchronizes to the DMA channel termination to the current context. When this
1143 * function returns it is guaranteed that all transfers for previously issued
1144 * descriptors have stopped and it is safe to free the memory associated
1145 * with them. Furthermore it is guaranteed that all complete callback functions
1146 * for a previously submitted descriptor have finished running and it is safe to
1147 * free resources accessed from within the complete callbacks.
1148 *
1149 * The behavior of this function is undefined if dma_async_issue_pending() has
1150 * been called between dmaengine_terminate_async() and this function.
1151 *
1152 * This function must only be called from non-atomic context and must not be
1153 * called from within a complete callback of a descriptor submitted on the same
1154 * channel.
1155 */
dmaengine_synchronize(struct dma_chan * chan)1156 static inline void dmaengine_synchronize(struct dma_chan *chan)
1157 {
1158 might_sleep();
1159
1160 if (chan->device->device_synchronize)
1161 chan->device->device_synchronize(chan);
1162 }
1163
1164 /**
1165 * dmaengine_terminate_sync() - Terminate all active DMA transfers
1166 * @chan: The channel for which to terminate the transfers
1167 *
1168 * Calling this function will terminate all active and pending transfers
1169 * that have previously been submitted to the channel. It is similar to
1170 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1171 * stopped and that all complete callbacks have finished running when the
1172 * function returns.
1173 *
1174 * This function must only be called from non-atomic context and must not be
1175 * called from within a complete callback of a descriptor submitted on the same
1176 * channel.
1177 */
dmaengine_terminate_sync(struct dma_chan * chan)1178 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1179 {
1180 int ret;
1181
1182 ret = dmaengine_terminate_async(chan);
1183 if (ret)
1184 return ret;
1185
1186 dmaengine_synchronize(chan);
1187
1188 return 0;
1189 }
1190
dmaengine_pause(struct dma_chan * chan)1191 static inline int dmaengine_pause(struct dma_chan *chan)
1192 {
1193 if (chan->device->device_pause)
1194 return chan->device->device_pause(chan);
1195
1196 return -ENOSYS;
1197 }
1198
dmaengine_resume(struct dma_chan * chan)1199 static inline int dmaengine_resume(struct dma_chan *chan)
1200 {
1201 if (chan->device->device_resume)
1202 return chan->device->device_resume(chan);
1203
1204 return -ENOSYS;
1205 }
1206
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)1207 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1208 dma_cookie_t cookie, struct dma_tx_state *state)
1209 {
1210 return chan->device->device_tx_status(chan, cookie, state);
1211 }
1212
dmaengine_submit(struct dma_async_tx_descriptor * desc)1213 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1214 {
1215 return desc->tx_submit(desc);
1216 }
1217
dmaengine_check_align(enum dmaengine_alignment align,size_t off1,size_t off2,size_t len)1218 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1219 size_t off1, size_t off2, size_t len)
1220 {
1221 return !(((1 << align) - 1) & (off1 | off2 | len));
1222 }
1223
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1224 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1225 size_t off2, size_t len)
1226 {
1227 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1228 }
1229
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1230 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1231 size_t off2, size_t len)
1232 {
1233 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1234 }
1235
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1236 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1237 size_t off2, size_t len)
1238 {
1239 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1240 }
1241
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1242 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1243 size_t off2, size_t len)
1244 {
1245 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1246 }
1247
1248 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)1249 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1250 {
1251 dma->max_pq = maxpq;
1252 if (has_pq_continue)
1253 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1254 }
1255
dmaf_continue(enum dma_ctrl_flags flags)1256 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1257 {
1258 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1259 }
1260
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)1261 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1262 {
1263 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1264
1265 return (flags & mask) == mask;
1266 }
1267
dma_dev_has_pq_continue(struct dma_device * dma)1268 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1269 {
1270 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1271 }
1272
dma_dev_to_maxpq(struct dma_device * dma)1273 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1274 {
1275 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1276 }
1277
1278 /* dma_maxpq - reduce maxpq in the face of continued operations
1279 * @dma - dma device with PQ capability
1280 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1281 *
1282 * When an engine does not support native continuation we need 3 extra
1283 * source slots to reuse P and Q with the following coefficients:
1284 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1285 * 2/ {01} * Q : use Q to continue Q' calculation
1286 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1287 *
1288 * In the case where P is disabled we only need 1 extra source:
1289 * 1/ {01} * Q : use Q to continue Q' calculation
1290 */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)1291 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1292 {
1293 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1294 return dma_dev_to_maxpq(dma);
1295 if (dmaf_p_disabled_continue(flags))
1296 return dma_dev_to_maxpq(dma) - 1;
1297 if (dmaf_continue(flags))
1298 return dma_dev_to_maxpq(dma) - 3;
1299 BUG();
1300 }
1301
dmaengine_get_icg(bool inc,bool sgl,size_t icg,size_t dir_icg)1302 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1303 size_t dir_icg)
1304 {
1305 if (inc) {
1306 if (dir_icg)
1307 return dir_icg;
1308 if (sgl)
1309 return icg;
1310 }
1311
1312 return 0;
1313 }
1314
dmaengine_get_dst_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1315 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1316 struct data_chunk *chunk)
1317 {
1318 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1319 chunk->icg, chunk->dst_icg);
1320 }
1321
dmaengine_get_src_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1322 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1323 struct data_chunk *chunk)
1324 {
1325 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1326 chunk->icg, chunk->src_icg);
1327 }
1328
1329 /* --- public DMA engine API --- */
1330
1331 #ifdef CONFIG_DMA_ENGINE
1332 void dmaengine_get(void);
1333 void dmaengine_put(void);
1334 #else
dmaengine_get(void)1335 static inline void dmaengine_get(void)
1336 {
1337 }
dmaengine_put(void)1338 static inline void dmaengine_put(void)
1339 {
1340 }
1341 #endif
1342
1343 #ifdef CONFIG_ASYNC_TX_DMA
1344 #define async_dmaengine_get() dmaengine_get()
1345 #define async_dmaengine_put() dmaengine_put()
1346 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1347 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1348 #else
1349 #define async_dma_find_channel(type) dma_find_channel(type)
1350 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1351 #else
async_dmaengine_get(void)1352 static inline void async_dmaengine_get(void)
1353 {
1354 }
async_dmaengine_put(void)1355 static inline void async_dmaengine_put(void)
1356 {
1357 }
1358 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)1359 async_dma_find_channel(enum dma_transaction_type type)
1360 {
1361 return NULL;
1362 }
1363 #endif /* CONFIG_ASYNC_TX_DMA */
1364 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1365 struct dma_chan *chan);
1366
async_tx_ack(struct dma_async_tx_descriptor * tx)1367 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1368 {
1369 tx->flags |= DMA_CTRL_ACK;
1370 }
1371
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)1372 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1373 {
1374 tx->flags &= ~DMA_CTRL_ACK;
1375 }
1376
async_tx_test_ack(struct dma_async_tx_descriptor * tx)1377 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1378 {
1379 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1380 }
1381
1382 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1383 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1384 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1385 {
1386 set_bit(tx_type, dstp->bits);
1387 }
1388
1389 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1390 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1391 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1392 {
1393 clear_bit(tx_type, dstp->bits);
1394 }
1395
1396 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)1397 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1398 {
1399 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1400 }
1401
1402 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1403 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)1404 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1405 {
1406 return test_bit(tx_type, srcp->bits);
1407 }
1408
1409 #define for_each_dma_cap_mask(cap, mask) \
1410 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1411
1412 /**
1413 * dma_async_issue_pending - flush pending transactions to HW
1414 * @chan: target DMA channel
1415 *
1416 * This allows drivers to push copies to HW in batches,
1417 * reducing MMIO writes where possible.
1418 */
dma_async_issue_pending(struct dma_chan * chan)1419 static inline void dma_async_issue_pending(struct dma_chan *chan)
1420 {
1421 chan->device->device_issue_pending(chan);
1422 }
1423
1424 /**
1425 * dma_async_is_tx_complete - poll for transaction completion
1426 * @chan: DMA channel
1427 * @cookie: transaction identifier to check status of
1428 * @last: returns last completed cookie, can be NULL
1429 * @used: returns last issued cookie, can be NULL
1430 *
1431 * If @last and @used are passed in, upon return they reflect the driver
1432 * internal state and can be used with dma_async_is_complete() to check
1433 * the status of multiple cookies without re-checking hardware state.
1434 */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1435 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1436 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1437 {
1438 struct dma_tx_state state;
1439 enum dma_status status;
1440
1441 status = chan->device->device_tx_status(chan, cookie, &state);
1442 if (last)
1443 *last = state.last;
1444 if (used)
1445 *used = state.used;
1446 return status;
1447 }
1448
1449 /**
1450 * dma_async_is_complete - test a cookie against chan state
1451 * @cookie: transaction identifier to test status of
1452 * @last_complete: last know completed transaction
1453 * @last_used: last cookie value handed out
1454 *
1455 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1456 * the test logic is separated for lightweight testing of multiple cookies
1457 */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1458 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1459 dma_cookie_t last_complete, dma_cookie_t last_used)
1460 {
1461 if (last_complete <= last_used) {
1462 if ((cookie <= last_complete) || (cookie > last_used))
1463 return DMA_COMPLETE;
1464 } else {
1465 if ((cookie <= last_complete) && (cookie > last_used))
1466 return DMA_COMPLETE;
1467 }
1468 return DMA_IN_PROGRESS;
1469 }
1470
1471 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1472 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1473 {
1474 if (!st)
1475 return;
1476
1477 st->last = last;
1478 st->used = used;
1479 st->residue = residue;
1480 }
1481
1482 #ifdef CONFIG_DMA_ENGINE
1483 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1484 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1485 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1486 void dma_issue_pending_all(void);
1487 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1488 dma_filter_fn fn, void *fn_param,
1489 struct device_node *np);
1490
1491 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1492 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1493
1494 void dma_release_channel(struct dma_chan *chan);
1495 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1496 #else
dma_find_channel(enum dma_transaction_type tx_type)1497 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1498 {
1499 return NULL;
1500 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1501 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1502 {
1503 return DMA_COMPLETE;
1504 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1505 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1506 {
1507 return DMA_COMPLETE;
1508 }
dma_issue_pending_all(void)1509 static inline void dma_issue_pending_all(void)
1510 {
1511 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device_node * np)1512 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1513 dma_filter_fn fn,
1514 void *fn_param,
1515 struct device_node *np)
1516 {
1517 return NULL;
1518 }
dma_request_chan(struct device * dev,const char * name)1519 static inline struct dma_chan *dma_request_chan(struct device *dev,
1520 const char *name)
1521 {
1522 return ERR_PTR(-ENODEV);
1523 }
dma_request_chan_by_mask(const dma_cap_mask_t * mask)1524 static inline struct dma_chan *dma_request_chan_by_mask(
1525 const dma_cap_mask_t *mask)
1526 {
1527 return ERR_PTR(-ENODEV);
1528 }
dma_release_channel(struct dma_chan * chan)1529 static inline void dma_release_channel(struct dma_chan *chan)
1530 {
1531 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1532 static inline int dma_get_slave_caps(struct dma_chan *chan,
1533 struct dma_slave_caps *caps)
1534 {
1535 return -ENXIO;
1536 }
1537 #endif
1538
dmaengine_desc_set_reuse(struct dma_async_tx_descriptor * tx)1539 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1540 {
1541 struct dma_slave_caps caps;
1542 int ret;
1543
1544 ret = dma_get_slave_caps(tx->chan, &caps);
1545 if (ret)
1546 return ret;
1547
1548 if (!caps.descriptor_reuse)
1549 return -EPERM;
1550
1551 tx->flags |= DMA_CTRL_REUSE;
1552 return 0;
1553 }
1554
dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor * tx)1555 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1556 {
1557 tx->flags &= ~DMA_CTRL_REUSE;
1558 }
1559
dmaengine_desc_test_reuse(struct dma_async_tx_descriptor * tx)1560 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1561 {
1562 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1563 }
1564
dmaengine_desc_free(struct dma_async_tx_descriptor * desc)1565 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1566 {
1567 /* this is supported for reusable desc, so check that */
1568 if (!dmaengine_desc_test_reuse(desc))
1569 return -EPERM;
1570
1571 return desc->desc_free(desc);
1572 }
1573
1574 /* --- DMA device --- */
1575
1576 int dma_async_device_register(struct dma_device *device);
1577 int dmaenginem_async_device_register(struct dma_device *device);
1578 void dma_async_device_unregister(struct dma_device *device);
1579 int dma_async_device_channel_register(struct dma_device *device,
1580 struct dma_chan *chan);
1581 void dma_async_device_channel_unregister(struct dma_device *device,
1582 struct dma_chan *chan);
1583 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1584 #define dma_request_channel(mask, x, y) \
1585 __dma_request_channel(&(mask), x, y, NULL)
1586
1587 /* Deprecated, please use dma_request_chan() directly */
1588 static inline struct dma_chan * __deprecated
dma_request_slave_channel(struct device * dev,const char * name)1589 dma_request_slave_channel(struct device *dev, const char *name)
1590 {
1591 struct dma_chan *ch = dma_request_chan(dev, name);
1592
1593 return IS_ERR(ch) ? NULL : ch;
1594 }
1595
1596 static inline struct dma_chan
dma_request_slave_channel_compat(const dma_cap_mask_t mask,dma_filter_fn fn,void * fn_param,struct device * dev,const char * name)1597 *dma_request_slave_channel_compat(const dma_cap_mask_t mask,
1598 dma_filter_fn fn, void *fn_param,
1599 struct device *dev, const char *name)
1600 {
1601 struct dma_chan *chan;
1602
1603 chan = dma_request_slave_channel(dev, name);
1604 if (chan)
1605 return chan;
1606
1607 if (!fn || !fn_param)
1608 return NULL;
1609
1610 return __dma_request_channel(&mask, fn, fn_param, NULL);
1611 }
1612
1613 static inline char *
dmaengine_get_direction_text(enum dma_transfer_direction dir)1614 dmaengine_get_direction_text(enum dma_transfer_direction dir)
1615 {
1616 switch (dir) {
1617 case DMA_DEV_TO_MEM:
1618 return "DEV_TO_MEM";
1619 case DMA_MEM_TO_DEV:
1620 return "MEM_TO_DEV";
1621 case DMA_MEM_TO_MEM:
1622 return "MEM_TO_MEM";
1623 case DMA_DEV_TO_DEV:
1624 return "DEV_TO_DEV";
1625 default:
1626 return "invalid";
1627 }
1628 }
1629
dmaengine_get_dma_device(struct dma_chan * chan)1630 static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan)
1631 {
1632 if (chan->dev->chan_dma_dev)
1633 return &chan->dev->device;
1634
1635 return chan->device->dev;
1636 }
1637
1638 #endif /* DMAENGINE_H */
1639